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TECHNICAL MEMORANDUM

LOW DRAG ATTITUDE CONTROL FOR SKYLAB
ORBITAL LIFETIME EXTENSION

INTRODUCTION

On February 9, 1974, Skylab systems were confipured for a final
power down and Skylab was deactivated in a passively stabilized gravity
gradient (GG) attitude with the Mutiple Docking Adapter (MDA) up and
the solar panels trailing (Fig.1). Prediction of solar :ycle 21 activity
(the solar cycle predicted to begin in 1977) indicated that this attitude
would result in a potential storape period of 8 to 10 yr, However, in
the fall of 1977 it was determined that Skylab had started to tumble
randomly and was experiencing' an increased orbital decay rate. This
was the result of the greater than predicted solar activity at thebeginning
of solar cycle 21. 'This increased activity inereased the drap forces on
the vehiele. Skylab was now predicted to revnter tlie Earth's atmosphere
in late 1978 or carly 1979 unless something was done to reduce the drap
forces acting' on it, It was necessary to mnke a decision to either accept
an enrly uncontrolled reenu‘y (and thh it the dm\per that rulmt‘vely
activelv control Skylab in a lower rap; ntmudo thcrcby c\tendmg its
orbital lifetime until a Space Shuttle mission could effect a boost or
deorbit maneuver with Skylab,

In order to vom[y what options could be accomplished with the on-
board Skylab systems, in Muavch 1978 a team of NASA engincers went to
the Bermuda pround station to <stablish communications. The resulting
data indicated no discernible depradation of the Skylab systems during
its four years of orbital storage. The knowledge that Skylab was in an
unstable tumble prompted investipation into schemes whieh might extend
the orbiial lifetime of Skylab,

The first eption investigated was to use the on-board thruster
attitude control system (TACS) to maintain a quasistable tumble. How-
ever, it was soon determined that this option would not extend the life-
time sufficiently to correspond to the operational readiness of the Space
Shuttle for a possible reboost or deorbit mission. The only alternative
was to reactivate and continuously contrei the Skylab in a minimum dragpg
attitude. In order to accomplish this, the low-drag, end-on-velocity-
vector (EOVY) attitude control scheme was developed in record time (the
authors were given the task on March 20 and the scheme was flown on
July 11). Skylab remained in the low-drag attitude until January 25,
1979, when the vehicle was commandied to its original desipn attitude
[solar inertial (SI)], which was a high-drag attitude (See Skylab EOVYV
Time table for futher details).



Figure 1. Skylab.

With the active control of Skylab in the low-drag attitude, it was
decided to accelerate the development of an orbital retrieval system (Tele-
opertor Retrieval System) that mipght be accommodated on an early flight
of the Space Shuttle, thus increasing the chances of rendezvousing with
Skylab. The rate of orbital decay, however, continued to increase due
to the increased solar activity. Skylab's on-board systems aiso showed
signs of deterioration, and there were strong indications that the sche-
dule of the Space Shuttle would slip. For these reasons, the effort for
a Skylab recovery was terminated in December 1978, and Skylab was
placed in the SI attitude in January 1979. In this attitude the ground
maintenance was minimum and efforts could be concentrated on a method
for a conrolled reentry of Skylab [1],

More detail about the reactivation mission can be found in Refer-
ence 2. The following section gives the development of the EOVV control
scheme,

ATTITUDE AND POINTING CONTROL SYSTEM (APCS)

The control of the Skylab attitude to the attitude reference was
done exactly as in the original mission [3]. However, only the pointing
control system (PCS) of the APCS was used: the experiment pointing
control system ;EPCS) was disabled.

The major parts of the APCS were the rate gyros, th: Acquisition
Sun Sensors (ACQ S§8), the Star Tracker (it had failed during the
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SKYLAB EOVY TIMETABLE

Authors made aware that » low-drar attitude
momentum manarement method was needed,

Concent review by MSFC middle manapgement.

Final equations for 2-CMG EOVV to IBM,.

Documentation on ATMLC software chanre requirements
for 2-CHMG EOVV operation completed by IBM.

CMG spin up in cared position (7:00 am CST,
cared to H+[1.92 0.02 0.36])

7 am CUT. HKotation about sunline to place x axis I0P.
8 am CDT. CMG control in SI attitude.

12 noon CDT. Loss of contrel due to inadverdent servo
power cut-off to CMU#3 (faulty switch selector
introduced additional command)

1 pm CUT. Rerained control with CMG's after 2 orbits.
8:27 UT. Fnterina FOVV A attitude.

Loss of FOVV attitude control due to larpe ansular
momen tum and CMU saturation.

Re-estabilishment of EOVV A attitude.

Loss of 21l power introduces loss of attitude control.
Reorientation maneuver to find attitude.
Re-establishment of EQVV A attitude.

Maneuver from KOVV A to EOVV F attitude

NASA EQ press gonference (J.Yardley/d.Aller) where
Skvlehb 1is declared unsavable,

Keorientation maneuver to 8I attitude (hold mode to
allow time for the desien of the torque equilibrium
control methad for reentry).



original mission), the Apollo Telescone Mount Digital Computer (ATMDC),
the Workshop Comouter Interface Unit (WCIU), three double-gimbaled
Control Moment Gyros (CMGs), and cold-gas (compressed nitrogen)
Thruster Attitude Comtrol System (TACS).

Six control modes were addressable: (1) STANDBY, (2) SOLAR
INERTIAL (SI), (3) EXPERIMENT POINTING, (4) ATTITUDE HOLD/CMG,
(5) ATTITUDE HOLD/TACS, (6) ZLV (for z axis along the local vertical),
EOVV control was programmed to be a substate of the ZLY mode. The
basic ZLV attitude was with the positive z axis along the Ideal vertical,
pointing up, and the positive x axis in the orbital plane, pointing in the
direction of the velocity vector. Any anpular offset form the basic ZLV
attitude (offset identified by the quaternion Qal) could be commandéd by
a set of three Euler anples (x's) with a y,z,x, rotation sequence. None
of the original APCS capabilities were climinated by the addition of the
EOVV control method.

CMG CONTROIL SYSTIEM

The CMG control system was composed of three orthogonally
mounted, double gimbaled CMGS with angular momentum magnitude H of
3050 Nms (2280 ft-lb-sec) as shown in Figure 2. The CMG control law
utilized three normalized torque commands and the CMG momentum status
to generate the proper CMG pimbal rate commands [4]. The (MG control
law consisted of three varts: CMG steering law, rotation law, and gimbal
stop avoidance logic. There also were some other routines for specialized
situations like caging the CMGs to a desired momentum state [5],

The CMG control law had the capibility to operate with either three
or two CMG's for redundancy. Since (.MG No.1l had failed during the
original Skylab mission the CMG control law was always in the two-CMG
option,

EOVV MOMENTUM CONTROL

The problem for EOVV was to determine variable reference attitudes
such that, on the averape, the angular momentum was contained within
the two-CMG capability (allowing the CMGs to hold the preseribed attitude
reference), while the average reference attitude was consistent with the
desired low aerodynamic drag.

Minimizing the drag on Skylab required that the least frontal area
was presented to the wind while at the same time holding a GG torque
equilibrium (at the altitudes of concern the GG torques were still very
dominant and they were therefore used exclusively for momentum control;

e P . o
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Figure 2, CMG mounting arrangement,

for details on the aerodynamic torques, [1]1). Keeping the minimum prin-
cipal moment of inertia axis parallel to the wind direction fulfilled this
requirement. To have the necessary electrical power from the solar cells
as well as strapdown update information from the ACQ SS, the Skylab
was rolled throughl the angle Nen (APPENDIX F) about the minimum

principal moment-of-inertia axis (principal x axis) such that once per
orbit the sun line passed nominally through the center of the ACQ SS.

There were two attitudes which satisfied these requircments: One
with the MDA forward (EOVV A) and one with the MDA backward
(EOVV B). In either case, the MDA had to be pitched down by a varying
amount (depending on the solar elevation angle § = =Ny above the orbital

plane) to align the principal x axis with the orbit tangent.
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Control of the angular momentum was split into the control of the
momzntum component perpendicular to the orbital plane (POP control) and
the component in the orbital plane (IJP ct..lrol), Since IOP control had
some effect on POP control, IOP control ig iiwated first.

