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Numerical and experimental results are presented on the pullout
phenomenon in composite materials at a high rate of loading.
The finite element method was used, taking into account the
exlstence of a virtual shear deformation layer as the Interface
between fiber and matrix. Experimental results agree well wilth
those obtained by the finite element method. Numerical results
show that the interlaminar shear stress is time-~dependent, in
addition, it is shown to depend on the applied load-time his-
tory. Under step pulse loading, the interlaminar shear stress
fluctuates, finally decaying to 1lts value under statlc loading.
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g 1. Introduction

; ,

? The pull-out phenomenon of fibers from a matrix is an

. important problem closely related to the stress transmission

k mechanism and fiber stripping processes in composite materilals.
This phenomenon ig also a eruelal factor of the impulsively
absorbed energy, for example, obtained from impulse-tests on
isots [1,2], as has heen already pointed ouv by Outwater [3].
Lawrenae investigated [4] the pull-out phenomenon of fibers from
matrix layers under suvatle loading. However, for a high rate of
loadinp, 1t 1s often insufficlent to rely only on the usual anal-
ysls of statie loading. Namely, In statle analysils shear stress
waves propagabing within a materlal have not been consldered.
Therefore, we investipgated the pull-out phenomenon of fibers from

3

b

; ~omposite materials at high rates of loading, numerieally and

‘ experimentally, taking into account propagatlon of stress waves
within materials and existence of a virtual shear deformation
layer as an interfare between a tiber and the matrix.

r | 2. A pull-out model and equations of motlon

Let us consider a one~dinensional model of Tigure la to
examine the pull-out phenomenon of fibers from tiber-enforced
composite materials (or piled boards). In the model, two differ-
ent layers are eonnected by a massless shear deformatlon layer
(an adhesive layer). Through this shear layer propagates the

' shear stress that 1is proportional to relative displacement and
inversely proportional to the layer thickness. The shear layer
(the adhesive layer) in the model can be a matrix layer, or a
kind of shear stress propagation layer (transition layer) at
the interface between fibers and the matrix, 1f one conslders
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and 1 are aquivalent to each other,
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Flgure 1, Idealized woooo
, pull-out model o
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: If a fiber s pulled out impulsively at one end, the load

' propagates through the fiber as 2 stress wave and reaches a dls-
. continuous Junebtion. Tor statlic loading, one can analyze forces
| acting on a fiber-matrix interface and stress variations within
| the fiber only by examining balance of forces without consider-
Ing the inertia of a material. However, for dynamical loading,
where stress waves propapgate, one has to conslder balance orf
forces taking into account the inertia of the material, that 1s,
equations of motlion. Tor simplicity, let us assume that layers
are flat and two-~dimensilonality can be ignored and conslder pro-
pagation of stress waves in ohe dimension. Trom Figure 2 we sce
that, as a pull-out stress wove reaches a discontinuous junction,
equatlions of motlon are written as
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where u, E and p are the displacement, Young's modulo and the
density for each material, respectively, while the surfix 1 o»
o
2 ecorresponds to the materlal 1 or 2. 4lso Acl) and A(“) are
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Material 2 as & matrix. In the one-dimensional model, Figure la /62
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cross seetions of materlials, given respectively by

At aphb, 4 aywm

G stands for the stiffness (shear elastieity) of a shear layer.

3. Numerical analysis

It 1s extremely difficult to solve Equations (1) and (2)
They have been solved only under limited boundary
It seems almost impossible to obtaln an analyti-

analytically.
conditions [5].

cal solution for the pull-nut phenomenon, since the boundanry

conditlon at discontinulty is complex.
obtaln a realistic solubtion we analyzed equations numerically.

Therefore, in oraer to

Although any of the differential methods, the method of charac~

teristiec curves or the finite element method based on the
Hamilton principle, may be applicable to this problem, we have

employed the finite element method.

According to the Hamilbon's prineciple, Equations (1) and (2)

are equivalent to a functional Hamiltonilan given by

nAq

v

As shown in Figure 3, the triple layer Junction of fliber-
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shear layer-matrix 1s meshed into finite number of elements.
us denote two nodal points of the 1-th element as 1 and i+l and

write 1ts length as L.

for both materials 1 and 2 are written as
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Displacements of the point 1 at time ¢
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For dlsplacements of the point 1+l, one writes
TR LA LR N T TR A (5)

Assuming linear varilations of displacements within an element
and interpolating by a linear equation of the twoe nodal points!
displacements, one may obtain displacements within the i1-th
element as

wn B e e (6)

