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TECHNICAL MEMORANDUM

LOW DRAG ATTITUDE CONTROL FOR SKYLAB
ORBITAL LIFETIME EXTENSION

INTRODUCTION

On Febrtitary 9, 1974, Skylab systems were confi frut•ed for a final
power down and Skylab was deactivated in a passively stabilized [q,-avity
gradient (GO) attitude with the Mutiple Docking Adapter (MDA) tap and
the solar panels trailing (Fig.1). Prediction of solar '.;ycle 21 activity
(the solar cycle predicted to begin in 1977) indicated. that this attitude
would result in a potential storage period of 8 to 1.0 yr. however, in
the fall of 1977 it was determined that Skylab had started to tumble
randomly and was experienchtp• tan increased orbital decay rate. This
was the result of the greater than predicted solar activity tat thebegi aning
of solar cycle 21. This increased activity int! erased the drain forces on
the vehicle. Skylab was now predicted to reenter the I4arth' r atmosphere
In late 1978 or early 1979 unless 6omething was done to reduce/ the dract
forces acting, on it, It was necessary to make a decision to cither accept
tan early uncontrolled reentry (and with It the dartp per that relvatively
l arro nieces cot:►ld damage something or hurt some-body) or to attempt to
actively control Skylab in a 'lower drag attitude thereby extending its
orbital lifetime until to Space Shuttle mission could effect a boost or
deorbit maneuver with Skylab,

In order to verify what op0ons could be accomplished with the on-
board Skylab systems, In March 1978 a team of NASA engineers went to
the Bermuda ground station to establish comim.-Aications. The resulting
data indicated no discernible defmadation of the Skylab systems during
Its four years of orbital storage.. The knowledge that Skylab was in an
unstable tumble prompted investip,ation into schemes which might extond
the orbital lifetime of Skylab,

The :first option investigated was to use the on-board thruster
attitude control system (`CACS) to maintain a nuasistarble tunable. t°low-
even, it was soon determined that this option would not extend thet life-
time sufficiently to correspond to the operational readines's of the Space
Shuttle for a possible reboost or deorbit mission. The only alternative
was to reactivate and continuously control the Skylab in. a minimum drag
attitude. In order to accoaaitalishthis, the low-drag', end-on-velocity-
vector (EOVV) attitude control scheme was developed in record time (tree
authors ware p•iven the task on Mnrch 20 and the scheme was flown on
July 11). Skylab remained in the low—drag attitude until Jaaatuary 25,
1979, when the vehicle was eomm anried to its oripinal desip rn attitude
[solar inertial (SI)J , which was a laiZh-drab; attitude (See Skylab EOVV
Time table for futher details).
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Figure 1. Skylab.

With the active. control of Sirylab in the low-drag attitude, it was
decided to accelerate the development of an orbital retrieval system (Tele-
opertor Retrieval System) that might be accommodated on an early flight
of the Space Shuttle, thus increasing the chances of rendezvousing, with
Skylab. The rate of orbital decay, however, continued to increase due
to the increased solar activity. Skylab's on-board systems also showed
signs of deterioration, and there were stronp , indications that the sche-
dule of the Space Shuttle would slip. For these reasons, the effort for
a Skylab recovery was terminated in December 1978, and Skylab was
placed in the SI attitude in January 1979. In this Attitude the ground
maintenance was minimum and efforts could be concentrated on a method
for a conrolled reentry of Skylab [1).

More detail about the reactivation mission can be found in Refer-
ence 2. The following section gives the development of the EOVV control
scheme.

ATTITUDE AND POINTING CONTROL SYSTEM (APCS)

The control of the Skylab attitude to the attitude reference was
done exactly as in the original mission [3].  However, only the pointing
control system (PCS) of the APCS was used the experiment pointing
control system ;iEPCS) was disabled.

The major parts of the APCS were the rate gyros, tho Acquisition
Sun Sensors (ACQ 19S), the Star Tracker (it 'had failed during the
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_--



f

f,

SKYLAB EOVV TIMETABLE

3/20/78 Authors made asiare that s low-dram Attitude
momentum manawement method was needed.

4/ 7/78 Conce p t review by MSFC middle manngement,

4/26/78 Fin a l equations for 2-CMG v-.JVV to 1R.H.

5/22/78 Documentation on ATMDC software cbanrr e requirements
for ?-CtIO FOVV o peration completed 

by 
15t4.

6/ 8/78 Ch10 sni p up in eacr tsd nosition (7:00 am mr,
1.cared t o H+11,9 0 . 03 0.363)

6/ 9/78 7 am CDT. Hotntion about sunline to place x axis 10P.
6 an CDT. C NIG control in 31 attitude,

12 noon CDT. Loss of control due to inadverdent servo
power out-off to (: J#3 (faulty switch selector
introdue-ed Pdditional comr."and)

1 pm G1 T. Re pained control with C^")G l s after 2 orbits.

6/11/78 8:27 UT. FnterinT EOVV A attitude.

6/28/78 Loss of' r,,OVV attitude control due to 1 p rre annular
momentum	 and CMG saturation,

7/ 5/78 Re-estaLilishment of EOVV A attitude.

7/ 9/78 Loss of all nower introOuces loss of attitude control.

7/19/76 Reorientation maneuver to find qttitude.

7/25/78 Re-establisb ,,ient of EOVV A attitude.

11/ 11/78 Maneuver from !,OVV A to ROVV 1; attitude

12/19/78 NASA EQ p ress ,!onferenoe (J.Y q rdle!j/(,.Aller) where
Sltvl p b is declared unsavable.

1/25/79 Reorientation manetiver to ST attitude (hold mode to
allow titre for the desi gn of the torque equilibrium
control method for reentry).

.1
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oripinal mission), the Apollo Telescove Mount Digital Computer (ATMDC),
the Workshop Computer Interface Unit (WCIU), three double-gimbaled
Control Moment Gyros (CMGs), and cold-fras (compressed nitrogen)
Thruster Attitude Control System (TACS),

Six control modes were addressable: (1) STANDBY, (2) SOLAR
INERTIAL (SI), (3) EXPURIMRNT POINTING, (4) ATTITUDE' HOLD/CMa,
(6) ATTITUDE HOLDITACS, (6) ZLV (for z axis along the local vertical).
ROVV control was prograttimed to be a substate of the ZL T7 mode. The
basic ZLV attitude was with the positive z axis along the Ideal vertical,
pointing up, and the positive x axis In the orbital plane, pointine , In talc
direction of the velocity vector. Any angular offset form the basic 2;rV
attitude (offset identified by the quaternion (gal) could be command(ld by
a set of three Ruler angles (X's) with a Y,Z,X, rotation sequence. None
of the original APCS capabilities were eliminated by the addition of the
EOVV control method,

010 CONTROL SYSTEM

The CMG control system was composed of three orthogonally
moVmted, double gimbaled CMGS with angular momentum magnitude 11 of
3060 Nms (2280 ft-lb-sec) as shown In Figure 2. The CMG control Jaw
utilized three normalized torque commands and the CMG 'momentum status
to generate the proper CMG gimbal rate commands [4]. The (MG control
law consisted of three carts: 010 steering law, rotation law, and gimbal
stop avoidance logic. There also were some other routines for specialized
situations like caging the CMGs to as desired momentum state [5],

The CMG control law had the capability to operate with either three
or two CMG's for redundancy. Since 1,MG No.1 had failed durinp , the
original Skylab mission the CMG control law was alvvays in the two-CMG
option.

EOVV h10AIENTUM CONTROL

The problem for ROW was to determine variable reference attitudes
such that, on the avers Ve, the anlrular momentum was contained within
the two-CMG capability (allowing the CMGs to hold the prescribed attitude
reference), while the average reference attitude was consistent with the
desired low aerodynamic drag.

Minimizing the drag on Slcylab required that the least frontal area
was presented to the wind while at the sar yie time holding a GG torque
equilibrium (tit the altitudes of concern the CC, torques were still very
dominant and they were therefore used exclusively for momentum control;
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Figure 2. CMG mounting arrangement.

for details on the aerodynamic torques, [1]).  Keeping the minimum prin-
cipal moment of inertia axis parallel to the wind direction fulfilled this
requirement. To have the necessary electrical power from tale solar cells
as well as strapdown update information from the AC Q SS, the Skylab
was rolled through the tingle r5xt1 

(APPENDIX T) about the minimum
principal moment-of-inertia axis (principal x axis) such that once per
orbit the sun line passed nominally through the center of the ACQ SS.

There were two attitudes which satisfies'these requirements; One
with the MDA .forward (EOV V A) and one with the rJDA backward
(EOVV 13). In either case, the MDA had to be pitched down by a varying
amount (depending on the solar elevation angle R = - tjx above the orbital

plane) to align the principal x axis with the orbit tangent.
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Control of the angular momentum was split into the control of the
momentum component perpendicular to the orbital plane (POP control) and
the component In the orbital plane (,;)P cc .- Arol) . Since IOP control had
some effect on POP control, IQP control is Lit aced first.