IOP Momentum Control

When Skylab was orviginally designed, it was desirable to minimize
the GG torques about the minimum principal-moment~of-inertia axis as
much as possible since the momentum management scheme [6) was least
efficient about this axis. For EOVV control tius meant that there were
basically no large GG torques available about this axis and, furthermore,
there would be no change in torques when the pvincipul y or z axes were
+45 degrees from the orbital plane (tracking of tha sun by rolling about
the x axis would make this a frequent oceurrence). Thercfore this first
order effect had to be abandoned. The actually used momentura control
scheme assumed that the Skylub moments~of-inertia were cyclindrical, with
an average moment~of~inertia difference of Al.

The problem was seived by using a second order effect. First, a
large cyclic POP torque was generated by "nodding" (pitching) the Skylab
in the orbital plane. Gyelic nodding was required to avoid a continuous
momentum build-up in tie POP direction, The eyeclic POP torque was thew
tilted as required (difizrently for each half eycle or quarter orbit) to
generate a controllable component in the orbital plane. The second order
effect stems from the fact that the IOP torque is proportional to the nod-
ding angle times the tilting angle.

The effectiveness of the IOP momentum control did not depend on
the frequency of the nodding, However, other considerations entered:
(1) the lower the frequency, the larger the POF momentum swing, and
(2) the higher the frequency, the larger the maneuver momentum that has
to be exchanged between the vehicle and the CMG system. Since only a
limited momentum volume was available with two CMGs and their associated
gimbal stop problems, a nodding frequeney of twice orbital frequency was
chosen as a viable compromise (s £ sin)

Ny = = MypSC2RE - N . (1)

yn y

Therefore, the IOP momentum control calculations were done every
quarter orbit. This had the added advantage that the resolution from the
nearly inertial O system to the rotating L system happened in 90 degree
intervals allowing indexing of some of the saved momentum samples rather
than requiring a full-fledged resolution.

To minimize transicnts at the quarter orbit sample points, the tiling
angle was also sinusoidal with twice orbital frequency and its amplitude
was the only changing quantity: ‘



My == N8 (28t - ny) (2)

where

Nom = Kz @y ™ €4 + €),/4)

K, = (15H) /(48n,, @ A1)

e,0 = momentum component to be desaturated

amplitude

]
i

ramp per orbit .

o
!

10

) The phasing of the nodding and tilting angles was the same so that
the amplitude was reached half-way botween sample points.

The sample points were chosen so that one of the samples (sample 2)
occurred at the time when the sun was perpendicular t¢ the solar panels.
This happened before orbital noon for EOVV A and after noon for EOVV B
(the difference of about 11 degrees between the geometric and the prin-
cipal x axes is the reason). In addition the nodding rate, being added
to the orbital rate, was phased so that it slowed Skylab down when the
solar panels werc perpendicular to the sun and therafore maximized the
power from the solar panels [giving rise to the minus signs in equation (1)
and equation (2)].

The tilting angle amplitude was caleculated so that the IOP momentum
component, which could be affected during the next quarter orbit (it was
along the direction of the connecting line between the present sample
point and the next one), would be driven to the desired value. The
desired value was basically zero, but any constant torque in the I, system
caused only a cycliec momentum change (with normalized ampiitude ea) over

one orbit and should not be compensated for. Therefore, the momentum
attributable to a constant I system torque was subtracted out of the
momentum e, to be desaturated over the next quarter orbit.
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To recognize a cyclic as well as a ramp momentum change, four
past momentum samples were savel., The samples were also used to gen-
erate strapdown update information once an orbit (flow charts in
APPENDIX H).

POP Momentum Control

The torques associated with a rotation about the orbjit normal are
much stronger than the ones associated with IOP control, Hence, fthe
momentum sampling for POP control has to be done as {requently as pos~
sible, However, the transients should have had a chance to settle before
the next POP sample is taken, Twelve samples per orbit satisfied both
requirements. The desaturation gain {APPENDIX D.Db)

~ 22 e «
Ko = :»1/(35?0 AL Tgogd (3)

¥

is calculated so that a step attitude change of

- = K, Ac ) €))

desaturates the desired Ae_ in one desaturation interval, To further

reduce transients, the caleculated POP angle (which would have eliminated
the momentum offset within the next desaturation interval if the angle were
applied fully during the interval) was ramped in so that the angle was
achieved at the end of the interval. Since this only reduced the momentum
offset by half, the angle was ramped-out during the following interval for
a full momentum offset elimination, The ramp due to the newly calculated
POP angle was simply superimposed on the ramp~down from the previous
POP angle (Fig. 3), The attitude command is, therefore, given by (N
signifies the present and N-1 the past value)

(lyoly = Kyo [(hey)y = 0.5 (Aep)y 4] (5)
= Kyo (hegdy = 0.5 (N g

The ramps connecting the nyc's are generated by
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Figure 3. POP command superposition.
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(ny)N = (”y)N-j. + Any At (6)
where
Any = [(ﬂyc)N - (nyc)lel /TdGS ’

This method resulted in a constant hang-off when necessary: The angle
change due to the old angle being ramped-out was compensated by the
ramp-in of the new angle (in f{light, constant hang-offs were commonr. due
to strapdown and navigation errors and they were not detrimental, since
the momentum control kept the vehicle at the truely desired attitude).

A block diagram of the EOVV orbital y momentum control scheme is shown
in Figure 4.

EOVV STRAPDOWN UPDATE

Strapdown updates about the vchicle x and y axes were always
furnished by the ACQ SS5. %Yo do that, the roll angle about the principal
x axis was changed by large amounts to compensate for the large beta
angle changes (a slow change) and relatively fast smaller corrections were
applied to compensate for the nodding and the tilting angles. The overall
effect was that the vehicle z axis nominally traced a cone about orbits?
north. The difference between where the sun-line was at the closest
approach to the ACQ SS center and where it was supposed to be according
to the strapdown information gave the strapdown x and y information.

Since there was no other sensor available, it was more difficult to
gain strapdown update information about the sun-line. The selected
momentum control method, fortunately, had the feature that, due to the
nodding angle, a misalighment between the ideal orbital plane and the
indicated orbital plane generated an IOP momentum ramp.

The actual strapdown update was done by changing the reference
quaterion (APPENDIX H,6)

QVI = AQ QVI ) "N
where the double-bar operator is defined in APPENDIX E and

AR = [AQ, ANy, AQy, AQ,] = [AQ, AQ,) (8)

10
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with

AQ =05 (s X v+ “vﬁ) ' (9
and
AQyu= V1 -0Q - 0Q . (10)

The cross product in equation (9) is the ACQ 8§ updnte and the
last term is the IOP ramp update, where v is a unit vector in the sun
direction as calculated by the ATMDC and s is the measured sun direction
unit vector, M, is the angle about the measured sun direction (the grain

Kuz is developed in APPENDIX D.e.):

Wy =7 Kuz CprN1 = SprNip) 0 (11)

where Kuz is a gain and (e'l‘LNl " Cp,N1P) is the angular momentum
change (ramp) per orbit (117 is calculated at sample point 1) modified by

the ground commanded ramp bias ¢, Since

erLN1p = CrrNip * Cpb (12)

is calculated right after the M, caleulation and, therefore, is used for
the next M, calculation (eTmeis modified at every sample point to
account for the momentum changes commanded by "zm)'

EOVV OPERATION AND PERFORMANCE

The original EOVV equation considered EOVV A only. In
EOVV A CMG No. 2 received more solar radiation when the sun was north
of the orbital plane (positive beta angle) and less when it was south of
the orbital plane (negative beta angle). For large negative beta angles
the CMG No. 2 bearing temperatures became critically low. As a con-
sequence, the EOVV A cquations had to be modified during EOVV opera-
tion to allow an EOVV B attitude during extended perjods of large nega-
tive beta angles (Fig. 5).

12
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Figure 5. Sun elevation angle beta (April 1978/August 1979).

