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ANNOTATION

This book covers strength studies of anisotropic
nonmetallic materials. It shows the possibility of using
general formulas for different anisotropic materials.

The practical application of the theoretical formulas
is confirmed by the test results of different materials for
the effect of static, impact loads, and for fatigque.
Data are given on the strength of wood, plywood, laminated
wood plastics, fiber glass-reinforced plastics, and directed
polymer films.

The book is designed for engineering and technical

workers, workers of scientific research institutes,
and design offices of the wood working industry.
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Preface /3%

This work studies questions of strength that are common to all
anisotropic materials used in machine parts and designs: wood, ply-
wocd, wood and fiber glass-reinforced plastics, rolled metals and
directed polymer films. The results of an experimental strength study
of different anisotropic structural materials are generalized in this
work using the mathematical apparatus of tensor algebra.

The author solved questions of strength that are common to all
¢nisotropic structural materials, based on two main assumptions: 1)
the possibility of viewing anisotropic structural materials as homo-
geneous continuums, = and 2) the possibility of classifying the strength
characteristics of anisotropic bodies among the directed quantities
that are expressed by fourth order (rank) tensors.

The experimental study that was conducted confirms the correctness
of these assumptions. They comply with reality with a degree of
approximation that is sufficient for use in engineering practice.

Only one of all the urgent and complicated problems of materials
mechanics is examined in the work, namely, strength anisotropy.

The methods for computing the strength of metal parts have been
created by many generations of engineers and scientists. They have been
verified by practice over decades. Applicable methods of computing the
strength of machine parts made of anisotropic materials have not Vet
been produced. The incomplete and scattered data about the charac-
teristics of the mechanical properties of these materials have not
been generalized into a single harmonious system.

The purpose of this work is to make a feasible contribution to
resolving this urgent problem of modern technology.

Chapter 1. Tensorial Formulas to Compute the Strength Characteristics /5
Depending on the Orientation of Stresses in Material

l, History of the Problem

Wood is one of the most ancient construction materials for erecting
buildings, bridges and other engineering structures. It was displaced
at the end of the 19th century by the more economical metal and rein-
forced concrete. It was again employed in the World War I period.

*
Numbers in margin indicate pagination in original text.

lThis work only uses the Cartesian coordinate system.
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Perfected methods of designing, and especially, new methods of joining
elements of wood structures guaranteed their broad application in
engineering structures, special shipbuilding and aircraft construction.
It is natural that the methods of calculation and studies on the me-
chanical properties of wood acquired great value.

Collapse and shearing of the wood at a certain angle to the fibers
occur in almost all types of commections of wood design assemblies. The
problem of the dependence of strength under the influence of perpendi-

cular (collapsing) and tangential (shearing)stresses on the incline angle

of the wood fiber therefore developed a long time age. It was the
subject of experimental and theoretical study in many works, starting
with the time of D. 1. Zhuravskiy [3].

it was essentially Zhuravskiy who first centered attention on the
difference between the radial and tangential directions in wood when
it is loaded transverse to the fibers. The known studies of chevandier
and Wortheim (1848-1861) did not differentiate between these directions.
After noting the different resistance of wood during bending in radial
and tangential planes, Zhuravskiy made a very interesting explanation
for the difference in the resistance of a pine beam with different
arrangement of the fibers [3]. Zhuravskiy made the first tests in
Russia on wood for strength during stretching, compression and
shearing,

The monograph of F. Kollman [102] gives a detailed survey of works
on wood strength.

Kollman [101], using the experiments of Bauman (1922), suggested
the known empirical formula to compute the ultimate compression
strength of wood ¢ depending on the angle of incline of fibers a:

:’ au:.-: in . (l'l)
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In the American literature, this same formula was suggested by
Hankinson [108] with n=2.

Stussi [110] suggested another, also empirical formula that has
become less popular:
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Here og--ultimate strength during compression along, while ogo--trans-
verse to,the fibers.

The exponent n in the empirical formula (1.1) accepted by Kollman
and Hankinson, for a long time was the subject of discussion abroad
and in the USSR. G. Takhtamyshev assumed n to be egqual to 3/2 [20].
The Standards and Specifications (NiTU) for plamning wood structures,
1939 (OST 90001-38) assumed n to be equal to 2. A later issue of the
NiTU (1948) assumes it to be equal to 3.

The currently active SNiP [Construction Standards and Regulations]
II-V.4-62* provide s inalogous formula with n=3 for the amount R
(resistance of wood to collapse at angle o to the fibers).

R = Ry

( R N
| l«(.—ﬁ—:‘:—-—l‘)sm’z

(1.3)

Detailed experimental studies that were apparenktly made for the

first time by Karlsen [41]1*%% on wood collapse at an angle to the fibers,

resulted in an empirical formula (1.4) for the resistance to shearing
at angle o to the fibers (Rck.a)° This formula also previously

(OST 90001-38) assumed that n=2. In NiTU 122-55 and SNIP V.4-62, this
formula has the following appearance (with n=3):
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Thus , even very extensive and detailed experimental studies with a
purely empirical approach to the problem resulted in controversial
results. The type of the formula could depend on the nature of the
wood and the testing circumstances. As always in an empirical
approach, new and numerous experiments would have been required if a
new material was used, or even if the condition of the material was
somewhat altered.

This work has shown that formula (1.3) is incorrect in principle,
‘since in order to compute the amount R, it is necessary toc know not
two, but three experimentally definable quantities: Ro(co), R90 (090)

and RAS(UAS).*** The determination of precisely these three quantities

“Construction Standards and Regulations, part II, section V, chapter 4
"Wood Structures. Design Standards," Moscow, 1962. Formulas (1.3) and
il.h) preserve the designations adopted in the SNiP.

k

"See also chapter 1II, fig. 3.11.

fede e
7’The works of A. 1L.. Rabinovich have obtained formulas that include

two quantities RO(GO) and R90 (090), and also elastic constants of the
material.
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is generally accepted for aviation plywood [16]. Formula (1.4), accor-
ding to the data of this work, must have an exponent of n=2 (see chapter
1, section 3).

It should be noted that the NiTU views wood as a material that is
transversely isotropic (transtropic). It does not distinguish between
tangential and radial directions transverse to the fibers. At the same
time, GOST 6336-52 [state standard] "Methods of Physical-Mechanical
Wood Tests," stipulates separate testing of all types of samples in
radial and tangential directions. Consequently, wood is viewed here
as an orthotropic material.

When elastic properties of boards, beams and other large structural
elements are studied, they should be classified as transtropic hodies.
The board is usually arranged lengthwise along the wood fibers, but it
does not have a definite orientation of the cross section in relation
to the annual rings. In this case, the elastic properties can be con-
sidered the same in different directions transverse to the fibers since
the continual change in the incline of the annual rings in the cross
section plane averages the elastic properties in different directions
in this plane [51]. This averaging does not occur in relation to the
strength properties since strength is always determined not by the
average , but the least amount of resistance. Transverse isotropy of
the wood strength properties in structures is a rougher approximation
than the plan of transverse isotropy of its elastic properties.
Strength in a direction perpendicular to the fibers cannot be assumed
to be equal to the average or intermediate quantity between strength
in radial and tangential directions. In establishing the ultimate and
calculated resistances, it would be more accurate to start from an
orthogonal plan of strength anisotropy, and distinguish ,where this is
possible, the orientation of forces not only in relation to the fibers,
but also in relation to the annual layers of the wood.

The question of how wood strength depends on the direction of the
fibers was theoretically examined for the first time in 1939 in the
United States in the Madison Laboratory of Forestry Products. Norris
in his work [108] attempted to derive a corresponding formula based
on the tenets of Hanke's theory of plasticity. During simple com-
pression in different directions in relation to the fibers, Norris

4
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cbtained a formula to compute the ultimate resistance

{ sinfx | sin?zcostr , cos'sz

=t T (1.5)

2 2 .
5 3 990 »

where N is the shear modulus.

These ideas were developed in the further works of Norris, Werren
aiid other workers in the Madison laboratory. They derived a number of
more advanced formulas. We unfortunately do not have the derivations
of these formulas. Summary formulas are given in Werren's work [113].
They are used for anisotropic fiber glass-reinforced plastics. Equations
of limit states were the initial equations in their derivation. They
contained only second order components (relative to stresses) as accepted
in the Hanke-Mises-Hill theory (see chapter IV, pl46).

Werren presents the following equation:
sint« sin®2¢ | costa : (1.6)
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If in formula (1.5)

4 -
N=13,

then it is obtained from equation (1.6).

The Madison laboratory formula has the following appearance for
a section at angle o« to the fibers

29
1 ms.:4_(l 4 )ngm (1.7)
22 -2 2 2

" Ca 0 . %0 %0 -

*

Werren obtained a good correspondence of formula (1.6) for fiber
glass-reinforced plastics to the experimental data (see chapter III,
fig. 3.25 where Werren's curve is presented), but did not obtain any
correspondence during shear. [103]

The German literature [102] presents formulas to compute the amount /9
of resistance of orthotropic wood materials during shear. It coin-
cides with our formula (1.24) (see section 4). Kollman cites this formu-
la without the derivation, referring to the work of R. Kevlwerththat was
done during World War II for the aircraft construction plants of the
Junkers firm. The formula is confirmed by the experiments of Keylwerth
(see fig.3.14) for shear of samples of laminated wood materials. They




were published in Kollman's book. Keylwerth's work that is cited by
Kollman 1is not available in the USSR, therefore it is difficult to
say precisely how this formula was derived.

The work of A. L. Rabinovich [58] was published almost at the same
time as the article of Keylwerthand Kollman. Besides a comprehensive
examination of the tensor of elastic constants for orthotropic wood
materials, it suggested a formula to compute the ultimate strengths
during stretching and compression based on deformation assumptions.

A. 1. Rabinovich did not examine questions of strength under the influ-
ence of tangential stresses. He obtained a formula for resistance to
the effect of perpendicular stresses that practically coincides with
the tensorial formula (1.22} (see section 4).

The concept introduced below on the strength tensor makes it
possible to produce more general formulas of ultimate resistances not
only during stretching and compression, but also during shear. This

Y ARERE R YOyt e et ———— T e i ) S AP ,,wmi

has definite practical importance for wood and modern synthetic materials.

2., Introduction

Since the time of Savart (1830) and Saint-Venant (1856), a plan of
orthogonal anisotropy of elastic properties has been attributed to wood
by analogy with cubic system crystals. Experimental study of the

characteristics of wood and wood materials elastic properties viewed
as a homogenocus continuumn made it possible to apply methods of the
mathematical theory of elasticity of anisotropic bodies.

A vast class of new synthetic anisotropic materials has appeared
in recent years. It is sometimes difficult to use them in machine
construction and construction due to the lack of reliable strength
calculation methods and data on the mechanical properties of these
materials.

The reinforced plastics are the strongest of the synthetic materials
and the most promising in their mcchanical properties. The reinforcing
fibers in them,nc matter what their arrangement, are linked into a unit
by a polymer binding agent. These plastics have two characteristic
features that distinguish them from metals, and bring them closer to
wood materials: first, the effect ¢f the time factor and the size of

/10




anisotropy of all mechanical properties.

This work does not examine the first feature. It is therefore
assumed that in studying the mechanical properties of the material,
the dimensiong of the samples, teustinz temperature and rate of deforma-
tion have the same order in all stress states and for all structural
directions.

Of all the urgent and complicated quistions in mechanics of
materials, this work examines only one, anisotropy of their mechanical
strength under different homogeneous stresses.

Anisotropy is viewed in the first approximation in isolation from
many factors that significantly influence the strength properties.

Investigation of the mechanical strength of anisotropic bodies is
an urgent problem of modern technology. It develops when the sphere
of spplication of synthetics , reinforced nlastics and wood,
reinforced plastics in machine construction, and directed polymers in
light industry expands.

Certain questions of strength, plasticity and especially fatigue
of polycrystalline quasiisotropic steel also make it necessary to in-
vestigate the mechanical properties of anisotropic crystallites. The
"whiskers'" of pure metals are anisotropic. The anisotropy of certain
high-strength pressure-treated metal alloys is sigrificant [119]. In
solving the problems of the mechanics of anisotropic materials, it is
useful to employ methods of a related science, crystal physics. Until
recently it was almost exclusively involved with studying the physical
and mechanical properties of anisotropic bodies.

In physics, the properties of crystals have been studied since
W. Voigt using mathematical quantities called temsors.

Tensors are used to describe those properties of crystals whose
characteristics can be obtained for all structural directioms.

Tensors of a different order (rank)correspond to various physical
properties of a crystal. The tensor order depends on precisely which
crystal property is being examined, while the number of tensor compo-
nents that differ from zero is determined by the group of structural
symmetry of the studied crystal.

This mathematical description of the physical properties of a
crystal require that it be viewed as a homogeneous, continuous anisotropic

[ —



medium that has a certain symmetry.

In the works of A. V. Shubnikov and V. A. Bazhenov, the main /11
method of crystallography, the science of the symmetry of a medium
and the tensor presentation of the characteristics of its physical
properties, covers the noncrystalline anisotropic structures (wood
and wood materials) in relation to the piezoelectric properties of these
structures.

This work attempted to use these methods to investigate the
strength property characteristice of a broad class of anisotropic
materials used in technology.

The use of the tensor apparatus requires a preliminary generalization
of the concept on the strength property characteristics of anisotropic
bodies. This generalization that follows from the problem of technical
strength calculations of anisotropic parts, can reject a detailed de-
scription of the nature of the physical process that transfers the
material to a dangerous state.

Introduction of the dangerous state concept complies with the
calculation methods used in evaluating the efficiency and practical
suitability of machine parts and design elements. This concept is
the basis for the modern science regarding resistance of materials.

It naturally can be the basis for examining resistance of thosematerials
whose properties differ in various directionms.

Anisotropy of the majority of structural materials is a consequence
of the primary orientation of their structural elements. These materials
are usually orthotropic (orthogonally anisotropic), i.e., they have
three mutually perpendicular planes of structural symmetry. These are
uneven plywood, DSP [laminated wood plastic]l, SVAM [fiber glass ani-
sotropic material] and other fiber glass plastics that aré reinforced
with continuous fiber glass (AG-4S), different textolites and glass
textolites (KAST), rolled metals, and directed polymer filins.

If these materials are laminated sheets (plywood, DSP, SVAM) ,
then the anisotropy in the sheet plane is determined by the fibrous
structure of the individual layers and their mutual arrangement.

If the sheet material is transverse-isotropic (transtropic), then
all the directions lying on the sheet plane are equivalent, and the
sheet plane is a plane of isotropy.



The sheet plane of laminated material can be a plane of isotropy
in two cases:

1. 1If the layers are isotropic. The anisotropy of the material
is then determined only by the difference between its properties in
the sheet plane and its properties in the direction perpendicular to
the sheet plane. The latter direction is usually weaker due to the
effect of the binding agent (glusd interlayers between the layers).

2. 1If the layers are anisotropic, but turned towards each other /12
so that the sheet as a whole has an axis of symmetry on the order of
%E or higher ("stellar" arrangement of layers with size of the angle
between the fibers in adjacent layers no more than 72°) (see section 4).

In the elements of wood structures, the calculated plan of aniso-
tropy is determined by the shape, dimensions and arrangement of the
sections in relation to the annual rings. With fairly large dimensions
of the sections, and in the absence of regular orientation (boards,
beams, laths) one can, as A. N. Mitinskiy [51] demonstrated, approximately
consider the direction of the wood fibers to be the axis of symmetry
of its structure, and the plane perpendicular to this axis, to be
the plane of isotropy of all of its properties.

As applied to the elementary volumes of wood, the hypothesis on
orthogonal anisotropy fits its structure best. This hypothesis cor-
responds to the test results of small pure samples. It is based on an
assumption regarding the existence of three planes of symmetry in the
elementary volume of wood [49].

The plane that is perpendicular to the fibers is considered the
plane of symmetry of the wood stvength properties if one ignores the
change in these properties over the length of the trunk. In the first
approximation, this assumption is justified by the circumstance that
a change in strength over the trunk is usually small as compared to
the changes governed by the difference in axial orientation of the 4
sample in relation to the direction of the fibers.

One can take the radial plane as the plane of symmetry of the
wood strength characteristics on the condition that the curvature of
the annual rings is small within the examined volume.

The tangential plane can be conditionally taken as the plane of
symmetry if one ignores the change in strength over the diameter of
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the trunk and does not take into account the differences in the prop-
erties of the early and late zones of the annual layers.

Wood of all types is characterized by a very pronounced aniso-
tropy. Its moduli of elasticity for directions along and transverse to
the fibers differ in quantity almonst 20-fold, and the ultimate strengths
differ 40-fold. The derived wood materials, plywood, different laminated
wood plastics (DSP-B, DSP-V) are also anisotropic. The anisotropy is
significant for all mechanical properties and in the crystal polymers
directed by preliminary stretching.

The high-strength plastics reinforced with fiber glass that are
employed in technology are also anisotropic. Anisotropy is very sig-
nificant in the case of reinforcement with unidirectional fiber glass
or spun glass thread (SVAM, STER, AG-4S and others).

The work experimentally studied the strength of fiber glasses of
two mainr types of reinforcement: fabric and fibrous (directed). The
obtained relationships (but not the absolute quantities of the strength
characteristics) will apparently be suitable for other fiber glasses
of random symmetrical reinfoilcement.

Anisotropy of steel mechanical properties is often a consequence
of the primary orientation of the crystals after plastic deformation
(drawing or rolling). The assumption regarding the anisotropy of steel
mechanical properties in this case is closer to reality than the stan-
dard assumption that views steel as a quasiisotropic material. Certain
high-strength alloys also have anisotropic mechanical properties [119].
Metals are generally less anisotropic than the fiber glass plastics or
wood. At the same time, there are known cases of failures in metal

parts when the designers do not consider the anisotropy of the metal [22].

