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16. Abstract'
Numerical and experimental results are presented on the pullout
phenomenon in composite materials at a high rate of loading.
The finite element method was used, taking into account the
existence of a virtual shear deformation layer as the interface
between fiber and matrix. 	 Experimental results agree well with
those obtained by the finite element method. 	 Numerical results
show that the interlaminar shear stress is time ,-dependent, in
addition, it is shown to depend on the applied load-time his-
tory.	 Under step pulse loading, the interlaminar shear stress
fluctuates, finally decaying to its value under static loading.
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1. Introduction

The pull-out phenomenon of fibui ls from a matrix 1s an

Amportant, problem closely related to the stress transmission

mechanism and fibor strippingI	 , processes in composite materials.
This phenomenon is also a crucial factor of the impulsively

absorbed energy, for example, obtained from Impulso-testo on

Isot o. rl ., "rj , as has been already pointed our by Outwator F31

Lawrence investigated r ill the pull-out phenomenon of fibers from

matrix layers under se tatic loading. However ,, for a 
high 

rate of

loaditip,-, It Ao orton insufficient to rely only 
on 

the u sual anal-

ysio of	 loading. Namely., in static analysis ,;hear sorest;

waves propagating within a material have not been considered.

Therefore ,, we Investigated the pull-out phenomenon of fibers from

n omposite materials at high rates of loading numerically and

oxpepimentally 4 taking into account, proplar:,,L-Ition of StreS.s waves

within materials and exiotonce o! , a virtual r̂ hear deformation

layer as an interfznoe botwc>en a fiber and the matrix.

P0A pull.-duty. modal and oguations of motion

Lot us consider a one-diii,ension, ,.),l model of Figure la to

examine the pull-out phenomenon of fibers from riber-enforced

oomposit(-_a material,-, (or pilod boards) . In the model ,, two differ-

ent layers are connected by a massless shear deformation layer

(an adhesive layer)	 Through this shear layer propagates the

shear stress tb,^ ,Nt 1-9 proportional to relative displacement and

inversely proportional to the layer thickness. The shear layer
(the adhesiv .-,, layer) In the model can be a inatrix, layer, 

or 
a

kind of shear stress, propagation layer (transition layer) at

the Interface between fibers and the matrix ., if one considers

Numbers in marl in indicate pagination of foreign text.
# Department of Meehanical Engirworing, D evhisha Uuivol ,titty, Kyoto
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Material 2 as a matrix. In the one-dimennional model ., Figure la 1621

and 11) are r,-quivalent to each other.

Y

Figure 1. I deal l.-Ped
pull-out model

If a fiber Is pullt*d out impulsively at one ond, the load

propagatoo throurli the riber as a stress wave and ronolica a dis-

continuouci junction. 
For 

static loading, one can analyze forcoo

acting on a f iber-matr i x Interface ,).nd stress variationo within

the fiber only by oxamIning, balance of foroea without consider-
Inn 

the inertia of a material. However ., for dynamioal loading,

where stress wave} 	 one has to consider balance of

forees, taking into ,Account- the inertia of the material, that iso

equations of motion. Por ulmpllvity, lot us aisume that layers

are flat and two-61iftensional-1sty eftin be Jp 1- 	 &1.	 4 -m , .L,nored -nd con 	 Pro^

pag,ation of stress wavoo in one dimensi,on. Vroin Figure 2 
we 

soo

that, Is a pull-out ttross wave- roacho;i a discontinuous junction,

oquationts of motion are writton as

Figure n	 0,0111ponents
of force's

lit

where u, E a11d p arc' 	 displacelijent ., Young's modulo and the

density for each material, respectively,, while, the suffix I Or

1

	

	
(1)	 arecorresponds to the material I or 2. AlSO A



cross sections or materials, given respectively by

G stands for the stiffness (shear elasticity) of a shear layev.

