NASA Technical Paper 1838

A Microprocessor-Based Table Lookup Approach for Magnetic Bearing Linearization

Nelson J. Groom and James B. Miller

MAY 1981

NASA

NASA Technical Paper 1838

A Microprocessor-Based Table Lookup Approach for Magnetic Bearing Linearization

Nelson J. Groom and James B. Miller Langley Research Center Hampton, Virginia

Scientific and Technical Information Branch

$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}$

·

SUMMARY

An approach for producing a linear transfer characteristic between force command and force output of a magnetic bearing actuator without flux biasing is presented. The approach is microprocessor based and uses a table lookup to generate drive signals for the magnetic bearing power driver. An experimental test setup used to demonstrate the feasibility of the approach is described, and test results are presented. The test setup contains bearing elements similar to those used in a laboratory model annular momentum control device (AMCD).

INTRODUCTION

This paper describes an approach for producing a linear transfer characteristic between the force command and force output of a magnetic bearing actuator. The approach, which is microprocessor based and uses a table lookup to generate drive signals for the magnetic bearing actuator power driver, was investigated for application to a laboratory model annular momentum control device (AMCD). The laboratory model (described in ref. 1) was built to investigate potential problem areas in implementing the AMCD concept and is being used as part of an AMCD hardware technology development program. The basic AMCD concept is that of a rotating annular rim, suspended by a minimum of three magnetic bearing suspension stations and driven by a noncontacting electromagnetic spin motor. A detailed discussion of the rationale for the AMCD configuration and of some of its potential applications is presented in reference 2.

As described in reference 1, the magnetic-bearing linearization technique used in the original laboratory model AMCD magnetic suspension was to differentially control sets of magnetic bearing elements about a permanent-magnet bias flux. Preliminary tests indicated that this approach (permanent-magnet flux biasing) presented a problem from a control system standpoint (ref. 3). For a given equivalent permanent-magnet stiffness, a minimum bearing servo bandwidth is required for stability. The existence of structural modes in the area of the laboratory model bearing servo crossover restricted the amount of bearing servo damping that could be achieved.

Because of the limitations of permanent-magnet flux biasing encountered with the laboratory model AMCD, a decision was made to explore an alternate approach to the design of the magnetic suspension system (ref. 4). As a result, a new magnetic suspension system for the laboratory model has been designed, fabricated, and tested (ref. 5). The new system uses a zero bias flux approach for the magnetic bearing actuators. Analog multiplier and square root modules produce a direct solution to the ideal magnetic actuator force equation to provide a linear force-current characteristic. (For further discussion of magnetic bearing actuator control approaches, see ref. 6.) The accuracy of this approach is limited by the accuracy with which the ideal force equation approximates the actual characteristics of the actuator and by the accuracy of the analog components. This paper presents a zero bias flux linearization approach which is digital and which uses a lookup table constructed from measured actuator characteristics. An experimental test setup that was used to develop this approach is described, and test results are presented. No.

SYMBOLS

Dimensional quantities are presented in both SI Units and U.S. Customary Units. Measurements were made in U.S. Customary Units.

- F_B force produced by bottom electromagnet
- F_C force command for magnetic bearing actuator
- $F_{C}(m)$ value of force command associated with mth line segment
- F_{TT} force produced by top electromagnet
- f_s microcomputer system sample rate

$$\Delta F_{C} = F_{C}(m+1) - F_{C}(m)$$
 for all m, where m < N

$$\delta \mathbf{F}_{\mathbf{C}} = \mathbf{F}_{\mathbf{C}} - \mathbf{F}_{\mathbf{C}}(\mathbf{m}), \text{ where } \mathbf{F}_{\mathbf{C}}(\mathbf{m}) \leq \mathbf{F}_{\mathbf{C}} < \mathbf{F}_{\mathbf{C}}(\mathbf{m+1})$$

G displacement of suspended element with respect to centered position in magnetic bearing actuator gaps

G_B gap of bottom electromagnet

- G_O magnetic bearing actuator gap with suspended element centered
- G_T gap of top element
- I_B current in bottom electromagnet

I_C current command for magnetic bearing actuator

I_C(m) stored value of current command associated with mth line segment

IT current in top electromagnet

K electromagnet constant

N number of line segments

SLOPE(m) slope of mth line segment from $(F_{C}(m), I_{C}(m))$ to $(F_{C}(m+1), I_{C}(m+1))$

Abbreviations:

A/D analog-to-digital converter

AMCD annular momentum control device

D/A digital-to-analog converter

dc direct current

emf electromotive force

APPROACH

Magnetic Bearing Control Approach

The magnetic bearing control approach is one which uses zero bias flux. Figure 1, a schematic representation of a magnetic bearing element pair, is

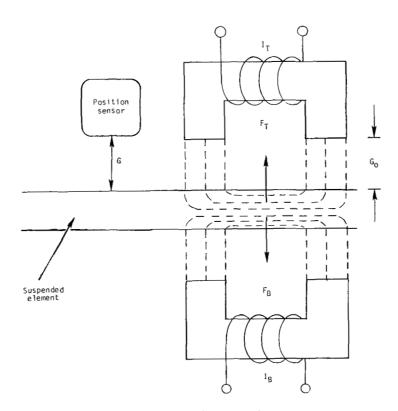


Figure 1.- Magnetic bearing actuator.

presented in order to describe this approach. Included in the figure are top and bottom electromagnets, with currents I_T and I_B , respectively; a portion of the suspended element which is centered between the electromagnets; and a position sensor which measures the displacement G of the suspended element with respect to the centered position G_0 . In the zero bias flux control approach, one electromagnet at a time is controlled; the top electromagnet is controlled for an upward force and the bottom electromagnet is controlled for a downward force (since each electromagnet can physically produce only a unidirectional force). Figure 1 indicates that if up is taken as the positive direction, the electromagnet gaps are

$$G_{\rm T} = G_{\rm O} - G \tag{1}$$

and

$$G_{B} = G_{O} + G$$
 (2)

Assuming negligible fringing and ignoring nonlinear core effects, the force produced by each electromagnet is given by (ref. 4)

$$F_{\rm T} = K \left(\frac{{\rm I_T}^2}{{\rm G_T}^2} \right) \tag{3}$$

and

$$F_{\rm B} = \kappa \left(\frac{I_{\rm B}^2}{G_{\rm B}^2} \right)$$
(4)

The composite force-current characteristic of a zero bias flux actuator with the suspended element centered is shown in figure 2.