Crystals where the shapes of symmetry are varied are distinguished
by considerable anisotropy of all the properties. Great advances have
therefore been made in crystal physics in investigating the symmetry of
structure and the symmetry of physical properties of anisotropic bodies.

The main method of modern crystal physics, the science of symmetry,
can be widely employed in the mechanics of anisotropic materials. New
potentialities are thus afforded for a study of the mechanical pro-
perties of anisotropic bodies and for generalization of their testing

results.

10
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The symmetry of crystal bodies is a consequence of their regular
internal structure. Therefore, not only the shape but also the pro-
perties of crystals are symmetrical,

In crystal physics, the link brtween the symmetry of the crystal
and the symmetry of the physical properties is viewed on the basis of
Neumann's principle. According to this principle, the elements of
symmetry in a physical property must include the elements of symmetry
of the point crystal group. The symmetry of the physical property is

generally higher than the symmetry of the crystal structure. An example

is the fact that all the characteristics of elastic properties and
strength of crystals of any structure have a center of symmetry since
neither stresses nor deformations can be altered during inversion. The
physical preperty can generally have natural symmetry. It is manifest
regardless of the group of crystal symmetry [52].

The elastic properties of anisotropic construction materials are
usually examined based on an analysis of their symmetry [43, 45, 49,
58]. The study of elastic properties views all anisotropic materials,
including those with heterogeneous structure (for ~xample, laminated
and fibruus), based on the hypothesis of a continuocus, homogeneous
continuum.

Within the limits of the tasks set in this work, thi: . -pothesis
refers to all the mechanical properties of anisotropic materials. The
specific structural features are not taken into consideration. This
permits a study of the laws governing the anisotropy of mechanical pro-
perties that are common for a large number of diverse materials.

The necessary premises for such an approach to the problem coin-
cide with the requirements that are usually made for construction
materials. They are: first, monolithic nature of the material that
is guaranteed, for example, for fiber glass-reinforced plastics, by
definite correlations between the propertie. of the fiber and the
binding agent; second, invariability of the mechanical properties of
the material with an assigned temperature-velocity regime during a
certain time interval that depends on the purpose of the structure;
third, the size of the item or sample that is fairly great as compared
to the dimensions of the structural elements (the diameter of the
glass fiber or the size of the wood cells), and at the same time, is

11
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fairly small so that it could be ignored (for example, curvature of
annual wood rings) , attributing to it an orthogonal calculated plan
of anisctropy.

The application of the hypothesis on the homogeneous
continuum to an examination of the strength properties of aniso-
tropic materials of varying structure is only possible as a first
approximation with the same degree of accuracy as, for example, the

~application of the hypothesis on the homogeneous and isotropic elastic

medium to polycrystalline steel.

In both cases, these hypotheses are not suitable in studying the true
physical essence of the failure of body continuity [66]. This does not
prevent us from constructing all the main sectors of a science on the
resistance of materials on the secondpf the mentioned hypotheses.

Futher evolution of the mechanics of anisotropic materials will
possibly result in a rejection of the continuum hypothesis anc its
replacement, for example, with ideas on the heterogeneous-periodic
medium-structure [66].

For a resolution of the limited task set in this work of studying
the anisotropic characteristics of technical strength, the continuum
hypochesis is justified since the results of its application are con-
firmed by practical data.

Strength Characteristics of Anisotropic Bodies as Tensorial Quanti- /15

3.
ties

A general definition of a tensor can be formulated as follows: if
for the Cartesian coordinate system we have a set of quantities that
are formed during the rotation of coordinate axes according to definite
linear laws, then this set defines the tensor whose order (rank) depends
on the form of the transformation law.

W. Voigt essentially initiated the view of the strength charac-
teristics of crystals as directed (tensorial) quantities [69]. This
view was not developed, however, since a study of the physical features
and reasons for a certain type of strength failure dominated further
in crystal physics: shear formation, twinning, separatiofi. The law
of critical tangential stress was thus established. It defines the
beginning of plastic deformation of crystals. The law of critical

12
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normal stress (Zonke's law) was established. It defines their brittle
failure [80]. Neither law can answer how the strength characteristics
of an anisotropic material change depending on the orientation of the
active force. At the same time, this question becomes very urgent
when the strength of anisotropic construction meterials that are .
used more extensively in technology is examined.

W. Voigt in his classic work on crystal physics [114] for the
first time made a detailed study of almost all the physical properties
of crystal bodies. He viewed the characteristics of these properties
as directed quantities (vector and tensor). W. Voigt for the first

time applied the concept of different order tensors to continuum mecha-
nics. He made especially detailed studies of elastic deformations and
elastic constants of crystals [114]. 1In his vast monograph, W. Voigt

only devoted several pages to the strength symmetry of crystals.

W. Voigt notes correctly that the phenomenon of strength deteriora-
tion by its nature has a center of symmetry. It can therefore be pre-
sented using directed quantities of only an even order. For the first
time W. Voigt advanced the hypothesis that the phenomenon of strength
deterioration in anisotropic bodies can be described by a fourth order
tensor. On this bLasis, he wrote an equation for the ultimate strength
during stretching. Comparison of this equation with the results of the
incomplete experiments of Zonke led W. Voigt to the conclusion that the
fourth order of the tensor is not sufficient to describe the phenomenon
of strength deterioration. The higher sixth order istoo complicated.
Zonke's experiments, whose results are cited by W. Voigt ,consisted of /16
stretching variously oriented prismatic square-section samples made of
rock salt crystals. The experiments were very incomplete since the
crystals apparently had structural defects or inclusions that had little {
effect on the amount of elastic deformation, but resulted in considerable :
scattering of the results from determining the strength characteristics
of the samples. W. Voigt limited himself to this in examining the
quanitative aspect of crystal strength.

The current state of technology requires an examination of a broader
class of anisotropic media. It is essentially necessary for many

anisotropic construction materials to obtain general laws that express

13



their strength characteristics depending on the orientation of stresses
and on the symmetry of the medium. This circumstance determines the
need to return to W. Voigt's hypothesis regarding the existence of a
strength tensor.

We introduce the term tensoriality here in the sense that a change
in the technical strength characteristics of anisotropic bodies, depen-
ding on the orientation of stresses in the material, is approximated by
transformation formulas of the tensor components during rotation of the
coordinate axes. The suitability of this hypothesis can be verified by
its correspondence to the results of an experimemntal study of strength
of different anisotropic materials.

In passing to a substantiation of the order of the strength tensor,
it is necessary to take into consideration that the phenomenon has a
symmetry center. It can therefore be described not only by a fourth
order tensor. The second order tensor used, for example, in the work
of Ya. B. Fridman and Ye. M. Morozov [73] could be the most con-
venient and simplest tensor for this purpose.

We will investigate whether the second order tensor can be con-
sidered suitable to describe the phenomenon of strength deterioration
of anisotropic bodies.

In a three-dimensional space, the symmetry of any property of an

anisotropic continuum (and consequently, the order of the corresponding
tensor) can be studied by analyzing the symmetry of the geometric figure

(surface) that depicts the change in the gquantities that determine this
property when the direction in this medium changes.

The surface that is called characteristic [52] or directive [58]
can be used for a graphic presentation of the amount of resistance to
stretching. Depending on the order of this surface, it will have a
certain appearance for the material with definite symmetry. For an
isotropic material, the characteristic surface of strength, regardless
of its order, must, of course, become spherical.

If axes of symmetry of an orthotropic bddy X1, Xg and X4 are
selected as the coordinate axes, then each point of the characteristic
surface will be separated from the beginning of the coordinates by the

quantity of the radius-vector r, while its projection on the coordinate
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axis is determined from the expressions

xlarcu . ’ (‘.8)
Xy =1Cye
x3 = rCyg

where Cik-—direction cosines of vector r that is superposed with the

axis xi‘ during rotation of the coordinates.
Rotation of the coordinate axes is determined by the cosine scheme

x €y Co Cp
¥, Cy Cp Cy
x\l, Cy Cy C:ss'

The assumption on the second order tensor means that when the
coordinate axes turn, the change in the amount of resistance of the
orthotropic material, for example to stretching, must occur according
to the law

Ay = \’ E a; Cncw . | (1.9)
P Lkl
where ai'i'—»a quantity linked to the material resistance in direction
of the axis xi', i.e., in the direction of the vector radius;
aik——the same quantities in the direction of the material symmetry
axes.

After substituting an expression for the direction cosines from

(1.8) and after developing formula (1.9), we obtain:

2t 2
A r® = Q87+ QXS - A5,

. 1 . .
or, after assuming r=-——= , we arrive at the equation for the

1/ al.‘.

characteristic surface of second order in the following form:

a, x4 2,23 J;—asaxa—-l , (1.10)

lll‘

The second order surface (1.10) can meet complete isotropy (be
turned into a sphere) with the unique condition
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Thus, the assumption on the second order of the characteristic /18
surface that follows from the second rank of the resistance tensor,
leads to the following conclusion. If there is a known orthotropic
material whose quantity of the strength characteristic during stretching
is the same in the direction of the symmetry axes X1, X9 and Xq, then

this material must have complete isotropy of resistance. ‘

However, in the case of a planar problem, the experimental data on i
rupture strength for suchl an orthotropic sheet material as, for example,
SVAM with fiber ratio 1:1 [12], metal alloys [119] or DSP-V [19] show
that even when the ultimate strengths are equal in two main directions
(00“090 Or ay71=899), the curve of ultimate strengths in the sheet plane
does not become a circle since the ultimate strength in the intermediate
(most often diagonal) direction is considerably lower than in the main
direction: 045< 90 i.e., the intersection track of the characteristic
surface with the sheet plane does not produce a circle (see the detailed
experimental data in chapter III).

The order of the surface must thus be higher than the second.

We will study the nearest even order, the fourth.

It is known that the spatial figures that depict, for example, the
dependence of the elasticity modulus E of an orthotropic material on
the stress orientation, are restricted to a fourth order.

The work of A. L. Rabinovich [58] presents the equations for the
directive surface and the directive curve of the E modulus.

The external appearance of the spatial figures that depict the change
in the strength characteristics of the orthotropic bodies depending on
the orientation of stresses in the material is analogous to the
external appearance of the figures that depict the change in the
characteristics of the elastic properties of these same materials
([5]1, section 12).

It is impossible to understand the analogy between the aforementioned
spatial figures as a simple proportionality between the corresponding
characteristics of strength and elasticity.

~~ [

The following ratio that is suggested, for example, in the work of
N. T. Smotrin and V. M. Chebanov [67]

" Spl

- et

w=ia

0 Fg,
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is not fulfilled even for wood. For pine, the ultimate strength during
compression in a tangential direction tranverse to the fibers is
higher than in a radial direction. The modulus of elasticity E in the
tangential direction is lower than in the radial.
The analogy of the external appearance of the figures for the change
in strength characteristics and the characteristics of elastic properties ‘

makes it possible to only hypothesize the same tensor rank to describe /19
these quantities.

We will show that the assumption regarding the fourth tensor rank
of resistances results in the fourth order of the characteristic surface,
for example, for resistances to stretching.

The assumption on the fourth order of the resistance tensor means
that when the coordinate axes turn, the change in the amount of resis-
tance to stretching should occur according to the law

C,.C.,C.C,

3 3 3 3
== NV ¥V NN
e el s "\I'I 1k

. k-lao
t
anucll - a""ﬂcl" A 0'1333 13 [\ Cl” - K vxcl CH L K,,.Claﬂl.

Aoy

i

k!

LN

or [see formula (1.8)]
41 ! 2.2 T w02 2y? o
Appp 7= G ¥ yy09%y = Ay %3 1 K 2%t K axiag - Kyx3xd 5

1
[ . —

4 -
¥ al.l.].l,

after taking , we obtain an equation for the charac-

-

teristic surface of the fourth order in axes of symmetry of the material

A A} Qg3 - Ay ! Ky =+ Ky a§ + .
. 4 Ko a2x? = 1, ' (1.11)

The coefficients aikop in these equations depend on the quantities
of the strength characteristics of the material during stretching in
the direction of the axis of symmetry. The uneven coordinate orders
drop out on the condition of the orthogonal symmetry of the material.

The fourth order surface (1.11) on the condition that 41111782922
23933 still does not depict a spherical surface, i.e., does not result
in the conclusion that the material is isotropic.

It is also necessary that
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Qau“ = K;e. ° Kzs = Km
only then will equation (1.11) adopt the appearance

1

T——— %

ALl ade —
¥V ann

i.e., will correspond to the case of complete isotropy and be depicted
by a spherical surface.

Thus, the assumption on the fourth order of the charac-eristic
surface corresponds to that feature of change in the strength charac-
teristic that even when the quantities of resistance are equal in the
direction of the three symmetry axes, these figures are not transformed
into a sphere and do not comply with the isotropy of the material. The
characteristic surfaces of elastic constants (for example, elasticity
modulus of an orthotropic body) naturally possess the same property.

The spatial figures for the change in stren:th and elastic pro-
perties are analogous in the sense that both of them are fourth order
surfaces. Equation (l.11) for orthotropic materials can be equally
adopted as the characteristic surface to describe the change in the

characteristics of the elastic and strength properties during stretching.

We will show that the fourth order of the algebraic surface that
can be used to present a geometrical spatial figure, really conforms
to the fourth rank of tha tersor compiled from the equation coeffi-
cients of this surface. Then the same rank of the tensor will
follow from the same order of the equation of directive surfaces.

The works of Academician A. V. Shubnikov demonstrated that the
symmetry operations of a three-dimensional figure can be viewed as
affine orthogonal transformations of the point coordinate of the
figure.

Here certain operationhs of symmetry for flat figures (rotation
by 180° around an axis that lies in the figure plane) make it neces-
saryv to solve the problem in a three-dimensional space, although as
a result of the operation, the figure remains in its plane.

Generalization of the symmetry operations for a three-dimensional
space (negative operation of antisymmetry) also requires a formal
examination in a higher, four-dimensional space.

The equation for the fourth order surface that was previously
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written in the symmetry axes (1.11), can be written in a more general
form in the four-dimensional space

-

L
-

DI Y Y agnars,= L (1.12)
lmlkm}om] pul
Here the fourth coordinate is formally introduced. It i¢ -~ .~ed that

all four coordinates are transformed when the coordinate axes rotate
according to the standard formulas of affine oxrthogonal transformation

3

X, =f\._‘ix,.C,., (1.13)
a"

Cpp= —L- '
dx;

Each of the four coordinates can be viewed (with a change in the
index from 1 to 3) as a square Cartesian coordinate. The rotation of
the Cartesian coordinate system is determined by the cosine table given

above. By substituting (1.13) into (1.12) we obtain

3 3 3 3 3 3 3 3
NN NN Y N Ng O iCrsCooC X X X X, =
- ot P ap

A o s mow s thop~i'd oo p
i Tk lo-lpsli'-th to1p -1
:!1 3 3‘ 3~
= l }- -\5- L at'k’o'p' xt’\kxoxp;
islh lowlpa=i
3 3 3 3
~ ~ ~ o . l.l4
a N NS N, C.CCCh, i

PR T ikop

Formula (1.14) makes it possible to assert that the algebraic coef-

ficients of a uniform polynomial of the fourth degree (1.11) are actually

transformed when the coordinate axes turn as components of the fourth
order tensor.

Equation (1.14) can be written in a more general appearance as

3 3 3 . - ) .
S X Sa,,ol o e % (1.15)
Tiomipm P 0xp dxp  Ox, Bxp

4

3
trop = X
1

a

r

This is also a general definition of the tensor of fourth rank (order,
valency) in a three-dimensional Euclidean space [26].

Thus, the same order of surfaces that in a three-dimensional space
depicts achange in the characteristics of elastic and strength pro-
perties of orthotropic bodies, makes it possible to assert that the
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rank of the corresponding tensors must also bhe the same, i.e., fourth.
The same rank of the tensor of elasticity and the tensor of
ultimate resistances with the same nature of symmetry of the corres-
ponding surfaces results in an assumption regarding the same physical
dimensionality of the components of both tensors, i.e., to a hypo-
thesis that in formula (1.14) the value a is inversely proportional to

the value of the ultimate resistance o¢ =01, taken in the first degree

ikop

Qugop == -~ » (1.16)

The assumption advanced in this paragraph about the possibility
of examining the ultimate resistances of the anisotropic bodies as
components of the fourth order tensor is experimentally verified later in ‘
chapter IIL. The results of mechanical tests on different anisotropic 1

materials are compared in chapter III with formula (1.14). It can be
viewed as a definition of the fourth order tensor.

We will pass to a detailed study of this formula.

4, Study of the Components of the Strength Tensor of Orthotropic /22
Material

A change in mechanical properties depending on the direction in
orthotropic material can be graphically illustrated by a certain sym-
metrical figure. Assume that the figure (characteristic surface) that
illustrates the strength properties (ultimate resistances) of the
orthogonally-anisotropic material is classified as a square coordinate
system X1y X9 and Xq. Its origin coincides witrh the center of the
figure. We will replace this system with a new coordinate system, xl',
xz’ and x3', leaving the origin of the coordinates in place, and
only turning the axis. We are only interested in the mutual arrange-
ment of the figure and the coordinate system. The rotation of the axes
therefore yieldsﬁthe same results as rotation of the figure itself

when the coordinate system is fixed. The formulas for transformation ;
of the coordinates during axis rotation can be used to compute the -
resistance of the examined material depending on the direction. j

The formulas for transformation of the point coordinates of the J

figure contain angle cosines between the new and old directions of the
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axes that can be designated, for example, by the letter C with two
indices. Assume that the first corresponds to the number of the new,
turned axis, and the second to the number of the old axis. For example,

€y = c0s(X;, Xy).