3. Numerical anal is

It is extremely difficult to solve Hquation3 (1) and (2)
analytically. They have been solved only under limited boundary
conditions [5]. It seems almost impossible to obtain an analyti-
cal solution for the pull-out phenomenon, since the boun"'iry

condition at discontinuity is complex. Therefore ,, in oruer to
obtain a realistic solution we analyzed equations numerically.

Although any of the differential methods, the method of charac-
teristic curves or the finite element method based on the
Hamilton principle, may be applicable to this problem., we have
employed the finite element method.

According to the Hamilton's principle, Equations (1) and (2)
are equivalent to a functional Hamiltonian given by

A shown in Figure 3, the triple layer Junction off fiber-
shear layer-matrix is meshed into finite number of elements. Let
us denote two nodal points or the i-th element as i and i+l and
write its length as L. Displacements of the point i at time t
for both materials 1 and 2 are written as

(4)



-31

Figure 3. Finite
element mesh

For displacements of the point i+l, one writes

Assuming linear variations of displacements withtn an element
and interpolating by a linear equation of the tins nodal points'
displacements ,, one may obtain displacements within tho i-tb
element as

t.
.11,	 (6)

(7)

Substitute Houations (6) and (7) into Equation	 Take var-I	 V F14

iations and set	 By adding ,in external force on the nodal
points, one gets the ec ,ul 'Vion ofmotion for the element

where	 and t y l are the nodal point displacement vector and

an extornal force vector at the point, respectively. Their com=
parries are given by

N", r . ..... " t", ."', .	 (9)

(10)

An element mass matrix [m] and th ,-^, stiffness matrix [k] are
given respectively by



These are called a conalotent mass matrix and a consisten,,

stlffne^s matrix. Instead one iig ty u 	 lumped Inatrices for ,I

plicity. They are givon by

A-17

4. r^xperirqqntv,

We have cXporimonbed Ivith the impul"Ave pull-out phenolt)+^ lion

using pull-out test speoimons. Results will be later compared
with those from numerical analysis by the finite element method.

4.1. Tovt spec miens

Flir,ure 1 1 shows 
the shape and the size of a tost. ^speeilne n as

well as locations of strain gauges attacheO to it. A shear
layer 

is 
formed by epoxy-adhesives . To investigate the effect

due to the -thickness of a shear layer, vo used two kinds of test

specimens, one wit's a, 0.0 1i mm thick shear layer and another with

I min thivlmess. Both materials. I and 2 are made of aluminum.

We used commerelally available epoxy-glues (Araldite) as adhesives.

16 R
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Figure 4. Test specimens 	 Figure	 txpertmental
apparatus

11.2. Experimental apparatus

Figure 5 shows the apparatus of our experiments. Let a
weight free-fall from the height of 700 mm and collide with a
stopper. The collision generates stress in the rod until the
weight leaves the stopper. The stress then propagates as a
stress wave towards a test specimen check. When the stress wave
reaches the check, a part of it is transmitted into the Material
1 1, while the rest propagates back inside the rod as a reflected
stress wave. The transmitted wave inside the Material I later
arrives at the adhesive junction with Material 2 ., and the phen-
omenon of an impulsive pull-out takes place. Though the shear
stress at the interface between a firer and the matrix is a
crucial factor in the phenomenon of pull-out of fibers in com-
pound materials ., it is extremely difficult to measure this shear
stress or shear strain. instead ., we have measured for simplicity

6
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time variations of longitudinal strains for Materials 1 and 2
using accurate strain gaugon and compared with numerical results.
Signal:) from strain gauges were amplified by a DC-amplifier
(Shinko DA-4007F; Frequency quality 5OkUz/t3 db) and then
recorded in digital memories. Strain gauges were 2 mm long
(Kyowa XFC-2-11).