IOP Momentum Control

When Skylab was originally designed, it was desirable to minimize
the GO torques about the minimum principal-moment-of-inertia axis as
much as possible since the momentum management scheme [61 was least
efficient about this axis. For EOVV control tsus meant that there were
basically no large GG torques available about this axis and, furthermore,
there would be no change in torques when the principal y or z axes were
±95 degrees from the orbital plane (tracking of tivi sun by rolling about
the x axis would make this ra frequent occurrence) . Therefore this first
order effect had to bo abandoned. The actually used momentum control
scherne assumed tbalt the SkylAb moments-of-inertia were c:yc'lindrical, with
an average moment-of-Inertin, difference of Al,

The problem was solved by using to second order effect. 11rat, a
large cyclic POP torque was generated by "nodding"" (pitching) the Skylab
in the orbital plane. Cyclic nodding was required to avoid a continuous
momentum build-up in t, .c P0 1P direction, The cyclic POP torque was the:
tilted as required (dif .-4ra:ntly for each half cycle or quarter orbit) to
generate a controllable component in the orbital plane. The second order
effect stems from the fact that the IOP torque is proportional to the nod-
ding tingle times the tilting angle.

The effectiveness of the IOP 11101nentum control did not depend on
the frequency of the nodding. However, other considerations entered:
(1) the lower the frequency, the larger the POI" momentum swing, and
(2) the higher the frequency, the larger the maneuver momentum that has
to be exchanged between the vehicle and the CMG system. Wice only a
limited momentum volume was available with two CMOs and their associated
ginlbaal stop problems, as nodding frequency of twice orbital frequency was
chosen as as viable compromise (s _ sin)

qyn = - nyms(200t - Jlc) 	 (1)

Therefore, the XOP momentum control calculations were done every
quarter orbit. This had the added advantage that the resolution from the
nearly inertial 0 system to the rotating L system happened in 30 degree
intervals allowing inrlodng of some of the slaved momentum samples rather
than requiring a full-fledged resolution.

To minimize transients at the quarter orbit sample points, the tiling
angle was also sinusoidal with twice orbital frequency and its amplitude
was the only changing quantity:

f a
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nzn = - nzms ( Not - 110) ,	 ( 2)

where

nzm = K 11 (ezo - ea + Or/4)

K nx 3 (15H)/(48t1y111ROAU

ezo = momentum component to be desaturated

ea = amplitude

ea, a ramp per orbit

The phasing of the nodding and tilting Angles was the same so that
the amplitude was reached Taal way between sample points.

The sample points were chosen so that one of the samples (sample 2)
occurred at the time when the sun was perpendicular to the solar panels.
This happened before orbital noon for EOVV A and lifter noon for COVV B
(the difference of about 11 degrees between the geometric and the prin-
cipal x axes is the reason). In addition the nodding rate, being added
to the orbital rate, was phased so that it slowed Skylab down when the
solar panels were perpendicular to the sun and therofore maximized the
power from the solar panels (giving rise to the minus signs in equation (1)
and equation (2)).

The tilting angle amplitude was calculated so that the IOP momentum
component, which could be affected during the next quarter orbit (it was
Along the direction of the connecting line between the premfnnt sample
point and the neat one) , would be driven to the desired value. The
desired value was basically zero, but any constant torque in the L system
caused only a cyclic momentum change (with normalized amplitude e a) over
one orbit and should not be compensated for. The mfore, the momentum
attributable to a constant L system torque was subtracted out of the
momentum e.zo to be desaturated over the next quarter orbit.

7



To recognize a cyclic as well as a romp momentum change, four
past momentum samples were savcJ, The samples were also used to gon-
crate strapdown update Information once an orbit (flow charts In
APPENDIX H).

POP Momentum Control

The torques associated with a rotationabout the orbit normal are
much stronger than the ones associated with IOP control, Hence, Oie
momentum sampling for POP control has to be done as frequently as pos-
sible. However, the transients should have had a chance to settle before
the next POP sample Is taken, Twelve samples per orbit satisfied both
requirements. The dosaturation gnin ,APPENDIX D.b)

K YC' 
= HIM) Al Tdes)	 (3)

0

is calculated so that a step attitude change of

T1 ye = K ye Ae y	 1	 (4)

desaturates the desired Ae 
y 

In one desaturation Interval. To further
reduce transients, the calculated POP angle (which would have eliminated
the momentum offset within the next desaturation interval if the angle were
applied fully during the interval) was ramped in so that the angle was
achieved at the and of the Interval. Since this only reduced the momentum
offset by half, the angle was ramped-out during the following interval for
a full momentum offset elimination. The ramp due to the newly calculated
POP angle Pjas simplv sup arfin posed on 

the ramp-down from the previous
POP angle (Fig. 3). The attititdo command is, therefore, given by (N
signifies the present and N-1 the past value)

01 
YdN 

= K ye [(Ae 
Y )N - 

0.5 (Ae y )N-11	
(5)

= Kyc (A e 
Y)N - 0 - 5 (r'YdN-1 #

The ramps connecting the q 
YC 

I s are generated by
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(n 
Y )N = (ny)N-1 

+ Aii y At
	

(6)

where

Any = [01ydN - ('n yc ) N-1 1 /Tdos

This method resulted in a constant hang-off when necessary; The angle
change due to the old angle being ramped-out was compensated by the
ramp-in of the new angle (in flight, constant hang-offs were common. due
to strapdown and navigation errors and they were not detrimental, since
the momentum control kept the vehicle at the truely desired attitude).
A block diagram of the BOW orbital y momentum control scheme is shown
in Figure 4.

BOW STRAPDOWN UPDATE,

Strapdown updates about the vehicle x and y axes were always
furnished by the ACQ LIM To do that, the roll angle about the principal
x axis was changed by large amounts to compensate for the large beta
angle changes (a slow change) and relatively fast smaller corrections were
applied to compensate for the nodding and the tilting angles. The overall
effect was that the vehicle z axis nominally traced a cone about orbital
north. The difference between where the sun-line was at the closest
approach to the ACQ SS center and where it was supposed to be according
to the strapdown information gave the strapdown x and y information.

Since there was no other sensor available, it was more difficult to
gain strapdown update information about the sun-line. The selected
momentum control method, fortunately, 

had 
the feature that, due to the

nodding angle, a misalignment between the ideal orbital plane and the
indicated orbital plane generated an TOP momentum ramp.

The actual strapdown update was done by changing the reference
quaterion (APPENDIX H.6)

QVI :-- AV QVI	 ► 	 (7)

where the double-bar operator is defined in APPENDIX E and

AQ = [AQj , Ant, AQ V AQ4) = 1AQ, AQ41	 (8)
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with

LQ, = 0. 5 (a X v i- ji 
ZO	 1	 (9)

anol

A@ 9 	 _AQ •	 (10)

The cross product In equation (9) is the ACQ $S update and the
last term is the IOP ramp update, where v Is a unit vector in the sun
direction as calculated by the ATMDC ands is the measured sun direction
unit vector. ii, is the angle about the mea'Wured sun direction (the gain

Ku z  is developed in APPENDIX D.c.):

Vz = - K p z (CTLN 1 - 0 TLN 1P)	 (11)

	where K u  is 
a 

gaiii and 
(a TLN1 -- 	

is the angular momentum

change (ramp) per orbit (p 
z is calculated at sample point 1) modified by

the ground commanded ramp bias c rb Since

c TLNIP = 0 TLN1P + 0 rb	 1	 (12)

is calculated right after the ji 
z (,-floulation, and, therefore, is used for

the next 
p . calculation (cTLNIV's modified at every sample point to

account for the momentum changes commanded by nZid.

EOVV OPERATION AND PERFORMANCE

The original EOVV equation considered EOVV A only. In
EOVV A CMG No. 2 received more solar radiation when the sun was north
of the orbital plane (positive beta angle) and less when it was south of
the orbital plane (negative beta angle), For large negative beta angles
the CMG No 2 bearing temperatures became critically low. As a con-
sequence, the EOVV A equations had to be modified during EOVV opera-
tion to allow an EOVV 13 attitude during extended periods of large nega-
tive beta angles (Fig. 5).
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Figure 5. Sun elevation angle beta (April 1978/August 1979) .

Constant nyc angle hang-offs (caused by strapdown, navigation,
and other errors) required constant POP momentum hang-offs to generate
the necessary commands. Since the range of acceptable POP momentum
component was rather limited (±0. 4H from the nominal; the nominal eTN
being 2.5H in EOVV A and 0.3H in EOVV B) the nominal POP momentum
had to be changed to accept large angle hang-offs (3 deg of POP angle
hang-off required 0.1H POP momentum bang-off). This change in nominal
momentum was made from the ground at the bcj inning of the EOVV opera-
tion and later was automated on-board to guard against ground inatten-
tion, ground system failures, and long telemetry coverage gaps (Fig. 6.).
Momentum excursions outside the specified range caused loss of attitude
due to CMG saturation on one occasion June 28, 1978, and it was there-
fore very important to keep the POP momentum bounded.