The cosines of the angles during the rotatimsn of the coordinate axes
are completely presented in the scheme {p. %%, section 3).

The transformation formulas for the equation coefficients of the
characteristic surface during rotation of the coordinate axes can be
constructed in different ways. They can contain derivatives of two,
three or a greater number of cosines depending on the nature of the
surface that complies with certain properties of the material, on the
nature of these properties, or in other words, on the order of the
tensor that corresponds to the examined property of the anisotropic
material.

We substantiated above the assumption on the fourth order of the
tensor of ultimate resistances. According to this hypothesis, the
transformation formulas of the equation coefficients for the charac-
teristic surface of the strength properties, and consequently, the
formulas to compute the resistances in different directions must contain
derivatives of four direction cosines.

The components of the fourth order tensor in a three-dimensional
space change when the coordinate axes rotate according to the law
expressed by formula (1.14). Here a.

ikop
ponent that is assignedin the initial (main) coordinate system,

is the quantity of the com-

a.l 1 v
ikop
numbers of the old axes, while i',/k',0' and p' are the numbers of the

is its quantity after axial rotation; i, k,0 and p are the

same axes after their rotation. Each of the four letters can adopt
a value from one to three.

When reflected in the symmetry plane, the components of the
strength tensor of the orthogonally anisotropic material must not change
their quantities. This reflection is equivalent [79] to transformation
of coordinates according to one of the following three schemes of
direction cosines

21

/23



-

\") Xy Xa X3 2) X1 X3 Xy 3? Xy 1 ] X3

X 1 0 0 x| I 0 X -1 0 0
o 0 — X3 ! x 0 0
- i 0 1 x 0 0 =1 oz o 0 !

It is assumed in the first scheme that the symmetry plane is the
plane X1X g, in the second, X1X9 and in the third, XoXq. The existence
of three symmetry planes (i.e., orthogonal anisotropy of the material)
requires that the substitution of the cosines from these three schemes
into formula (1.14) does not change the quantities of the components.

This condition is only fulfilled with the transformation of such
components 24 kop where either all four signs are the same, or the signs
are equal in pairs since in this case, the negative unit will enter the
product of cosines in the square, and the sign of the corresponding
component does not change. Consequently, the condition for symmetry will
be fulfilled. Thus, in the main axes of symmetry, the strength tensor
(asymmetrical) can have not 34=81, but only 21 components that differ
from zero, including three main components where all four indices are
the same. Table 1.1 records the strength tensor in a general appearance
in the symmetry axes of an orthotropic material.

In this table, the tensor is assumed to be asymmetrical, i.e., no
additional assumptions are introduced on the equality of any of its
components.

Tﬁe iain components of the tensor are defined in a three-dimensional
space by the three quantities of direction cosinws, i.e., one direction.
They are therefore suitable to present the quantities of the strength
characteristics in uniaxial stresses (stretching or compression).

Orientation of a tangential stress in space, and consequently,
the ultimate strength corresponding to this stress, cannot be assigned
by three direction cosines (one direction in space), therefore the /24
tensor components that have four equal indices are not suitable for
presentation of these quantities. ¥

Strength in relation to the tangential stresses must be linked to
two directions: one direction must determine the position of the
tangential stress action area (this can be, for example, the direction

22




of the perpendicular to the area). The other must determine the
direction of the action of the tangential stress itself on this area,
By analogy with the tensor of characteristics for elastic pro-
perties ,we will assume that the components of the fourth rank tensor
conform to pure shear. These components are arranged on the main
diagonal of the matrix and have equal indices in pairs
1

a’k'k == ,
IR 4:iklk

(1.17)
where Tikik=1b~—ultimate strength of material during pure shear.

TABLE 1.1. STRENGTH TENSOR (ASYMMETRICAL) IN
SYMMETRY AXES OF ORTHOTROPIC MATERIAL

E 1 l 22 33 12 21 13 i 23 2
11 'a 1 ' Uasyy dasa 0 0 0 0 0 0
22 aﬁ:: | Gape | duans 0 0 0 Q. a 0
33 !au” ! Qosny Q3338 0 0 0 0 0 Q0 .
12 ! 0 0 0 aime dayys 0 0 0 0
21 y 0 0 0 Qyaoy dayey 0 0 0 0
13 i 0 ’ 1] 0 0 diss dsns 0 0
3t 0 O 0 0 0 a3a31 a3131 0 0 .
23 ¢] a g Q s Q 0 Q Qanay Qyans
32 Vo 0 I 0 : 0 0 -0 0 0 Qo332 Q3o

Two different approaches are possible to examining the resistance
to the tangential stresses (shear,shearing, pure shear). In one case
one can start from the direct testing results. They generally do not
successfully create a homogeneous stress of pure shear, and the quantity
of resistance to the tangential stresses on two mutually perpendicular
areas varies.

Thus, for example, the resistance to shearing along the fibers
for wood is always considerably lower than the resistance to cross-
cutting of the fivbers, although the same tangential stresses are active
in mutually perpendicular areas in the corresponding samples used to
determine the quantity of these two resistances.

This approach results in an asymmetrical strength tensor and in
formulas that are derived in publication [5].

Another approach complies with the classic method of viewing the
theory of elasticity and plasticity. It reg-ires symmetry of the
strength tensor. Here, if there are no direct experiments,
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we have to consider that under conditions of pure shear, the resistance
of the material to tangential stresses on two mutually perpendicular
areas is determined by the least of the two quantities that were
obtained experimentally in a test for shear on these two areas. The
appropriate formulas are somewhat simpler than in the first approach.
They are presented below.

By convoluting the tensor (1.14), we obtain the following invariant:

3

3
/= :— S Qpipk = Q1+ doase ~+ Agzsg - 2008 -+ 20505y -+ 2a4y,y.

-

-
’r,

-

Aft .r a 45° turn of the coordinate system around the axis "3",
i.e., z, and taking formula (1.14) into consideration, we obtain
LY o
1
An =5 14"41'?1'1'1' — Ay T G 4“:212]:

o

or, by bearing (1.16) and (1.17) in mind,
a,m'z_g_[_".‘__:!___‘_l___%_]' ' (1.18)

where 045=c§?1,1.1.--u1timate strength during stretching in a direction
that lies in the symmetry plane Xy and comprises a 45° angle with the

X axis; °3 91111 and 090=02222——u1timate strengths during stretching

in a direction of the symmetry axes of the material x and y; T0=T1212° "
ultimate strength in pure shear in the same plane by tangential stresses
that act in parallel to the x and y axes.

We obtain from formula (1.14)

45 — i —
4afly g = Gy o Qaogy — 28,9,

from which
(1.19)

- T — 4145
20150 = Ay -t Apogy — 40P, 01,
or

T % )

Thus , the strength tensor can be presented in the developed form
given in tables 1.2 and 1.3.
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TABLE 1.2. SYMMETRICAL TENSOR OF STRENGTH FOR ORTHOTROPIC MATERIAL /26
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TABLE 1.3. SYMMETRICAL TENSQCR QF CTRENGTH FOR ORTHOTROPIC MATERIAL /27
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In tables 1.2 and 1.3, o3 990 and 0,5 are the ultimate strengths

in the symmetry plane that is designated by the indices in brackets

0

[00]xy*°x’ the main axes x,y, =z.

If the anisotropic material resists stretching and compression in
different ways, then the strength tensor should be written twice,
0 0
y and g,
stretching) and separately for compression.

After developing equation (1.14), we obtain tensorial formulas

(1.20) and (1.21) to compute the strength characteristics during

separately for stretching (then og, o --resistances during

stretching (compression) and during pure shear. They are randomly
oriented in an orthotropic body. Here the following simpler desig-
nation is adopted for the axes and the direction cosines:

zl
LI IO ! (- 1N gy
o 0 0 0 15 0 o)
4 T oy I \ vy i 3y .
4 1 1\ 2.2 4 1 1 2 2
Lt 2N Gl b e — — e — \miny (1.20)
Tl e o ao) m (545 0 0 b
*ve ¥y * 24 T N '
s l Llngtdt Comyle) ]—(ﬂn 4 g -
e "‘0"‘(”112 L 1ing)* - “0"( 1fMe -+ myla)” - — iy 1ty
ey . . yr ey
dnylingly Alumylams | Anhngntyms 1.2
} 45 t _45 _45 ’ ( )

txy > vy ra

For sheet, orthogonally anisotropic material in the case of a planar

problem we obtain

3, = b (1.22)
b )
costa - bsin?2z - csintx
where
G l-e, ._ %
E11Y 4 Spo

During pure shear in the plane of a sheet perpendicular to the =z
axis, i.e., for the planar problem
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| o (1.23)

Ty ==
b cos? 2a + sin222
To 48
' s S ﬁ

Publication [5] has obtained a formula to compute the ultimate
strength Ty during shear on an area with perpendicular x', and tan-
gential stress active in the direction of the y' axis. It can be
written in the following form:

T

Sp =T ' (1.24)

costa - g sin®2z ¢ sinda2

where -

Formula (1.24) conforms to those three cases of rotation of the shear
area around the symmetry axis in which the direction of the x' per-
pendicular to the shear area, and the direction of the tangential
stresses y' remain perpendicular to this axis.

In this case, it is necessary to experimentally define the three
quantities of resistance to shear: 191790 and 1,5 (1.24) or the two
quantities of resistance to pure shear 7, and T4 (1.23).

All the remaining possible cases of orientation of shear resistance
1y, in which even one axis (x',y' or z') coincides with the symmetry
axis of the material, do not depend on the amount of resistance 45
on the diagonal areas. They are computed according to the formula

v

1
o . (1.25)

“n o

C e —

-———

Resistance to pure shear in these cases of rotation of the tangential
stress area must not be changed.¥

For wood, the latter formula complies with the essentially important
case of shearing in different directions on areas that are parallel to
the fibers.

*Figure 3.35 for fiber glass-reinforced plastic gives experimental
confirmation of the correctness of this hypothesis: the ultimate
shear strength perpendicular to the sheet plane practically does not
depend on the orientation of the shear area in relation to the glass
fiber.
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If one hypothesizes that Ty 1s the resistance to shear along the
fibers, while Tg(Q is the resistance tu shear transverse to the fibers,
then formula (1.25) coincides with the empirical formula accepted to
compute the shear resistance of wood at angle o to the fibers. It is
given in NiTU 122-55 (''Standards and Specifications for Planning Wood
Designs," 1955).%

Particular cases of applying the general formula (1.21) for fiber
glass-reinforced plastics and other sheet orthotropic materials are
shown in figure 1.1.

The hypothesis advanced by W. Voigt regarding the possible sixth
order of the strength tensor can be studied by the same simple method.

The total number of components of the sixth order strength tensor
in random axes will be 36=729. For the orthotropic material in the
symmetry axes, 147 components of the sixth order tensor will differ

from zero.

From the general formula for transformation of the sixth order
tensor componeﬁts in a three-dimensional space, during rotation of the
coordinate axes the following particular formula is obtained to compute
the component with six identical indices under conditions of a planar

problem

-

- % (1.26)

cos®r b, rin?2z - crinfa

where, as before c¢=—" >‘ .. /31

Thus, in this hypothesis, the formula is analogous to that in the
hypothegis on the fourth order of the strength tensor. It is dis-
tinguished only by a higher (sixth) degree of the cosines and sines.

Figure 1.2 a and b present the curves for a change in the ultimate
resistance during stretching and compression. They were plotted for
plywood and fiber glass-reinforced plastics according to formula (1.22)
and formula (1.26). The average values for the ultimate resistances
according to experimental data are also designated on this figure.

Comparison of the curves with the experimental data show that
the assumption about the sixth order of the strength tensor results in

E3
The 1962 standards cite this same formula with exponent of 3 not 2
of the trigonometric functions (see section 1 and SNiP II-V.4-62).
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Figure 1.1. Schematic Illustration of Effect of
Tangential Stresses with Different Types of Testing
for Sheet Orthotropic Materials for Shear and Shearing:

N

L »

% x

- I = 0 0

= C“ ! P Qe Cym—; Gyt
Tes “w - -

90 ‘90

A--direction of fibers (axis of symmetry of material).

more complicated computations. It does not have any advantages as com-
pared to the assumption on the fourth order of this tensor.

5. Strength Tensor of Fourth Order for Transversely Isotropic Material,

Plates are sometimes made of a wood veneer sheet [40, 100, 102] and
of laminated fiber glass sheet [87] in which the fibers in the adjacent
layers are turned towards each other at a certain angle that is smaller
than a right angle. 1In this case the laminated material on the whole
has a "'stellar" structure [12]. 1In the majority of cases, the fibers
in the fiber glass-reinforced plastic sheets are oriented in three di-
rections at an angle of a0=60° to each other [87]. The aviation plywood
F-60 studied in publication [40] is the same. Wood plastic DSP-G is
popularly used to make pistons, bushings, friction pulleys and other
similar parts. The direction of fibers in the adjacent layers of the
veneer sheet comprise the angle ao=30° [19].
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Laminated splint-slab sheets with oriented direction of the fibers
in the layers are also made as '"stellar' with a0=60°. Keywerth [100]
found that the moduli of elasticity and strength of these sheets during
pure shear are higher than for sheets with the same orientation of
fibers over the entire thickness.

We will examine the shape of the symmetrical strength tensor for a
"stellar'" sheet material, assuming that the directions of the fibers
X1 xl' and x2' (fig. 1.3) are equivalent directions. They can be
superposed with each other by rotation at angle a0=60°= %3 around the
axis Xq, perpendicular to the sheet plane.

The x4 axis is thus considered to be the axis of symmetry of the /33
sixth order. After rotation of the system of coordinate axes at angle
%E around the axis xq, all the components of the strength tensor must

preserve their wvalues.

We will use the letters X1, xl‘ and x5' to designate the directions
of fiber arrangement (fig. 1.3,a). We will rotate the coordinate
system around the axis Xq perpendicular to the drawing, by angle ag=
60°. TFrom the general formula for transformation of the strength
tensor components (l.14) in this case we obtain the following expression

for the component al,l,j.l.in relation to the axis xl‘

’ — ‘ e 1
By = Claayyy + Gl - 203 CHo R g
or with a,=60° _ 1 9
+ 0=° Tevve = g Gt 5 Qe

3 .
-+ BT (Anee + Goepy + Qyoga + Aoyey 1+ Qragy ~ ayyg)-
A

If we hypothesize that 81171717789111 by equivalency of directions

x.' and x then
1 1 ' 15011‘1 ™ ganqu-i' Qng, (1.27)

el

-

where
2R e = yyap + Quayy + Qymis T Aopep -k Ghaog = Gopga = 203500 + 4a,y;,.
L J

The formula for transformation of the component 891919191 O the con-
dition of equivalency of the directions Xq 1 and X1, 1.e., with /34
32|2|2|2u=81111, will yield
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Figure 1.2. Comparison of Results of Testing Two Anisotropic
Materials with Curves Constructed by Different Formulas:
a--fiber glass-reinforced plastic SVAM on epoxy-phenol binding
agent: curves 1,2 and 3 constructed for SVAM with fiber ratio
1:134 curves 4,5 and 6--with fiber ratio 1:1; curves 1 and 4
constructed according to formula (1.22), 2 and 5--according

to formula (4.10) (see chapter IV, section 16); b--parallel
plywood: curves 1 and 3 constructed for compression;2 and 4--
for stretching;l and 2--according to formula (1.26); 3 and 4--
according to formula (1.22).
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Figure 1.3. Schematic Illustration of
Fiber Direction in Adjacent Layers with
"Stellar" (a) and Nonorthogonal (b) Laying
of Layers

>N .

! a2
y1\Cha ~+ BonpChe ) - 2R €2 \C3y = @y, ¢ -
70y, = @yp0y + 6R . . (1.28)

+

By examining formulas (1.27) and (1.28) jointly, we arrive at the
equality a;qy1=8999p (1.29).

Thus , not only the directions Xq xl' and xz' are equivalent to
each other, but the direction of the axis of symmetry X, is equivalent
to these directions (see fig. 1.3a).

Assuming that for the symmetrical tensor 81912812921 7891127821217 »
we obtain:

Ay -~ e + 2830, (1.30)

)

R
R R . (1.31)
e -k‘.y
To compute the component of the strength tensor aol‘lylll. in the
direction of random axis xg that comprises a certain angle o with the
axis %, and angle 90° with the axis x., formula (1.14) adopts the

3
following appearance:

0 — - » a
iy =8y, COST A - Aggp SiNta - 2R ,sintacosta.  (1.32)

If we substitute the ratios (1.29) and (1.30) into formula (1.32), i.e.
. 0 .
a1111=a2222=R12’ then it happens that a 1'1'1‘1=a1111’ i.e. s the randOm
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direction xo1 is equivalent to the direction of the Xy axis of symmetry.

It thus turns out that the plan that is perpendicular to the axis
of symmetry of the sixth order is a plane of isotropy, i.e., all the
directions lying in this plane are equivalent to each other.

Table 1.1 presents a general view of an asymmetrical strength ten-
sor for orthotropic material. The strength properties of this material
are characterized by the following nine independent components of a
symmetrical tensor (see table 1.3): 41111,2222223333+31122 21133

82233 21212 #1313» #2323

Taking into account the equivalency of the directions xq and x,,
we find that 81111 89292225 81313782323 and 4113389933 In addition, it
was proved above that a1111=a1122+2a1212.

Thus, the material examined above that has a sixth order axis of
symmetry, is characterized by five independent components of the
strength tensor.