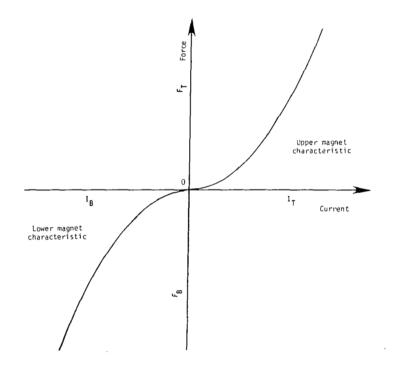


Figure 2.- Composite force-current characteristic of a zero bias flux magnetic actuator.

Linearization Approach

. .

The linearization approach is microprocessor based and uses a lookup table. The most straightforward approach for producing a linear transfer characteristic between force command and force output would be to solve equations (3) and (4) for the electromagnet current required to produce the desired force. That is,

$$I_{T} = G_{T} \left(\frac{|F_{C}|}{K}\right)^{1/2} \qquad (F_{C} > 0)$$

and

00

$$I_{B} = G_{B} \left(\frac{|F_{C}|}{K}\right)^{1/2}$$

where F_C is the commanded force. Implementing the solutions of equations (5) and (6) digitally could produce a more computationally accurate result than the analog solution but would not account for deviation of the actual bearings from the ideal model. This solution would also require that considerable computing power be dedicated to a relatively minor portion of the total control system.

The table lookup approach, which employs a one-to-one correspondence between force command F_C and output current command I_C permits the output/ input function to conform, within the limits of quantization error, to the actual bearing characteristics. However, this form of table requires considerable memory space. The minimum memory requirement is obtained by selecting the minimum set of straight line segments which approximate the output/ input relationship within the desired tolerance. The major disadvantage of this choice of line segments is that considerable time may be spent searching for the appropriate line segment.

Since in this application computational time is more critical than memory size, an approximation was selected which requires more memory but eliminates the search time. The minimum set of equally spaced line segments N are selected so that $N = 2^{n}$, and the N + 1 points defining the line segments are separated by equal force command steps ΔF_{c} . If the range of F_{c} is scaled to a B bit binary word (B > n), the n most significant bits of F_{c} uniquely identify the N line segments. In actual computation these bits identify the

 $(F_{C} < 0)$ (6)

(5)

lookup table data associated with the mth force command data point $F_C(m)$ such that $F_C(m) \leq F_C < F_C(m+1)$. The B - n least significant bits of F_C represent the difference δF_C between F_C and $F_C(m)$. (See fig. 3.)

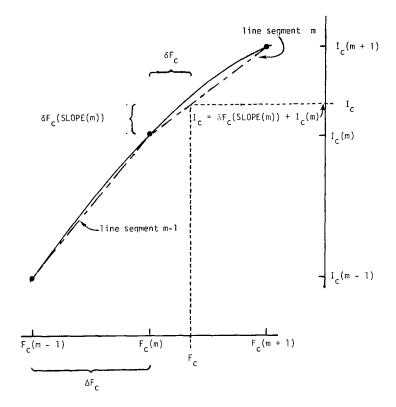


Figure 3.- Table lookup approach.

The data contained in the lookup table consist of the slope SLOPE(m) of each line segment m between $(F_C(m), I_C(m))$ and $(F_C(m+1), I_C(m+1))$ and of the current command $I_C(m)$ corresponding to $F_C(m)$. The location of the appropriate data is obtained directly from the force command word by masking and shifting. Calculation of output current command I_C at G = 0 requires a single multiplication of δF_C by SLOPE(m) and addition of this result to $I_C(m)$. Since actual variation of electromagnet current with gap was observed to be linear, as indicated by equations (5) and (6), calculation of I_C for other values of G is accomplished by multiplying I_C by the appropriate bearing gap. For a more detailed description of the table lookup algorithm, see appendix A.

HARDWARE TESTS

4

Description of Test System

The test system consisted of a magnetic bearing test fixture connected to a microcomputer system as shown in figure 4. This system was used to obtain the data required to develop the lookup table and to obtain data on the performance of the proposed approach. A description of the current driver shown in figure 4 is given in appendix B.

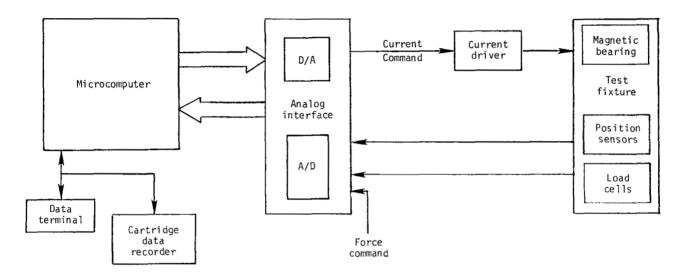
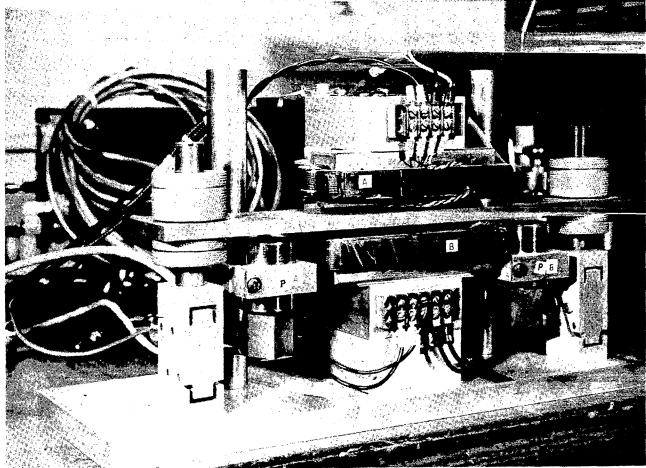
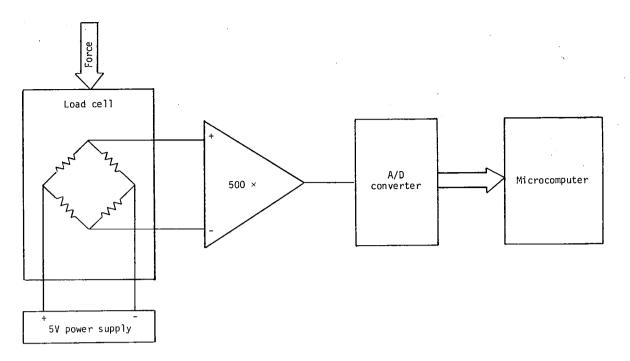
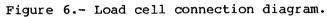