Constant ny ¢ angle hang-offs (caused by strapdown, navigation,

and other errors) required constant POP momentum hang-offs to generate
the necessary commands., Since the range of acceptable POP momentum
component was rather limited (#0.4H from the nominal; the nominal erN

being 2.5H in EOVV A and 0.3H in EOVV B) the nominal POP momentum
had to be changed to accept large angle hang-offs (3 deg of POP angle
hang-off required 0.1H POP momentum hang-off). This change in nominal
momentum was made from the ground at the beginning of the EOVV opera-
tion and later was automated on-board to guard against ground inatten-
tion, ground system failures, and long telemetry coverage gaps (Fig. 6.).
Momentum excursions outside the specified range caused loss of attitude
due to CMG saturation on one occasion June 28, 1978, and it was there-
fore very important to keep the POP momentum bounded.

Strapdown updating about the sun-line was done with information
derived from the IOP momentum ramp. Unfortunately, the evaluation of

the IOP momentum ramp yielded very noisy readings from one orbit to
the next and could only be used with a very reduced gain sz' This,

13
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in turn, could lead to large orbit plane misalignments to generate the
required strapdown updates to keep up with the +50 deg rocking of the
true orbital plane (due to the precession when viewed with respect to
the projection of the sun-line into the orbital plane). The large size of
the maximum change per orbit (1.2 deg) was not recognized at the begin-
ning of the EOVV operation and was the cause for loss of attitude on
June 28, 1978. After that the ideal strapdown update necessary to follow
the rocking of the orbital plane was introduced open loop through the
quantity called € [equation. (12)] and no more problems were experi~

enced (APPENDIX C).

15



APPENDIX A
COORDINATE SYSTEMS AND TRANSFORMATIONS

The coordinate systems which are pertinent to Skylab EOVV control
are defined here. Each system has some special geometrical or physical
feature which simplifies the solution of a particular problem,

The following coordinate systems are described: Principal, Orbital,
Vehicle, Attitude Reference, Solar Inertial, and Z-Local Vertical. Each
coordinate system consists of a set of mutually orthogonal axes exhibiting
right-handedness,

An inertial (with respect to rotation only) coordinate system is a
system which retains its orientation with respect to the celestial sphere,
although the origin may be moving along any general curvilinear path in
space. Similarly, a vehicle fixed system retaing its orientation with
respect to the vehicle.

Orbital Coordinate System (O)

The Orbhital Coordinate System (xo, Yo zo) is a precessing coor-

dinate system with its origin at the Earth center of mass., The rate of
precession about the Earth's north pole is approximately -5 degrees/day.

The 2z axis les in the crbital plane, positive through the ascending node

of the orbit. The X, axis also lies in the orbital plane 90 degrees ahead
of the Z, axis. Since the Skylab orbit was in the X, 2z, plane at all times,
the Yo axis was parallel to the orbital angular momentum vector, complet-

ing the right-handed system (Fig. A-1).

Solar Inertial Coordinate System (I)

The Solar Inertial Coordinate System (xI, Vy» zI) is only a pscudo-

inertiul system since it makes one revolution per year. It was used during
the Skylab mission to point the instruments in the desired direction. The
origin is coincident with the origin of the Vehicle Coordinate System origin.
The Z axis is positive toward the center of the Sun. The Xy axis lies at

an angle v, from the orbital plane (this angle is calculated on-board such

that the principal x axis is in the orbital plane to minimize the build~-up
of angular momentum) and is positive toward the sunset terminaior.
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Figure A-1, Coordinate system.

Z-Local Vertical Coordinate System (L)

The z-Local Vertical Coordinate System (xL, yL.zL) is a rotating

system with its origin at the center of mass of Skylab (the rate of rota-
tion is one revolution per orbit), The Xy, axis is positive in the direction

of flight and lies in the orbitul plane. The zp, axis is parallel to the local
vertical direction and is positive outward, away from the Earth. The vy
axis is parallel to the orbit normal and is positive toward orbital North.

Vehicle Coordinate System (V)

The Vehicle Coordinate System (xv, Yy zv) is a vehicle-fixed
system with its origin at the center of mass. The Xy axis lies along the

long axis of Skylab and is positive in the direction of the Multiple Docking
Adapter (MDA). The Zy axis is positive toward the Apollo Telescope

Mount (ATM) and the Yy axis completes the right-handed system.

17



Frincipal Axes Coordinate System (P)

The Principal Axes Coordinate System (xp, Yp» zp) is a vehicle-

fixed system with its origin at the center of mass. The axes are along
the principal moment-of-inertia axes, labeled such thet the eigen angle
between the v and the P system is minimized.

The following transforms are useful (the subscripts 1, 2, 3 indicate
rotation about x, y, z, respectively).

(AL] = (K17 [nl; [ndy [ng + Nggdy
[PV] = [K]

[VI] = strapdown matrix (updated by w’

", sunsensor data and
momentum data)
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APPENDIX B
UGRAVITATIONAL TORQUE MODEL

The gravitational torques on a satellite preduced by a large, spheri-
cal primary body are important contributors to its rotational dynamies.
The force on a point mass m exerted by the primary M is

- SMm R ;G- 6.6728-11 NmP/kg? (B1)

The satellite cun be viewed as a collection of point masses, The net tor-
que on this collection of masses about the origin of satellite coordinates
is

Ig:";?i"!fi ' (L2

The vector r. is the position of m, relative to the origin which is at R
relative to the primary center. Thus

...R..i = 1}.0 + }.‘.i (Bs)
and
R + r.
T =~ ), rg % GMm —>—T1 (B4)
d i lBo + }:.1’

In general lgi] << |R | and hence an expansion of T 2 keeping only low
order terms becomes sufficient for most purposes. Now

R nc R LIS A
e 1 R =%~ 4 h.o.t. (B5)

R + r,

-0 --13 - = + - -3 5
—Q

R+l R IRy R, |

-
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Using the expansion of equation (B5) in (B4),

R 1r
GMm GM 0 ~i
T =~7p — 3 m: r, XR ey W
= ~cm 3 ~o 3 Z i~ " ~o 3
¥ R, ] IR " 5 IR,
+ h.o.t, (B6)

We have used the definition my om = E my Ly Rearranging and grouping
i 4

equation (B6) wo cbtain

, R R
; GMm 3GM ) . <0
T, = o- r M easesian 1{ s’. a2 X oy il tn
Tg =" Eom * 75 Bo 3 5 ( %, i)
!R’Q ’ [RG l ‘.I.S’Q l

+ h.o.t. . (B7)

The term in parentheses in equation (B7) occurs in the definition of the
moment of inertia dyadic (or tensor)

L= ma’ -y (B8)
1

Using this definition in equation (B7) and dropping the higher order
terms yields the gravity gradient torque expression

R R
IR, | IR, I7 IR,1 = (R,

-

As can be seen, if the origin is positioned at the center of mass the more
familiar gravity gradient torque expression results:
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R R

GM -0 =0
Tog 3 g e X1 ¢ o, (B10)
&8 IRI” IR,I = IR,]

For an orbiting body m, the orbital angular velocity magnitude is given
by

2

7,2 = am/[R 13 . (B11)

Noting that R /[R | is a unit vector up, we finally write

Top = 9  up XL up . (B12)

The torque of equation (B12) is what is commonly referred to as the
gravity gradient torque.

21



APPENDIX C,

STRAPDOWN DRIFT ERROR AND MOTION OF I
COORDINATE SYSTEM

The basic reference coordinate system used during the original
Skylab manned mission was the so-called Solar Inertial (1) coordinate
system (Appendix A gives the definition). As stated there, I is not truly
an inertial coordinate system since its axes rotate with the sun and orbit
regression. Its rotation rate varies with the solar elevation angle out of
the orbit plane. By definition, the z axis points toward the sun and the
unit wvector Upy lies in the orbit plane pointed generally parallel to the

vehicle velocity vector at orbital noon., The unit vector Up, is the

direction of the x principal axis in vehicle coordinates V. Thus, when
the V and I systems are aligned, the vehicle x principal axis is in the
orbit plane so that ideally all gravity gradient torques are cyclic. The
sun angle I'  and orbit regression angle Ay are updated once per orbit

at orbit midnight in the Skylab navigation calculations, In between mid-
nights, the I system, as defined by vehicle on~board navigation, does
not rotate. As a consequence of this, it is useful to redefine I such that
the definition given previously is only satisfied at midnight. Let Ik

represent the true reference position (we use the convention that true

or physical parameters are labelled by a subscript k) of this system and

I represents the estimate. This estimate is made using the vehicle angular
rates as measured by the rate gyros.

vV _ v \
vi "8y Y&

ie

v ave all given in the vehicle

system V. The rate w DV is tI gyro drift rate and experience indicates

it tends to be constant in the vehicle system V. To a good approximation
the vehicle remains fixed relative to the local vertical system L. Thus

" ] A . A% '
The angular rates w (") xp° and W g

v v
Byrp =55 Yao

where @ is the orhital angular rate.
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Since Qo. usz and w

v _
Qvik = 9 Yy,

D

‘7

v are constants, ‘—QVIkv niust also be constant

\'4

— -(‘_)D .