If a sixth order axis of symmetry is present, the material in its

strength properties1 has a plane of isotropy that is perpendicular to /35

this axis, and can be called transverse or transversely-isotropic
(transtropic).

In the limits of an assumption on the continuous and homogeneous
continuum, the plates that are made of anisotropic layers where the
angle between the direction of fibers in the adjacent layers does not
exceed 60°, can be considered isotropic in the plate plane. Here the
layers must be arranged so that the middle plane is the plane of
plate symmetry. The view of the fourth order tensor for this case is
presented in table 1.4. 1In this case, the tensor has six different com-
ponents that are not equal to zero. If one considers correlation (1.30),
then the five components of the tensor2 in the main symmetry axes are
independent.

Table 1.5 records the same tensor as in table 1.4, but here the
hypothesis is introduced that its components equal the quantities that
are inverse to the ultimate strengths. 1Instead of qu in table 1.5,

Xz

. 45 . . . .
one can introduce o, by using the invariant correlation (see formula

“Lyav [45] proves this in relation to elastic properties.

2In the case of transverse-isotropic (transtropic) material, the tensor
of elastic constants, as is known, also contains five independent com-
ponents in the main symmetry axes.
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TABLE 1.4. SYMMETRICAL TENSOR OF FOURTH ORDER
FOR TRANSVERSE-ISOTROPIC MATERIAL

It i s 33 12 13 ‘ 2

| | ‘
11 i Ay Guag : !
22 1128 ann Qyyas
33 @113y d11s Qaazs
12 — — — dapae
13 — —_ — — cip
23 —_ l — — —_ — 401918

1.19 and 1.18):
RIS S B R S B § ES

The strength tensor presented in table 1.5 refers to any material
that possesses symmetry of the transverse-isotropic (transtropic) con-
tinuum. These materials, besides those examined above, include laminated
slabs consisting of isotropic layers with weaker interlayers. By ig-
noring the differences in strength transverse to the fibers, one can also
classify wood among the transverse-isotropic materials. Back in the /37
works of V. P. Yermakov1 it was shown that a steel wire, stretched
through a draw plate, can also be classified with the transversely-
isotropic bodies.

If the material is isotropic, then the symmetrical strength tensor
adopts the appearance presented in table 1.6.

This tensor contains three components that differ from zero. Taking
correlation (1.30) into consideration, one can believe that the two
components are independent and the strength tensor will adopt the
appearance presented in table 1.7. It thus turns out that the complete
set of strength characteristics of an isotropic material consists of
the amount of its resistance to the perpendicular stresses oy and the
amount of its resistance to tangential stresses under conditions of pure
shear Tp- In the same way as above, it is assumed that if the amounts

of stretching resistance differ from the amounts of compression resis-

1The concept of transverse-isotronic bodies and the very name in Russian
were apparently first introduced by Yermakov in publication [32].

Using the approach of M. F. Okatov [54], Yermakov examined the number of
elastic constants in anisotropic btodies, based on the mutual arrangement
of the ellipsoids of deformation and stresses. He called the latter

the surface of elastic forces. In the same work, Yermakov examines the
equilibrium of an elastic cylinder in the general case of anisotropy
when random forces and moments act on its ends.
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TABIE 1.5. SYMMETRICAL STREMGTI! TENSQR FOR TRANSVERSE-ISOTROPIC
MATERIAL
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tance, then a separate strength tensor can be written for the first

and a separate for the second resistances.

The strength tensor for isotropic material is given here to complete

the
the
the
It cannot be computed by any criterial theory(an analogous conclusion

study as a limit case since it shows that the adopted approach to
strength question for isotropic material requires determination of

ultimate pure shear resistance according to experimental data.

was accepted in the famous theory of strength of Mohr).

The formulas for the change in ultimate strengths for transverse-
isotropic material, depending on the orientation of the stress in rela-
tion to the material's axis of symmetry, can be obtained directly from
the formulas given in section 4, on the condition that the axes % and
X, are equivalent. These formulas are of practical importance for wood
which is viewed as a transverse-isotropic material. It is easy to see

that in the case of stretching or compression in a direction that
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TABLE 1.6. SYMMETRICAL FOURTE-ORDER TENSOR
FOR ISOTROPIC MATERIAL
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TABLE 1.7. STRENGTH TENSOR FOR ISOTROPIC MATERIAL
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K | ' i
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constitutes the angle o with direction of the symmetry axis of infi-
nite order Xq (i.e., with direction of the wood fibers), the tensorial
formula for transverse-isotropic material is written in the same way as
for orthotropic material

a

°b=
costz - bsin? 21 csind =z
3, I ¢ 3,
b= - y Oz ——3
a4 4 %0

where
op--ultimate strength in direction of x4 axis of infinite symmetry

(along wood fiber);

cgo-multimate strength in direction lying in plane of isotropy
(transverse to wood fibers).
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Resistance to tangential stresses is of practical importance feor
wood. It is viewed as a transverse-isotropic material when shearing /39
resistance is computed at an angle to the fibers. Ignoring the dif-
ference in the resistance values during shearing transverse to the
fibers in the radial and tangential planes, and considering that
during shearing along the fibers, the resistances on the radial and
tangential planes are also the same, we obtain the following formula
to compute the amount of shearing resistance at angle o to the fibers
[51: )
= - (1.34)

I - (—'9——- sin® 1
. Teo

where:
10--shearing resistance along fibers; 1

190——shearing resistance transverse to fibers.

In both cases, the perpendicular to the shearing area lies in the
plane that is perpendicular to the fibers. The shearing force acts
on this area in the first case along the fibers, and in the second,
transverse to them. ‘ ‘

In designing wood structures, the quantities for calculated ‘
shearing resistance ™ =R, are usually taken from the plan of trans-
verse isotropy of wood, i.e., no difference is made between the radial
and tangential directions.

In the practice of using laminated fiber glass materials there are
known cases of nonorthogonal placement of the layers. Here the axis
that is perpendicular to the sheet plane cannot be considered the axis
of infinite symmetry. This occurs when the fibers are laid in two
directions xl' and x,' (fig. 1.3.b) arranged in the sheet plane such
that the angles between these directions are not equal to each other
(2y=g). Figure 1.3b has a schematic illustration of the axial arrange-
ment in the sheet plane in this case. The fibers are laid parallel to
the xl' and x2' axes. It is easy to see that the symmetry axes are the
axes Xy and Xo. The x, axis is the Dbisector of the g angle, while the
X4 axis is the bisector of angle 2y. This material can be viewed as
orthogonally-anisotropic on the condition that the layers with fibers

lying in directions x;' and X,' alternated regularly. In this case,
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the symmetry planes will be the middle plane of the sheet and the two
planes that are perpendicular to the first and contain the x, and xg
axes.

The strength isotropy of "stellar" sheet materials in the sheet
plane with a0=60° follows from the following theorem proved by V. L.
German [28] and generalizing Neumann's principle for the case of ani-
sotropic continuums. If the medium has an axis of structural symmetry
of nth  order, then it is axially isotropic ir relation to this axis /40
for all physical properties whose characteristics are determined by
tensors of rank r < n. Thus, for the strength properties (r=4), already
with a symmetry axis of the fifth order (n=5), i.e., if tbe angle be-
tween the fiber directions in the adjacent layers of the '"stellar"
material is no more than 72°

20 K 2 = 72,
then all the directions in the sheet plane must be equivalent to each
other.

Chapter II. Technique for Mechanical Tests of Anisotropic Materials /41

6. Features of Elastic Deformation of Anisotropic Bodies,

In passing to an experimental study of anisotropy in the mechanical
properties of structural materials, it is necessary to dwell on the
technique for testing them. Materials with very pronounced aniso-
tropy are deformed very uniquely. They refute certain generally
accepted ideas regarding deformations that have been formed in the
practice of testing isotropic metal samples. For example, with
central compression of wood samples that are oriented in a definite
manner , they receive, besides shortening, very pronounced skewing of
the edges. Sometimes they are twisted around the axis that coincides
with the direction of the compressing force.

The testing technique that is accepted for isotropic samples needs
to be critically evaluated and reworked as applied to anisotropic
materials. Errors in defining the strength characteristics are
usually associated with heterogeneity of the stress in the sample.

They depend on the method of its securing in the machine. These errors
increase because of the unique nature of deformations in anisotropic

bodies.
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N. G. Chentsov [76] who in 1936 studied the elastic deformations
of plywood ay sn orthotropic plate, noticed that in directions not
colneiding with the main symmetry axes of the material, the elongations
will depend not only on the perpendicular, but also on the shear forces.
The shears will be induced not only by the shear forces, but also by
the perpendicular,

To illustrate this phenomenon, Keylwerth [99] presents a photo-
graph of a wood sample during free compression beyond the elasticity
limit (fig. 2.1). Compression occurs at a 45° angle to the fibers in
a radial plane. The upper pillow of the press is designed so that it
can move freely and turn in relation to the lower. TFigure 2.1 shows /42
the skewing of the sample. This is not a consequence of its inaccurate
installation, but a result of chear during compression.

Figure 2.1. TFree Compression of
Wood Sample Cut at a 45° Angle to
Fibers

A, L. Rabinovich [58] presents corrugated plate as a model of an
anisotropic material. When it is stretched, the angles between the
edges change. The angle {initially right angle) is reduced within 3
which the axis of the least rigidity of the plate passes. 1

Hooke's law for anisotropic material with random orientation of the
perpendicular v, and a and tangential xy stresses under conditions ’
of planar stress has the following appearance: ‘




v T
s Brydu Layrtey
= L LAk +-A--'_._.....'

E, E, Gxy
o Mt %y Iy, vytay
4 Ex Ey Gyy
: 2.1

o e MR Ty

Wy T E: ’* Ey + G,\y '
where €y and zy--relative elongations in direction of perpendicular
stresses o, and o, while Yy --relative shear or change in the angle

between the areas on which these stresses act. E, G and py in formulas
(2.1) are respectively the moduli of normal elasticity, the shear moduli
and the coefficient of transverse deformation of material in the corres-
ponding directions. The first index for the coefficients u designates
the direction of transverse deformation, while the second designates
the direction of the force that induces this deformation.

vx,xy and vy,xy in formulas (2.1) are the coefficients that de-
termine the ratio of linear deformation to the relative shear under
the influence of tangemtial stresses alone (fig. 2.2b). \’xy,x and \%y,y
are coefficients that determine the ratio of angular deformation (shear)
to linear deformation under the influence of perpendicular stresses
alone (fig. 2.2a). A. N. Mitinskiy [49] calls these quantities the
coefficients of transverse and angular deformation of the second order.
S. G. Lekhnitskiy [43] calls them secondary coefficients, while A. L.
Rabinovich [58] calls them the coefficients of mutual influence. The
deformations that comply with formulas (2.1) with o =Txy=0 are shown
in figure 2.2a, and with °x=°y=o in figure 2.2,b.

In figure 2.2, I, the coefficient of transverse deformation uxy is
assumed to be positive; therefore, stretching of the plate is accom-
panied by a decrease in its cross dimensions.

It should be noted that for wood, the coefficients of transverse
deformation become mnegative for certain directions [1,2,8,49,60, 94].

The coefficients of mutual influence vx,xy and vy,xy always main-
tain the same signs. They can either both be positive or both negative.

Figure 2.2 ,all shows the appearance of deformation for the cases

a and b with negative Poisson's coefficient Myx and positive coefficients
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Figure 2.2. GSchematic Illustration of De-
formation of Anisotropic Material

a--with free stretching; b--with pure shear;
I--with positive and II--with negative value
of coefficient of cross deformation

of mutual influence, i.e., with Myx < 0 and “x,xy> 0. This deforma-
tion is characteristic for certain orientations in wood, material with
very pronounced anisotropy.

When a wood sample is stretched in a direction that forms a 45°nple to
the fibers and lies in the tangential plane, the elastic deformations
have the appearance illustrated in fig. 2.2.II.

Crystal physics usually writes formula (2.1) in a form in which
the coefficients of deformation and the moduli of elasticity (i.e.,
the technical elastic constants) are replaced by physical elastic
constants [43]
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In figure 2.3,a, the solid lines show the typical graphics con-
structed by Hearmon [94] for the change in elastic constants a1 2gg
and a;¢ for wood, depending on the direction in relation to the fibers.

It follows from these graphs that the secondary linear deformation

€ _ under the influence of tangential stresses = (determined by the

qu:ntity 816) can have a quantity of the same or§Zr for wood as the
main elastic elongation €y caused by the stretching stresses o _(de-
fined by the amount a;q).

Thus, for example, during stretching at a 45° angle to the fibers,
the elastic constants a16 and ay; for wood are close to each other in
quantity (fig. 2.3,a). Consequently, the secondary deformation that
is determined by the coefficients of mutual influence in this case can-
not be ignored.

416

XY X QII*
is computed in the work of K. V. Zakharov [33] for three types of

The size of the coefficient of mutual influence

plywood. For uneven (three- and five-ply) plywoods, the extreme values
of this amount are equal to 1.43 and 1.67, and for a two-ply plywood,
1.1.

K. K. Turoverov [5] experimentally defined the quantities Xy X
for bakelite 1l-ply plywoods 10 mm thick. The greatest amount that
he obtained for a 15° angle direction to the fibers of the casing is
1.24.

Thus, for wood anisotropic materials, the secondary elongation
that is induced by tangential stresses can even somewhat exceed the
main elongation induced by the perpendicular stretching stresses if
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Figure 2.3. Graphs for Change in Physical Elastic Constants De- /45

pending on the Direction in Relation to the Fibers

a--for wood; b--for SVAM fiber glass-reinforced plastic on
epoxy-phenol binder with 1:5 fiber ratio; c--for SVAM fiber glass-
reinforced plastic on Butvar-phenol binder with 1:1 fiber ratio.

the quantities of these stresses are the same. Figures 2.3 b and 2.3 ¢
present graphs for the change in physical elastic constants for two
fiber glass-reinforced plastics of the SVAM type [12].

As is apparent from these figures, for fiber-glass-reinforced
plastic on BF-4 binder that has the same properties in the direction
of the two symmetry axes (a11=a22), the amount a6 is also commensurate
with the amount ayq- This is especially displayed in weak resins where
the deformability in the diagomnal direction is especially great. 1In
this case it is impossible to ignore the shear deformations that are
caused by the effect of perpendicular stresses.

Generally in anisotropic materials, the perpendicular stresses
that act in a random direction do not only cause longitudinal, but also
angular deformations (fig. 2.2.a). The tangential stresses in turn
can cause not only angular, but also longitudinal deformations (fig.
2.2, b). It follows from here that the lack of a change in the angle
between the two mutually perpendicular areas still does not indicate
the lack of tangential stresses on these areas, i.e., the direction of

the main deformations in the anisotropic materials does not coincide
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with the direction of the main stresses.

M. F. Okatov [54] back in 1865 demonstrated that the axes of the
deformation ellipsoid coincide with the axes of the stress ellipsoid
in an orthotropic material only in that case where the main stresses
act on the axes of elastic symmetry of the material. These ellipsoids
are not coaxial with any other orientation.

The angle ¢ between the direction of greatest main deformationce 1
and the direction of deformation I i.e., the stretching stress Ty s
for example, with simple stretching of a plywood sheet at an angle «
to the casing fibers can be found from the equation

- o . xY (2.4)
{g 2z .

1
Ey'—Ex

in which deformations are defined by formulas (2.1) with

or . 147
I igoe—tans ’

-+ Bye e

(2.5)

-
The quantity of greatest deformation € is determined from the formula

ey =€ | T
= ) *—{l ("y_sx)z-‘_'.;" (2.6)

or

17 [l — Py -t ‘ (_l -t i“‘,-!"’ - (",n,.z)z (2.7)

(L]

H
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It was assumed in the derivation of all of these formulas that
the z axis is perpendicular to the plane of the plywood sheet.

If during simple stretching the direction of the stretching stress
does not coincide with the main axes of the material symmetry, and does
not lie in the symmetry plane, then in order to determine the direction
and quantities of main deformations it is necessary, as in the general
case of a spatial problem, to solve a cubic equation whose coefficients
are invariants of the tensor of elastic deformations.

The planar problem that can be solved with formulas (2.4)-(2.7) is
only obtained with arrangement of the main stresses in one of the planes

of material symmetry.
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Formulas (2.4) and (2.5) in this case determine the angle between
the greatest main stress and the greatest main deformation, i.e., the
angle between the large axes of the ellipse of stresses and the
ellipse of deformations (see fig. 2.4,a). During simple stretching,
the ellipse of stresses becomes a straight line, while the ellipse of
deformations obtains an appearance that is pregsented in fig. 2.4a.

If the circle ABCD is drawn on the surface of the plywood sheet, then
after elastic stretching of the plywood sheet at angle o to the fibers,
the circle adopts the shape of an ellipse AlBlchl.

The large axis of the ellipse € nax will be inclined to the direction
of the stretching stress ¢ as shown in fig. 2.4,a, at angle ¢, and
to the fiber direction, at angle o + ¢.

Figure 2.4 b depicts the size of the ¢ angle depending on the o
angle for wood with the following quantities of elastic constants
(according to the data of Norris [1071)

B, =, = 1,27. 105g /os®;
E, = Eg, = 0,063.10° kes/cu?;
Gyy==Gy=1,4-10" ygom?;
B = 8 = 0,4
fxy = oo = 0,02.

Figure 2.4c,d and e depict the sizes of angle depending on o for
plywood of varying design.

In figure 2.4 ¢ the plywood is made of 907 longitudinal and 107
transverse layers of veneer sheet (delta wood). 1In figure 2.4,d half
of the plywood layers are longitudinal and half are transverse (even
plywood ), while in figure 2.4, e the plywood has five layers (uneven)
made of 607 longitudinal layers and 407% transverse. All the curves in
figure 2.4 b-e were constructed by Norris using Mohr's circle.