Figure 4.- Magnetic bearing test system.

<u>Magnetic bearing test fixture</u>.- The magnetic bearing test fixture shown in figure 5 consists of a magnetic bearing element pair; an equivalent "suspended" element, which is connected through a pair of load cells to the base of the fixture; and a pair of position sensors. The suspended element can be set to any desired vertical position in the magnetic bearing gap using the adjusting screws mounted on the load cells. The position sensors are used to measure the bearing gaps. The magnetic bearing elements have the same dimensions as the original magnetic bearing elements delivered with the laboratory model AMCD which is described in reference 1. Two main differences exist between the test fixture bearing elements and the original laboratory model elements: (1) the core material of the test fixture bearing elements is SAE 1010 soft steel (as opposed to a lower loss silicon core iron used in the original elements), and (2) the test fixture bearing elements contain no permanent-magnet material.



L-80-3798


Figure 5.- Magnetic bearing test fixture.

The load cells, shown in figure 5, are strain-gage bridge instrumented bending beams. The output of the bridge is a voltage which is directly proportional to the load applied to the beam. The cells were connected as shown in figure 6. They have a load range of ± 44.48 N (± 10 lb) and a nominal scale factor of ± 0.045 mV/N-V (± 0.2 mV/lb-V). Scale factor and offset differ from cell to cell and vary with changes in test fixture configuration, power supply voltage, and temperature; therefore, software was designed to provide for periodic system calibration.

Calibration was accomplished by applying a sequence of known loads to each cell and performing a first-order least-squares fit to the resulting data. Typical raw calibration data for one cell are given in figure 7.

and the second

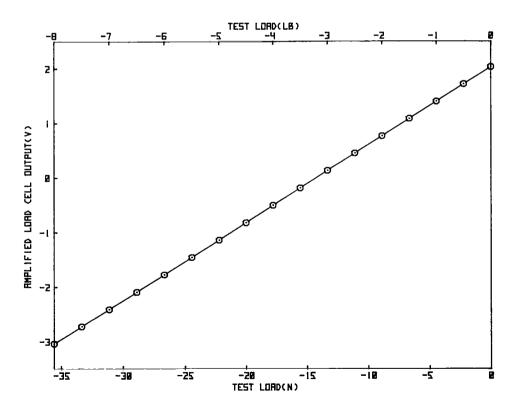


Figure 7.- Typical calibration data for a given load cell.

<u>Microcomputer system.</u> The same microcomputer system was used for both characterization and performance tests. The major system components include (1) microcomputer and memory, (2) analog interface unit, (3) cartridge data recorder, and (4) portable data terminal (fig. 4).

The microcomputer is an Intel¹ 8080 microprocessor-based computer which includes serial and parallel ports, programmable hardware timers, and 2000 bytes of random access memory (RAM). This processor was selected for the initial phase of development because it is well supported in hardware and software. Available software includes FORTRAN as well as assembly language and the manufacturer's high-level language.

Most of the test programs were written in FORTRAN with assembly language hardware drivers. However, the table lookup routine was written in assembly language because of its time-critical nature. A listing of the table lookup routine is presented in appendix A. Memory expansion boards containing 24 000 bytes of RAM memory were added to permit run time storage of large FORTRAN programs and substantial test data.

The analog interface unit provides up to 32 multiplexed A/D input channels and two D/A output channels. The input channels provide the processor with position and force data from the test fixture position sensors and load cells and provide external command signals during those tests in which an analog force command is used. The two output channels are used to supply the current command to the bearing current driver. The analog interface unit was programmed to perform conversions in two modes. During characterization tests, conversions were initiated under program control, and a flag on the interface was set at end of conversion. During those portions of the performance test when the table lookup algorithm was running in a real-time environment, the interface was programmed to start a conversion sequence on the rising edge of a hardware timer and to interrupt the processor at the end of conversion. This technique provides a stable sampling rate and does not require software timing loops.

The data recorder was used for temporary storage and for transport of test programs and test results. This recorder permitted flexible use of the microcomputer system at a location which was remote from the microprocessor development system used for software generation.

The data terminal provided run time parameter selection, control, and monitoring of the system test programs.

Description of Tests

<u>Characterization tests</u>.- Characterization tests were required to establish the values of lookup table data. These data were collected by the microprocessor system and transferred to a programmable desk-top calculator for analysis

¹Use of names of manufacturers in this report does not constitute an official endorsement of such manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

and reduction. A FORTRAN test program applied a 2048-point sequence of equally spaced current drive signals to the magnetic bearing test fixture and measured the actual force registered by the test fixture load cells at a manually selected rim position. This process was repeated for a series of rim positions. These positions were varied from -0.127 cm (-0.050 in.) to 0.127 cm (0.050 in.) in increments of 0.0127 cm (0.005 in.). The resulting force vs current data were converted by linear interpolation to a 2048-point current vs force table with equal force steps. These data were systematically reduced to form an N-point minimum size lookup table (N = 2^{n}) capable of approximating the measured data to within ±1 percent. This tolerance is within the limits of the existing analog solution to the ideal force equation.