We can integrate the rate w

Vlkv using the differential equation

a‘-’t- (V] = - ﬁvxkv vyl .

This yields

(VL) =exp A [vI

with

and

where

T = 27r/£20 ,

is the orbital period.

o

k]o ~

1-sin |A] A + (1 - cos Ay AKX
4 4
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(VI ], is the [VIk] transformation at the beginning of the orbit,

Let

U] - W '

—--V-Ik = Vlk T ’
and

Op=uwp T ,
then

Svi, = 21 Uyo = Op -

We shall now assume that |0, << 2r. In practice |0, ] is at most

~ 0,05 to 0.06 radians. Thus we can evaluate exp (”BVI V) keeping
k

only 1st order terms in _t}_DV. First, we find

L‘?»wk' © 2= Upy * 8 -

Using this result, we find

| Svr,

= U “"x-l-m t - .
=Upo - gy Up = 8y * Upo Upo)

From this we find

oxp (= Dy, Yy = oxp Cay + Oy dp,")
K

Finally

o .V
(VI ) = exp 9y - upy Uy, ) (VL]

e

¢
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=0 Op - upgly VY VR, €

.V
T+ O supy fipy ) VLD, .

The result we have obtained in equation (C1) can be summarized by say-
ing the strapdown error induced by gyro drift to the 1st approximation
only accumulates along ihe orbit normal and tends to be purely cyclic
along u,, and Urge

Strapdown errors enter in also due to motion of the I coordinate
system. These motions are not accounted for in the strapdown calculations
and so must be correcind by updates from sun sensor data and momentum
accumulation data as explained elsewhere. The solar inertial system motion
is readily calculated from relative motion of the sun and f{rom regression
of the Skylab orbit. The sun moves approximately 1 :leg per day while
the orbit processes nearly 5.5 deg per day in the retrograde direction,
Since there are about 16 orbits per day, these effects are usually small
but occasicnaliy amount to more than 1 deg per orbit. To analyze these
effects let us define the system S such that the z axis points to the
Vernal Equinox and y axis to the ecliptic north pole,

costbz simpz 0

[SE) = [¢,)q = | - sing, cosp, 0 | ; ¢, = 23.45° .
0 0 1

~“

Also, define R such that 2R points to the sun and YR to ecliptic north.

From R to I is a rotation about 2R

[IR] = [0,],

where the numeric subscripts indicate the axis of the Eulei: angle rotation
(1, 2, § represent x, y, z respectively).
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The angular velocity of I relative to E is

0 sin ©
l - . - z
Wgp T 9,101+ I‘y cos O, .
1 0

The transformation [IE] can also be computed from onboard navigation
parametors

UED = [v) [ngd ) D) Oy (c2)

The angle >‘y is the orbit regression angle and Xy is the nearly constant

regression rate. The angles in equation (C2) can all be expressed in
terms of A and I‘y. The vector Up, i8 a row from the vehicle-to-

principal axes transformation [PV],

1 PV
V. Tlol = Pv11
Upy = [PV] ={ PV '
0 PV,

For convenience, we let [K] = [PV] so that

K
v 11

Upy =| Ky
K3

The unit vector to the sun is up, and is

sin I‘y cosc{:z

E _
Upg = | sin I‘y sing,

cos T
"y
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Similarly, the orbit normal is

—-smAz cos}\y

sin )‘z sin )‘y

The angle ”y is by definition the position of orbital noon, i.e., the posi-

tion in orbit where the radius vector, the solar vector, and the orbit
normal are coplanar with up, « u; 4 > 0.

0
_eo=1f YRax )\ . 0 _ E
ny = tan ( 0 ) i where ERS = [OE] Upg

o = tand (cosAz cosA, sinl'y cos¢, + sin}A, sinl'y sing, - cosd, sin), cosl‘y)

sm)\y smI‘y cosq)z -+ cos)\y cosI‘y

Note: The tan™! technique used must be a 4 quadrant technique! The
angle Ny is the elevation angle of the sun out of the orbit plane with

orbit south the positive hemisphere.
e an~l ,0

g = sin T ugay

-1 ; -
= sin siny_ cosy. sinl'. e - i ; - si : !
s [ 2 s«y in y os¢z cosXz smI‘y sxxwz s.m\Z sm&y cosT y]

The remaining angle v, is obtained by solving

Up; ' Ug,= 0& Upy * Uy q 2 0 at orbit noon (C3)
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éﬁu S R S T

- K
+ oy, = - ¢+sin1 13 tan Mx H ¢=tan“1(i—(—-1—~2-> .
/-——2- 11
1 - K13
(4 Quadrant tan—l)

With these intermediate angles and the values of A v’ Az, I‘y, ¢z, we
can compute [IE] from equation (C2) for any time. We can also compute

6,

-<.:osr'y cos¢)z cos}\y slnkz + co:sI‘y cos}\z sing -~ :sinI‘y sinAy smkZ
30}:' = simt)z cos)\y sinA, + cos}, cos¢,

wsinI‘y COS¢Z cosAy smAZ + sml’,y cosAz simpz + cosI‘y zeun)\y sanz

-

From equation (C4) then we cbtain

R R R
_ -1 Ky3ugy, -1 K11 Yook * Kyp Ug,y
A =~ sin ~ tan R R
2 _,, Rz K,, u - K., u
Ao - KS,) (1 -uys 11 Yozy ~ K12 Yo2x

We can now use equation (Cl) to determine 9-)IIE' Figure C-1 shows how
I

IE
so~-called B angle B = - nx) goes through its maximum value in the north-

the components of w.. vary with time as the sun elevation angle (the

ern orbital hemisphere. We had not realized prior to this that the solar
inertial frame could move so fast and were unpleasantly surprised when
EOVV attitude was lost due to strapdown drift and resultant momentum
saturation. For more on this incident see Reference 2. After this inci-
dent, we developed a procedure to update the z momentum bias in such
a4 way that the necessary rotations would be supplied by the bias value
rather than a momentum error. The parameter was called a ramp bias,
LR [equation (12)]. Since the z update angle depends on €, = €, We

could keep e, small by using e and since we now knew what to expect
we could plan in advance what € updates were needed to keep e, small.
Table C-1 and Figure C-1 show the b updates that should have been

made to prevent the loss of momentum control we experienced. The
knowledge and experience gained here allowed us to successfully pass
through two similar peaks of opposite signs in November and January.
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TABLE C~1. SCHEDULE OF ERB UPDATE TIMES

UPDATE TINE

166148s 0
170t 0143
1721 7126
173146843
174143127
175 41 7
175118123
1764 0134
1761 7139
1761841 3
176819124
1778 0130
1770 4133
1771 8138
177412129
177118144
177140182
177122 4
178t {1 S
1788 Ji164
176t 6136
17081 9122
170112t §
170114158
170117143
170120430
178123148
1791 2147
1791 6130
179110143
179116136
100113148
180119141
1811 0147
1841 81 8

30

NEW ERB VALUE IN L5BS

T8 6 2030
U OOVDINAILUER ™ORN

1811 9129
181183144
101847180
1804121186
182y 29 9
182t 6129
162110149
102118132
102120123
1031 1126
163 7t 2
183142146
183119120
1841 2116
1841101 2
104118150
18051 4144
1081461 S
1861 5313?
186125142
187147142
188148153
1903 3127
15312143F
1941 Q1408

ASSUMES KMUZ 1S 0.2
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APPENDIX D. GAIN CALCULATIONS

a. Calculation of IOP Desaturation Gain an

The local vertical in principal axes components is {s = sin, ¢ = cos)

cz sz Ojfcy 0 =~-syll O | ~CZ8y
£p = |~sz ¢z 0 0o 1 0 0 = Szsy )
) 0 0 1}}l.sy 0 cy 1 ey
where