T} ' ty ' 3
Ha i N LI 1 (7}

Substltute Equations (6) and (7) inte Bguation (3). Take var-
lations and set .x o . By adding an external forvce on the nodal
points, one gets the ecuation of motilen for the element

Ly ;.; {uy 4 % (1 (8)

where {«i and (s} are the nodal point dilsplacement vector and
an external foree vector at the point, respectiveiy. Their com=
panies are glven by

L A AL R (9)
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An element mass matrix [m] and the stiffness matrix [k]1 are
plven respectively by
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These are called a consistent mass matrix and a consisten.
stiffness matrix. Iustead one may use lumped matrices for sim=-
plielty. They are given by
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k., Experimeunts

We have experimented with the impulsive pull-out phenomenon
using pull-out test specimensg. Results will be later compared
with those from numerical analysls by the finlte element method.

4,1, ™TMest specimens

Figure % shows the shape and the sime of a test specimen as
well as locatilons of strain pgauges attached te it. A shear
layer is formed by epoxy-adhesives. To lnvestigate the effect
due to the thickness of a shear layer, we used two kinds of test
specimens, one with a 0.05 mm thick shear layer and another with
1 mm thickness. Both materials 1 and 2 are made of aluminum.

b
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We used commerelally available epoxy-glues (Araldite) as adhesives.
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Figure U4, Test specimens Figure 5. Experimental

apparatus

4.2, Experimental apparatus

Flgure 5 shows the apparatus of our experiments. Let a
welght free-fall from the height of 700 mm and coilide with a
stopper. The collision generates stress in fhe rod until the
welght leaves the stopper. The stress then propagates as a
stress wave towards a test specimen check. When the stress wave
reaches the check, a part cf Lt is transmitted into the Materlal
1, while the rest propagates back inside the rod as a reflected
stress wave. The transmitted wave inside the Materlal 1 later
arrives at the adhesive Junction with Material 2, and the phen-
omenon of an impulsive pull-out takes place. Though the shear
stress at the interface between a flwver and the matrix is a
erucial factor in the phenomenon of pull-out of fibers in com-
pound materials, it is extremely difficult to measure thils shear
stress or shear strain. Instead, we have measured for simplicity
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time variations of longitudinal strains for Materials 1 and 2
uging aeccurate strain gaupes and compared with numerical results.
Signals from strain gauges were amplified by a DC-amplifier
(Shinko DA-400TF; Frequency quality 50kHz/#3 db) and then
recorded in digltal memories. Strain pauges were 2 mm long
(Kyowa KFC-2-1l1).
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Fipgure 6, Stress wave records of A specimen
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Figure 7. Stress wave records of B specimen
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5. Results and discussions

5.1, Experimental results

Mgures 6 and 7 show time variation of strains at each
gaupe location in test speaimens A and B measured in the impul-
sive pull-out test. Here time ig set at t = 0 when the front
of a stress wave 0q in the Material 1 reaches the gauge number
1. o0, remains constant (with a constant stress maghltude) only
during the first interval (or about 160 usec) when the stress
wave goes and returns between two ends of the stopper. Then
the stress wave 1s transmitted and refleeted multiply at both
ends of the stopper and 0y starts to behave in a complex pattern,
0y is an almont step~like stress wave 1f the colllsion between
a weight and a stopper is perfeet, as both of them have homo-
geneous cross sections normal to the longitudinal directlon.
However, as is shown in Figures 6 and 7, g, does not rise
sharply as step~like, indicating an imperfeet collision. The
pulse is actually a ramp type with a pulse rise time of about
50 psee, Furthermore, as is obvious in Figure 4, 1t is only
until about 100 usec counting from the wave front of oq when
only dq is observed at the location of a gauge number 1. After
this interval, oy will be superimposed with 1ts reflection at an
prediet the pattern of w, any longer. Even if “, 1s constant
in time, the output from the Ne. 1 pauge will vary., Indeed as
recorded In M. 6 and 7, the strain sipgnal from the No. 1 gauge
lnereased after 100 »see. This increase must be due to the super -
Impogition of reflected waves from the adhesive Junetion., ¥From the
rate of ynerease , one may infer that « , remains rowhly constant
until 160 see. I the shear layer has zero thickness or 1ts
stiffness 0 4is infinite, and the

o it i e e Grma ks
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compound material i1s assumed as a uniformly structurced single
body, variations of stress waves may be *“»ented by the theory of
elastliclty stress wave propugation in ome dimension [6]. For

our expoeimental specimen Op (transmitted otress wave) = k 0y

O (reflected stress wave) = 4 Oy« Dotwdagb lines in Fipgures 6
and 7 are for predictlons obtained from the one~dimensional wave
propagation theory, assuming a uniform structure for the adhesive
Junction. In this computation, the incomiry stress wave is taken
t¢ be g ramp type pulse with a rise time of 50 usee. By comparing
theoretleal results in one dimensional wave theory with experi-
mental results, one finds that results from the gpecimen A with

4 very thin adhesive layer agree well with theoretical predictions.