Figure 6.	 Stress wave records or A specimen

I

Figure 7. Stress wave records of B specirrien



N.) . Renulto 
and 

discussions

5.1. Experimental results

Vigures 6 and 7 chow t1tao variation of strains at each

gauge location In test Bpe_', imona A ar.d B measured in the Impul-

aive pull-out test. Here time in -set at t - 0 when tile front
of a Stress wave of in the Material I reachog the gauge number
1. a, remains conntant (with a ooni3tant stress magnitude) only

during the first interval (or about 160 psec) when the atresa
wave goes and returns between two ends or the stopper, Then
the stress wave in transmitted and reflected multiply at both
ends of the stopper and a, starts to behave in a complex pattern.
al is an almost step-like stress wave if the collision between
a weight and a stopper in perfect, as both of them have homo-
geneouu cross sections normal to the longitudinal direction,
jlowever 3 as In ahown 1n Fij^ureo 6 and 7, al does not rise
sharply as step-like, indicatinS an imperfect collision. The
pule is actually a ramp type with a puls lx rise time of about
50 poec. Furthermore. an is obvious in Figure 4. it is only

until about 100 Usee counting from the wave front or ee l
 

when,
only a l 1z observed at the location of a gauge number 1. After
this interval ,, CY 

1 
will be superimposed with its reflection at an

predlet tile Patt' C"I'll Of	 any longs k.3 	 Even if	 is constant
in 

tIM0 , tile output, from the No. 1	 will W) r1j	 Indeed a..o,
rooOrdod In Vir. 6 anO 7, the -,train sit;nal from the No. I gaugo
Inioreased aftl:ov 	 This inerea,­,e muot be due to the rupej-

	

_)" Of "Oflc' OtOd w,'1v0s rrom the adh s ve Jun tion. pro	 ilen tiMP0v,It1,'L	 es i --1	 0	 1

rat(--- of Increaae , one may infer that kit 1 
remai

ns
 
m- W,illy, c on n t a n t

until 160	 11' the- shear layen, has zoro thickness or its
Ot lffneos Q is infinite, and the

8
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compound material is assumed as a uniformly structured sing
body, variations of stress waves may be 6,"e- tited, by IV-lie theory or
elasticity stress wave propagation In ono dimem.10-on r6j. For

our experimental 
specimen OT (transmitted ^treas wave) 	 jif

(1.3
 (reflected stress wave) a 11 al* Dot "daab linen in Figures

and 7 are for predictions obtained from the one-dimensional wave
propagation theory, assuming a uniform structure for the adhooivo
junction. In this computation, the incomir., stress wave is 

taken

tc bo a ramp type pulse with a rice time of 150 jisea. By comparing
theoretical results in one dimensional wave theory with experi-
mental results, one finds that results front the specimen A with
a very thin adhesive layer agree well with theoretical predictions.

From comparison of two types of specimens A and B, one recog-
nizes 

the 
significant di 4A."ference in values of no.2-2. While the

strain observed in an A *',,,,ociiaen 
is 

consistent with that of one

dimensional theory ., it h;irdly proparatez in a B specimen that has
a thick shear layer. Apparently, the difference is attributed to
the thickness of shear layers. The magnitude of the shear stress
transmitted to the Material 2 from the Material I 

is 
invc rsely

proportional to the thiokners b. For small fig , the transmitted

shear strews in large, and two materialo, separated by an adhesive

layer form nearly uni-Porm oinirle body structure. Even though the

A specimen hints the similar tendency, we found that the strain
measured at No.2-1 in the material, particularly In the B speci-
men, is larger than not only the theoretical prediction ,, but the
incoming stress wave Itself. If the shear layer is thinner and
the whole adhesive 'unction can be regarded_,arded as a single body, then
wave reflection taken place at the d.-Locontinuity where cross section
changes and the wave mag,nitude passing through no. 2-1. have to be
smaller than the incoming wave. However ,, experimentally the
strain at No.2-1 is larger than the incoming wave. For the thick
shear layer the shear stress acting on the layer Is small. It is
not transmitted to the material immediately, even after it



propagates through the Material I and roaches the adhesive
JunctIonn. While the incoming stress wave stays in the Material

I inside of the junction, it transmits the stress to Material P4

%hen the force I,- transmitted to Material 2 via shear stress,
Material 1 also receives its reaction and the gauge no. 2-1
installed deeply in the junction records the strain Otrova)
larger than not only theoretical predicted a 