Strapdown updating about the sun-line was done with information
derived from the IOP momentum ramp. Unfortunately, the evaluation of
the IOP momentum ramp yielded very noisy readings from one orbit to
the next and could only be used with a very reduced gain K z . This,
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in turn, could lead to large orbit plane misalignments to generate the
required strapdown updates to keep up with the ±50 deg rocking of the
true orbital plane (due to the precession when viewed with respect to
the projection of the sun-lino into the orbital plane) . The large sire of
the maximum change per orbit (1.2 deg) was not recognized at the begin-
ning of the EOVV operation and was the cause for loss of attitude on
June 28, 1978. After that the ideal strapdown update necessary to follow
the rocking of the orbital plane was introduced open loop through the
quantity called erb [equation. (12)] and no more problems were experi-
enced (APPENDIX C) .
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APPENDIX A

COORDINATE SYSTEMS AND TRANSFORMATIONS

The coordinate systems which are pertinent to Skylab EOVV control,
are defined here. Each system has some special geometrical or physical
feature which simplifies the solution of a particular problem.

The following coordinate systems are described: Principal, Orbital,
Vehicle, Attitude Reference, Solar Inertial, and Z-Local Vortical. Each
coordinate system consists of a set of mutually orthogonal axes exhibiting
right-handedness.

An inertial (with respect to rotation only) coordinate system is a
system which retains its orientation with respect to the celestial sphere,
although the origin may be moving along any general curvilinear path in
space, Similarly, a vehicle fixed system retains its orientation with
respect to the vehicle.

Orbital Coordinate: System (0)

The Orbital Coordinate System (x0' yo' zo) is a precessing coor-

dinate system with its origin at the Earth center of mass. The rate of
precession about the Earth's north pole is approximately _5 degrees/day.
The z  axis lies in the orbital plane, positive through the ascending node
of the orbit. The xo axis also lies in the orbital plane 90 degrees ahead
of the z  axis. Since the Skylab orbit was in the xozo plane at all times,
the yp axis was parallel to the orbital angular momentum vector, complet-
ing the right-handed system (Fig. A-1).

Solar Inertial Coordinate System (1)

The Solar Inertial Coordinate System (x1 , yp zI) is only a pseudo-
inertial system since it makes one revolution per year. It was used during
the Skylab mission to point the instruments in the desired direction. The
origin is coincident with the origin of the Vehicle Coordinate System origin.
The z  axis is positive toward the center of the Sun. The x  axis lies at
an angle v  from the orbital plane (this angle is calculated  on-board such
that the principal x axis is in the orbital plane to minimize t c^ build-up
of angular momentum) and is positive toward the sunset termi;zator.

16

t



ECLIPTIC
NORTH
POLE ye

YO

YE EARTH
A NORTH POLE

V

. XO

EOUATORIAL
PLANE -___ ECLIPTIC

PLANE

ORBITAL PLANE

ZR --+TO SUN

XS

'4r----Z 	

M
	

X
VERNAL E DIRECTION	 ASCENDING E
EOUINOX	 OF'FLIGHT	 NODE

ZO

Figure A--1. Coordinate system.

Z-Local Vertical Coordinate System (L)

The z-Local Vertical Coordinate System (x LP yL , zL) is a rotating

system with its origin at the center of mass of Skylab (the rate of rota-
tion is one revolution per orbit) . The XL axis is positive in the direction

of flight and lies in the orbital plane. The zL axis is parallel to the local

vertical direction and is positive outward, Away from the Barth. The yL

axis is parallel to the orbit normal and is positive toward orbital North.

Vehicle Coordinate System (V)

The Vehicle Coordinate System (x V , yV , zV) is a vehicle-fixed

system with its origin at the center of mass. The xV axis lies along the
long axis of Skylab and is positive in the direction of the Multiple Docking
Adapter (MDA). The z  axis is positive toward the Apollo Telescope
Mount (ATM) and the yV axis completes the right-handed system.
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Principal Axes Coordinate System (P)

The Principal Axes Coordinate System (xp, yp , zp) is a vehicle-
fixed system vAth its origin at the center of mass. The axes are Along
the principal moment-of--inertia axes, labeled 	 such thot the eigen angle
between the'V and the P system is minimized.

The following transforms are useful (the subscripts 1, 2, 3 indicate
rotation about x, y, z, respectively).

ILI) = [ " nty] 2 nx 1 1 [ - "ZE' 3

[AL] = [K]T [n1 1 ITY 3 In  + ncyi 2	 '

[PVJ = [K]

[VI] = strapdown matrix (_updated by wV sunsnnsor data and
momentum data) 	 '_
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APPENDIX B

GRAVITATIONAL TORQUE MODEL

Tito gravitational torques on a satellite produced by it large, spherl-
cal primary body are important contributors to Its rotational dynamics.
The force on a point mass m exerted by the primary Al Is

GMm 
R i

 ► G -, 6.67213-11 
Nm2/kg2

I Ito
 -

The satellite ctai be viewed as a collection of point masses. The not tor-
que 

on 
this collection of masses about the origin of satellite (.vordinates

is

T = -	
r"i-	

(L 2)
9	 E E i X	 -

The vector r.

1

 is the position of m, relative to the origin which is at R 
0

relative to the primary center. Thus- 

I

Ro + r,
I

and

(B 3)

(B 4)
Bo + !:ig	 ti X GM111 

i	 13
IR 

0 + 
r 

i

In general Ir i l << 1%1 and hunce an expansion of T 
9 

keeping only low

order terms becomes sufficient for most purposes. Now

LRO + r 
i	 ^ o 	 + ^' 

1	

3%	 + h. o. t.	 (B 5)
R 0 + 3
	

1110
13
  
	

IR 
X	

IR X

I
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Using the expansion of equation (0 5) In (M),

T	 r	
X Mill 

Bo + 3 GM	 mi Ki x R 
BO 0 K,

	— CM	 3	 3	 ^o 1	 3
Ro	 IBO I	 R01

	

+ h.o.t.	 (136)

We have used the definition mr
C11)	

M, L-,, Rearranging and grouping

equation (13 6) we obtain

rr	
It	 X 

Gmm it
9	

+ 
30M	 Ro	 Bo

	

11)	 !r – 0 --- —I,, 
I

Zito 	JR61
y 

IRO  ^^	 ^ ^	 i-^i--i ^	 I^^, I

	

+ h.o.t.	 (B 7)

The term in parentheses 
In 

equation 037) occurs in the definition of the
moment of inertia dyadic (or tensor)

m	 (B 8)

Using this definition 
in 

equation (137) and dropping the higher order
terms yiekls the gravity gradient torque expression

GMni	 am	
R 
0	

R 
0

Tgg	 Ecm	
R 
0 

+ 3 
j! 3-	

X I	 (B 9)

IRO 
I s
	

o
IRO I	 1yo I

As can be seen, if the origin is positioned at the center of mass the more
familiar gravity, gradient torque expression results:
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Ram	 0BOT 
99 

x 3	
-3	

x 1	 (810)
IRO I 	 IRO I 	 IRO I

For an orbiting body m, the orbital angular velocity magnitude is given
by

r02 (;-M/1%13	
(Bit)

Noting that RO /IBO I is a unit vector u., we finally write

gg = 3SI0 2 —11 11 x ML ' UR	 (B 12)

The torque of equation (1312) Is what is commonly referred to as the
gravity gradient torque,

21
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APPENDIX C.

STRAPDOWN DRIFT ERROR AND MOTION OF I
COORDINATE SYSTEM

The basic reference coordinate system used during the original
Skylab manned mission was the so-called Solar Inertial (1) coordinate
system (Appendix A gives the definition). As stated there, I is not truly
an Inertial coordinate system since Its axes rotate with the sun and orbit
regression. Its rotation rate varies with the solar elevation angle out of
the orbit plane. By definition, the z axis points toward the sun and the
unit vector u 

Pi lies in the orbit plane pointed generally parallel to the

vehicle velocity vector at orbital noon. The unit vector u 
Pi is the

direction of the x principal axis In vehicle coordinates V. Thus, when
the V and I systems are aligned, the vehicle x principal axis is In the
orbit plane so that Ideally all gravity gradient torques are cyclic. The
sun angle r 

y 
and orbit regression angle X 

y 
are updated once per orbit

at orbit midnight In the Skylab navigation calculations. In between mid-
nights, the I system, as defined by vehicle on-board navigation, does
not rotate, As a consequence of this, it is useful to redefine I such that
the definition given previously Is only satisfied at midnight. Let I k

represent the true reference position (we use the convention that true
or physical parameters arc labelled by a subscript k) of this system and
I represents the estimate. This estimate 'is made us-Ing the vehicle angular
rates as measured by the rate gyros.