In figure 2.4, £, the curves show the change in the ¢ angle de-
pending on o for aviation (dotted) and for bakelite (solid line) ply-
wood. The curves in figure 2.4 f were constructed by K. K. Turoverov
according to formula (2.5).

All the curves in figure 2.4 demonstrate that the greatest deviation
of the maximum elongation from the direction of stretching forces is
obtained when wood is stretched at an angle about 15-20° to the fibers,
and for plywood at an angle about 15° and at an angle about 75° to the
fibers. This deviation comprises an angle of ¢ from 20° to 50°.
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Figure 2.4. Size of Angle between Stretching

Stress o and the Greatest Elongation “nax”

Thus , when a wood sample is stretched at an angle about 15° to the
fibers, the greatest elongation is an over 45° angle (ot+d) with direc-

tion of the fibers. Approximately the same order of angles is obtained
for plywood.

1. Errors in Experimental Analysis of Strength Characteristics during
Stretching and During Compression

During tests of anisotropic materials for stretching and for com-
pression in random directions, additional difficulties and errors

develop that are associated with the behavioral features of these
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materials during deformation and that are missing in tests on
isotropic bodies (for example, metals). During simple free stretching
or compression,the anisotropic material receives, as already noted
above, not only elongations but also shears: the transverse sections
of the sample during stretching must be turned and after deformation
will be shifted in relation to each other and turned in relation to
the sample's axis.

Absolutely free deformation of the sample is impossible during
standard tests for stretching or compression. The end sections of
the tested sample generally cannot freely turn in relation to its axis. !
Rotations of these sections are always restricted to a greater or
lesser degree, constrained. As a consequence of the constraint on the ;
angular deformations of the end sections,additional stresses must
develop in the sample that are not uniformly distributed over its
length and sections. These stresses will diminish from the ends of the
sample towards the middle. They will be smaller, the longer and
thimmer the working part of the sample is. The size of the additional
stresses that develop in the constrained stretching or compression
depend on the method of transmitting movements to the sample, i.e., on
the design of the clamps or support pads of the testing machine.

In addition, during compression, the transverse deformations of the
sample's end sections are usually limited by friction. A. K. Kalmanok's
article [37] describes a study of stress developing during compression /50
of a parallelepiped of isotropic material between two absolutely rigid
stamps. The relative transverse deformations of the end sections of
the parallelepiped are assumed to be equal to zero. The epures of
stress distribution over the parallelepiped sections show that the
stress in it is neither linear nor uniform. During tests of an aniso-
tropic material sample for stretching or compression at an angle to
the fibers, the stress can differ even more strongly from the calculated
plan of a linear, uniformly stressed state. The resistance indicators
that are obtained as a result of these tests therefore cannot be viewed

as physical characteristics of the material strength. They are only
approximate technical characteristics of its strength.

A. A. Kritsuk [39] obtained an approximate solution to the problem
of stress distribution during constrained compression of a sample of
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anisotropic material (wood). This solution for a planar stress cor-
responds to the hypothesis that transverse movements are missing on the
ends of the sample, while the longitudinal movements are the same

over the sample width, i.e., it is assumed that both transverse and
angular deformations are missing, not over the entire sample, but only
at its ends.1

The stress distribution epures for the transverse sections of a
wood sample during stretching at a 45° angle to the fibers are presented
in fipgure 2.5,a. The epures were constructed by A. A. Pozdnyakov
according to Kritsuk's method with elastic constants taken for a
parallel plywood [8]. 1In figure 2.5 a, the section is taken at the end
of the sample. Figure 2.5 b presents stress distribution epures for
a cross section located in the middle of the sample length. As is
apparent from these epures, the tangential stresses Txy even next to
the site of pinching are small as compared to the stress T s Towards
the middle of the sample length, the tangential stresses are reduced,
while the perpendicular stresses o, are somewhat leveled. The law of
their distribution approaches the uniform. The perpendicular stresses

cy that are active in a transverse direction, are very small in all
the sections. The epures presented in figure 2.5a and b are constructed
for a sample with ratio of length to width equal to 3.

Publication [8] has experimentally verified how significant is the
constraint under actual testing conditions, and how strongly it affects
the distribution of deformations over the sample section.

Orthogonally anisotropic wood sheet material, parallel plywood /51
(section 10 and table 2.1) was taken as the experimental study material.

Figure 2.5,c presents the deformation distribution epures over the
width of the diagonal, long sample. These epures are constructed from
the results of measuring longitudinal deformations with wire sensors.

By comparing the elongation distribution epures experimentally obtained
(fig. 2.5 c¢) with the distribution epures of stretching stresses con-
structed from Kritsuk's formulas (2.5a and b), one can note that the
first are distinguished by greater smoothness. The nonuniformity of
stress distribution over the sample width that was obtained in the
experiment is -less significant than follows from Kritsuk's formula.

1In Hearmon's work [94], this question is examined on the assumption
that the deformations are constrained over the entire sample during a
uniform stress.
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Figure 2.5. Stress Distribution Epures for Sections

of Parallel Plywood Sample

a and b--from calculation results with ratio of sample
length to width equal to 3; c--from measurement results
with ratio of length of sample to width equal to 13.
Points A,B, C--at end; A',B',C'--in middle of sample
length.

The following reasons can explain this.

The epures presented in figure 2.5 c were obtained on very long
samples (ratio of length to width was 13), while the epures in figure
2.5 a and b were constructed for samples with length to width ratio
equal to 3.

A. A. Kirtsuk obtained an approximate theoretical solution and
with very stringent boundary conditions. During actual tests they are
somewhat smoothed out. The actual stress and deformed states therefore
deviate somewhat from this solution and approach the case of free /52
stretching.

At those points where the stresses T rise (fig. 2.5), the tan-
gential stresses Ty aFe comparatively great. The effect of tangential
stresses results in a decrease in the elongations. Consequently, due
to the effect of tangential stresses Txy the deformations e, will be
somewhat leveled over the rod width. Thus, in the middle section of a
fairly long sample, its longitudinal deformations will be roughly
constant over the width. The difference between the greatest deforma-
tion in the middle of the sample during constrained stretching computed
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according to A. A. Kritsuk's method, and the deformation during free
stretching is only 77 for 1:b=13. Experience shows th-t in actuality
this difference is even smaller.
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Figure 2.6. Epures of Stress Distribution over Two
Sections of Compressed SVAM Sample with Length Equal to
Half of Width. Below: for section passing in the
middle of the sample length; Above: for section passing
at the end; o--angle between axis of sample and direc-
tion of fibers

Even for a material with very pronounced anisotropy of the elastic
properties, nonuniformity in distribution of stretching stresses and
elongations over the middle section of a fairly long sample (whose
length is no smaller than triple the cross dimension) cannot be sig-
nificant.

In comparatively short samples that are used to avoid loss of /53
stability during compression tests, it is possible for a more noticeable
distortion to appear in the stress as a consequence of constraint in

< [}

the shear deformations on the ends of the sample than during stretching.
If both the transverse and angular deformations are constrained,
then, in addition to the perpendicular stresses T that are directed

parallel to the compressing force, in a short sample, perpendicular
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stresses o also develop which are active in a transverse direction, ;
and additional tangential stresses Txy that are commensurate with
the stresses .

Thus, the stressed state in a compressible sample is not only non-
uniform but also nonuniaxial,

Figure 2.6 presents epures for stress distribution over sections »
of compressed samples of SVAM fiber glass-reinforced plastic that were ;
constructed by A. A. Pozdnyakov [116] according to Kritsuk's method
for a ratio of the sample length to width equal to 0.5, i.e., for
considerably shorter sAamples than those studied during stretching of
parallel plywood [8], Table 2.1 presents the characteristics of the
elastic properties.

TABLE 2.1. CHARACTERISTICS OF ELASTIC PROPERTIES
OF STUDIED MATERIALS

Angle with[Modulus of elasti-] Goefficient of trans-
fiber di- [city,E kg /cm?2 verse deformation y
rection,a A ; B A B
deg. L

0 207 000 247 000 0.50 0,16

45 18 600 131000 0,09 0,50

90 9300 47000 | 0,02 0,16

Note: A--parallel plywood; B--SVAM with fiber ratio of 1:1'0om epoxy-
phenol binder.

The epures illustrated in fig. 2.6 show that the constraint not only
of anguler but also transverse deformations can have a significant effect.
For a diagonal sample whose axis comprises a 45° angle with fiber
direction, the constraint of angular deformations for SVAM with 1:1
fiber ratio is lacking since the diagonal axis for this material is the
axis of symmetry (EO=E90). The coefficients of mutual influence in
the direction of the diagonal sample axis equal zero. At the same time,
the coefficient of transverse deformation p reaches its maximum for
this direction (table 2.1). Consequently, strong distortion of the
stress is apparently obtained for this case of sample orientation.

s T8}

Even possessing experimental data on the mechanical Properties /54
of fiber glass-reinforced plastic in directions that coincide with
the directions of the structural symmetry axis (for example, along
and transverse to the direction of fiber laying in the sheet), it is
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still impossible to make a complete judgment about the strength of
this anisotropic material. We also need tests of samples whose axes
are directed at an angle to the axes of symmetry, This is especially
important with a 45° angle (diagonal samples). There is no single
opinion on the technique for these tests.

The works of certain authors [118, 34] construct the testing tech-
nique based on the following main premises.

When planar samples are made with axes oriented at a certain angle
to the axes of structural symmetry of an anisotropic (fibrous) material,
the fibers are intersected. The strength and elastic characteristics
obtained as a result of the testing of these samples for stretching
are therefore supposedly underestimated. The effect of the sample width
on the testing results is studied here with the a fortiori false assump-
tion that the stress field in the stretched sample always remains uni-
form and uniaxial regardless of the correlation of dimensions of the
working part of the sample. It is considered here that the testing
technique will be best in which the diagonal samples yield the highest
characteristics of mechanical properties.

Based on these premises, publication [118] for example, suggests that
strength and elastic characteristics of sheet fiber glass-reinforced
plastics be determined from stretching testing results only of tubular
samples since the use of planar samples supposedly results in a sig-
nificant decrease in the strength characteristics of the fiber glass-
reinforced plastics.

Another approach to evaluating the results of tests is more correct.
It is based on the application to fiber glass-reinforced plastics of
an assumption on a uniform and continuous anisotropic continuum. With
this assumption, the testing technique must be consideredthe optimal if
the stress field in the working section of the sample complies in the
best possible way with the calculated plan of the uniform and uniaxial
stressed state.

Publication [f] showed theoretically and experimentally that in a
sample made of very anisotropic wood material whose axis comprises a 45°
angle with the fiber direction, the field of stresses does not always
conform to this calculated plan. The wider the sample is, the .
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more strongly its stressed state is affected by the constraint of

angular and transverse deformations that inevitably develop in real
testing conditions and that result in the appearance of a nonuniform
and nonuniaxial stressed state in the stretched (or compressed) sample.
A wide sample that does not have intercepted fibers is under conditions
of a nonuniform planar stress. As a result the strength and elastic
characteristics of the material are overestimated [116], and are there-
fore unsuitable for calculating designs.

An evaluation of how wide of a plate (in which the fibers pass at
an inclined position through the entire length of the plate) is stronger
than a narrow and long sample can be made based on the continuum hypo-
thesis. It is necessary to determine the actual stresses in the
plate by the methods of the theory of elasticity of anisotropic bodies
with regard for the true constraint of deformations in the fastenings.
Then for the plate material we need to construct the limit surface or
write the condition of strength. We need to verify the strength of the
plate by standard methods with regard for the complex (planar) stress
developing in it (see chapter IV).

An important feature of anisotropic materials that should be con-
sidered in developing a testing technique is the fact that the principle

of Saint-Venant is not fulfilled as well for them as for isotropic bodies,

~ren if the sample axis coincides with the axis of symmetry of the aniso-
tropic material. The work of A. S. Kosmodamianskiy [38] ha¢ shown that
during stretching of an orthotropic square band in the direction of one
of the main symmetry axes of the material by loads that are distributed
on its ends according to the cosine curve law, the nonuniform distribu-
tion of stresses over the middle cross section is considerably greater
(41-57Z) than during stretching of an isotropic band (3%). Table 2.2
presents Kosmodamianskiy'scurves for a band whose length is double its

width. 1In the table, the difference in stresses ¢ in the

-0 R
max min
middle section is given in percentages in relation to an analogous dif-
ference at the sites of band loading. TFor spruce, the difference in
stresses Omax min I the middle section, as for the isotropic material,
will be about 3% of the size of this difference at the loading sites

only if the band length is 6 times greater than its width.
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TABLE 2.2 DATA OF KOSMODAMIANSKIY'S COMPUTATIONS

Material and direction of Physical elastic constants Difference

stretching a1 220 | 266 [ 212 1in stretching
stresses
“max” “min

Spruce (Canadian spruce)

along fibers 26.8116.11423,7{12.9 41

Spruce (Canadian spruce)

transverse to fibers 16.1126.8}423.712.9 57

Isotropic - - - - 3

In the sample of isotropic material, the system of forces that is
statically equivalent to zero and is applied to its ends, causes stresses
close to zero in the section that is separated from the ends by a dis-
tance equal to the width of the sample. 1In the sample of anisotropic
material, this requires at least a three-foldlarger separation from
the ends.

The poor correspondence of anisotropic bodies to Saint-Venant's
principle, and the often increased value of the coefficients of stress
concentration ay compared tc isotropic bodies make very stringent
requirements for the shape of the sample. A longer prismatic working
section of the sample is necessary and curvilinear shape of the working
section is not permitted. It would be preferable to have a
prismatic sample whose length is 5-6-fold greater than the width.

The natural dispersion of tésting results for stretching and com-
pression that is more significant than for isotropic materials is also
a characteristic feature for very anisotropic materials.

If we glance at the graphs for the change in the ultimate strengths
of such materials as wood or wood veneer sheets presented in sectin.:

10 (£ig. 3.1), then it is easy to see that the deviation of the sample
axis at an angle about 5° from the fiber direction can result in a
decrease in the amount of ultimate strength by almost 107.*

When laminated plates are made of very anisotropic veneer sheets,
an error in laying them at a 5° angle is very possible. It results in
a fairly considerable difference between the strength of individual
plates, even with the exact same technology of fabricating them. This
unique cross grain that is governed by a small error in the mutual
?rientation of the anisotropic layers is characteristic to a greater or

Consequently, the dispersion of testing results is usually the greatest
when the sample axes coincide with the direction of greatest strength [120].
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lesser degree not only for plywood and DSP, but also for fiber glass-
reinforced plastics of almost all types.

This feature of laminated anisotropic sheet materials requires
thorough statistical processing of the testing results. 1In contrast
to metals, only series of similar samples of anisotropic materials
should be tested with subsequent monitoring of whether the number of
samples in the series is sufficient for reliable testing results.

The simple methods of statistical processing that are used to
test wood (GOST 6336-52) have also recently been applied to other

anisotropic materials, for example, fiber glass-reinforced plastics [42].

It should be noted that in studying the anisotropy of strength
it is necessary to select a testing technique so that the shape of
the sample is the same with all orientations of its axis, and at the
same time to always guarantee destruction of the sample only in the
limits of its working area.

Since the results of an experimental study of anisotropy of strength

properties made in 1954-1963 were obtained with samples of different
shape and dimensions for different construction materials, chapter III
presents these data with a description of the appropriate technique.

The technique of mechanical tests of anisotropic materials, and
especially reinforced plastics, is being continually perfected.

Experiments have shown that when fiber glass-reinforced plastics
are tested for stretching, the samples of square shape without thicken-
ings (heads) used in Czechoslovakia are the best. Rupture occurs in
the working section of the samples if measures are taken to reduce the
compression stresses on the area of contact between the sample and the
clamp. It is sufficient to increase the length of the sample placed
in the clamps and to make the vise cut shallow (or equip it with pads
made of emery paper [115]). Long wedge-shaped vise jaws that move
over a set of rollers are used to hold the sample in the clamps.

When fiber glass-reinforced plastics are tested, the most cons 1t
are samples without heads, 10 x 15 mm2 in section with length oi the
clamped section in each clamp about 100 mm and total length 300 mm.

When fiber glass-reinforced plastics are compressed in the attach-
ment [5] it is best to take samples 15 mm wide with length of the
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working section 22 mm, since the stress in them is more uniform than
in the samples used . r studies in 1960-1962 presented in chapter III.
The process of developing methods to obtain.:the mechanical charac-
teristics of anisotropic materials under conditions of uniform stresses
of uniaxial stretching and compression is very complicated and requires
further research. The first stage is to analyze the features and

errors of the extant technique that allows the grossest errors to be
avoided.

8. Testing Methods for Simple Shearing and for Shearing

Simple shearing along fibers. It is very important to test ani-
sotropic synthetic materials (for example, fiber glass-reinforced
plastics) for strength in a uniform stress of pure shear.

The testing technique for two-sided shearing of a tightly clamped
sample that is stipulated in the OST 10044-38* standard 'Determination
of Temporary Shear Resistance' provides exaggerated values for resis-
tance of material to the effect of tangential-stresses since on the
shear areas additional compressing stresses develop that prevent
shearing of the material layers in relation to each other. The results
of this test can be viewed in the same way as for steel, as a type of
technological test. From these tests one can judge the comparative
amount of shear resistance of the material with different orientation
of the samples in relation to the glass fiber. But it is difficult

to use them to judge the strength of fiber glass-reinforced plastic in
pure shear.