T transmitted wave,

but the incoming stress wave o 
I itself. That 

is 
to say, the

reflection plane for stress waves shifts effectively inward. If

the shear layer gets thicker, the effective reflection plane move:

further Inward. Accordingly, an incoming wave penetrates into

Material I inside of the junction and then is superimposed with

its reflections. Then it is within an adhesive junction where

the Arat large otreso act on Material 1. IV Material 1 breaks

down a little move than the imcoming stress, then the shear break-

down of fibero could happen Inside of this junction. At any rate,
the one-dimenal.onal theory may be sufficient to deceribe the

stress. 	 from the layer within the junction. But it fails to

explain the details, much less the shear otreau acting on a shear
layer, that could be examined only by numerical analysis.

5.2 Numerical analysis results

As is clear from Figures 6

impulse of a fallen weight in a

approximated in terms of a ramp
time of 50 psee. Norerore, we
ysis two types of loadings, one
and another with an extremely s

following pqrampters:

and 7, the stress caused by the

pull-out material (fiber) may be

type pulse with a pulse rise

have examined in numerical anal-
with a ramp type pulse of 50 psec,

iarp step pulse. We used the	 166

Younts modulus (for A&	 E = 7000 A&= 2i
Density (for Al)	 Y = 2.75 QUA
Gravity acceleration	 S = 9.8 (m/S 

2 )

Shear elasticity (for Araldite) G = 50 (kg/mm 2

10



4=1

We assumed a lumped mass matrix of Equation (13) and a con-
sistent stiffness matrix, Equation (12). Runge-Kutta-Gill
numerical method was employed to integrate equations of motion,
Equation (8), while a unit interval for time integration in
taken to be about 1/5 of the vime required for the stress to
pass through a finite element, Taking into consideration the
phenomenon or wave propagation, we have divided the model In the
fif*,ure into finite elements uniformly, We have used a comput r
HITAC 8300 (with memory capacity of 1 115 kb),

5.2.1 Ramp type pulse

In order 'to make a valid comparison with experim,7nts ., com-
putation was done for the model in Figure 8a ., which approximates
the actual experimental specimen. Stress of a ramp type pulse
with a rise time T - 50 Psoc is assumed to act on the pull-o.t
side 

of 'he model a The macnit-Mli p of tht- stress is taken to be
0.5 kg/mm,2 The length or an element is 2 mm for this computa-
tion. We analyzed the pull-out phenomenon as variations of
strain at various sites In the model, until the reflected wave
arrives there either from the loading end or from another free-
end..

j_-

I JW11,11 , 41 ;1^ A',

•	 ""dal joint.

I	 t 7

Figure 8. Finite element model for calculation

11
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Figure 9. Calculated results of strains and shear stress
in shear layer for A specimen: In case of ramp type pulse.
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Figure 10. Calculated results of strains and shear stress
in shear layer for B specimen: In case of ramp type pulse.
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Results are shown in Figures 9 and 10 for the shear layer

thickness b = 0.05 mm and b R 1 mm, respectively. The time t

is clocked from the instance the load is applied impulsively at

the loading end. From the numerical curves agreement is remark-

able qualitatively as well as quantitatively with experiments,

except for the gauge No. 2-1 for the shear layer of b = 0.05mm.

It could explain even smaller patterns at No.2-2, that is, the

effect of a shear deformation layer which could not be understood

in one-dimensional stress wave propagation theory with afore-

mentioned single body hypothesis. The largest shear stress

exists at the pull-out end, regardless of the shear layer thick-
ness. For a pulse of a long rise time 50 psec, the shear stress

Increases at the arrival of stress wave and when the stress

remains constant it also stays constant equal to the one under

static Loading. Small fluctuations are observed only towards

the end of a ramp pulse where the incoming stress wave vanishes

discontinuously: These oscillations get slower for a thicker

shear layer. Oscillations are more visible under a step pule

loading, as will be discussed below.