From comparison of two types of specimens A and B, one¢ recopg-

nizes the significant difference iIn values of ne.2~2., While the
strain observed in an A vpeclinen is consistent with that of one
dimensional theory, it hurdly propagates in a B speeimen that has
a thilek shear layer. Apparently, the difference is attributed to
the thickness of shear layers. The magnitude of the shear stress
transmitted to the Material 2 from the Material 1 is inversely
preportional to the thickness b. For small b, the transmitted
shear stress is large, and two materials separsted by an adhesive
layer form nearly unilorm sinple body structure, Even though the
A specimen hints the similar tendency, we found that the strain
measured at No.2-1 in the material, particularly in the B speci~
men, is larger than not only the theoretical prediction, but the
incoming stress wave itself. If the shear layer 1s thinner and
the whole adhesive junction can be regarded as a single body, then
wave reflection takes place at the discontinuity where cross section
changes and the wave magnitude passing through no.2-1 have to be
smaller than the incoming wave. However, experimentally the
strain at No.2-1 1s larger than the incoming wave. Tor the thick
shear layer the shear stress aeting on the layer is small, It is
not transmitted to the material immediately, even after it
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propapates through the Material 1 and reaches the adhesive
Junetions. While the incominpg stress wave stays in the Material
1 inside of the Junetion, it transmits the stress to Material 2,
khen the force i. transmitted to Material 2 via shear strescs,
Material 1 also reeceiven its reaction and the gauge ne. 2-1
installed deeply in the Junction records the strain (stress)
larger than net only theoretical predicted o transmitted wave,
but the incoming stress wave Ur Itself. That is te say, the
reflection plane for stress waves shifts effectively inwaed., If
the shear layer pets thicker, the effective reflection plane noves
further inward., Accordingly, an incoming wave vnonetrates into
Material 1 inside of the Junction and then is superimpesed with
1ts reflections. Then 1t 1is within an adhesive junction where

the first larpe otress aets on Materlal 1. If Material 1 breaks
down a little more than the imcoming stress, then the shear break-
down of fibers could happen inside of this junction. At any rate,
the one=dimensional theory may be sufflicient te desepribe the
stress far from the layer within the junction. DBut it fails to
explain the detalls, much less the shear stress aeting on a shear
layer, that could be examined only by numerical analysis.

5.2 Numerical analysis results

As is elear from Figures 6 and 7, the stress caused by the
impulse of a fallen weight in a pull-out material (fiber) may be
approximated in terms of a ramp type pulse with a pulse rise
time of 50 usec. Trerefore, we have examined in numerical anal-
ysls two types of loadings, one with a ramp type pulse of 50 usec,

and another with an extremely sharp step pulse. We used the /66

following narameters:

, 2,
Young's modulus (for Al) E = 7000 (kg/mm
Density (for Al) 7 = (g/cmB)
Gravity acceleration g = 9 8 (m/s%)

0
Shear elasticity (for Araldite) G = 50 (kg/mm“)
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We assumed a lumped mass matrix of Equation (13) and a con-
sistent stiffness matrix, Equation (12). Runge~Kutta-Gill
numerical method was employed to inteprate equations of motion,
Equation (8), while a unit interval for time intepration is
taken to be about 1/5 of the vime required for the stress to
pass through a finite element, Taking into conslderation the
phenomenon of wave propagation, we have divided the medel in the
fipure into finite elements uniformly. We have used a computar
HITAC 8300 (with memory capacity of 145 kb),

5.2,1 Ramp type pulse

In oprdey to make & valid comparison with experiments, com-
putation was done for the model in Figure 8a, which approximates
the actual experimental speeimen, Stress of a ramp type pulse
with a rigse time T = 50 usec is ascumed to act on the pull-o .t
glde of the model. The magnitude of the plress is taken to be
0.5 kg/mmg. The length of an element 1s 2 mm for this computa-
tion, We analyzed the pull-out phenomenon as variations of
strain at various sites in the model, until the reflected wave
arrives there elther froam the loading end or from another free-
end. .
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Results are shown in ®igures 9 and 10 for the shear layer
thickness b = 0,05 mm and b = 1 mm, respectively. The time t
1s clocked from the instance the load is applied impulsively at
the loading end. From the numerical curves agreement is remark-
able qualitatively as well as quantitatively with experiments,
except for the gauge No. 2-1 for the shear layer of b = 0,05mm.
It could explain even smaller patterns at No.2-2, that is, the
effect of a shear deformatlion layer which could not be understood
in one-dimensional stress wave propagation theory with afore-
mentioned single body hypothesls. The largest shear stress
exists at the pull-out end, regardless of the shear layer thick-
ness. TFor a pulse of a long rise time 50 psec, the shear stress
increases at the arrival of stress wave and when the stress
remalins constant it also stays constant equal to the one under
statlic loadlng. Small fluctuations are observed only towards
the end of a ramp pulse where the incoming stress wave vanishes
discontinuously. These oscillations get slower for a thicker
shear layer. Oscillations are more visible under a step pulge
loading, as willl be dlscussed below.