NVI ;' —1 VDIC V + WD

The angular rates w VI 
V ' Ll' DV

system V. The rate w 
D

it tends to be constant in
the vehicle remains fixed

Is U.

and to 
Vlk V 

are all given in the vehicle

gyro drift rate and experience indicates

the vehicle system V. To a good approximation
relative to the local vertical system L. Thus

!2 VI V ^_- % ML2 
V

4where S10
 
is the orbO-al angular rate.
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Since 0o , uG2V and wDV are constants  wVIkV must also be constant

V	 vVwVlk _ Qn "L2 _ WD

We can integrate the rate wVIkV using the differential equation

d [ VI
V

] _ - w"
dt	 k	 Vlk [VIk)

This yields

[VIk] = esp A [VI
k o

with

~	 -
exp A = 

n--0 n A
n = 1 -sin IAI A ^ (1 cos IAI) AA ,

I AI	 JAI 

and

A ^ w VIkV T

where

T = 21r/p0

is the orbital period.
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Let
MOO is the (VI it tratisformation at the beginning of the orbit.

DYik=4111,1,

s1
and

RD wD T F

then

QVI It 
= 2 1t u L 2 - RD

We shall now assume that (t l)	 e 2 ,tr. In practice 1P	 is at "lost

0.05 to 0.06 radians. Thus we cim evaluate exln ( bvl kv keeping
 )

only 1st order teems in 0 v . First, we Mid---D

12V, 
It 

I , 21r - U TA ' 1)	 .

Using this result, we find

l o vlk [	
--1,2	 7r	 n	 =1)	 h2 M1^2

From this we find

"P (- VI V) = exp (tt l.2	 n uI^2V)It

Finally

rJ

(Vi k'= ex	
'4L2	 Id o



	

I- QD • uL2 ] uL V [Vlk]o	 (C 1)

(1 OD 0 uL2 ia L2V) [VIk]o

The result we have obtained in equation (Cl) can be summarized by say-
ing the strapdown error induced by gyro drift to the Ist approximation
only accumulates along the orbit normal and tends to be purely cyclic
along !!L1  and u143'

Strapdown errors enter in also due to motion of the I coordinate
system. These motions are not accounted for in the strapdown calculations
and so must be corrected by updates from sun sensor data and momentum
accumulation date as ext,lained elsewhere. The solar inertial system motion
is readily calculated from relative motion of the sun and ftm regression
of the Skylab orbit. The sun moves approximately 1 Jog per day while
the orbit processes nearly 5.5 deg per day in the retrograde direction.
Since there are about 16 orbits per day, those effects are usually small
but occasionally amount to more than 1 deg per orbit. To analyze these
effects lot us define the system S such that the z axis points to the
Vernal Equinox and y axis to the ecliptic north pole,

cos z sin^ z 0
[SE.) = [^ z ] 3	 - sin z cos^ z 0	 z = 23.450

0	 0	 1

Also, define R such that zR points to the sun and yR to ecliptic north.
From R to I is a rotation about z 

[1111 = (0 0 3

tt

+ [I13. 1 = ioz 1 3 [11 y] 2 [^Z]3

where the numeric subscripts indicate the axis of the Eulm: angle rotation
(1, 2, 3 represent x, y, z respectively).
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The angular velocity of I relative to E jr,

	

0	 sin

wIEI	 Oz 0 + r 	 Cos 0z

	

1	 0

The transformation [ IE] can also be computed from onboard navigation
parameters

LIE] = [V ] En ] Cat ] E^ ] Ea ]	 (C2)z 3 x 1 y 2 z 3 y2

The angle Ay is the orbit regression angle and 'y is the nearly constant
regression rate. The angles in equation (C2) can all be expressed in
terms of ay and r y . The vector u P1 is a row from the vehicle-to-
principal axes transformation [PV],

I	 PV11RpiV [pV] T 0	 PV 12
0	 PV 13

For convenience, we let [K] = [PV] so that

V	 K11

uPl

	

	 K1.2
K13

The unit vector to the sun is u R3 and is

sin r y cos ^ z

u R 3E = sin r y sin ^ z

eo1x r



Similarly, the orbit normal is

-sinXz cosxy

UO2 =	 cosaz

sin X z sin X 

The angle tly is by definition the position of orbital noon, i.e., the posi-
tion in orbit where the radius vector, the solar vector, and the orbit
normal are coplanar with u R3 • uL3 > 0.

uO
ny =tan 	 _ RO3x	 where uO, _ [OE] uR3L

u R 3z

[oil = ["A l [a lz 3 y2

-1 (cosX z cosxy sin r Y cost z + sina z sin P x sin^ z - cosa z sinay cospy
py =tan	 sin Ay sin r y cos^ z + cos A y cos ry

Note: The tan^ 1 technique used must be a 4 quadrant technique! The
angle n  is the elevation angle of the sun out of the orbit plane with
orbit south the positive hemisphere.

1

.l 0
uR 3y

[-1 (sill ^ z Cos " Y sill 4 , Y cos^ z - cosa z sint' Y sill ^z - sin ^ z sink y cosP I

maining angle v  is obtained by solving

!P1 . 2 O2 — Q & uP1 • 1!L1 > 0 at orbit noon

27
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,.r

Tt
-^ v -	 + sin` 1 13 tan n X	 _ t -1	 12

22	 ^	 an	
Kz	

11
3 1 `^ K 13

(4 Quadrant tan-1)

With these intermediate angles and the values of ay ,	 Xz , ry, Viz, we
can compute [ IE] from equation ( C2) for Any time.	 We can also compute
oz.

-cosry Cos ¢ z cos a
y 

sin a z + cosr y Cos X z sin ^ z - sinry sin Ay sin Xz

u R'	 sink cosay sina z + cosa z cos^z

-* sin r y cos ^ z cos Ay sill X + sin r	 cos X sin ^ z cos r	 sin ay sin Xy y

From equation (C4) then we obtain

	

R	 R	 R
a = - sin^l	 K13 u02z	 - tan-1 K 11 u02x * K 12 uOzyR	 R

(1 - K 13^ C1- ut?2z^	 K11 u02y - K 12 u02x

We can now use equation (C1) to determine u)IE . Figure C - 1 shows how
the components of WIE vary with time as the sun elevation angle (the
so-called ^ angle R - px) goes through its maximum value in the north-
ern orbital hemisphere. We had not realized prior to this that the solar
inertial frame could move so fast and were unpleasantly surprised when
EOVV attitude was lost due to strapdown drift and resultant momentum
saturation. For more on this incident see Reference 2. After this inci-
dent, we developed a procedure to u pdate the z momentum bias in such
a way that the necessary rotations would be supplied by the bias value
rather than a momentum error. The parameter was called a ramp bias,
erb [equation (12)] . Since the z update angle depends on e  - e rb , we
could keep e  small by uaing erb and since we now knew what to expect
we could plan in advance what erb updates were needed to keep e  small.
Table C-1 and Figure C-1 show the e rb updates that should have been
made to prevent the loss of momentum control we experienced. The
knowledge and experience gained here allowed us to successfully pass
through two similar peaks of opposite signs in November and January.
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TABLE C^1.	 SCHEDULE OF ERB UPDATE TIMES

lest	 9129 '23
151113144 '22

UPDATE rME NEW ERS OWE IN LSBS 151117150 21
1661151	 0 2 151121156 '20
1701	 0113 1 1521	 21 9 19
1721 7126 0 1521	 6129 '10
173116113 '1 102110149 '17
174113127 :2 102115132 '16
1751 41 7 '3 152120123 MIS
175115123 '4 1531	 1126 `14
1761	 0134 '5 1031	 71 2 `13
1761 7139 -6 153112,46 `12
1761141	 3 '7 153119120 '11
176119,21 '0 1041	 2116 "10
177,	 0130 `9 1041101	 2 .9
1771	 4133 `10 IW IS 1S0 `0
1771 8135 "11 OS,	 4144 '7
177112,29 '12 105116,	 9 '6
177915941 '13 1561	 $137 .5
177110,52 14 106121142 `4
1773221	 4 15 107,17142 "3
1701	 19	 5 "16 100910153 "2
1709 3151 '17 1901 3127 "1
176, 6836 `10 191121133 0
1701 9122 `19 1941	 0140 1
1709121 b 20
170ti4t55 21
170,17143 '22 ASSUMES KMUZ IS 0.2
178120130 23
175123118 "24
179,	 2147 25
1791	 6130 26
179110113 "27
179116,36 20
100113110 '27
100119111 '26
i0it	 0147 `25
101,	 51	 0 '24
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APPENDIX D. GAIN CALCULATIONS

a. Calculation of IOP Desaturation Gain K 11

The local vertical in principal axes components is (s sin, e = cos)