<u>Performance tests</u>.- Two tests were performed to evaluate the assembly language interpolation routine and the table lookup technique:

1. Linearity tests (static) - A sequence of force commands were applied to the test fixture through the linearization algorithm by a FORTRAN test program. The sequence of force commands was applied in the same direction and over the same range as in the characterization tests. The force produced on the rim was measured by the load cells and compared with the input command.

2. Frequency response tests (dynamic) - A sinusoidal force-command signal was applied to the test fixture through the linearization algorithm, and the output current response was observed. The response measurements were performed by a frequency response analyzer. The force-command signal was given a dc offset so that measurements could be performed independently on upper and lower bearing elements. For this portion of the test, the characterization data were replaced by a linear table to permit direct comparison of input force command with current output. This replacement was necessitated by a mechanical resonance of the test fixture which prevented use of load cells for frequency response measurements. The frequency was measured over a bandwidth slightly larger than half the sampling frequency of the algorithm.

TEST RESULTS AND DISCUSSION

Characterization Tests

The force, current, and gap relationships obtained from the data collected during characterization tests are similar to those obtained from the ideal electromagnet force equations (eqs. (3) and (4)). However, measured data deviated from ideal relationships near the zero force points, and differences between constants for upper and lower bearing elements were observed. Figure 8 is a plot of the actual force data resulting from the application of a sequence of equally spaced current drive signals. Each curve represents 2048 data points

ł

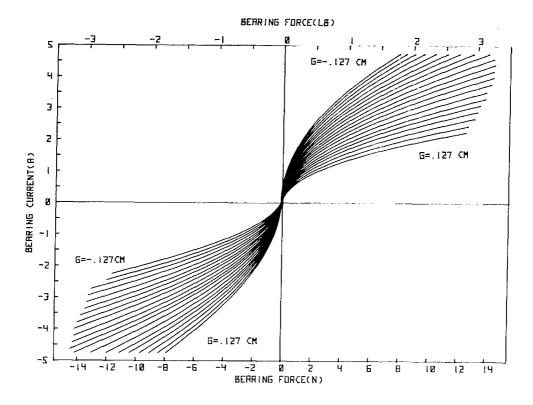


Figure 8.- Force-current data taken from magnetic bearing test fixture.

taken at a given gap setting. The force vs current data with equal current steps were converted by linear interpolation to current vs force data with equal force steps. Analysis of the resulting data indicated that the relationship between current and gap for a given force was sufficiently linear to permit gap compensation to be accomplished by multiplying the output current by the gap (as in eqs. (5) and (6)). Systematic reduction of the data for G = 0 resulted in a 128-point table that was capable of reproducing the original data to within 0.5 percent, as illustrated in figure 9. System memory requirements for this size table are quite reasonable.

Performance Tests

Linearity.- The main results of the table lookup algorithm linearity tests are shown in figures 10 and 11. Figure 10 shows the relation between force command input and the measured force output of the system. This particular plot is for G = 0, but the same result was obtained for other values of G. The actual percentage force error can be seen in figure 11. These results, although still within acceptable limits (less than ±1 percent error), do not agree completely with the errors predicted during data reduction (shown in fig. 9).

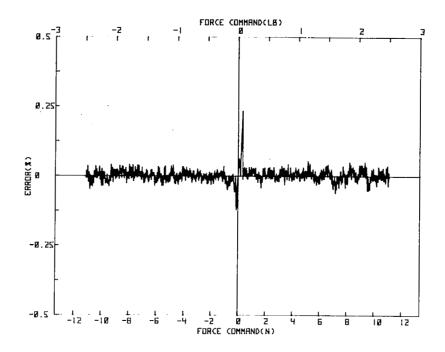


Figure 9.- Error associated with reduction of original data (for G = 0) to a 128-point table.

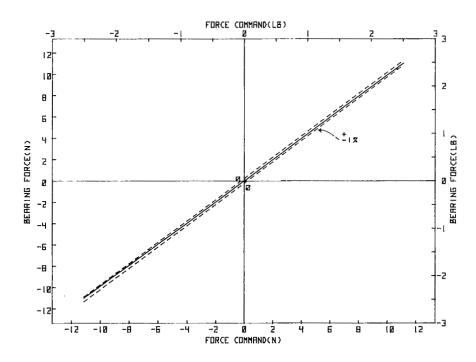


Figure 10.- Static output/input characteristics of table lookup algorithm.

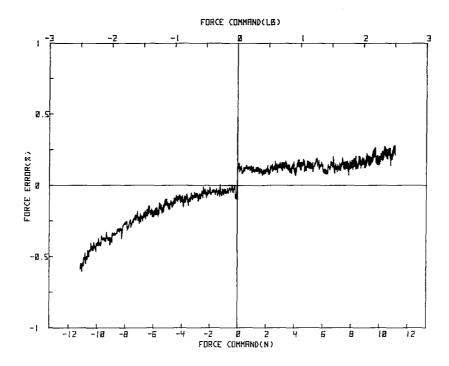
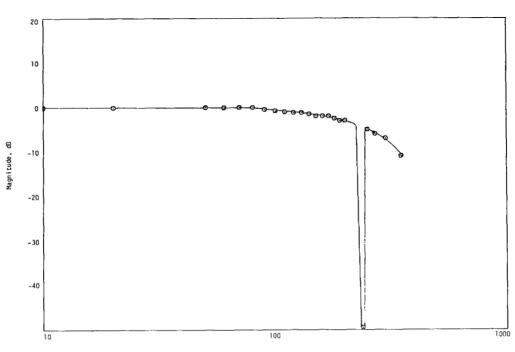



Figure 11.- Percentage force error of table lookup algorithm.