5.2.2 Step pulse

The most interesting phenomenon of the impulsive pul,l,out is

found under a step pulse loading where an incoming stress is

applied more abruptly than the ramp type pulse in order to approx-

imate a literally impulsive loading. Numerical analysis was

made for the case where an incoming step pulse is realized with

an extremely quick rise time T = 1 psec on one end of the pull-

out material (fiber). The model used in the analysis is shown

in Figure 8b. To obtain an approximate solution for wave qua-

tions Equations (1) and (2) for a sharply rising pulse, using

the finite element method one has to solve an equivalent oscill-

atory equation, Equation (14), where all the masses of waves

with infinite number of degrees of freedom are concentrated on

every nodal point that counts finite. For a better approxima-

tion, for a sharper pulse one has to use as fine a division for

13
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Figure 11. Calcualted results
of strains and shear stress in
shear layer for A specimen: in
case of step pulse.
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Figure 12. Calculated results
of strains and shear stress in
shear layer for B specimen: in
case of step pulse.
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each element as possible. We solved the set of differential

equations numerically using the Runge-Kutta-Gill method. From

consideration of the computer memory capacity 
and 

in order to

minimize the number of elements to avoid a large accumulation

of errors in the numerical method, we took the element length

or L - 1 mm. thus, one can examine only a ahorc time interval
in the pull-out phenomenon, yet this interval, is long enough to
understand the transitional phenomenon. Figure 11 shows numer-

ical results for a b = 0.05 mm thick shear layer. One may notice

a 
few 

over chutes at the top of the strain wave at the no. I cite

sensitive to an Incoming stress wave. These may be unavoidable

errors In the finite element method for wave equations. Although

they cannot be ignored for a detailed study, they are negligible

for an understanding of a global picture of the pull-out pheno-
menon. The inter-laminar shear stress fluctuates in time. The

fluctuation is much less visible in response to a ramp type pulse.

The fluctuation in inter-laminar shear stress finally decays to

the value under static loading. On the other hand, the impul
s
ive Ir,7

Bull-out shear stress reaches a 20% larger value over the static

case in a transitional response period. Also, the stress varia-

tion along a fiber is more complex. One mL-y assume that the fluc-

tuation of the shear stress is generated in the adhesive junction

in the following meebanism. Firstly,, an Injected stress wave

propagating in a fiber transmits the force towards the outer

material and pulls it abruptly through the shear layer, but the

outer material cannot respond to It due Lo Its inertia and then

the shear stress Increases. Within a fiber, particles move along

the pulled direction first, but then they are decelerated. Nextly,

the outer material starts being pulled, the relative displacement

between the material and the fiber gets smaller and the shear

stress also decreases. Particles in the outer material, by iner-

tia, keep moving in the pulled direction ., and the shear stress

reduces further. Then the decrease of the stress forces the par-

ticle deceleration that is caused by the strong shear stress

decrease. Consequently, the shear stress increases again in the

shear layer. This whole cycle repeats many times and there Is a

15



fluctuation of the inter-laminar shear stress. Therefore, the
fluctuation must depend on the thickness of a shear layer. As
is seen in Figure 12, it is less frequent for a 1 mm thick
shear layer. This frequency is quite insensitive to an element
length as long as the variation of the division size for finite
elements is sufficiently less frequent. This insensitivity could
be characteristic of the impulsive pull-out phenomenon.

6. Conclusion

Numerical analysis and experimental results are presented on

the pull-out phenomenon in fiber-enforced composite materials at

the high rote of loading accompanying impulsive breakdowns. The
,finite element method was used assuming an inter-laminar shear
layer as the interface between a fiber and the matrix. If the
fiber is pulled out impulsively, the shear stress is time depen-
dent and decays into the value under static loading. Under step
pulse loading, the inter-laminar shear stress fluctuates, finally

decaying into the static value. The maximum shear stress under
the impulsive loading assumes a value more than 20% larger than
the static value.

(A lecture given at the 5th Symposium on FRP by the Japan
Society of Material Science, May 31, 1979)
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