5.2.2 Step pulse

The most interesting phenomenon of the Iimpulsive pull -out is
found under a step pulse loading where an incoming stress is
applied more abruptly than the ramp type pulse in order to approx-
imate a literally impulsive loading. Numerical analysis was
made for the case where an incoming step pulse 1s realized with
an extremely quick rise time T = 1 usec on one end of the pull-
out material (fiher). The model used in the analysis 1s shown
in Figure 8h. To obtain an approximate solution for wave qua-
tions Equations (1) and (2) for a sharply rising pulse, using
the finite element method one has to solve an equivalent oscill-
atory equation, Equation (14), where all the masses of waves
with infinite number of degrees of freedom are concentrated on
every nodal point that counts finite. For a better approxima-
tion, for a sharper pulse one has to use as fine a division for
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each element as possible. We solved the set of differential
equatlions numerically using the Runge-Kutta-Glll method. TFrom
consideration of the computer memory capaclty and in order to
minimlze the number of elements to avold a large accumulation
of errorg in tbe numerical method, we took the element length
of L = 1 mm. 7Thus, one c¢an examine only a shorec time interval
in the pull-out phenomenon, yet thils interval 1s long enough to
k‘ understand the transitional phenomenon. Figure 11 ghows numer-
leal results for a b = 0.05 mm thick shear layer. One may notilce
a few over chutes at the top of the strain wave at the no. 1 cite
sensltive to an incoming stress wave. These may be unavoidable
i errors In the finite element method for wave equations. Although
they cannot be ignored for a detalled study, they are negligible
: for an understanding of a global picture of the pull-out pheno~
menon. The inter-laminar shear stress fluctuates in time. The
fluctuation is much lLess visible in response to a ramp type pulse,
} The fluctuation in inter-laminar shear stress finally decays to
; the value under static loading. On the other hand, the impulsive /67
| pull-out shear stress reaches a 20% larger value over the statilce
case in a transitional response perlod. Also, the stress varila-
tion along a fiber is more complex. One muy assume that the fluc-
tuation of the shear stress is generated in the adhesive Junction
in the following mechanism. Flrstly, an Injected stress wave
propagating in a fiber transmits the force towards the outer
material, and pulls 1t abruptly through the shear layer, but the
outer material cannot respond to 1t due (o 1lts inertla and then
the shear stress increases. Within a fiber, particles move along
the pulled direction first, but then they are decelerated. Nextly,
the outer material starts being pulled, the relative displacement
between the material and the fiber gets smaller and the shear
stregs also decreases. Particles in the outer materilal, by lner-
tia, keep moving in the pulled direction, and the shear stress
reduces further. Then the decrease of the stress forces the par-
ticle deceleration that is caused by the strong shear stress
decrease. Consequently, the shear stress increases again in the
shear layer. This whole cycle repeats many times and there 1ls a
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fluctuation of the inter-laminar shear stress. Therefore, the
fluctuation must depend on the thickness of a shear layer. As

is seen in Figure 12, it 1s less frequent for a 1 mm thick

shear layer. This frequency is quite insensitive to an element
lengbh as long as the variation of the division size for finite
elements is sufficlently less frequent. This insensitivity could
be characteristic of the impulsive pull-out phenomenon.

6. Conclusion

Numerical analysls and experimental results are presented on
the pull-out phenomenon in fiber-enforced composite materilals at
the high rate of loading accompanying impulsive breakdowns. The
finite element method was used assuming an inter-laminar shear
layer as the interface between a fiber and the matrix. If the
fiber 1s pulled oubt impulsively, the shear stress is time depen-
dent and decays into the value under static loading. Under step
pulse loading, the inter-laminar shear stress fluctuates, finally
decaying into the statlc value. The maximum shear stress under
the impulsive loading assumes a value more than 20% larger than
the static value.

(A lecture given at the 5th Symposium on FRP by the Japan
Society of Material Scilence, May 31, 1979).
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