In particular, relatively large errors occur at the maximum positive and negative excursions of the force command. Since no attempt was made to minimize the effects of hysteresis in the test fixture, considerable residual magnetic flux can exist in the electromagnet cores and in the equivalent "suspended" element. Variations in the magnetic history of the test fixture are the probable cause of these errors. One possible way to reduce the effects of hysteresis on accuracy would be to use flux feedback in the power driver loop instead of current feedback. Another more obvious approach would be to use low-hysteresis material in both the electromagnet core and the suspended element magnetic circuit material.

<u>Frequency response</u>.- The table lookup algorithm required approximately a 10-percent greater execution time than the 1.85-ms worst-case value predicted by evaluating the microprocessor instruction execution times. This loss of time occurred during the test because the table lookup algorithm instructions and data were stored in RAM memory on a memory expansion board. The increased execution time limited the system sample rate f_s to a maximum of approximately 490 Hz rather than the 540 Hz which was predicted.

Results of the frequency response test are summarized in figure 12. The bandwidth exceeds 100 Hz, which was considered adequate for this portion of the bearing system. The magnitude is flat from dc to approximately $f_S/4$ and then rolls off gradually to approximately $f_S/2$, which is the theoretical frequency limit for a sampled data system. Since this algorithm retains no history of the signals and has an almost fixed execution time, the phase response varies linearly with frequency to approximately $f_S/2$.

14 H

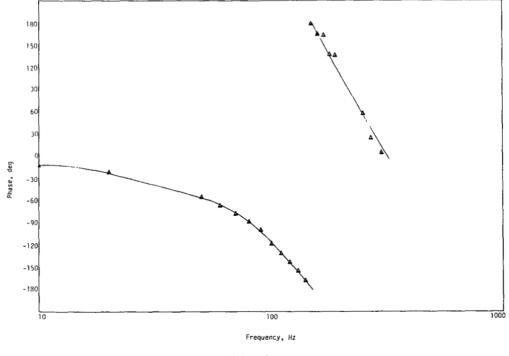


Figure 12.- Frequency response (magnitude and phase) of table lookup algorithm at 490-Hz repetition rate.

CONCLUDING REMARKS

A microprocessor based table lookup approach for magnetic bearing linearization without flux biasing has been presented, and an experimental test setup used to demonstrate the feasibility of the concept has been described. Results obtained with the experimental test setup generally showed very close agreement with theoretical predictions. Using a 128-point table, the table lookup algorithm produced a linear transfer characteristic between force command and force output of the test fixture magnetic bearing actuator to within ± 1 -percent error. The frequency response of the algorithm was greater than 100 Hz, which should be adequate for this portion of the bearing system.

This approach when used as an inner loop for the actuators could form the basis for an all-digital magnetic suspension control system. One application would be the laboratory model annular momentum control device (AMCD). An all-digital system would allow control-system parameter changes to be made in software without requiring the circuit component changes and circuit rewiring which are necessary with existing analog systems. Also, advanced controller design approaches could be more easily implemented.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 March 19, 1981

TABLE LOOKUP ALGORITHM

Algorithm Description

This appendix presents a listing, in assembly language, of the table lookup algorithm used to drive the magnetic bearing test fixture. The algorithm performs a nonlinear transformation of an input force command F_C and a measured rim displacement G into current commands I_C to either the top or bottom bearing element. The transformation approximates the solutions of equations (5) and (6) in the main text. The lookup table contains 128 four-byte data groups. Each of the groups consists of a 16-bit value of SLOPE(m) and a 16-bit value of current $I_C(m)$ obtained from measurement of the actual bearing force-current characteristic with the rim centered (i.e., $G_T = G_B = G_O$).

The routine is interrupt driven and is called upon completion of the force command A/D conversion which is initiated by a hardware real-time clock. After reading the force command, the processor sets up the analog interface and initiates conversion of the rim displacement. Because of the configuration of the analog interface, the force command F_c and rim displacement G are 12-bit two's complement numbers which are sign extended to 16 bits.

The least significant 5 bits of F_C are removed and stored, since they contain the value δF_C . The remaining 7 bits identify the 128 data groups. These bits are appropriately shifted, converted to offset binary, and added to the lookup-table base address to produce a memory pointer. The stored slope value is loaded using this memory pointer, and the pointer is incremented. The slope value is then multiplied by δF_C (an 8-bit by 16-bit multiplication routine is used to conserve time). This result is added to the stored value of $I_C(m)$, which is now addressed by the memory pointer. The result, $I_C(F_C,G_O)$, is the current command required to produce a desired force by either bearing element when the rim is centered ($G_T = G_B = G_O$). Since the required current is directly proportional to the bearing gap, the current command for any rim displacement is given by the following relationships:

 $\mathbf{I}_{\mathbf{T}} = |\mathbf{I}_{\mathbf{C}}| \begin{pmatrix} \mathbf{G}_{\mathbf{T}} \\ \mathbf{G}_{\mathbf{O}} \end{pmatrix} \qquad (\mathbf{I}_{\mathbf{C}} \ge 0)$

 $I_{\rm B} = |I_{\rm C}| \left(\frac{G_{\rm B}}{G_{\rm O}}\right) \qquad (I_{\rm C} < 0)$

where $I_C = f(F_C,G_O)$. After substitution of the table lookup algorithm for I_C and the expressions for G_T and G_B from equations (1) and (2) in the main text, these equations become

- Carlo

2

$$I_{T} = \left(I_{C}(m) + SLOPE(m) \ \delta F_{C}\right) \left(\frac{G_{O} - G}{G_{O}}\right)$$
$$I_{B} = \left(I_{C}(m) + SLOPE(m) \ \delta F_{C}\right) \left(\frac{G_{O} + G}{G_{O}}\right)$$

Since G_O is a constant, these equations can be rewritten as

$$I_{T} = \left[\left(\frac{I_{C}(m)}{G_{O}} \right) + \left(\frac{\text{SLOPE}(m)}{G_{O}} \right) \delta_{F_{C}} \right] (G_{O} - G)$$
$$I_{B} = \left[\left(\frac{I_{C}(m)}{G_{O}} \right) + \left(\frac{\text{SLOPE}(m)}{G_{O}} \right) \delta_{F_{C}} \right] (G_{O} + G)$$

The lookup table slope and current entries are predivided by G_O to eliminate a real-time multiplication by $1/G_O$.