Y =Ny, =7 'nyms(zszot). 2= My, == on,,s2R

rotation is neglected (a cylindrical inertia distribution is

and the N
assumed with | v = Iz =] and Al =1 - Ix)' The gravity gradient torque

is (in P components)

0 0
Iggp = Kgg' mryre = Kgg eczsyey )
ry Ty -CLSYSzZSY
where
2,
K__ = 30°A ’
g6 o !

and in 0 components (where Y = not +y)

cY 0 sY cz =-sz O 0
I‘ggo = Kgg; 0 1 0 Sz cz O czsyey
-sY 0 cX 0 0 1 -8ZCZSYSY
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L R

-cﬂot -l
= K __ szezsy | ey/tz} .

g
sS’Zot J

For the further development only the IOP component is of interest, which
is (assuming y ond z small)

st
= s2 (20 °
'-I-\g'g‘z,x a Kgg Tym "zm® (22,1) '
-ef) t
(o)
Integrating over a quarter orbit yields
/28 s t
H =4K__n. 0 at sl n|
~ggoz,x gg 'ym zm ./ ‘o 0
0 ~cS?Qt
(/26 ]
(e 2 4,
Sat st e®at - et
_ 0
=4 Kgg' Oym Nzm 128
T 20, _ A
J dat el t (s Qot ] 530t
ot 0 At
Substitution yields
(u= cS'&ot; v = sSZOt) ,
" N
f du (u2 - uh 5 1
4 0 4 ‘
H == K__ 1n.  n \ =5 Koo Nym Mom 16
—~ggoz,x gg 'ym 'zm 1 Noge 'ym zm 15 |
° - [ av w2 - vh © !
0
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Rotation to the effective axis system yields

1 1 1

24 1

H === Q Al n Ny~

—ggz,x 10 o ym 'zm ’
2y 1] 4

Hogz =0

Hygx = = (24 /2[16) 94 ng n,

Resolving actual momentum to be desaturated into the same axes

Hz+Hx . 11 H

Sl

~Hz + Hx

Only the x component can be desaturated leading to (in units of the
nominal angular momentum H of one CMG):

(H//‘_Zs (ex - ez) = (48/15/—2_) QOAI n_y n

m 'z !

or

Nom = Kpyy (g - e

with the gain being

an = (15H)/(48ﬂ0AIn )

ym
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b. Calculation of POP Gain .l(y o

The gravity gradient orbital y torque for a rotation ny about the
orbital y axis through ny is (APPENDIX B)

Tagoy = Kgg 8Ny Ny

sK_..n

ge Yy

If the angle Ny is held constant over the desaturation period T
1/12 of an orbit) we get an orbital y momentum change of

dos (about

y

in units of the nominal CMG momentum H, For a given Ae,., we need

Nye = Kye Aegy

with

Ky c

I

H/G? AT, )

des
c¢. Calculation of Strapdown Update Gain KU?

The components of the local vertical in the P system are (neglecting
the tilt angle n omt 8 = 8in, ¢ = cos)

cN 0 -sN 1 z 0} cy 0 sy 0 ~8n
Iy © 0 1 0 =z 1 00 1 0 0| = | ~z8y ,
sN 0 cN 0 0 1i|-sy 0 cy 1 cn
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with

Nay+n;y=$2°t;na~ s(2ﬁot);su?zz;cu 1 .,

"ym %
For I = Iy =1, and AL =1 ~ Ix we get for the principal axis torque

due to the gravity gradient in the inertially fixed O system (with

K, = 30,20

44
cN 0 sN 0 r, sN
ggg = Kgg ry 0 1 0 =ty | = Kgg vyl g .
-sN 0 ¢N r r, @
2 2
Only the torque about the z axis is of interest
T gez = K ggzsnsy(cycmsysn) .
With n = Ks2y; sn ~ Ks2y; en x 1 and K = = 1 we get

ym

it

T K _2zKs2ysy (cy-syKs2y)

gg gg

n

0.25Kggzl( [(1 - K) - (1 ~K) cdy = 2ycdy]

Elimination of the cyclic terms leaves a constant bias torque of

o= 0,25K . zK (1 -
ng_z 0.25 ggf( ( K)

Integrating over an orbit (T

z, K eg’ and K gives

orbit = 27/2,) and substituting the value for

AHopins = = (3/2) SAL ny, (1 )




Inversion yields

Hp ® 7 Kuz Ciur

where

(1 +n

K.z = 2H/[3$20Al n )}

i ym ym

and e, is the normalized z momentum ramp,

Because of noise, a much smaller K z value had to be used in
actual operation (see EOVV OPERATION and PERFORMANCE),
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APPENDIX E
QUATERNIONS - A BRIEF EXPOSITION

Complex numbers of the form z = a + ib have proven to be a valu-
able concept in the study of many physical phenomena. A generalization
of this concept which proves useful in the study of rotational motion is
the quaternion. Recall that the imaginary unit i = V=1, Let us define
additional units j and k together with the product operation o:

ioi=joj=kok=-1
ioj=~joi=k
(E1)
jok=-koj=i
koi=~-10k=j
We shall define a quaternion as any quantity of the form
Q=Q4+1iQ1+jQ2+k Q3 , (E2)

(See Note 1 at end of Appendix E.) By analogy to the complex number
terminology Q4 is referred to as the real or scalar part of Q. It will
also be convenient to think of the remaining part of Q as the imaginary
or vector part. The reason for this will become clear as we proceed.
Let R = R4 + iR1 + jR2 + kR3. The sum of quaternions Q and R is
defined as

S=Q+R =(Q4 +R4) +1i (Q1 + R1)
+j (Q2 + R2) + k (Q3 + R3) . (E3)

From this definition we can see that the sum operation is commutative and
associative. We can now give the complete definition of the product opera-
tion o:
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ks

B b A

M 2

P=QoR = (Q4 R4 - Q1 R1 - Q2 R2 ~ Q3 R3J)
+1 (Q4 R1 + QL R4 + Q2 R3 - Q3 R2)
+3j (Q4 R2 + Q2 R4 + Q3 R1 -~ QL R3)
+ k (Q4 R3 + Q3 R4 + Q1 R2 -~ Q2 R1) . (E4)

With this definition we can show that o is associative and distributive but
not commutative, i.c., Q o R # R 0 Q. We shall eall any quaternion hav-
ing zero imaginary part a scalar and, obviously, the algebra of scalars

is just the algebra of real numbers. Thus, multiplication of a quaternion
by a scalar simply results in a quaternion whose clements are multiplied
by that scalar according to definition E4. We can now define the differ-
ence cperation as

e

D=Q-R=Q+ (1) oR . (15)

For convenience, we shall always omit the o when multiplying a guaternion
by a scalar so that (-2) o Q = -2 Q,

By analogy to complex algebra, let us define the conjugate quater-
nion to Q. ‘The conjugation operation will be denoted by ( )*. Thus

Q¥ =Q4 -1 Ql-=jQ2-kQ3 . (E6)

So far all of our definitions have been extensions of those for complex
numbers as can be scen by assuming Q2 = Q3 = R2 = R3 = 0, Thus the
complex number gystem is a subset of the gquaternions. It can be casily
seen that

Q* 0 @ =Q o Q¥ =Q1L QL +QR2 Q2 + Q3 QI + Q4 Q4 (E7)

Note thet Q* o Q is a purc real number or scalar, With this observation
we can define the inverse:

Q7= (1@ 0 Q) Q* = Q¥(Q* 0 Q) s Q*o Q # 0 . (E8)
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Finally then, we can define a division operation:
. -1 ,
Q 'R=QoR . (E9)

We can see that Q :Q =Q ¢ Q™1 = Q“"“ o Q =1 so that Q“1 satisfies the
necessary properties of an inverse as long as Q # 0. This will be useful
later.,

We need some additional results and definitions. First we can show
that

(Q o R)* =R* o Q* (E10)

If the quaternion Q = Q*, then Q is necessarily a scalar. Also, if Q =
-Q¥*, Q is purely imaginary or a vector quaternion. If V is a vector
quaternion, we shall designate this by an underline as is also used to
designate a 3-space vector, i.c,, (@, j, and k will not be underlined)