	

cz sz 0 cy 0 -sy 0	 --czsy
•̂p = -sz cz 0	 0 1	 0	 0	 szsy

0	 0 1 .sy 0 cy	 1	 cy

where

y = 11y11 =	 nym s(ZIot) , z = nzn = - "rills(2ij)

and the 
rTxn 

notation is neglected (a cylindrical inertia distribution is
assumed with I 	 = I  = I rind AI = I - Ix).	 The gravity gradient torque
is (in P components)

0 0

T99P ^ I^
99 -r 1 r3 K99

c.zsycy
r1 r 2 -czsyszsy

where

{	 Kgg = 3Q
2 A l

and in 0 components (where Y = of + y)

	

cy 0 sy 	ez -sz

T	
- K9

9
	0 1	 0	 sz	 cz

	

-sy 0 cy	 0	 0
a

0	 0

0	 czsycy

1	 -szczsysy
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-CR 
0 
t

K99 szczsy cy /tz- 

s R 
t

For the further development only the IOP component Is of interest, which
Is (assuming y and z small)

snot

!ggz ' x ^ 'gg "Ym '1zms 
2 
(21l Ot) 

Integrating over a quarter orbit y1olds

it/20

H 
ggoz,x = 

4 K 99 TIYM 
11zm	 j o dt (s 

2 
S", 

0 
te 

2 
Q 0 

t)

0	 0

n/N

f dt SO 
0 
t (c a 

0 
t	 0

4 K9
9  

nyM TIM	 it/200
r
j dt c0ot ( s

2 
Oot	

4
s S4 

0 
t

0

Substitution yields

(U = CP t; v = SSI 
0 
t)	 I

f du (u2 _ u 4)
4	 0

T1 ZQ	 1	 ,	 111 Y-̂Liggoz,x	
K	 11Y111 rllzm
	

= Q LK 99 
ti YM

0 99	
- f dv (v 2

 _ 
V
4	 0

1 
0

0
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24r, S1 Al n	 nggozpx	 a o	 ym zm

Rotation to the effective axis system yields

24 $1 Al n	 n!! ggg P X T9, 0	 ym zm /-2

H 
ggz 0

H 
ggx	

(24 //15) SIA I Tj ym nom

Resolving actual momentum to be desaturated Into the same axes

H +H	 I I	 HHz	 x	 z
/-2—

	

_H z +H x	
/-2	

H

Only the x component can be desaturated leading to (in units of the
.nominal angular momentum H of one CrYIG):

{H/ 2) ( ex - e7)  = ( 48/15 0001 nym 71M] 
I

or

Ilzm 
= K 

T1 z (
ex - 0 z)	 I

with the gain being

K n z = ( 15H)/(48Q 
O

AInym )	 -

ff"
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b. Calculation of POP Gain K ye

The gravity gradient orbital y torque for a rotation tj 
Y 

about the
orbital y axis through t) Y' Is (APPENDIX B)

T 990Y 
= K 

99 
all 

Y en y

K 99 11y

If the angle il 
y Is field constant over the desaturation period Tdos (about

1/12 of an orbit) we got an orbital y momentum change of

Ae 990Y = K 
99 T des 'n Y 1H I

In units of the nominal CrAG momentum ft. For a given Ac Y we need

ny, 
= K ye A eoY P

with

K ye = H / (30 
0 2 AlTdes)	 -

c. Calculation of Strapdown Update Gain K
11z

The components of the local vertical in the P system are (neglecting
the tilt angle tj	 ; s = sin, c = cos)

Z111

CN	 0	 -SN I	 z	 0 cy	 0 sy 0 -sn

p
0	 1	 0 -z	 1	 0 0	 1 0 0 -Zsy

sN	 0	 M 0	 0	 1 -sy	 0 cy I cil
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with

N a y + 
n' 

y a 0
0 
t; n = - 11 

ym
s(20 

00; s p z 
- Z; cpz -1 1 0

For I = I Y = I z and Al x I - I x
 
we get for the principal axis torque

due to the gravity gradient In the Inertially fixed 0 system (with

K 99 = 3SIO 
2 
A 1)

	

cN 0 sN	 0	 r2 sN

T99 = 
K99 r

i	
0 1	 0	 _r 3 	K 

99 
r
i 

-r3	 6

	

-sN 0 eN	 r2	 r. cN

Only the torque about the z mcis Is of interest

T 
96yz 

= X 9 g zS11SY(eyen-SYS11)

With n = Ks2y; sn !!! Ks2y; en r. I and K = - tj 
ym 

we get

T 
ggz = 

K 
99 

zKs2ysy (cy-syl(s2y)

= 0. 25K 
99 

zK [(I - K) - (1 - K) coy - 2ye4y)

Elimination of 
the 

cyclic terms leaves a constant bias torque of

Tggz = 0. 25,1( 
99 

zK (I - X)

Integrating over 
an 

orbit 
(Torbit  

2 7TA, 
0 ) 

and substituting the value for

Z, Kgg, and K gives

	

AHA n	 (1 + t;vin(3/2) ^! 0 [ ym
	 Yin

OF
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Inversion yields

P  Kuz 0 z

where

K Pz = 2N/[3S` OA  nym ( l + nym)I	 P

and ez1 is the normalized z momentum ramp,

Because of noise, a much smaller KP z ,value had to be used in
actual operation (see EOVV OPERATION and 1'RRVORMANCE).

I
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APPENDIX E

QUATERNIONS - A BRIEF EXPOSITION

Complex numbers of the form z = a + lb have proven to be a valu-
able concept in the study of many physical phenomena. A generalization
of this concept which proves useful in the study of rotational motion is
the quaternion. Recall that the imaginary unit i = v^-T Let us define
additional units j and k together with the product operation o:

i o i = j o j = k o k = -1

i o j= - j o i= k

(E1)
jok= - koj=i

k o i= - i o k= i

We shall define a quaternion as any quantity of the form

Q = Q4 + i Q1 + j Q2 + k Q3 . 	 (E2)

(See Note 1 at end of Appendix E.) By analogy to the complex number
terminology Q4 is referred to as the real or scalar part of Q. It will
also be convenient to think of the remaining part of Q as the imaginary
or vector part. The reason for this will become clear as we proceed.
I.et R = R4 + iR i + jR 2 + kR 3. The sum of quaternions Q and R is
defined as

S=Q +R =(R4+R4)+1(Q1+R1)

+ j (Q2 + R2) + lc (Q3 + R3)	 (E3)

From this definition we can see that the sum operation is commutative and
associative. We can now give the complete definition of the product opera-
tion o

97
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P = Q o R = (Q4 M - Q1 RI - Q2 112 - Q3 R3)

+ I (Q4 RI 4- Q1 114 + Q2 R3 - Q3 R2)

+ j (Q4 112 + Q2 R4 + Q3 RI - Q1 11 3)

+ k (Q4 R3 + Q3 R4 + Q1 R2 - Q2 RI)	 (R 4)

With this definition we 
can 

show that o is associative mid distributive but
not commutative, i.e., Q o 11 0 R o Q. We shall call any quatemloii hav-
Ing zero 'Imaginary part it scalar and, obviously, the algebra of scalars
is Just the algebra of real numbers. Thus, multiplication of 

a 
qu ►ternion

by 
a 

scalar simply results in as quatemion whose elements tire multiplied
by that scalar according to definition 1A. We, can now define the differ-
ence operation as

D = Q - R = Q + (- 1) 0 It	 (135)

For convenience, we sliall 
always 

omit the o when multiplyin .q a quaternion
by a scalar so that (-2) o Q = --2 Q.

By analogy to complex algebra, lot us d0lno the conjugate (111ater-
nion to Q. Tile emijugation operation will be denoted by ( )*. Thus

Q* = Q4 - i Q1 - j Q2 -, Ir. Q3	 (1: 6)

So far till of our definitions have been extensions of those for complex
numbers as can be seen by assuming Q2 = Q3 --- R2 = R3 -.- Q. 'I'lius the
complex number system is 

a 
subset of the qLatternions. It can be easily

seen that

Q* 0 Q m Q o Q* = Q1 Q1 + Q2 Q2 + Q3 Q3 + Q4 Q4	 p	 (lit)

Note that Q* o Q is a pure real number or scalar. With this observation
we can define the inverse:

Q-1 = (1/(Q* o Q)) Q* : Q*/(Q* o Q) ; Q*o Q 0 0	 -	 (]?, 8)
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Finally then, we can define a division operation:

Q :R =Q o R-1 .	 (HO)

We can see that Q : Q = Q 0 Q ­ 1 = Q-1 0 Q = I so that Q-1 satisfies the
necessary properties of an inverse as long as Q 0 0. This will be useful
later.