Because of the scaling of inputs and outputs (see table A1) and the need to perform all calculations on 16-bit or less integer numbers, the stored lookup table values are scaled as shown in table A2.

Variable	Range	Analog scale factor	Analog range	Digital scale factor	Digital range	Total scale factor
Fc	±11.12 N ±2.5 lb	0.9 V/N 4 V/lb	±10 V	204.8	±2047	184.2 819.2
Ic	±5 A	1 V/A	±5 V	409.6	±2047	409.6
G	±0.127 cm ±0.05 in.	^a 78.7 V/cm 200 V/in.	±10 V	^b 409.6	±4096	32.2×10^{3} 5 × 2 ¹⁴

TABLE A	1	SCALING	ÓF	INPUTS	AND	OUTPUTS
---------	---	---------	----	--------	-----	---------

^aThese values include the sum of both position sensors.

^bThis value includes a software multiplication by 2 (line 95).

Variable	Units	Scaling factorsa,b,c					
SLOPE (m)	A/N	$(0.5) (2^8) (2^{16})$					
Shop is (m)	A/N	$(G_0)(32.2)(10^3)$					
	A/lb	$(0.5)(2^8)(2^{16})$					
		(G _O) (5) (2 ¹⁴)					
I _C (m)	A	(2 ¹⁶)					
T ^C (m)	А	(G _O) (32.2) (2 ¹⁴)					
	А	(216)					
		(G_0) (5) (2 ¹⁴)					

TABLE A2.- SCALING OF TABLE VALUE

^aThe (0.5) factor accounts for the difference between the total scale factors for $\rm F_{C}$ and $\rm I_{C}.$ $\rm ^{b}The~(2^{8})$ and $(2^{1\,6})$ factors are employed to maxi-

mize the number of significant bits while maintaining intermediate and final results within a 16-bit integer format. These factors are removed by implied shifts during the two multiplications. ^CFactors (G₀) (32.2) (10³) and (G₀) (5) (2¹⁴) are for

Go in SI (cm) and U.S. Customary Units, respectively.

Program Listing

State State

2

.

٠

ŕ

ASM80 :F1:LOOKUP. ASM PRINT(:F1:LOOKUP. LST) OBJECT(:F1:LOOKUP. OBJ)PRGENIDTH(88)

EJECT

ISIS-II 8888/8885 MACRO ASSEMBLER, V3. 0 MODULE PAGE 1

loc obj	L	INE	SOURCE STR	TEMENT	
		1;			
				2	LOOKUP, ASM
		3;			
		4;			
		5	EXTRN CUR	POS, CU	RNEG, ADCIN, TABLE, CONY, MUXADR, STAT
		ບ <u>5</u>			
		6		7	SAVE MAIN PROGRAM REGISTERS
0000 F5		S INTRI	PUSH PSH	•	SAVE A & PSW
8991 C5		9	PUSH 6		SAVE BC
8682 05		19	PUSH D		SAVE DE
0003 E5		11	PUSH H		; SAVE HL
		12			
				13	LOAD FORCE COMMAND AND
				14	SETUP FOR GAP MEASUREMENT
0004 2R0000		15	LHLD ADCIN	i	; LOAD FORCE(N)
0007 3E06		16	MVI A, 6H		; LOAD GAP CHANNEL
0009 320000 0000 320000		17	STA MUXADA	2	SELECT GAP CHANNEL
0000 320000		18 19	sta conv		; START GAP CONVERSION
		19		20	GENERATE DELTA FORCE COMMAND
				21	
888F 8688		22	MVI B, 660H		CLEAR B
9911 70		23	MOV R. H		; High Force Data > A
0012 E60F		24	ani ofh		; MARSK OUT HIGH 4 BITS
8814 67		25	Hoy H, R		; STORE DB11 THRU DB8 > H
0015 7D		26	Moy A, L		; Low Force data > a
0016 E61F		27	ANI 1FH		; MASK OUT HIGH 3 BITS
0018 4F		28	MOV C, A		; DELTA FORCE > C
0019 AD		29 ASKED)	XRB L		;MOVE LOW DATA > A (LOW 5 BITS M
001a 84		30	ADD H		; COMBINE DB11 THRU DB8 WITH DB7
		Threw dr			
001B 07		31	RLC		
991C 07		32	RLC		REARRANGE BYTE
001D 07 001E 07		33 34	RLC		; TO FORM
0010 07		 	RLC		; DB10, DB9, DB8, DB7, DB6, DB5, 0,
961 F 17		35	RAL		;
9828 GF		36	MOY LA		CONVERT TO
9621 3F		37	CHIC		; OFFSET
8822 17		38	RAL		; BINARY
0023 E601		39	ANI 81H		; FORM
00 25 67		40	MOY H, A		;
		41			
0000 44000-	-				COMPUTE ADDRESS OF SLOPE(N)
0026 110000 0020 27		43	LXI D, TABL	_	LOAD TABLE START ADDRESS
0029 23 0028 23		44 45	INX H INX H		; Adjust "Table" address value ;
002H 23 002B 19		45 46	DAD		, ; add table start to offset
		47			
		48			
				49	; LOAD SLOPE(N)

PIC:

5 |___

1515-11 8080/8	885 MACRO ASSEM	Bler, V3. 0	MODULE PRGE 2
LOC OBJ	LINE	Source Statemen	r ·
002C 5E	58	MOV E. N	LOAD LOW BYTE SLOPE(N)
0020 23	51	INX H	; INCREMENT POINTER FOR HIGH BYTE
002E 56	52	HOY D, H	; LORD HIGH BYTE SLOPE(N)
982F 23	53	INX H	; Increment pointer for current a
	DDRES:	5	
	54		
		56	<pre>% MULTIPLY SLOPE(N) BY DELTA FORCE % (SPECIAL 8BIT X 16BIT MULT.)</pre>
9938 E5	57		; SAVE ADDRESS
9931 EB	58	XCHG Shild Temp	; SWAP MULTIPLICAN(SLOPE) TO HL
0032 220008	59	Shild temp	SAVE MULTIPLICAN IN TEMP
9935 21CE09	68	LXI H, BNUM	LOAD CYCLE COUNTER ADDRESS
0038 3609	61	HVI MJ09H LXI DJ0H	; load cycle counter ; clear temporary result
003R 110000	62 63 1.00P:		
903D 79 903E 1F	64 64	RAR	; ;ROTATE MULTIPLIER(DELTAF)
063F 4F	65	MOV C.A	;
003r 4r 0049 35	66	DCR M	DECREMENT CYCLE COUNTER
9041 CR5800	67	JZ FINI	TEST FOR MULTIPLY COMPLETE
8844 D24F89	68	JNC SKIP	JUMP IF MULTIPLIER BIT 0
6647 2RD666	69	LHLD TEMP	GET MULTIPLICAN
884R 19	70	DRD D	; AND ADD
004B EB	71	XCHG	; Save Partial Product
004C 21CE00	72	LXI H, BNUN	; Relord Bnum address
004F 7A	73 SKIP:	MOY A, D	;
0050 1F	74	RAR	; ROTATE
8951 57	75	MOY D, R	i
8852 7B	76	MOY A,E	; Temporary
0053 1F	77	rar	j -
0054 SF	78	MOV E/R	; RESULT
66222 C33D66	79	JHP LOOP	; L00P
6658 E1	86/FINI: 81	POP H	; RESTORE ADDRESS
			; COMPUTE CURRENT COMMAND FROM ; BASEI(N) AND DELTA I
0059 4E	84	MOV C, H	; LORD LOW BYTE BRSEI(N)
005A 23	85	INX H	;
985B 46	86	MOV B, M	; Load High Byte Basei(n)
005C EB	87	XCHG	; Swap deltai to hl
985D 89	88	DAD B	; ADD BASEI(N) TO DELTAI
905E 44	89	MOY B, H	; MOVE CURRENT COMMAND
985F 4D	9 0 91		; TO BC
		92	; CORRECT FOR BEARING GAP VARIATION
0060 3R0000		ldr status	CLEAR RTI1200 EOC FLAG
0063 2R0000			; LOAD GAP
8866 29	95	DAD H	DOUBLE GAP
0067 3E05		HC (H IVI	; LOAD FORCE COMMAND CHANNEL ; SELECT FORCE COMMAND CHANNEL
8869 328888		STH RUXHUK	SELECT FURCE CUTTATION CHARACTER
006C 111621	98 99	UDD D	, LOAD NOMINAL GAP YALUE , TEST FOR SIGN OF CURRENT COMMAN
806F B9	99 D	UKID	A LEDI LOW DIGHT OF CONVERT
8878 F5	199	PUSH PSN	SRVE SIGN FLAG
8871 F27F88	100	JP UPPER	JUMP TO UPPER BEARING COIL
	182		

·21

.00	0BJ	LINE	SOURCE STATEMENT	
.00	000	L.118C	SOURCE STATEMENT	
	40	404 10150	103	
9974 1975		104 LOMER 105	DCX B	; and grp(t) to nominal grp ;
9076		105	MOV A,C	; ; TRKE
1977		105	CMA	; ABSOLUTE
1978 1978	-	107	HOY C, A	
1079 1079		100	MOV A, B	; ; YALUE
1978		110	CMA	; OF
107B		111	MOV B/A	; CURRENT
	C38500	112		JUMP TO FINAL CURRENT COMMAND C
010	0.0000	OMPUT		
		113		
		114		
			115	COMPUTE UPPER BEARING COIL GAP
07F	78	116 UPPER	: NOV A/E	SUBTRACT
680		117	SUBL	; GAP(T)
681		118	MOY LAR	; FROM
682		119	MOY A, D	J NOMINAL
683		120	588 H	; GAP AT
684	67	121	MOY H, R	; CENTER
		122		
			123	; MULTIPLY GAP BY CURRENT COMMAND
985	220668	124 FINAL	: Shild temp	STORE MULTIPLICAN IN TEMP
	21CE00	125	LXI H, BNUM	; STORE
088	3611	126	NVI M. 11H;	; BIT COUNT
680	110000	127	LXI D,000H	; INITALIZE RESULT
1090	78	128 L00P1	; MOY A, B	; ROTATE
1091	1F	129	rar	;
092	47	130	NOY B, A	; NULTIPLIER
093	79	131	MOY ALC	;
094	1F	132	rar	; RIGHT
695	4F	133	HOV CA	i
0%	35	134	DCR M	; DECREMENT BIT COUNT
997	CRINEOS	135	JZ FINI1	; DONE? THEN OUTPUT
189R	D2R500	136	JNC SKIP1	; JUMP IF NO CARRY FROM ROTATE
189 0	2RD888	137	LHLD TEMP	; OTHERWISE
089	19	138	DAD D	; ADD MULTIPLICAN
0A1	EB	139	XCHG	; SRVE_RESULT
082	21CE00	148	LXI H, BNUH	; RESTORE BIT COUNT POINTER
10R5	78	141 SKIP1	: MOYA,D	; ROTATE
30116	1F	142	rar	; TEMP
19 97	57	143	MOV D, A	; RESULT
196 8	78	144	MOY R, E	; RIGHT
0 19		145	rar	;
iona	SF	146	MOY E/A	i
0AB	C39888	147	JMP LOOP1	; REPEAT LOOP
		148		
			149 150	
10AE	ÉB	151 FINI1	: XCHG	; SHAP CURRENT TO HL
ØĤF		152	MOV A.H	; LORD CURRENT
689	FE98	153	CPI 08H	; Test current value
6 82	DABS88	154	JC OK	; JUMP IF OK
	21FF87	155	LXI H. 07FFH	CURRENT=MRXIMUM CURRENT
000				

,

.