V=iVl+jV2+kVy . (E11)
For compactness of our notation we shall let

Q=Q4+Q , (E12)
where

Q =1iQl+jQ2+k Q3.
Thus

QOR=(Q4Q4~Q B +Q4R+R4Q+QxR . (E13)
The operations - and x are defined as for 3-space vectors so that

Q+R=Q1R1+Q2R2+ Q3 R3 (E14)
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and
Qx R=1i (Q2 R3 - Q3 R2) +j (Q3 R1 - Q1 R3)
+ k (Q1 R3 - Q3 R1) . (E15)
For vectors A and B,
AoB=-A+B+AXB . (E16)

In general the product of quaternions mixes scalar and vector parts
together so that this product is not very interesting in the study of
rotational motion in 3~space. The triple product

Vi=Q*¥o VoQ (E17)

is more interesting since it does pveserve sealar and vector parts of V
without mixing them. This property is trivial for the scalar part of V
and follows for the vector part since

V*¥=(Q*oVoQ)*=-Q¥oVoQ=~V" (E18)

Hence as noted the triple quaternion product (E17) takes a scalar into
a scalar and a vector into a vector for any quaternion Q. Rurthermore,

the length of the vector |V| =/V +V and

.

Vi eV'=VoV*=Q¥oVoQo (Q*oV o Q¥

"

Q@ o 2vVovr |, (119)

Equation (E19) indicates the triple product (E17) multiplies vector length
by the factor Q¥ o Q which is a real number. We note that if Q* 0o Q = 1,
vector length is preserved and the vector mapping V ~+ V' looks like

a rotation operator. It is a linear operator in that aA + bB -+ aA' + bB'.
Restricting ourselves to normalized quaternions which prescrve length,

we see that B17 is equivalent to a rotatien of vector V into V'. Since

we are looking only at normalized quaternions, we can without loss of
generality, represent Q as
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Q =cos ¢/2 + sin ¢/2u ; whereu-u=1 . (E20)

l‘heitriple produect equation (E17) can be combined with equation (E20)
to give

Vizecos ¢ V=singpguxV+(l-cos¢d)uu-V , (E21)

Ed

Lquntlon (E21) is the general form of the votation of a vector V about
axis u through the angle =$. That this is true is seen by c\amimng the
rotation operation, Clearly any vector along the rotation axis u is not
changed by the rotation so that if the vecter Vis broken into parts par-
allel to and normal to u; i.e.

V= XII + yl »  where Y”Il =V +uuand Zl cu=0 . (B22)

We must also have V' =V + gl ; where V! - u = 0and Vo o= g;' .

Since Y,L and Y‘.'L are normal to u, we ean express gl as

Vi =xuxV +yuxuxV) . (E23)
1 ~L R
Now V' . = |V l eosw = ~y ]V | » y =-cos vand V. x V' =

!
]V ] sin « u and Ums X = sin whcr « is the rotation angle, Com-
bunng, we obtain

VI =sin ou >V =cos au x(uxV) (L24)
L L - L
and
Vi=uu «VesinaouxVe-cosaux(uxV) . (125)

The equivalence between equations (E21) and (B25) for o = - ¢ is estab=
lished. Thus, the mapping (E17) is equivalent to a rotation operator in
a vector 3-space. Since the coordinate directions are also vectors, we
can rotate the coordinate system instead of the vector. Rotating the
vector through -¢ yields the same components V' as rotating the coordi-
nate axes through ¢. Thus we can look at V' as a new vector formed
from V by rotation and expressed in the old “axis system or as the old
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vector expressed in new axes rotated relative to the old. We have now
demonstrated that any coordinate system rotation can be represcented by
a quaternion. Note that if Q satisfies equation (E17), then so does -Q.
Looking back at equation (E20) tells us that ~Q corresponds to ¢ + 360
degrees which represents the same attitude ¢ does.

We now look at the time variations of Q. Since Q is constrained to be
normalized, we necessarily have

d/dt(Q* 0 Q) =0=Q*0Q +Q*0 Q . (E26)

We see from equation (E26) that Q* o Q = - (Q* o Q) * and hence must
be a vector. Let us define this vector by

Q*oQ =1/2w (E27)

> Q=1/2Qo m(since Qo Q*=Q*oQ =1) . (E28)

We shall see the reason for the 1/2 factor later. When we evaluate the
rate of change of a vector with time in two reference frames, we find

V=QoVoQ*+QoV 0Q*+QoV' oQ* . (E29)
Using equations (E28) in (E29),

V=Qol[V' +1/2 (o V' - V' o )] o Q* (130)

V=Qo [V +axV]oQ+ . (E31)

Now the reason for the factor 1/2 becomes clear. It is so that we can
identify w. Equatlon (E31) is exactly like the corresponding equation
for 3~space vectors if we 1dent1fy w as the angular velocity of the primed
reference frame expressed in primed coordinates. This identifcation fol~
lows from the fact that equation (E31) holds for an arbitrary wector V.
Thus, wis identified as the relative angular velocity of the primed axes
with mspoct to the unprimed.
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The above discussion completes the basic development of our qua-
ternion tools. We now turn to the problem of developing a more conven-
ient notation. The most logical choice which comes to mind is a matrix
representation. The quaternion Q would logically become

= -y

Q1

Q = 2§ . (E32)

|4

Looking back to the definition equation (E4) of the quaternion product
0, we see that for P = Q o R we have

~ .
Q4 -Q3 Q2 Qi R1

Q3 Q4 -Q1 Q2| | R2 N
P=| Q2 q1 Qi 3| |n3| 49R (E33)

e Q2 -
i Ql -Q Q3 Qfl“ LR4.J

(See Notes at end of Appendix E.) Similarly, i- D = A o B o C, then

D=A0oBC=ABC=ABC . (E34)

L]
This rz-ult shows that the set of matrices of the form Q have the proper-
ties. of the quaternions and in fact comprise a maxtrix representation of
quaternion algebra with matrix multiplicstion corresponding to o. We can
also express the quaternion product in the alternate form

- 9 0F M
R4 R3 -R2 R1 Q1

-R3 R4 R1 R2 Q2
(E35)

=il
)

R2 -R1 R4 R3 Q3
-R1 -R2 ~-R3 Rd Q4

L. - L. -

(See Notes at end of Appendix E.) Here the mapping alse vields a matrix
representation except the order of the factors must be reversed. Thus,
we have
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D=ABC=CBA . (E36)

According to these definitions and results, we have

&2

Cali

ABC= B=CHA=CAB . (1B37)

o}
bevdii

Thus, an interesting and sometimes usefu!l result is that A C = C A,
Let us now leok at our previous work and make use of these new
definitions:

;:ango(a.,.ylzéakg(ggéway . (E38)

Note that we now have a matrix formed form Q which rotates coordinate
axes and produces V' from V. Linear vector spaces are also represented
by matrices. The 3-space vectors » Vand V' arc related as

V=MV . (£39)

Herce M is a 3 x 3 matrix which transforms components of V to primed
coordinates. Referring back to equation (125) and replacing o by -¢
we sce that

M=uu" -sin p li+cos $ (I ~u El) . (E40)

—

(See Notes at end of Appendix E.) The matrix i is the so-callzd cross
product matrix and just happens to be the upper 3 x 3 formed by dropping

the final row and column of fi The matrix 1 is the identity matrix of the
appropriate size to {it the curront application. We have already shown

-

the eqmvalcncc between M and Q* Q. Let us look more closely at the
latter since it is 4 x 4. We can partition the double~tilde or double~bar
matrices as
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i PURE |
Q1 Q Q| Q
Q=Q4 1 +[-==4-=-| ; [{ =Q4n+|-~--~ i—-- . (E41)
9" 1o Q10

Since Q* 0 Q = 1, Q* = Q"l so that Q* Q = 1. Also, Q% = ) (transpose)
so that

(E42)

Hence M = Q42 1 - 2 Q4 Q+ 2 Q

e

Ql - Q2 1. In expanded form

Q12 -2t gaf e gt
Moe | 2@z Q- W3 94)
QT Q1+ Q2 Q)

2Q1 Q2 + Q3 Y4) 2001 Q3 « Q2 Q4)
2L QB + Q1 Q4) (E43)

Q1* - Q2% + Q3% + qu?

a1t e et Qa4 et

2Q3 Q2 - Q1 Q4

B T T ——

From eaquation (E28)

0 w3 -w2  wl Q1 ]
Q = _1?: Q o ws= % §j Q = gi -3 0 wl w2 Q2 . (E44)
w2 -l 0 ws Q3
=l =2 -3 0 Q4

Equations (E43) and (E44) summarize the useful results from our
discussion.