In order to examine a possible technique of shear testing of
very anisotropic fiber glass-reinforced plastics (SVAM type), it is
useful to turn to the accumulated extensive data on the technique
for testing wood and plywood.

There are many methods for testing wood for shearing along the
fibers. The books of ¥F. P. Belyankin [18] and F. Kollman [102] give a
survey and detailed analysis of them. 1In all methods, the tangential
stresses are distributed over the shearing areas more or less non-
uniformly, and in addition, additional perpendicular stresses act on

these areas. The ultimate strength is usually computed according to

7kl?lastic of Organic Origin. Methods of Testing ,1964.
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the formula

Pmax
i

p = F ’ . (2.8)

where F is the shearing area.

This formula is based on an assumption about the uniform stress of
pure shear. Such an assumption does not comply with any of the testing
methods either during one-sided or two-sided shearing.

As F. P. Belyankin [18] showed, the load-bearing capacity of a
sample under the influence of compressing stresses on the shearing
plane is higher than the load-bearing capacity of the sample in which
additional stretching stresses act on the shearing plane.

Destruction of such an orthogonally anisotropic material as wood,
on areas parallel to the fibers in a stressed state of pure shear could
occur even in experiments for torsion of correspondingly oriented
samples of square section.

The ultimate shearing strength along the fibers of pine in experi-
ments for torsion is 2.5-3-fold higher (about 194 kg/cmz) than in the /59
experiments for simple shearing according to GOST 6336-52.

This discrepancy can be explained not only by the effect of addi-
tional stretching stresses developing on the shearing area in the GOST
sample, but also partially by the constraint of torsion deformation
during tests.

During torsion there is no complete correspondence between the cir-
cumstances of the experiment and the calculated plan. The calculated
formulas for stresses that develop during torsion of an orthotropic
elastic rod of square section were produced on the assumption that the
distribution of these stresses depends only on two coordinates and is
not changed along the axis of the rod.

When testing for torsion in standard machines, the end sections %
of the sample are rigidly clamped in metal clamps and therefore cannot
be freely distorted. During such constrained torsion, additional !
perpendicular and tangential stresses develop along the clamped ends
of the sample.

As M. S. Drozd [31] showed, rigid fastening of the ends of a

prismatic isotropic rod during torsion causes an additional rotation

of the end sections in a direction opposite to the direction of the main
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torsion. Here additional tangential stresses develop on the areas
that are parallel to the axis of the rod, directed opposite to the
main calculated stresses of free torsion active on these areas.

Thus, the tangential stresses that are active on the shearing areas
parallel to the axis of the twistable rod near the ends where the
crack begins are lower than the calculated stresses of free torsion,
while the ultimate strength that can be determined from torsion experi-
ments in this case will be exaggerated.

A quantitative evaluation of this exaggeration has still not been
made since the problem of constrained torsion of a prismatic rod has only
been solved for an isotropic material.

The actual resistance of wood to shearing along the fibers during
pure shear must be lower than that amount that is obtained from the
experiments for torsion, but it goes without saying, that they are
higher than those yielded by shear tests, for example, according to
GOST 6336-52.

Shearing along the fibers can also occur during bending, on the
neutral layer of a beam. For this shearing to occur before the greatest
perpendicular stresses reach the corresponding limit amounts, tht ratio
of beam section height to its span must be fairly large.

The effect of all the aforementioned circumstances can be excluded /60
to a certain measure, while the testing technique can be simplified,
if in order to determine the resistance of fibrous orthotropic materials
to shearing along the fibers one adopts the following method.

It is known that during compression and stretching of samples whose
axis comprises a small angle with the direction of the fibers, destruction
occurs on inclined areas by shearing of the wood along the fibers.

Thus, the shear resistance along the fibers can be defined from results
of testing wood for stretching or for compression at an angle to the

1 The tangential stresses are distributed on inclined sections
of long stretched samples velatively uniformly. Although additional
perpendicular stresses act on these sections, their effect on

shear resistance can be evaluated. This method is presented in detail
in publication [11] and in section 14 as applied to wood and to fiber
glass-reinforced plastics.

1Ye. M. Znamenskiy and V. I. Norovskiy also sgggested_th;s approach. A.
Jlinen [84] later studied tbis method as applied to Finnish wood types.

fibers.
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Shear testing. Even greater difficulties arise in studying the
resistance of wood or any very anisotropic material to the effect of
tangential stresses not along the fibers, but on areas inclined to
the fibers. It is apparently impossible in this case to produce a
uniform stressed state of pure shear: even the conventional strength
specifications that can be defined during shearing along the fibers
according to GOST 6336-52 are very complicated to obtain at an angle
to the fibers.

None of the methods used in testing wood for shearing along the
fibers is suitable for studying resistance at an angle to the fibers
since destruction generally occurs by shearing on a weak plane,
along the fibers and not in the direction of the tangential stresses or
shearing forces.

The only possibility for obtaining an approximate quantity for the
ultimate strength of wood under the influence of tangential stresses at
an angle to the fibers is to test a tightly clamped sample under con-
ditions of forced shearing in an assigned direction. This method has
long been used for steel samples. The stressed state here also does
not correspond to the pure shear, but the obtained results can be
viewed only as approximate amounts of technical, but not physical
strength characteristics of the material during shear. Appropriate
attachments were used in different versions by Lange and Kramer [18,5]
for shearing wood and plywood along the fibers.

The widespread use of wood and wood materials in aircraft construc-
tion made it necessary to study the strength of these materials during
shearing in different directions. The Junkers firm attachment [102]
is known. It is used for forced shearing on two areas of the sample
that is tightly fit on bushings. It is cut by the movement of a punch.
This attachment was suggested by R. Keylwerth. With proper fit of the
sample, it avoids bending and stretching stresses on the shear areas.
Theultimate strength of the wood in the tests on this attachment is
therefore considerably higher than on others. However the photographs
of the samples that were broken down in this attachment show that the
wood experiences considerable crumpling before failure. As a result,
a small gap is formed and rupture cracks appear on the convex side of
the slightly bent sample [102].
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The attachment that has been suggested for testing wood for shearing
in different directions [5] differs from Keylwerth's attachment because
the sample is not fit to the bushings before testing, but is tightly
clamped in the punch and in the matrix by special clamping screws. The
sample dimensions are selected so that the crumpling area is signifi-
cantly greater than the shearing area and therefore, during loads that
cause shearing of the sample, the crumpling of its surface is quite
insignificant. The sample dimensions are 5 x 20 x 80 mm. The crumpling

2 and the shearing area is 2 x 20 x 5 mmz.

area is 20 x 40 mm

Crumpling of the surface in the tested samples has only a local
nature. It appears near the shearing site during considerable move-
ments of the punch. In the beginning of testing, the stress on the
shearing area is relatively uniform and is fairly close to the pure shear
scheme.

Experimental determination of the quantities that characterize
resistance of plywood to tangential stresses is done in principle by the
same method as testing of wood for shearing in different directions.

The attachment for testing plywood and fiber glass-reinforced
plastics for shear is given in publications [5] and [12].

The resistance of plywood to tangential stresses can be studied
by other methods besides shearing. Another, very popular method is
testing for distortion recommended by GOST 1148-41 '"Methods of Testing
Physical and Mechanical Properties of Aviation Plywood." A hinged frame
recommended by GOST for these tests transforms the compression into
shear. A stress close to pure shear is attained by simultaneous trans-
mission to the plywood sheet of stretching and compressing stresses that /62
are equal in absolute amount and are directed in two mutually perpen-
dicular directions. The transmission of these stresses from the frame
hinges to the sample occurs through the main bosses glued on the edge
of the plywood sample. The nature of failure of the plywood samples,
as far as one can judge from the photographs given in several studies,
does not always correspond, however, to the stress of pure shear.

Failure often occurs from the local swelling of the plywood. Thus,
testing for distortion makes it possible to verify the properties of
plywood under conditions that are close to the operation of plywood
casing of the fuselage. But in this form it can hardly characterize
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the resistance of plywood to pure shear that passes, for example, on
the neutral layer of the plywood beam that can be bent in the layer
plane. The last time distortion testing was used fiber glass-
reinforced plastic was tested.

A. Jlinen [98] suggested a somewhat different type of hinged
frame to determine the shear moduli of wood. The wood in this frame
is not secured on four, but only on two edges. Iocal swelling of the
middle of the sheet therefore does not occur.

The study of plywood strength used an attachbment that was close
in the sample loading plan to the frame of Jlinen [5]. Here the upper
and lower halfs of the sample can be moved to opposite sides. The
samp le has a free field (between the attachment plates) 40 mm wide and
180 mm long. The length of the sample edges that are clamped in the
plates is 300 mm. The junction from tke long edges to the shorter i
working section (free field) is rounded to reduce local stresses.

Failure in this case usually occurs in the middle of the free field
of the sample. It allows the hypothesis that the nature of stress on
the failure plane is very close to the uniform stress of pure shear.

If a sample is tested whose axis is perpendicular to the casing
fibers, initially the plywood is separated into layers on the areas that
are parallel to the casing fibers. The reason for this separation is
apparently the shearing of the outer veneer sheet layers aleng the
fibers under the influence of tangential stresses. They develop on these
areas during pure shear (according to the law of paired tangential
stresses). The beginning of separation into layers in the sample cor-
responds to the moment the load drops during testing.

When testing samples for distortion whose axes make a 45° angle
with the casing fiber direction, failure does not occur by shear, but
by rupture of the plywood on the weak plane parallel to the fibers under /63
the influence of the main stretching stresses. At the same time,
swelling folds appear that pass perpendicularly to the rupture cracks.
They develop under the influence of the main compressing stresses.

Thus, failure by shear occurs during distortion only for samples
whose shear plane is parallel to the casing fibers, i.e., during so-
called parallel shear. Testing for distortion cannot be recommended

61




oy
e

to determine the resistance characteristics of plywood to tangential
stresses with any orientation in relation to the fibers, judging from
the appearance of the samples that were destroyed during diagonal
shear, i.e., at a 45° angle to the fibers.

The results of testing plywood for distortion generally proved to
be somewhat lower than the shear testing results according to the method
previously described.

According to the data presented in the references [16], the ultimate
strengths of plywood during shear also exceed its ultimate strengths
during distortion. The first explanation for this fact should be sought
in the differences among the stressed states that develop on the failure
areas during these two types of testing.

The shear testing sample is close to T.ange's samples for shearing
of wood. F. P. Belyankin [18] used them to study the stress in the
failure zone by the optic method. This study shows that despite the

two-sided shearing, the epures of tangential stresses represent a
single-humped curve. The law of perpendicular stress distribution in

Lange's sample is almost the same as in bending. In our sample, the ‘
additional splitting of the middle of the sample on its contour re-
duces the amount of stretching stresses in the lower part of the sample l
and results in the fact that perpendicular stresses are compressing '
probably over almost the entire shear plane.

During distortion, the compressing stresses are missing on the
failure area, while the stretching stresses can develop when the i
attachment is incorrectly installed in the machine.

The actual pure shear resistances probably should lie between the
testing results for shear and for distortion. h

Strictly speaking, it is impossible to experimentally determine the
resistance of wood anisotropic material during pure and uniform stresses
of stretching, compression, and especially, pure shear at an angle to

the fibers. 1In all types of tests, perpendicular and tangential stresses
develop simultaneously on those areas where failure occurs. The stressed
state is to a certain measure nonuniform.1

g, p. Belyankin [18] was the first to study the methods of ,
wood for shearing along the fibers by examining the develop. . oy
stressed state. He applied the fi:~t classic theory of stre . ¢
the wood.
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The fairly good coincidence in the results of testing wood for
compression, stretching and shear in different directions with the
calculation results using formulas presented in chapter 1 and derived
for resistance to pure shear or stretching and pure shear, is explained
by the fact that the strength of anisotropic material in any stress
depends on these resistances. This coincidence 1is better, the more
strictly the same type of stress is maintained over the dangerous areas
at different angles of incline of the fibers, i.e., the freer and purer
the type of testing is. This coincidence indicates the existence of
physical strength characteristics in simple stressed states (linear
stretching, pure shear) that change depending on the angle of fiber
incline according to the laws for transformation of the fourth order
tensor components, and that determine the technical strength of an
anisotropic material during its testing and during its operation in
structures.

9. Evaluating the Structural Strength of Anisotropic Materials from
Results of Mechanical Tests '

It is fairly complicated to evaluate the structural strength accor-
ding to the results of mechanical tests even for isotropic metal ,
materials [72] whose properties have been well studied. ?

This work does not examine those extremely important properties that
are characteristic for synthetic and wood materials, such as the
strong dependence of mechanical characteristics on the loading time
(rate of deformation), temperature, and on the item dimensions.

It is assumed that the temperature-velocity regime is maintained
the same for all stress orientations. When the results of this work
are used in practice it is necessary to take into account the tempera-
ture-velocity regime of loading and the dimensions of the structure.

Anisotropy of mechanical properties in materials has great importance
for an analysis of their structural strength. Failure of structural
parts in certain cases can be governed by an incorrect approach to
evaluating the material anisotropy [22, 74, 11917,

e csonabe o Nl 1,

In this respect it i1s most important to select the necessary charac- /65
teristics of the mechanical properties by which one can judge the
strength of the anisotropic material, and how much its anisotropy is
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important for operation of the structural part.

This question is impertant in formulating the specifications
for testing and inspection of new synthetic anisotropic materials ,
and in calculating and designing parts made of reinforced and wood
plastics, and sometimes made of metal alloys [22, 119].

One should first note once again that testing of samples whose
axes are mutually perpendicular (for example, oriented along and trans-
verse to the rolled metal sheet) is not sufficient to judge the degree
of anisotropy of the material's strength properties, since the inter-
mediate~diagonal direction can be weakened. Only a sheet material that
has the same quantities of strength characteristics in three directions
can be considered isotropic: in the direction of greatest strength and
at a 45 and 90° angle to this direction. If the difference between
these three amounts lies within the limits of testing results dispersion
(whose accuracy indicator does not exceed 57%), then the material can
be considered isotropic.

The degree of anisotropy of the material is judged best of all
from rupture tests.

One should be very cautious of the results from testing anisotropic
materials for transverse bending (static and impact). These results
are very dependent on the method of sample loading, the shape of the
sample and its dimensions (especially during bending of cantilever
samples). The bending testing results can therefore be viewed rather
as a technological test than as a method of determining the strength
characteristics of a material. The reasons for these results include:
inapplicability of the hypothesis on planar sections to the majority
of anisotroonic bodies that are in a stage close to failure; considerable
effect of interlayer shear, even during elastic deformations that
result in distoration of the deformability and strength of the laminated
samples. As a consequence of these reasons, this work does not examine
the results of testing for transverse bending.

An experimental analysis of the following mechanical characteristics
is needed for complete judgment on the strength of an . otropic material
with randomly orienced stress:

1. TFrom the stretching tests it is necessary to analyze the
ultimate strengths in six structural directions: in three directions
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of the material's axis of symmetry (direction of greatest strength and
two directions in space perpendicular to it) and in three diagonal di- /66

rections that lie in planes of symmetry and make a 45° angle with the
15 15 4

xy? c’yz, zx)'
2. 8ix ultimate strenaths for the same directions must be deter-

mined from compression tests.

axes of symmetry (o

3. Three strength characteristics during pure shear (r and

y T
Tyz)must be determined from shear tests (if more correct tezzs uﬁger
conditions of uniform pure shear are not possible). This requires data
on the material's strength with six different cases of shear on the
material's symmetry planes in the direction of the symmetry axis. In
other words, after testing the material, for example, by shear on the
plane perpendicular to the symmetry axis x in direction of the y axis
(Txy) and on the plane perpendicular to the y axis in direction of the
x axis (rt X), one should take from these two quantities the least as

the strength characteristic during pure shear = in which the

3
tangential stresses of the same quantity are acizve on the two examined
planes.

In order to avoid using the ratios between the amounts of resistance
with different types of testing, it is useful to also define the ulti-
mate strengths for shear on diagonal areas.

Eighteen strength characteristics of the orthotropic material are
thus determined in the general case of the volumetric problem: six
in stretching, six in compression and six in shear. Based on the 18
quantities, one can compile two tables for the strength tensor components
(see table 1.3) separately for stretching and separately for compression.
One can also compute the resistance with any orientation of the simple
stress of stretching, compression or shear according to formulas (1.20)-
(1.25). In shear tests, a fortiori inaccurate characteristics of the
material's strength are obtained. It is therefore very desirable to
replace these tests with those that reflect more completely the calcu-
lated plan of uniform pure shear stress randomly oriented in the material.
This plan can be fulfilled with a certain approximation by testing
thin-walled pipes for the combined effect of internal pressure, axial
compressing force and torque. By changing the correlations between
these loads, one can obtain a pure shear stress of different orientation
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in relation to the axis of the pipe, parallel to the fibers.

Such tests are fairly complicated. We do not know of any pub-
lished sources that cover the results of these tests for very aniso-
tropic materials. We therefore have to start from very simplified
experiments for shearing and simple shearing that have been used in

practice. Only in the first rough approximation do they permit an evalu- /67

ation of the strength of anisotropic bodies in a uniform pure shear
stress,

The task of strength verification is simplified for a sheet ortho-
tropic material when it is loaded in the sheet plane. The number of
necessary characteristics of the material is reduced.

The ultimate strengths are determined in stretching for the longi-
tudinal, transverse and diagonal directions arranged in the sheet
plane, i.e., only three quantities: ogs Ogg and Op5-

Three analogous quantities are defined during compression: 99 990
and O Three types of samples are tested for shear in the sheet
plane. They conform to all three directions of tangential stress
on areas perpendicular to the sheet plane, longitudinal, transverse
and diagonal: T0r T9p and T45 The least of the quantities T and TgQ
is taken into account in the calculations for the effect of tangential
stresses.