•

,

, ·

.

- - · · •

ISIS-II 8088/8085 MACRO ASSEMBLER, V3. 0 MODULE PAGE 3

ISIS-II 8888/8885 MACRO ASSEMBLER, V3. 0 NODULE PAGE 4

LOC 083	r L	.INE S	source st	TATEMENT	
0089 F20	200	157	JP OUTPO)S	JUMP IF POSITIVE
998 0 229	1999 E	158 D/R	shild cur	RNEG	; OUTPUT RESULT TO LOWER BEARING
008F C30	:580	159	JHP RETU)RN	; RETURN
68 C2 228	9008 E	169 OUTPOS: D/A	shild cur	RP05	; OUTPUT RESULT TO UPPER BEARING
60C5 E1		161 RETURN:	POP H		RESTORE HL
00C6 D1		162	POP D		RESTORE DE
00C7 Ci		163	POP B		FRESTORE BC
00C8 3E2	20	164	MVI AJ 20	ж	; LORD END OF INTERUPT
88CA D31	XA .	165	OUT ODAH	4	; OUTPUT EOIC
00CC F1		166	POP PSW		; POP A & PSW
66CD C9		167	RET) RETURN
		168			
		169			
		170			•
		171			
99CE 996	30	172 BNUH:	DW	0	
0000 000	30	173 TEMP:	DW	0	
2116		174 GAP	EQU	8470	
		175	end		

PUBLIC SYMBOLS

and the second se

an Real Inc. are also as a second second

\$

۰.

18

Ś

EXTERNE	L	SYMBOLS									
ADCIN	Ε	9999	CONV	Ε	8888	CURNEG	Ε	6666	CURPOS	Ε	6666
huxadr	E	0000	STATUS	ε	8888	TABLE	Ε	0000			
USER SY	ΉE	30LS									
ADCIN	Ε	6666	BNUM	A	99CE	CONV	E	8999	CURNEG	E	8888
CURPOS	E	6666	FINAL	R	66 85	FINI	Ĥ	0058	FINI1	A	00AE
GAP	A	2116	INTRU	θ	8666	LOOP	A	00 30	L00P1	A	8898
LOHER	A	0074	MUXADR	Ε	9999	OK	A	996 8	OUTPOS	A	99C2
RETURN	A	99 C5	SKIP	A	004F	SKIP1	A	99R5	STRTUS	Ε	0000
TABLE	E	0008	Temp	fł	0000	UPPER	A	987F			

- -

RSSEMBLY COMPLETE, NO ERRORS

23

_ .._ ___

APPENDIX B

MAGNETIC BEARING CURRENT DRIVER

A schematic diagram of the current driver used in the magnetic bearing test system is shown in figure B1. The driver is capable of supplying up to

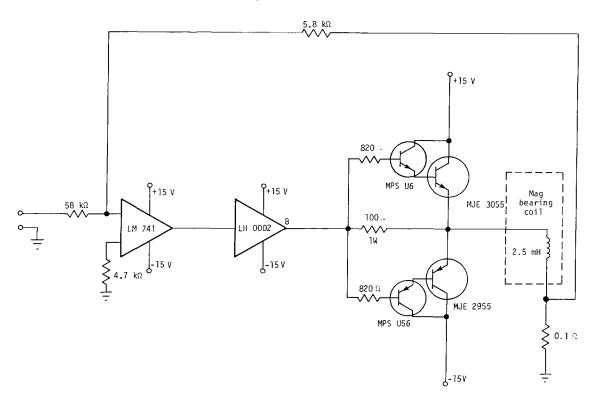


Figure Bl.- Magnetic bearing current driver.

5 A to each bearing coil and has a gain of 1 A/V. Drive is provided by the LH 0002 current amplifier at low current levels (<100 mA) and by the complementary Darlington configuration at higher levels. The driver provides flat response over a bandwidth greater than 200 Hz (fig. B2). The frequency response is limited by the ability of the power supply voltage to overcome the back emf of the bearing coil, and the effect is observed as an apparent slew rate limitation. The 200-Hz bandwidth is sufficient to evaluate the table lookup algorithm.

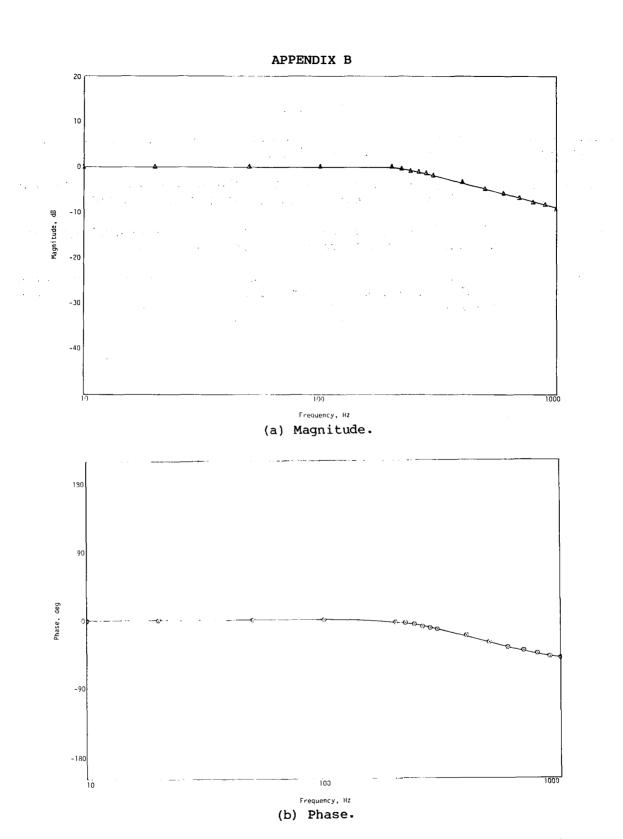


Figure B2.- Frequency response (magnitude and phase) of magnetic bearing current driver.

÷

-25