We need some additional results and definitions. First we can show
that

(Q 0 R)* = R* 0 Q* ,	 (L10)

If the quaternion Q = Q*, then Q is necessarily it scalar. Also, if Q
-Q*, Q is purely imaginary or a vector quaternion. If V is a vector
quaternion, we shall designate this by an underline as is also used to
designate a 3-space vector, i.e. , (i, j, and k will, not be underlined)

V = i VI. 4. i V2 + k V3
	

(t. 11)

For compactness of our notation we shall lot

Q = Q 4 + Q	 (L12)

where

9 = i Q 1 + j Q 2 + k Q3.

Thus

Q o R = (Q4 Q4 -- Q • It) + Q4 R + R 41 _q + Q x R	 (1;13)

The operations • and x are defined as for 3-space vectors so that

9 - R = Q1 RI + Q2 R2 + Q3 R3	 (E14)
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and

9 x R =1 (Q2 R3 - Q3 R2) 4, J (Q3 RI - QI 113)

+ k (Q1 R3 - Q3 a% 1)	 (E 15)

For vectors A and B,

A o R = -A - B + A Y, B	 (E 16)

In general the product of quaternions mixes scalar and vector parts
together so that this product is not very interesting in the study of
rotational motion 

in 
3-space. The triple product

V , = Q* o V o Q
	

(13, 17)

is more interesting since it does preserve scalar and vector parts of V
without mixing them. This property is trivial for the scalar part of V
and follows for the vector part since

(Q * 0 V 0 Q)* = -Q* o V o Q= -V I
	

(E18)

Hence as noted the triple quaternion product (1317) takes a scalar into
a scalar and a vector into a vector for any quaternion Q. Furthermore,

the length of the vector ly I = /V • V andI-	 —

V , - V , = V , o V I * = Q* o V o Q o (Q* 0 V o Q)*

= (Q* o Q) 
2 V o V*	 (E10)

Equation (E19) indicates the triple product (1317) multiplies -vector length
Icy the factor Q* o Q which is a real number. We note that if Q* o Q
vector length is preserved and the vector mapping V -)- V I looks h*l,.c
a rotation operator. it is a linear operator in that -dA +113 ->} nA' + bBI.
Restricting ourselves to normalized quaternions wl-dcl^ ' prcszirvc iength,—
we soe that B17 is equivalent to a rotation of vector V into V I . Since
we are looking only at normalized quaternions, we can without loss of
generality, represent Q as

F
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Q = cos ^ /2 + sin X 12 u	 where u • u = 1	 (R 20)

The triple product equation (1317) 
call 

be combined with equation (1320)
to give

V , =cosq)v-sili^ u XV+(I-cos -V (E21)

Equation (1321)is the genera	 ml for of the rotation of a vector V about
axis it through the tingle -^.	 That this is true is seen by ex6mining the
rotation operation. Clearly tiny vector along the rotation axis u is not
changed by the rotation so that if the vector V is broken into parts par-
allel to and normal to u;	 i.e.

V = V + V where V V • u u and V
	

• u = 0 (E 22))

We must also have V, :a V + V 1	where V I • u. -- 0 and V .-- VI

Since V and V I aro llor►lial to u, we Can express V I as	
II	 II

^ A

V	 X u -N V + y	 x ( 11 , X V
	

(1323)

Now V I • V	 V 
2 
Cosa = -Y IV 2 1 -)^ y = -cos a and V X VI

s a u and thus x = sinI V I	 in
	

(X; where als the rotation tingle. Com-
bining, we 6-btain

V, =8111tXu x v -Cos ^Xu X(uXV)	 (133 24)
'-1	

.1	 -.%

and

V' = u u - V + sin tt u X V - Cos a u x (u X V)	 (E25)

The equivalence between equations (E21) and (E25) for ti = - ^ is estab-
lislied. Thus, the mapping (13, 17) is equivalent to a rotation operator in
a vector 3-space. Since the coordinate directions tire also vectors, we
can rotate the Coordinate system instead. of , the vector. Rotating the
vector through -^ yields the same components V I as rotating the coordi-
nate axes through ^. Thus we can look at V I as as new vector formed
from V by rotation and expressed in the old —axis system or as the old
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vector expressed in new axes rotated relative to the old. We have now
demonstrated that any coordinate system rotation can be represented by
a quaternion. Note that if Q satisfies equation (13-17), then so does -Q.
Looking back at equation (B20) tells us that -Q corresponds to 360
degrees which represents the same attitude ^ does.

We now look at the time variations of Q. Since Q 
is 

constrained to be
normalized, we necessarily have

d/dt(Q* 0 Q) = 0 = Q* o Q + Q* o Q
	

(E26)

We see from equation (E26) that Q * o 4 = - (Q* 0 4)* and hence must
be a vector. Lot us define this vector by

Q	 (1:27)

Q = 1/2 Q o w (since Q o Q* = Q* o IQ 	 (1;2 8)

We -hall see the reason for the 1/2 factor later. When we evaluate the
rate of change of a vector with time 

in 
two reference frames, we find

Q o V' o Q* 0, o V , o Q* + Q o V, o	 (132 J)

Using equations (E28) in (E29),

I
V	 Q 0 [fi , + 1/2 (ill 0 V, - V, o w)) o (E30)

Q 0 [V l + al X V I ] 0 Q* (E31)

Now the reason for the factor 1/2 becomes clear. It is so that we can
identify w.. Equation (E31) is exactly 111ce the corresponding equation
for 3-space vectors if we identify w as the angular velocity of the primed
reference frame expressed in primed coordinates. This identifeation fol-
lows from the fact that equation (1;31) holds for an arbitrary vector V.
Thus, w is identified as the relative angular velocity of the primed axes
with respect to the unprimed.
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The above discussion completes the basic development of our clue
ternion tools. We now turn to the problem of developing it more conve
ient notation. The most logical choice which comes to mind is a matrix
representation. The quaternion Q would logically become

Q
Q3

_Q4

(13, 32)

Looking back to the definition equation (E4) of the quaternion product
0, we see that for P = Q o R we have

Q4	 -Q3	 Q2	 Q1 Ri
Q3	 Q4 -QI	 Q2 R2

P -Q2	 Q1	 Q4	 Q3 R3 A Q 11	 (1333)

-QI	 -Q2 -Q3	 Q4 R4_

(See Notes at end of Appendix E.) Similarly, L. D = A o B o C, then

D=A.oBC -ABC =ABC
	

(E34)

This rw- ,jult shows that the set of matrices of tho. form Q have the proper-
ties, of the quaternioiis and in fact comprise it maxtrix representation of
quaternion algebra, with matrix multiplicction corresponding to o. Vie can
also express the quatornioi) product in the alternate form

R4	 R3	 -R2	 III Q1
-113	 R4	 RI	 R2 Q2

P = A	 (1335)R QR2	 -111	 R4	 R3 Q3
L-111	 -112	 -113	 R4j _Q4j

(See Notes at end of Appendix E.) Here the mapping also yields a matrix
representation except the order of the factors must be reversed. Thus,
we have
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P= Q R A Q

Q V*

D= A B C	 A	 (E36)

CB

According to these definitions and results, we have

A13C=AC13=CIIA=CA)3	 (L37)

Z,

Thus, an interesting and sometimes useful result is that A C, = C A.
Lot us now look at our provious work and malto use of these now
definitions:

1>1	 Z	 tf	 r

Y	
.1.

0 V 0	 V, = Q* V Q = Q* QVV (B38)

Note that we now have a matrix formed form Q which rotates coordinate
axes and produces V I from V. Linear vector spaces tire also represented
by matrices. The 3-splice vectors, V and V I tire related its

V , = M V
	

(E39)

Here M is a 3 x 3 matrix which transforms components of V to primed
coordinates. Referring back to equation (L-125) and repladni g tt by
we see that

M = U UT _ Bill q, aH cos	 u UT)	 (L40)

(See Notes at end of Appendix it 	 The matrix a is the so-cnll.;, d cross
product matrix and just happens to be the upper 3 x 3 formed by dropping
the final row and column of U. The matrix M is the identity matrix of the
appropriate size to fit the current application. We have already shown
the equivalence between Al and Q* Q. Let us look more closely at the
latter since it is 4 x 4. Wa, call partition the double-tilde or double-bar
matrices as
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Q	
-Q

+Q = Q4	 Q4 A+	 (E41)
T 0	 T 11

0

Since Q* o Q	 Q* Q- so that Q* Q = 1. Also, Q* (1) (transpose)
so that

2
1 -	

T 
0Q4	 2 Q4 +	 + Q Q	

(E42)
Q* Q =

0

Hence M = Q4
2 1, - 2 Q4 ^ + 2 Q QT _ Q 2 1. 

In 
expanded form

7
2 - Q22	 t^3241	 + 44	 21MI Q2 + (^3 q4)	 2(Q! Q3 - Q2 Q4)

.1IWI	 2(Q2 Q1 - Q3 Q4)	 :) 1 `'  + Q 2 °	 Q3" + Q4
2	

^(Q'2 W + Q1 Q4)	 (B 4 3)

2	 + Q3.(Q3 Q1 + Q2 Q4)	 2(Q3 Q2 - Q1 Q4)	 Ql") - Q2
2	

2 + Q4 2

From Nuation (1328)

	

0	 (03	 w2	 wl	 Q1

I Q 0 Lot	al 3	 0	 0.	 u12	 Q 2 	 (13 44)
2	

(412 - wil	 0	 k4c	 Q3

46 0	 Q 4

Equations (E43) and (1344) summarize the useful results from our
discussion.