We are now ready to consider the question of successive rotations
applied to a coordinate reference. A coordinate frame rotation is a rigid
displacement of all the poi:ts in the system with a fixed axis passing
through the origin. Thus, it would seem that several successive rotations
should displace every point except the origin. Let us now consider the
coordinate frame as a rigid body and determine the most general displace~
ment of it which keeps one point fixed. We must first explain what is
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meant by o rigid body displacement. A rigid body displacement is one
which preserves distances between every possible pair of points in the
body. The displacement is mathematically represented as a vector func-
tion f. This function then has two basic properties:

1) £(0) =0

2) [f(x)) - fxp)=fr, ~r,] . (E45)
A B A Ln

To study this in more detail, we define two additional points r and r,

together with their images under £, f(r;) and f(r,). Let f; = f(r ) and
f, = f(r,). Let us define unit vectors

i=z/legl 5wy = 2710
(£46)
g fetrp il G fp tmy
= - 3T ‘
l!‘.zf"!lz'.l.l..l If;z"f-z'ﬂll‘-ll
k=1xj 3 ug=uy xu

The vectors i, j, k and U, 4, ug each form orthonormal bases for 3
dimensional space. An arbitrary vector r can be expresses as

r=xi+yj+zk . (E47)

The corresponding f(r) = fx u + fy u, + fZ us. Condition 2 of equation
(E45) can only be satisfied if

fr)=xuy +yu tzu . (E48)

Thus we can define two functions f+ and f- that both satisfy equation
(E45) and uap r, into f, and r, into f,. The function f- can be viewed
as the reflection (x,y,z) + (x,y,~&) followed by f+. We are only
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interested in continuous transitions from an initial position to a final posi-
tion and thus reflections must be eliminated since it is not possible to go
from (x,y.a) to (x,y,~z) continuously without violating condition 2 of
equation (E45). Thus continuous mgxd displacements can only occur in
the form f+. This function can be written out as

f(r) =x oty Utz oy = axi o+ ayj + o:zk (E49)

O =X U cdky Uy it zu, i

-

L:l-j»t«ygzvji-zg‘?'j (E50)

o
Hl
»

A EXW ckty U s ktzu ok

Equation (E50) can be rewritten in the matrix form
a=Mzr . (E51)

The vectors o and r are of the same length and since this must hold for
all pairs o and r we must have that

MIM =1 (E52)

Equation (E52) also implies all cigenvalues of M are of unit magnitude.
The eigenvalues and cigenveetors of M may be complex so that if M x =

. "1 Y

A x, then \'l Mj‘ Mx=1= \*Ax'l *x.  TYor 3-~dimensional space M must
have at least one real cigenvalue. Since M is real, its eigenvalues must
occur in complex pairs. Therefore at least one eigenvalue of M must be
equal to 1. The value -1 could not be acceptable since it would imply
M u = =u whith would be a refleetion and already ruled out. Thus, we

have that det M = 1,

The matrix M is now looking very much like a rotation since the
eigenvector u is an eigenaxis. All we must do now is to determine the
angle of rotation. Along with the eigenvector u, let us define unit vee-
tors v and w such that u, v, wis an orthonormal basis set. Also, we
assume W = u x y. With these definitions we can express the matrix M
as

M=M uut +M,uy #My vul o M w T
- (E53)
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From the fact that M u = u and that M m = 1 equation (E53) reduces to

M=uuT+p(XgT+W\1T)+q(_\£v_gT~\_ggT) pz+q2=1

(E54)

We can now eliminate the vectors v and w from this equation by use of
the proper function of u, Thus

.o

M=zuul +pt-uud)-qi . (155)

This completes the proof that the matrix M is a rotation matrix. This is
now obvious from inspection of cquation (E55) by comparing it to equa~
tion (E40) with p = cos ¢ and q = sin ¢. Thus the most general displace-~
ment of a rigid body (or trunsformatlon of a coordinate gystem) in which
at least 1 point remains fixed is a rotation about a fixed axis i.e., the
final orientation can be obtained from the origiral by a single rotation
about the axis u through the angle ¢ (u and ¢ are determined from M)
even though the actual motion from initial to final may have been more
complex.

What all the prekus discussion boils down to is that the product
of a pair of rotations is itself a rotation. Thus, if '\l and M are rota-
tions about u, and u, respectively, then M M, = M, is also u rotation
through some angle 4’3 about some axis Yg. In fancier terms the set of
rotations forms a group under matrix multiplication.

1

The results of our prcvxous discussions now suggest some new
notation that may aid us in keeping up with the multiplicity of coordinate
systems that must usually be dealt with in analysis of spacecraft rotational
dynamies. To remain complately general, let us consider threc coordinate
frames A, B, C., We shes let the symbol [BA] represent the rotation
matrix which transforms : vector expressed in the A frame to a vector
expressed in the B {rame.

For convenience we use the notation superscript (A) or (B) ete. to indi-
cate which coordinate frames the vectors are being expressed in. If the
superscmpts are not apeclﬁed, it means that the coordinate frame is
implicit in the definition of the symbol or that it doesn't matter as long
as all vectors are in the same frame. We are here more interested in the
rotations [BA] ete. There are three rotations between pairs: AB, BC,
CA. Trom our previous work
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[CA) = [CB] [BA]) . (E57)

Corresponding to equation (E57) is a quaternion relation of similar form.
First, since !(C) = [CA) X(A), we have

v© =gy 0y®oq,, . (E58)

Here, QC A is the quaternion corresponding to [CA]). Thus analogous
to equation (E57) we have

(C) _ 3 (A) 3
v = QCB* 0 Qua*oV 0Qpy 0 Qe - (E59)

ey

Interestingly, we sce that QC A S QB AQ QCB so that the factors occur

in reverse order from equation (E57). However, if we use the double-
bar operator we can multiply in the same order, i.c.

This resull is the one which we wish to use analogous to equation (E57).
Equations (E57) and (E60) have an easily remembered form and in fact
behave as if multiplication cancelled the terms appearing on the inside.
This makes it quite ensy to construct chains of transformations to any
desired system. In this notation we sce that

(BA] = [aB1T = (aB]"Y 5 also

. & = =1 :
WA = Qap™ = Qg ‘ (E61)

Finally, there are some useful tricks with the new notation we have
defined. Referring to equation (E28) and adding the subscripts we have

defined, we have Qp,, = 0.5 Qp, o ii“l‘iA(B)' The veector i—‘i‘BA(B) is the

angular velocity of B relative to A with components in B, Consider the
quaternion QCB'
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: 1 C©) _1 ) . (C)
Qep =5 Qcp © Ucp =7 Qp °( “cA YBA )

1 © _1 (B) _ .
=73 Qgp © Wop 3 Qgp © (an* O WpA O QCB)

1 -1

o (C (B)
=7 Qcp © ¥ca 7 %A © Qgp
or in matrix form

9. = Ll{= (C)_= (B) .
Qp =3 (L“CA LBA ) Qe (E62)

The utility of equation (E62) is most apparent whon we use it to compute
the attitude crror of a spacecraft relative to a moving or moveable refer-
ence. Note that the components of w o A((") and paA (B) are expressed
in different frames. Normally, “e (C) would come from rate sensors

which are body fixed while w, (B) is a commanded maneuver rate which

is naturally defined in the moveable reference. This equation then allows
us to use both quantities directly without either being transformed.

It often becomes necessary to compute the quaternion corresponding

to a given rotation matrix, i.e., find Q given [BA]. We have developed
a computer algorithm to do this,

1) Define matrix

~ i -
i Ang

S = A E A31 ;
A
. S i Wiy o A G NS o e g -1 ~~~~~
A A Ay | R

A is the given rotatic.,

2) S'=8+8ST 4 (1-tra) L

B ST P TRy o NS SR LN S



3) I =max S'ii (index of largest element along diagonal of S').