In order to characterize the sheet orthotropic material when there
are forces perpendicular to its plane, one should also determine the
ultimate strengths in compression perpendicular to the sheet plane,
and mandatorily with shearing in the layer (see fig. 1.1).

Tt is of practical importance to investigate the quantity and ori-
entation of the possible maximum amount of resistance of an anisotropic
material. When new anisotropic materials are created, for example,
reinforced plasties, it is useful to be able to predict the directicm
of the greatest and least strength, if one knows the strength charac-
teristics in the direction of the symmetry axis. One can draw certain
conclusions on this question for a sheet material by examining formulas
(1.22). The extreme value of the ultimate strength 9 corresponds to
those correlations 9gs 990 and T4 in which the first derivative
from the denominator of the right side of formula (1.22), taken at
angle o, becomes zero. It follows from this equation that the diagonal
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direction (a=45°) can be the extreme (omaxﬂUAS) only with ap=dgg(c=l1).

The maximum value of op With u=60° (o =0gq) 1is Lossible on the

condition that 0gg™ 945 » and with o=30° Ti;ax=°30> with op=0,¢.

Thus, an oriented plastic that has the same number of fibers laid,
for example, in a longitudinal (a=0) and in a diagonal (e=45°) direction,
and where there is no reinforcement in the transverse direction, will
have the greatest ultimate strength at a 30° angle to the longitudinal
direction. If it is necessary to coordinate the Jdirection of the
greatest material strength during stretching with the trajectories of
the main stretching stresses, one can thus select the material of opti-
mal anisotropy.

Scattering of the testing results is especially great for materials
that are distinguished by strong anisotropy [120]. Even when testing
rolled steel of comparatively low anisotropy, lack of attention to the
possible scattering of results can result in errors as shown in section
12 and in publication [13]. In turn, a small disorder in orientation,
for example, nf a glass fiber in a plastic part, can result in a con-
siderable decrease in its strength.

The second circumstance that impairs the direct use of testing
results is the fact that stress in the samples made of anisotropic
materials differs more strongly from the uniform than in metal iso-
tropic samples. The shape of the sample and the method of transmitting
the load to it therefore require especially intent attention in selecting
the methods of testing anisotropic materials.

For anisotropic materials, it is veiry important to decide what
criterion to use in determining the quantity of the strength charac-
teristics from the results of testing the samples.

It is known that wood undergoes plastic deformation (is pressed)
during compression transverse to the fibers in a radial direction, but
is easily sheared (brittle failure) if the direction of the compressing
force makes a 45° angle with the fiber direction and lies in the
radial plane.

The dangerous or limit state is defined differently for these two
cases of wood compression. A commou characteristic of strength in
technlcal, engineering understanding in both cases is the stress that
complies with the transition of the material to a dangerous state.
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GOST 6336-52 '"Methods of Physical and Mechanical Tests of Wood" and
"Standards of Planning Wood Designs SNiP P-V,4-62" by the terms
ultimate strength or resistance mean that general case where this
amount for the same directions can comply with strict’™ failure of
the sample, and for others, with the explicit transition beyond the
limits of application of Hooke's law, but without signs of failure.

These features of very anisotropic materials are so characteris-
tic that there are suggestions [23] that in developing a theory of
elastic-plastic deformation of anisotropic bodies, the limits of pro-
portionality and not the yield stress should be taken as the material
characteristics. These limits can be approximately defined for each
structural direction,

One can assume that all characteristic properties of orthotropic
materials that determine the ultimate amounts of stress in the transi-
tion from one mechanical state to another must change when the coor-
dinate axes rotate according to the laws of transformation of fourth
order tensor components during coordinate axis rotation. This hypo- /69
thesis is confirmed in fatigue, impact and prolonged tests.

There are strongly anisotropic materials that fail without noticeable
residual deformations, but with stresses that differ considerably
from the amount of ultimate proportionality. These are materials whose
deformation comprises elastic and very elastic deformation, while the
shape of the stretching pattern depends strongly on the rate of
sample deformation.

For these materials, and they include directed fiber glass-rein-
forced plastics, the amount of ultimate resistance cannot be identified
with the ultimate proportionality mor the yield stress.

One can define the amount of ultimate resistance with any orien-
tation of stress in any anisotropic body if one understands by this
amount , the stress that corresponds to the transition of the material
to a dangerous state in the general enginmering sense of this word.

For some cases this can be the yield stresses (for example, during
stretching of rolled steel). For others it is the ultimate strength
(for example, in the case of stretching films of direction polymers),
and in third cases, limits of proportionality and limits of endurance.
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The amount of limit resistance should not be linked to any one
type of limit state or failure, since for all types of transition of
the anisotropic materials from one mechanical state to another, there
hypothetically are certain general tensorial laws, It is the main
task of this work to explain these laws.

As experience has shown, these general laws are approximately con-
firmed in those cases where strength anisotropy results in a different
type of dangerous state with different orientations of stress in the
material , for example, in wood compression.

The book of Dzh. Nay gives a systematic analysis of those properties
of crystals for which the rank of the corresponding tensor has been
determined. Nay includes among the properties that are not expressed
by the tensors the separation stress on the soldering plane and the
yield stress during plastic deformation.

Taken separately from each other, these quantities cannot be
classified as tensors, if only because they do not exist for all di-
rections in the crystal.

Undergoing brittle faiiure by separation on the soldering plane,
the same crystal can reveal plastic deformation with another orientation
of the stress.

The strength characteristics that are experimentally defined in /70
chapter II1 for anisotropic materials (ultimate resistances) exist for
all directions. They conform to the state that is dangerous for the
efficiency of the parts of real structures in a short-term static load.

Further wise combination of testing samples and parts in the complex
problem of evaluating structural strength [72] is necessary for an
efficient use of anisotropic materials in engineering.

Chapter IITI. Results of Experimental Study on Anisotropy of Mechanical
Properties of Structural Materials

10, Wood and Wood Materials
The theoretical conclusions of chapter I are compared in this

chapter with the results of mechanical tests on different anisotropic
materials, wood, metal and fiber glass.

A large portion of the testing was done in the laboratory of
resistance of materials in the Leningrad Forestry Engineering Academy
by the author, or with the author's participation. Some results were
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taken from published sources.

Publication [5] has described in detail the experimental study of
strength properties of pine and plywood.

The assumption on the orthogonal anisotropy of wood that permits
tensorial formulas to be applied to it , which were derived in chapter
I ,makes certain requirements of the material: dimensions and shape of
the samples tested for strength of wood.

The assumptions at the basis for the derivation of the tensorial
formulas do not take into consideration the curvature of the annual
layers, the differences in the properties of the early and late zones
of the annual layers, the heterogeneity in the wood trunk along its
length and diameter, and the irregularities in the structure and flaws
in the wood. Requirements are consequently made for the wood samples
that are suitable for the purposes of this study.

The pine wood was pu chased in the Lisinsk educational-experimental
tree farm of the Leningradskaya Oblast in the fall of 1950. From the
two experimental trees, a portion was used that was 6 m long from the
base. The trunk (without roots) diameter in this section was from 50
to 60 em. Such a large trunk diameter was selected to reduce the effect
of annual layer curvature on the testing results of the wood samples.

The composition of the felling area plantings according to data of
taxation documents was 3Ye30s2B2S with average age of 87 years, full-
ness 0.6 and II quality index. The pine had a cross section of regular
circular structure for the annual layers.

All the samples were cut from the alburnum portion of the wood
because the radius of curvature of the middle annual layer remained
the same for the variously oriented samples designed for one type of
testing. This radius was no less than 20 cm for the stretched samples
and about 25 cm for the samples used to determine the elastic constants
of wood in compression [1i,2].

Fach beam was sawed into chocks from 50 to 70 em long. The ends
of the chocks were marked on measuring rods. Their centers were arranged
in one growth zone, while the axes of the measuring rod sections
with radii of the annual layers made different angles (every 15°).

The measuring rods were punctured on a fiber from each chock, and
then processel and marked on the samples so that the edge of each
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semple made a certain angle o with the fiber direction. This angle had
seven different values (every 15°).

In order to make samples for stretching, measuring rods were used
with a section of 200 x 30 mm that were oriented at the end at seven
different angles to the radii of those annual rings that pass in the
middle of the larger measuring rod section. Wood containing a water
layer, blue rot or trunk eccentricity was not allowed in the working i
section of the sample. ;

L SR AN e S i o

The effect of slight cross grain present in the base part of the ?
beam was excluded in the following manner. When the measuring rods :
were punctured, the true direction of the wood fibers was established
that was used for further marking of the samples.

During the tests, the moisture content of the wood for the entire
batch of samples was almost constant and comprised from 10 to 12%. !
The volumetric weight of the wood in the absolutely dry state was about
0.4 g/cm3. The number of annual layers in 1 cm was from 5 to 10. The
percentage of the late wood was from 16 to 20. The ultimate sFrength
of the wood in compression along the fibers averaged 446 kg/cmz

Despite the careful marking and preparation of the pine wood samnles
from a large diameter lcg, we did not succeed in completely eliminating
the effect of the annual layer curvature in the samples. The orientation
of the sample axis in relation to the annual layers changed somewhat
in the working section of the long sample designed for stretching.

This was especially influential in the samples whose axes had to be

arranged in a tangential direction and in directions clecse to the tan-
gential. 1In processing the stretching testing results the waod was

therefore viewed as a transverse-isotropic material, i.e., only the /73
orientation of the sample axis in relation to the wood fibers was

fixed.

The effect of curvature in the annual layers can be considerably
reduced if the samples for stretching testing are cut not from natural

wood, but from a stripped veneer sheet. In this case, the longi- g
tudinal axes of all the samples are arranged fairly accurately in the !
tangential plane, while the axis of the sample cross section that is
perpendicular to the veneer sheet plane is directed to the radii of the
annual rings of that wood of which the veneer sheet was made.
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A stripped birch veneer sheet of the I sort, from 1.1 to 1.2 mm thick
was obtained from the Ust'-Izhora plywood plant. The samples were cut
at different angles to the fibers at 15° intervals.

The Ust'-Izhora plywood plant, in addition to the veneer sheet,
also provided plywood that was especially glued from the same veneer
sheet. The direction of the fibers was the same in all of its layers
(parallel). Gluing was done on a 1:1:1:1:1:1:1:1 plan. Thus, for the
eight layers of the veneer sheet there were eight glued interlayers
(: = interlayer). The thickness of the parallel plywood averaged 8 mm.

The parallel plywood was accepted as the material used to produce
large-sized uniform samples that did not contain curvilinear annual
layers. By this method one could model the wood as an orthotropic body.

Aviation plywood of I sort BS-1 was also tested (birch, glued
bakelite film). It was manufactured according to GOST 102-49 by the
Murom, Kostroma and Manturovo plants.

The plywood was 10 and & mm thick respectively with 9 and 7 layers
of veneer sheet laid mutually perpendicularly with alternating place-
ment.

Bakelite plywood BFS (GOST 1853-51) with the same arrangement of
the veneer sheet was 10 and 7 mm thick respectively with 11 and 7 layers
of birch veneer sheet.

All the experimental studies published in works [1-8] were done on
the wood materials listed above.

The results of the classic study of A. N. Flakserman that are used
in some of these works and in this chapter were obtained on pine that
was very close in properties to the wood described above. The ultimate
compression strengths along the fibers had practically the same value
for both woods.

Stretching strength. Figure 3.1 presents the testing results from
stretching three very anisotropic wood materials, birch veneer sheet,
parallel plywood and pine (see also curve 4 in figure 3.4). For all [74
the angles of fiber incline, the curves constructed from the tensorial
formula (1.22) show a fairly close correspondence to the average
experimental data. Failure of all three material samples occurred on
the plane parallel to the fibers and inclined to the sample axis. Thus,
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on the area of stretching failure, not only perpendicular, but also
tangential stresses were generally active. For plywood and the veneer
sheet samples were used according to GOST 1143-41, and for wood a sample
was especially developed ([51, fig. 1.1) whose working section had
dimensions of 6 x 20 x 40 mm.
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Figure 3.1. Results of Testing Wood
Materials for Stretching. Curves
constructed from tensorial formula
(1.22)

l--for birch veneer sheet; 2--for
parallel plywood; 3-- for pine. The
average values of ultimate strength
according to testing results: c¢--
for veneer sheet; x--for plywood;
®--for pine.

Figure 3.2 presents the results of testing aviation and bakelite
plywood for stretching. They were made by G. M. Rubinshteyn [5]. The
curves were constructed using formula (1.22).

M. M. Chernetsov [77] tested wood of different kinds for stretching
in different directions transverse to the fibers on standard shape
samples (GOST 6336-52). Fe trie’ (in the same way, for example, as
the Italian authors [92] did for anisotropic metals) to express
the dependence of ultimate strength on the angle between the direction
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Figure 3.2. Results of Testing Plywood for
Stretching

a and b--aviation, 8 and 10 mm thick; c¢ and
d--bakelite, 10 and 7 mm thick; O--average
values of ultimate strengths from experiments.
Hatched region is the actual scattering of
experimental data.

of stretching and the tangential direction in wood (annual layer) by
empirical correlation equations.l It is natural that the coefficients
in these equations are different for different types of wood and

different testing conditions (temperature, moisture content).
lEmpirical relationships are generally very widespread in wood science.
Thus, in the bouk of F. Kollman ([102], section 415) they are even
given to compute the modulus of elasticity of wood in different di-

rections, although the corresponding theoretical formulas have been
known since the time of Saint-Venant and Voigt.
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Figure 3.3. Results of Testing Pine
for Stretching Transverse to the Fibers
[77). Values of ultimate strength from
the experiments:

®--average; X--extreme. Hatched region
is the actual dispersion of the results.

Figure 3.3 presents a comparison of the experimental data of
Chernetsov for pine with a curve constructed from the tensorial formula
(1.22) that shows good agreement with the experiment.

Effect of incline of fibers on compression resistance of wood.
Compression resistance of wood in different directions has been
studied the most completely [71,36,85]. All the researchers tested
small pure samples, for the most part in the shape of cubes. On the
condition that the curvature of the annual rings was small within the
sample, the wood in these studies can be considered an orthotropic
material.

Chapter I derives formula (1.22) which permits computation of the
ultimate strength of wood during compression in a random direction in
three different cases of compressive force orientation: in tangential
and radial planes, and transverse to the fibers.

Figure 3.4. (curves 5,2 and 3 and the points referring to them)

presents the results of experiments by A. N. Flakserman. They are famous

for their careful execution and accurate orientation of the tested
samples. The spread of the testing results, as the researcher asserts,
was comparatively insignificant: the scattering of points usually
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Figure 3.4. Dependence of Pine
Strength during Stretching, Compression
and Shear on Angle of Incline of Force
to Fibers

1--shear (with a=0--shearing along
fibers; with «=90°--intersection of
fibers); 2--compression in tangential
plane; 3--compression in radial plane;
4--stretching; 5--compression in plane
perpendicular to fibers. Curves cons
structed according to tensorial formulas
(1.22)and (1.24). Ultimate strengths

expressed in percentages of amount cgo -

ultimate strength in compression along
fibers.

found in the wood tests was not observed in his diagrams.

In figure 3.4., curves 2,3,4 and 5 were constructed from the ten-
sorial formula (1.22). The points plotted from the experimental data
of Flakserman lie fairly close to curves 3 and 2, thus confirming the
correctness of the formula for wood compression. The somewhat greater
deviation of the experimental data from curve 5 that was constructed
for results of compressing wood transverse to the fibers in different

directions in relation to the radii of the annual layers is primarily
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Figure 3.5. Polar Diagrams of Change
in Ultimate Strength of Wood during
Compression Transverse to Fibers [91]:
l--white beech; 2--pine; 3--spruce.

explained by the fact that the change in wood resistances in these
directions is not great. Precise fixation of the angle between the
directions of action of the load and the radial direction is very 177
difficult due to the curvature and irregularities in the shape of

the annual layers.

Gaber [91] made a study of the strength of wood in different
directions transverse to the fibers during compression. Figure 3.5
presents the polar diagrams for change in resistance of wood of dif-
ferent types during compression transverse to the fibers. They were
constructed according to CGaber's data (solid lines). Curves constructed
from the tensorial formula (1.22) are also plotted on this figure in
one quarter with a dotted line. The detected discrepancy can apparently
be entirely explained by the strong effect of curvature in the annual

rings. It is very significant in the samples that Gaber used in his
experiments. The samples were large (5 x 5 x 5 cm), therefore there /78
was considerable scattering of the points.

Compression of the plywood. During the testing of natural wood

for compression, the curvature of the annual layers and the nonparallel
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Figure 3.6. Results of Testing Birch Parallel
Plywood for Compression

a--curves of change in ultimate proportionality
(1) and conditional ultimate strength (2) depen-
ding on angle of incline of fibers; b--compres-
sion diagrams with different angles a of fiber
incline.

nature of the ends of the sample as a consequence of shrinkage inevitable
for samples cut at an angle to the fibers can have an especially strong
effect. Somewhat better conditions can be obtained by testing parallel
plywood for compression in the attachment suggested by I. P. Boksberg [5].
Figure 3.6 ,a presents the results of testing parallel birch ply-
wood for compression in the attachment. Figure 3.6 b presents a view
of the compression diagrams obtained for parallel plywood with different
cugles of incline of the fibers. During compression along the fibers
and at an angle to the fibers of less than 45°, the testing ends with
destruction of the sample and dropping of the load. Here failure in

compression, in the same way as stretching, occurs on the areas that
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are parallel to the fibers. With angles of incline of the fibers
~xceeding 45°, and during compression transvexse to the fibers, the
load does not drop and failure of the sample does not strictly occur,
i.e., separation of one part from another. Failure her: has the nature
of a local loss in stability and further pressing of the sample section
that is located between the attachment clamps. Thus, with angles of
incline of the fibers over 45°, one can only determine the conditional
ultimate strength of the parallel plywood during compression, i.e., the
stress in which the compression diagram deviates from the initially
rectilinear section, or essentially, the ultimate proportionality O
Figure 3.6 b makes note of the loads used to determine the ultimate
proportionality o_, and what loads are used for the ultimate strength
op with different angles of fiber incline.