We are now ready to consider the question of successive rotations
applied to a coordinate reference. A coordinate frame rotation is a rigid
displacement of all, the poi,-ts in the system with a fixed axis passing
through the origin. Thus, it would seem that several successive rotations
should displace every point except the origin. Lot its now consider the
coordinate frameas a rigid body and determine the most general displace-
ment of it which keeps one point fixed. We must first explain what is
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4

meant by A rigid body displacement. A rigid body displacement is one
which preserves distances between every possible pair of points in the
body. The displacement is mathematically represented as a vector func-
tion f. This function then has two basic properties:

1) f(U) = 0

2) I f(rA ) .. L(KB) I _ IrA ° rn I . (1345)

To study this in more detail, we define two additional points r 1 and r2
together with their images under f, f(rl) and L%). Lot f t = f(r ) and

L2 ^, —= f(r 2 ) .	 Let us define unit vectors- 

i	 rt/ ILI I	 ui = f 1 I KI I

(E46)

E2	 K2 	 f2-- f2 • u 1 U,
J=

I1' 2 ?V 2 
^ll—1
	

u2-- If
2 f2 	uxull

k i x j	 u3- u X UZ

The vectors i , j, k and ul , u21 u3 each form orthonormal buses for 3
dimensional space. An arbitrary vector r can be expresses as

r= xi+ yj +zk .	 (E47)

The corresponding f(r) = f  ut + f  u2 + fz u3 . Condition 2 of equation
(1345) can only be satisfied if

f(r) =x u1 +y u2 ± z 1!3	 .
	 (E48)

Thus we can define two functions f.+ and f- that both satisfy equation

I	
(1345) and ..iap r 1 into f 1 and r2 into f 2 .	 The function. f- can be viewed
as the reflection (x,y,z) .).	 (x,y,-%) followed by f+.	 We are only

i
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interested In continuous transitions 
from 

an initial position to a final posh
tion and thus reflections must be eliminated since It is not possible to go
from (xpy,z) to (x,y,-z) continuously without violating condition 2 of
equation (E-45). Thus continuous rigid displacements can only occur In
the form f+. This function can be written out as

4x 41 
+y 

P2 + z R3 = (xx' + e y + azk

(xx = x u • I 	 + z u—1 ' ' + y R 2 I'	 —3 
I

*

"Y = 
X u1 

P i +y M2 '
 i+ 

7' P3 ' i
	 (E 50)

Cx = x u	 k + y 11.2 • 't -i' z t'3
 • 1Cz	 1

Equation (l: aO) can be rewritten 
in 

the matrix form

u = M r	 ( B 51)

The vectors cc and r are of the same length and since this must hold for
all pairs (,x n6d r we must have that

MT 
M = I	 I	 (1:52)

Equation (E52) Also implies till eigenvalues of M are of unit maipiltude.
The eigenvalues and eigenvoctors of A] may be complex so that if NI x

x x ' then x 
T* 

M 
T 

Rl x = 1 ^ N*XXT*x. For 3-dinionsional space M must
have at least one rcifl eigonvalue. Since Al is real, its eigenvalues must
occur 

in 
complex pairs. Therefore at least one 01genvalue of 51 must be

equal to 1. The value -1 could not be acceptable sinceit would imply
Al u = -u whibli would be a reflection and already ruled out. Thus, we
have that dot Al -- 1.

The matrix M is now looldng very much like a rotation since the
cigenvector u is an eigenaxis. All we must do now is to determine the
angle of rotd-tion. Along with the eigonvector u, lot us define unit vec-
tors v and w such that u, v, w is an ortlionorm --al basis set. Also, we
assume w = ii x v. With . these definitions we can express the matrix Al
as

R7 = 
11111 

u 
T + N] 

12	
+ M 21 v 

UT 
+	 + Al	 !^V T

3 3 1!
(E53)
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from the fact that M u = u and that MT INI = I equation (1353) reduces to

M = u UT + P(V VT + w WT) + q(v WT _ w VT)	 P2 + q2

(B 54)

We can now eliminate the vectors v and w from this equation by use of
the proper function of u. Thus —

NJ = u U
T + P(l - u UT) - q U- 0	 (E 55)

This completes the proof that the matrix M Is a rotation matrix. This Is
now obvious from inspection of eqlation (R'55) by comparing it to equa-
tion (RAO) with p = cos ^ and q = sin ^. Thus the most general displace-
ment of a rigid body (or transformation of a coordinate iiystelll) in which
at least 1 point remains fixed Is it rotation about, 

a 
fixed axis i.e. , the

final orientation 
can 

be obtained from the original by 
a 

single rotation
about the axis u through the angle ^ (u 

and 
^ tire determined from M)

oven though thZl: actual motion from initial to Anal m-n-y have been Vlore
complex.

What all the previous discussion bolls down to is that the product
of a pair of rotations 

is 
itself a rotation. Thus, if 51 1

 
and M 2 are rota-

tions aboUt R, 
and 

uO respectively, then M N1 = M is also a rotation2	 1 2	 3
through some angle ^, about some axis u3 . In fancier terms 

the 
set of—

rotations  forms a group under matrix multiplication.

The results of our previous discussions now suggest some now
notation that may old us in keeping up with the multiplicity of coordinate
systems that must usually be dealt with in analysis of spacecraft rotational
dynamics. To remain completely general, let us consider three coordinate
frames A, D, C. We, she. lot the symbol [BA] represent the rotation
matrix which transforms vector expressed in the A frame to 11 vector
expressed 

in 
the B frame.

V (B) = 
(BA] V 

(A)	
(1:56)

For convenience we use the notation superscript (A) or (B) etc. to indi-
cate which coordinate frames the vectors are being expressed in. If the
superscripts are not specified, it means that Ahe coordinate frame is
implicit in the definition of the symbol or that it doesnt matter as long
as all vectors are in the same frame. We are here more interested 

in 
the

rotations [BA] etc. There are three rotations between pairs: AB, BC,
CA. From our previous work
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(CA) r, 1031 [BAI	 .	 (957)

Corresponding to equation (M) is a quaternion relation of similar form.

First, since 00) = [CA] V(A), we have

V (C) = QCA * 0 VW 0 
Q CA	 (1x58)

Here, QCA Is the quaternion corresponding to (CA). Thus analogous

to equation (E-57) we have

V (C) - Q * 0 Q * o VW 
o Q	 (E59)C13	 13A	 -	 13A 0 (CB

Interestingly, 
we Soo that (^CA " Q13A 0 QC13 So that the factors occur

in reverse order from equation (E57).	 However, It we use the double-
bar operator we can multiply in the same order, i.e.

Q CA	 CD QBA	
(EGO)

This result is the one 
which 

we wish to use analogous to equation (E57).
Equations (E57) and (E60) have an easily remembered form and in fact
behave as if multiplication cancelled the terms appearing 

on 
the inside.

This makes it quite easy to construct chains of transformations to any
desired system. 

In 
this notation we see that

[BA] = [AB] T ;^: CAI 31" I
	

also

Q13A ^-- QAB * ° QAB- 1
	

(E61)

Finally, there are some useful tricks with the now notation we have
defined. Referring to equation (E-28) and adding the subscripts we have

defined, we have 413A = 0.5 Q 
BA 

0 to 
DA

(B) . The vector w 
BA(B) 

is the

angular velocity of B relative to A with components in B. Consider the
quaternion Q 

CB -
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0 4
(C)	

Q	 (C)	 (C)ral
OB 	 QC13	 "CB	 C13 1( E'CA 	 —BA

to0	
(C) - I	

* o W	 o QCB	 .CA	 ^ QCJ3 0 Q

( 
CB	 _BA	

C13)

I Q
0 "'—	

(C) - I 
W (13) 

0 Q
*f C13 	 CA	 Y _BA	 CB

or In matrix form

4C
(C)	 (133))

B	 CA13 A	 QC13 (B62)

The utility of equation ( 36 2) is most apj)arent when we use it to Compute
the attittide error of a spacecraft relative ton moving or moveable refer-

ence. Note that the comPotients of '. 
C, 

A (0) atid ir 
13
A (13) are exoressed

in different frames. Normally, w 
CA (

0) would conic from rate sensors

which are body fixed while 	 is as commanded maneuver rate which

Is naturally defined iii the Movcable reference. This equation then allows
us to use both quantities directly without either being transformed.

It often becomes necessary to compute the quatern-ion corresponding
to as given rotation matrix, i.e., 11tid Q given [13A]. We have developed
at computer algorithm to do this.