) Q) =82 /S'n :

=1 for Q4 < 0
5) Q'j = Qj sgn Q4; sgn = .
+1 for Q4 > 0

Another useful and perhaps obvious technique is the expression cf the
quaternion resulting from a sequence of Euler rotations (rotations about
coordinate axes):

¢ ¢ P b
QBA=<Q-‘ZI-+215~»,§)O (c»%*-‘gzs-wg)o...

M
o\ Y T, sy !

where s 4 sin and ¢ A cos. The corresponding rotation is [BA] and is
given by

(BA] =[¢d 1. ... [d,]: [¢,];
ni, 2.12 111

The vectors u can be any of the three coordinate axes [1,0,0]’1‘, [0,1,0]T
or [0,0,1]"[. If u= [1,0,0]l , then il =1, cte. We have udded the con-

vention that a rotation bracket with a subscript is an Euler rotation about
the indicated axis. As an example consider the quaternion formed when
i1=1, i2=2, 13=3:

& P ¢ ¢ ) ¢
QBAz (c 4~is~—21>o<c-§+js.~§)o(0w§ +ks——§)

q)l ‘1’2 ¢3 (bl ¢2 ¢,3
C*’Z-'-Q—-z— C"Q“"S'-—i- S""z-' ,S"ﬁ‘

N[!—‘

it
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the corresponding [BA] is

-~ \ !
.c¢2c¢3 E sxbls¢2c<b3 + cq)l."s«b3 ‘: - cq.\lsq‘zc% + swblsxpa—1
|
- ctpzsq)a , ~sxb1s¢zs<b3 + cdslcsba : cdrls*h28¢3 + sq;lcctls ]
| |
S(bz : - sablcq)z : c¢11c¢w2
L 1 I -

In this brief exposition, we have developed a numbver of useful quaternion
results and notations. This by no means exhausts the possibilities. The
available quaternion literature does not present the material in an easily
applicable form and thus this short development is presented to fill that

gap.
NOTES: The following notes apply to the previous discussion:

1) We use Q4 rather than Q0 for convenience. 8ince these guater-
nion equations will be adapted foz the computer and since 0 is not usually
allowed as a subscript it becomes necessary to use something clse. We
desire to use 1, 2, 3 for the vector components, hence Q4 is the resl
part;

2) The symbel x is called double tilde and the symbol «: is called
double bar;

3) We shall define

0 -Q3 Q2
=13 0o -qQ1
-Q2 Q1 0

which is the tilde or cross product matrix for the 3-vector Q.
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APPENDIX F. ROLL COMMAND Nen

To use the acquisition gun sensor (ACQ SS) rfor a two axes strapdown
update, the sun line has to nominally pass thwough the center of the
ACQ S8 onco per orbit, no matter what the tilting angle is. This can be
done by rolling the vehicle about the principal x axis by the angle Nypy
such that the vehicle z axis always has an clevation angle N, above the
orbital plane, cqual to the eclevation angle Ny, of the sun, The transfor-

mation from the I, system to.the V system is (s = sin, ¢ = cos)

| I, . ( ) » . . .

‘1 a Mo ! ( t Yoo m e © Bn
V1) ]\l, I\',, N Y i} ¢ wo ™ LI * 4] i 1 (] .

Mo Bag B o Yl L . I T “yvng

from which we devive
VI‘B‘.’. = ”S“x = 1\13 Snzn N l‘23 Clxn My 4‘38 SNxn Non '
or

Kgasn /R = 1{23(3.111\,“/R, s

xn xXp !

with

e

] ]
) and R = /‘I\'n IR (O

N. )/(RQ“ 33 ’

xp 2 (b?]x + 1\135!}

znl am

This yields

3 - A 'Y N e o & L8 2
Mgy = Are tan {1\23/[\33} + are tan { ”xp/ 1 - N } .




Inverse tangents are used since no other ARC functions are available on
board, The values of the K's are given in APPENDIX G. They apply
for the EOVV A orientation. For the EOVV B orientation we have

S
[Klg=| 0 -1 0| K],
o o0

i.e., 1(1‘3 and Ky, change sign.

RN 75 R R o E B
" = -



APPENDIX G. DATA
Vehicle moments of inertia matrix (kg'mz)

894828 ~63414  -529360
I, = ~63414 3763111 -27295 .
-529360 ~27295 3598005

Principal moments~of-inertia matrix (1<g|112)

793332 0 0
I = 0 3767879 0
P 0 0 3694732

Transformation from vehicle to principal coordinate system

0.982357  0.022682 0.18563%
[K] = [PV] = 0.017288  0.977351  -0.210913
-0.186213  0.210401 0.959716

(92}
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APPENDIX H., FLOWCHARTS

‘ ENTER ’

V

MANEUVER REQUIREMENTS

tdh“ tt Aty

0t tgh *~To

i = 464
L7 Bl PR ALK Rl PSR T Rl FE TP Bl )
0" TLY - OTLS
e ™ 820 = 024
0y = 0.25 (0,0 t v q + 20,0}
Nam ™ Kpg (eg0 = 85 + 0.26 ¢)
el o e > Nal,
20 ® 020 = My / Kz
2% 62 4 hm / Kz

NO SAMPLE

POINT Y

ppe o Kyg lerpy —erpap)
“ Mg % Hp % My Uy = 0.0349

TLIr et Y oy

.

y

$© SIGN ($2, tgp + 45°)
ETLIP ® ETLIP ~ 0,58 Nam/ Kyz

CTN © eTH = DTN ety

| ETN = 07N AT et
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/\mv = () t — 180°

~${ ’h: /2) o
a s(Ar)WIZ) Y

c (Bngy/2) c(v;xlz) | Clug/2)
Qv = Qi Qv

exTS ety bxx Ixy Ixz ? x
eYTs |a | ev2 + «5—- iy tyy lyz Py
LF3 83 eT3 k2 lyz l2z ¢z

eXTS B oTLY
Q=Q eYTs QerL=QQLy - oTL2
Lv i eTL3
e2Ts 3
o) 0
4
Nye = Nyc + On
~NyL S lye €4 1y1.
izi+1

i=0
Ny = KCV (.TN + Qe 2 cos (2520 ‘db) - °TL2) - 'Anyc
Myl gy Sy

An = (ny =yl /464,
-0.0000343 << A 1 < + 0,0000343




&

foh]

Nap = = Ngm sin (285 t gy

Ex1a™= +0,185833 IF EOVWBFLAR=0
~0,185633 IF EOVVBFLAG#0

fixp = (8in 0y + Ex 43 5in 53, ) / (0,982619 cos Nan)

M = ARCTAN (1, / (1 = 1,,20%)

fxn—12.396°  |F EOVV B FLAG =0

Mxn ™
Nxn+12.396°  IF EOVVBFLAG #0
sin Txn/z 0 ]
ay = ) o sin Y0/2
0 linnm/ 2 (o]
cos An/2 cos 120/ cos TYN/2
Qg = Qp Qy

"1 =2 lag 1 9BL2 *+ 913 9pLe)
r2= lafi 2 ~ L1 - B3+ qBiLa)
13 = 2(agL3 9812 ~ 9811 9814}

= (1 =210y cos (29, tg,))

éx = r1 82 O
éz = r3 {1,

Qar = 0gL q)

=L )




=Rl

- P

STRAPDOWN UPDATE REQUIREMENTS

ENTER

RSS = (7442 -th"A

RSSP = 10°
iU=0

ASS - ASSP
?

- RSSP = RSS

=
$S1 % —cos ygy sin Tey
S2. = #in yex

83 =« o8 Yox COsYey

Vi = 2layyg ayyg =aypz ayg)

V2. o 2lay)q ayiq fay)z aypg)
Va = qy%3 ~ay?, =ay12g tay )
Aoj = 05 (—83\/2 t 32\/3 + ﬂzsl)

"

0.5 ‘33\/1 ~S1V3 + NZSZ)
Aoa = 0-5 (—32V1 + S1V2 + ﬂISB)
804 = (1-A0y2 - 80,2 - A 2%

{oy} = {Au}{ow}

2
iy =0; Nye = nvc*nﬁb( 1A+ 00, + 1y 4Q,)

)
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