1) Define matrix

A
23

SA	
A31

A l2

-A32 -A13 -A21
	

trA

A is the given rotatk .

I.	

2) S , = 8 + 
ST 

+ (I - tr A) 11,
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3) 1 = max S" ij (index of largest element along diagonal of S").

4) QZ = S 1 IJ J2 f S" II	 "

-1 for Q4<0
5) Q"I = QJ sgn Q4; sgn

+1 for Q4,.0

Another useful and perhaps obvious technique is the expression cf the
quaternion resulting from a sequence of Euler rotations ( rotations about
coordinate axes) ;

Q13A - c zl +U1 s 2 o c:.T + U2 s -	 o ...

o
 (

`^'n 

	

c !2!I 	 s

where s A sin and c A cos. The corresponding rotation is [BA] and is
given by

[BA] = [^n]i	 [^ 2]i [qi

	

n	 2	 1

The vectors acan be any of the three coordinate axes	 [1,0,0]	 ,	 [ 011,0]
Tor	 [ 0, 0,1)	 . If U= [ 1, 0, '1"0]	 , -then i = 1, etc.	 We have added the con-x

ventionvention that a rotation bracket with a subscript is an Euler rotation about
the indicated axis.	 As an example consider the quaternion formed when
i i = 1, i2 = 2, i3 , 3;

Q 13A = cZ + is 
^h2 

o c	 t js:Z o c— + ks 
^2

`1'2 	 ^ 3	 h1	 '2	 ^3
- C 2 c 

2 
c 
-2 

s 2 s 2 s 2
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+	 s 
^j 

C ^2 C `3 + C ^j $ `2 s ^3

+
 j (

h ^2 ^ 3 	h ^2	 ^3C 
7 11 -T C 1-Y - 1; -T C -T S —2

^j 2 L3 ^ I ^ 2 ^ 3+ k ( C 
-T 7 s

2
+ s
T

s 

-Y 0 —2

the corresponding (BA] is

"ls q)03 + "Is^3C^2c^3 'I 	 Y 2c h 3 + C'̂ Y 3 I

C	 C41^2s ^3	 -sYY(1)3 + "1(**3	 1"28h + s'4c^3

"2	 sqo2

L

In this brief exposition, we have developed a numbor of useful quaternion
results and notations. This by no means exhaust ,.-, the possibilities. The
available quaternion literature does not present the material 

in 
an easily

applicable form and thus this short development is presented to fill that
gap.

NOTES: The following notes apply to the previous discussion:

1) We use Q4 rather than (10 for convenience. Since these quater-

	

nion equations will be adapted	 the computer and since 0 is not usually
allowed as a subscript it becomes necessary to use something else. We
desire to use 1, 2, 3 for the vector components, hence Q4 is the real
part;

2) The symbol z is called double tilde and the symbol — is called
double bar;

3) We shall define

0	 -Q3	 Q2

Q3	 0	 -Q1

--Q2	 Q1	 0

wl-dch is the tilde or cross product matrix for the 3-vector Q.
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A1'K-NDIX F. BOLT, CO MMAND 
n Xil

To use the acquisition still sensor (ACQ SS) for tl two taxes1trtllaclown
t1pd+ate, the sun line has to nondnally pass through the 'k-enter of rile
A Q SS onto per orbit, 110 matter what the tilting t1x1t& is. This ca ll be

atone by rolling the vehicle about the principal x axis by the angles 11xtl

such that the vellicle z axis always has tan cicvtat on angle 11x above the
orbital plane, equal to the elevation angle ^1x of the star. Tile transfor-
illation from the 1. System to, the V system Is (s = liln, c `•= eot )

k

	

11h'Hl	 I^. tt 	1	 f1	 11	 ^' .^n	 '' rat	 1l	 r	 tt	 v^
NAI	 X11

<<' 1 ^)	 h l ^ 	 1^^,,,	 1^	 U	 `^ tii	 ^' ors	 ^' . n	 .^	 u	 U	 1)	 1	 0

from which wo derive

	

VL 32 = -811x = 1i13 sal1i1 '1' 1 23 "'XII Cllzn _K 33 slim "'m	 '

or

K3351) x11
l1t ,'- K23e 1 xn/ t `., nXI)	 ,

with

11x1 u1 
(stt '1 K''11r11t)J(ltc:llrin) sand It - /I—Ef) -3

	 .1. I
^33 "x	 13

This y1 lds

11 1t	 lire trill I li I)3 /K,	 3 I
i° tiro tan I 11	 O	 t - 11.Kt)2

3

t



w

Inverse tangents are used since no other ARC functions are available on
board. The values of the K's tire given In APPENDIX G. They apply
for the EOVV A orientation. For the EOVV B orientation we have

-1	 0 0
[K] B	 0 -1 0 [K) A

0	 0 1	 a

i.e., X13 and K 23 ellange sign.
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APPENDIX G. DATA

Vehicle moments of inertia matrix (k6mi2)

	899828	 --63919	 -529360
1v -=	 -63919	 3763111	 -27295

	--529360	 -27295	 3598005

Principal moments-of-Inertia matrix (kgm2)

	793332	 0	 0

1  =
	 0 3767879	 0

	

0	 0	 3699732

Transformation from vehicle to principal coordinate system

	0.982357	 0.022682	 0.18563fs^
DO = 1Pv) =	 0.017288	 0.977351	 -0,210913

	-0.186213	 0.210901	 6.959716



APPENDIX H. FLOWCHARTS

MANEUVER REQUIREMENTS

o*464
ezq " e0, e0 . 012, °z24 O il, O il ` #10
ez0 °` eTL 1 °TL3
er " e20 — ez4
em 0.25 (ez0 4 ez4 + 2 0z2)

111m' K vtz (ez0 ea a- 0,25 er)

—14L c.0am 14L
°t0 ,• ez0 — 1Izm / Kijz

ez2 I ez2 r'hin # Kurz

ENTER

tdb - t 't 4^ id

04tdbor0

AT A	 YES
SAMPLE
POINT

7
NO

A

i	 1

NO	 SAMPLE
--'	 POINT 1

YES

Pz ^ Kµz N TLI — OTL1P)
" 11z  e,, Pz *- 11z 

s TL1P G e TL1 4 erb
pz L " 0,0349

S o SIGN (S1 0 tdb + 450)

eTL1P' "TL1P "0,5S ilzm/ Kip

Q TL2 '	 Y'E5
O TL` r1AX	 CTM " e TN - r eTN

'UTL2

^TL2'sltJ	
YES	

-TN "'ITN + A TN

^N̂O
—4, °TN 4

A
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e

nyn +rye -- ny m sin (2520 tdb)

n:n ' — film sin (2120 t db)

EK13 	 +0,186633	 IF EOVV B FLAB - 0

	

(-0.1186633	 IF EOVV 8 FLAG * 0

nxp - (sin fix + EK13 sin s;;,,) / (0.962618 ea nzn)

rrx" o ARCTAN (rixp / (1 17xp2)%)

nxn

	

nxn — 12,3960	 IF EOVV B FLAG 6 0

	

nxn + 12,3860 	IF EOVV B FLAG # 0

sin Rxn/2	 O	 O
ON 	O	 O	 sin 17yn/2

O	 11"71:"/2	 O

cos nxn/2	 cos nzn/2	 cos Fyn/2

OBL - OM ON

r1 " 2 (nBL1 p B
yy

L2 + g8L3 gBL24)
r2'0  (41.2 gBL1 — qk3 + gBL4)

r3 2(gBL3 g13L2 — pBL1 gBL4)

fib 0 -- 21rym cos (2 Do t db ) I

g x	 r1 520 fib
H y	 r2 no ,fib
O z	 r3 Do 'f2b

OAI	 OBL OLI

EXIT

*1

Y
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STRAPDOWN UPDATE REQUIREMENTS

ENTER

	

SUN	 YES	 NO
PRESENCE	 IU # 1	 RSS m (lox' 4 7ey2)%

?
N0	 YES

RSSP 100
NO

	IU n 0	 RSS < 5,00
7

YES

YES

RSSP - RSS	 RSS --+ RSSP
?

NO

IU	 1

S1 	 .—cos Tex sin ley
S2	 sin Ynx

S3	 cos Tex CO57ey

V 1 	2 (gVl1 gVI3 —4 V12 pV14)
V2	 2 (gVl1 gV14 +gV12 gV13)
V3 M (9V1 23 - gV121 —g V, 22 4'gV124)

A0 1 - o.5 (—S3V 2 1 S 2V3 + PzS1)

A02 = 0.5 (S3V 1 ...S 1 V3 4. 
PzS2)

A03 0.5 (—S 2V 1
 + S1 V2 + NZS3)

A04 0 — AG, 2 » A022 — SA032) %

^ OVI
1 G } { OV1 y

kz"oe yc	 t)yC +	 S( r 1 tA0 1 + r2 A02 + r3 A03)

EXIT
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