In figure 3.6a, the crosses mark the average values for the ultimate
proportionality. The dark circles mark the average values for the ulti-
mate strength ..ccording to experimental data. Formula (1.22) is used
to construct two curves for the change in resistances of the parallel
plywood depending on the angle of fiber incline. In constructing curve
1, it was assumed that in the formula, 901990 and 945 i.e., the ulti-
mate resistances to compression with all angles of incline of the fibers,
equal the limits of proportionality 0y In constructing curve 2 it

was assumed that 0=0p s while 6gg= © and O45= Ops 28 is usually accepted

for natural wood, P

Both curves pass very close to the average quantities 95 of the
ultimate proportionality experimentally obtained with different angles
of incline of the fibers and marked by crosses in fig. 3.6a.

Thus, the indicators for compression resistance of parallel plywood
that are accepted as equal to the conditional ultimate strengths, change
depending on the angle ¢f incline of the fibers according to the ten-
sorial formula. This thus confirms the correctness of the adopted
assumption as applied to ccmpression of a highly anisotropic material.

Tests of parallel plywood for compression in the attachment were
made onn Gagarin's press. From 10 to 12 samples were tested for each
angle of incline of the fibers. The accuracy indicator P was from
1.9% to 3.4%.
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Tests of aviation and bakelite plvwood for
mace in the dewvice of I. P. Boksverg [5].
are graphically illustrated in figure 3.7.
not greater than 5% anywhere, i.e., was in the limits of accuracy indi-
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Figure 3.7. Results of Testing Plywood
for Compression

a and b--aviation, thickness of 8 and 10 mm;
¢ and d--bakelite, thickness of 10 and 7 mm.

compression were also
Some of the testing results
The accuracy indicator P was

cated in GOST 6336-52 to determine the physical and mechanical proper-

ties of wood.

hatched on the graphs (fig. 3.7) [5].

The area of actual dispersion of the testing results is:

average arithmetical wvalues for the ultimate strengths.

The black circles mark the

In all cases

of testing, the destruction of the sample occurred after the greatest

weight had been attained.

The ultimate strength with all angles of incline of the fibers

was computed by dividing the greatest load by the area of the sample

cross section.

30

Cubes were glued from the same plywood,

Their testing
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results are also plotted on the graphs (fig. 3.7).

On the graphs, the solid line indicates the curves plotted from
the tensorial formula (1.22). Ic¢ is apparent from the graphs that
by using the testing results with «=0, o«=45° and a=90° one can use
the indicated formula with a great degree of accuracy to compute the
ultimate strength of plywood during compression at any angle to the
casing fibers.

It is further apparent from the graphs that the ultimate strength
in compression along the casing fibers («=0) is higher than the ultimate
strength in compression transverse to the fibers (a=90°). These
graphs were constructed according to experimental data for certain
plywood sheets. 1In the majority of cases the graphs have an analogous
appearance for each separate sheet. In order to produce reliable
average data, it is necessary to strive to increase the number of
tested samples taken from different sheets, bu: not to increase the
number of samples from the same plywood sheet.

The experiments showed the lack of a clearly pronounced link
between the thickness of the plywood and the ultimate compression
strength. The ultimate compression strength for aviation and for

bakelite plywood systematically diminishes with an increase in the angle
a. It reaches the least value with o=90° (comnression transverse to i
fibers of plywood casing). The formula (1.22) reflects well the laws
governing the change in plywood ultimate strength in compression de- /82
pending on the angle of incline of the casing fibers to the sample axis.
Compression of DSP wood plastics. The book of F. P. Belyankin,
V. F. Yatsenko and G. I. Dybenko [l9] presents the results of tests on
three types of DSP plastic for compression in different directions in Q
relation to the casing fibers.
DSP-B plastic is made of layers of veneer sheet with mutually per-
pendicular arrangement of the fibers. 1In the direction of the fiber
casing, 20 times more layers of veneer sheet are laid than in the per-

pendicular direction, i.e., this plastic is similar in structure to
parallel plywood. DSP-V plastic is made so that the fibers in ali
adjacent layers of the veneer sheet are perpendicular to each other,
i.e., the number of layers laid longitudinally and transversely is the
same (analogous to bakelite plywood).
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Figure 3.8. Results of Testing
I.aminated Wood Plastics for Com-
pression [19]

1--DSP-B; 2--DSP-V; 3--DSP-G.
Average experimental data: O--
for DSP-V; X--for DSP-B

DSP-G plastic has a "stellar" structure with fiber direction in
the adjacent veneer sheet layers at a 30° angle to each other,

In figure 3.8, the results of these tests are compared with curves
constructed from tensorial formulas. For DSP-B plastic the coincidence
of this curve with the experimental data is even better than in the case
of constructing the corresponding curve by the correlatiocn equation as
done in publication [19].

Testing of wood and plywood for shearing and simple shearing. Pine
was tested for shearing in different structural directions in devices
described in publication [5]. Measuring rods 200 x 30 and 60 x 80 mm
were used to make the samples. i

Irregularities in the structure of wood resulted in the fact that
despite the careful marking and preparation of the samples, the orienta-
tion of the samples far from complied with the assigned in all cases.
Therefore not all the samples were used for tests. In figure 3.9,
curves 1,2 and 3 were constructed from the testing results from three
series of samples. Each point corresponds to the average ultimate
strength computed from the testing results from 2 to 20 equally ori-
ented samples. The smooth lines on this figure show the change in
ultimate strength with a continuous change in angle o, computed
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Figure. 3.9. Results of Testing Pine
(1,2,3) and Parallel Birch Plywood (4)
for Shear
Average values of ultimate strength for
pine: X--for curve 1; o--for curve 2;
®--for curve 3; O--for birch plywood.

according to the formulas derived in chapter I. Curve 1, constructed /84
from the formula (see also 1.24)
v . il—t— \
S , 3.1
i ‘cos*a sinfay , sin®2z G-
cosQ:( e )-« =
-fa ~at <ot
(%

shows the change in wood resistance to tangential stresses directed

perpendicularly to the radii of the annual layers (axis r), depending
on the position of the plane of action of these stresses, if it is
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rotated around the & is r (this area remains parallel to r). Thus,
with o=0 on this curve, Tp=Ta1s the ultimate strength of wood during
shearing along fibers in the radial plane. With a=90°, Tp=l 418 the
ultimate strength when the fibers are cut in a tangential direction.
The average values for the experimental results for seven different
angles correspondinc to this curve are marked by crosses.

Curve 2 in figuve 3.9 and curve 1 in figure 3.4, constructed accor-

ding to the following formula [see also (1.24)1:

2 = ! 3.2
b costa  sinta ) _ sin?2a ’ 3.2)

- 40
e “ar e
(ar

show the change in wood resistance to the effect of tangential stresses

cosQ:(

directed perpendicularly to the annual rings (t axis). The plane of
action of these stresses in this case should be turned around the t axis
(the plane remains parallel to t). With ¢=0 on this curve, TR=Tygii-€.y
the ultimate strength during shear along the fibers in a tangential

plar , and with «o=90°, 1g=T4ps L.e., the ultimate strength when the
fibers are intercepted in a radial direction. The corresponding experi-
mental results are marked by circles.

Curve 3 shows the change in wood resistance to tangential stresses
perpendicular to the axis that comprises a 45° angle with the radial and
tangential directions, if the plane of action of these stresses is
turned around the same axis. In this case the experimental results are
marked by black circles. They were obtained from testing samples cut
from measuring rods forming a 45° angle at the end with the annual ring.
The curve that conforms to the latter case should be considered less
reliable than the previous two curves, since the orientation of the
shear plane here is maintained less accurately, especially at o > 45°.

Based on experimental data (curves 1,2 and 3, fig. 3.9) one can draw
a conclusion regarding the small difference in the wood resistance to
shear ir different directions comprising the same angle with the fiber
direction, i.e., the relative suitability of the calculated plan of
transverse isotropy in this case (see fig. 3.4., curve 1).

It should be noted that curves 1,2 and 3 have a clearly pronounced

maximum with angle of incline of the shear plane to the fibers of 60-70°.
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Figure 3.10. Results of Testing
Pine for Shear

Average values of ultimate strength:
O--for curve 1; X¥--for curve 2.

Figure 3.10 presents the testing results for another series of
samples. Here curve 1, constructed according to th¢ following formula

[see also (1.25)]: -~

1 3
B = e omem (3.3)
cust sinda
. ——— b e

-
“dr “ar

shows the change in wood resistance to tangential stresses directed
perpendicularly to the fibers and parallel to the r axis. The planes

of action of these stresses should be rotated around the r axis, while

the planes remain parallel to the r axis. Curve 2 is constructed from the

formula ,

LT TR
*rt “at
Thus, with a«=0° on curve 1, Tp Ty 18 the ultimate strength during
simple shearing transverse to the fibers in a radial direction. With
a=90°, T =T 18 the ultimate strength with fiber intersection. Here
Tar is lower than for the batch of samples used to construct the
curves in fig. 3.9. The ultimate shearing strength transverse to the

fibers for this series of samples is considerably higher than is usually
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obtained in tests according to GOST 6336-52. This can be explained
by the features of the device (in the tests there are no stretching
stresses on the shearing planes), as well as the possibility of sharp
increase in ultimate strength with the slightest deviation of the sample
shear area from the plane (with slight cross grain), since in this
case intersection of the wood fibers that fall under the punch begins
immediately. Among the shortcomings of this testing method one should /86
include the small dimensions of the samples. This always results in
a comparatively large spread of the testing results. 1Un fig. 3.10,
the circles and .rosses show the average quantities of the experimentally
obtained ultimate strengths. The average value of the testing results
from 3 to 15 samples corresponds to each point.

Figure 3.11 presents the results of G. G. Karlsen's experiments [41],
that confirm the tensorial formula (1.25).
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Figure 3.11. Ultimate Strength

of Pine to Shearing in Tangential
Plane Depending on Angle o between
the Direction of Tangential Stresses
and Direction of the Fibers

o ~-average values of 5 experiments
according to Karlsen [41]; X--accor-
ding to formula (1.25).

The experimental data that refer to several not extensively studied
cases of change in the strength characteristics of wood under the influ-
ence of tangential stresses depending on their angle of incline to the
fibers (fig. 3.9 and 3.10) makes it possible to believe that the general
formulas (1.21 and 1.24) and the particular formulas (3.1-3.4) given
in this paragraph provide a fairly good ccrrespondence to the testing

results.
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Figure 3.12. Results of Testing Plywood for
Shear

a and b--aviation, thickness of & and 10 mm;
¢ and d--bakelite, thickness of 7 and 10 mm.
Experimental values of ultimate strengths in
shear: @--average; X--extreme; o--average
during distortion.

o T o W B o A

Curve 4 is plotted on figure 3.9 for the change in ultimate
strength during shear of a parallel plywood. This curve passes higher
than the corresponding curves for pine. It shows the good coincidence
of the results of computation using the formula and the testing data.

Tests of parallel plywood confirm the existence of a maximum shear

resistance for wood with incline of the shear area at roughly a 60-70°
angle to the fibers.

ety TR

Tae results of testing aviation and bakelite plywood for shear are
given in fig. 3.12.. T  solid lines indicate the results of calcu-
lation using the tensorial formula (1.24,. The results of testing ply-
wood for distortion are plotted on fig. 3.12 in the form of individual
circles. The hatched regions on this figure represent the limits of

. ;ww-.,.u“wmwww«m-vm PRS-
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change in the testing results. The circles represent the average
ultimate strength wvalues. '
The curves for change in ultimate strength in shear for aviation
plywood & mm thick, and for bakelite plywood 10 mm thick are also pre- ,
sented in fig. 3.13. A comparison of the curves for .trength change /37
during stretching, compression and shear is given here for these two ‘
types of plywood.
For all types of plywood, the curves that are constructed from the
tensorial formulas (1.22 and 1.24) pass close to the average experi-
mental results. They do not go beyond the limits of their actual spread
anywhere.
One can thus consider that the change in shear resistance for ply-
wood depending on the angle of incline of the shear area to the fibers
can be expressed by the tensorial formula (1.24). Consequently, the

assumptions that were the basis for the derivation of this formula can
be applied to plywood: the assumption regarding the orthogonal aniso-
tropy of plywood and the assumption regarding the tensoriality of the

strength specificatioms of plywood under the influence of tangential %
stresses. '

The spread of results and inaccurate orientation for plywood is /88 .
somewhat lower than for wood, since in this case large-sized samples §

were used (12 x 80 mm) and the curvature of the annual layers did not
bear any effect.

The ultimate shear strengths of plywood were computed in the same
way as for wood, by dividing the greatest loads by the shear area. The
value of the loads P ax corresponded to the highest points on the
automatically recorded testing diagrams in shear.

The maximum loads used to compute the ultimate strengths, were obtained
for all samples with comparatively small deformations, soon after the
end of the rectilinear sections of the diagrams. Thus, the . :ess in
the calculated values of the loads cannot differ very strongly from the
stress during elastic deformation of the samp.e in the initial testing

~ g G2 -

moment. Collapse of the plywood sample surfaces during testing in the

device was quite insignificant. One can thus consider that the employed

testing method of the plywood for shear to a certain degree makes it

possible to judge its resistance to tangential stresses with any ?
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orientation in relation to the casing fibers.

Testing of wood plastics for shear (according to data of R. Keyl-
werth [102]). XKollman's book [102] presents the results of determining
the ultimate shear strengths for variously oriented areas for several
types of wood materials. Keylwerth did the tests in a device analogous
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Figure 3.13. Results of Testing
Plywood (summary graph)
1,3,5--bakelite, 10 mm thick; 2,4,
6--aviation, & mm t ‘ick; 1 and 2--
stretching; 3 and 4--compression;

5 and 6--shear.

to that in which steel rods are usually tested for shear. The average
testing results of 20 identical samples are plotted on the graph in

the form of one dot. Figure 3.14 presents the photographs of Keylwerth's
graphs that were constructed from the results of testing beech laminated
wood plastic corresponding to the structure of DSP-B plastic, i.e.,
consisting of 20 veneer sheet layers laid in parallel. (fig. 3.14, a and
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b) and a multiple-layer glued plywood (fig. 3.14, c and d) with fibers
arranged in the adjacent veneer sheet layers at a 90° angle to each
other.

The curves made on Keylwerth's graphs with solid lines were con-

structed according to the formula enclosed in Kollman's book and easily
related to formula (1.22):

g = ! R (3.5)

1 ' cos? ¢ sin%y sin® 2
L2075 Y eos v - -—:———T—-
o Syo

~43

while the dotted lines correspond to the empirical formula also given
there

i
§

%= ER T “f“‘;‘:o cos™y (38)

Formulas (3.5) and (3.6) are given here in Kollman's designations, 1
but since we are concerned with shear, then it can be assumed that
the letter ¢ enters these formulas instead of the letter t because of
a misprint. In figure (3.14) the ultimate strengths in shear are
designated by Kollman by the letters rp. The exponent n in empirical
formula (3.6) is assumed to be different and is given in the figures.
Kollman adopted the following designation for the wood symmetry axes:
the y axis is directed along the fibers a, the z axis on the radial r
and the x axis on the tangential t direction. Thus, in our designations

fig. 3.14a should illustrate the results of that rotation of shear
areas in which TV pt and Tg0 Tak i.e., must correspond to the case
presented for pine in figure 3.10 (curve 2). Formula (3.4) was obtained
for this case. In contrast to Keylwerth's formula (3.5), the resistance
1 can be computed even without preliminary experimental determination
of the shear resistance on the diagonal area T4 - The second icase
(fig. 3.14b) conforms to the case represented by curves 1 and 4 in
figure 3.9, formula (3.1). According to the appearance of the curves

photographed in figure 3.14, one can assume that another misprint

¢ T

occurred and that the rotation of the areas in fig. 3.14 a corresponds
to the case where T0=Tea and T90~ Tat (fig.g3.9). The rotation of the
areas in fig. 3.14a conforms to the case where 0 T rt and 90 Tat

(fig. 3.10,2). The latter hypothesis is confirmed by the fact that in %;
fig. 3.15 b, the curve constructed from empirical formula (3.6) with
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n=2, i.e., essentially according to the tensorial formula (3.4), yields
a very good coincidence with the testing results. 1In this case T45
does not need experimental determination but can be computed from
formula (3.4). Figure 3.l4a shows the good coincidence of the testing
results with formula (3.5), i.e., with tensorial formula (3.1). Empiri-
cal formula (3.6) in this case yields fairly significant deviatiomns. /90
The appearance of a maximum in figure 3.9 and 3.l4a is apparently
explained by the fact that intersection of the fibers of natural wood,
parallel plywood and plastic Sch-T-Bu-20 that is close to it in struc-
ture, requires the greatest stresses when it occurs not at a right angle,
but at an acute angle to the fiber direction. This is also confirmed
by the testing results for shear of plywood (fig. 3.11, 3.12, 3.14 d)
wherz the maximum resistances were at an angle about 45-50° to the
casing fiber direction. In figure 3.l4c, the plywood testing results
are the same as in figure 3.10, and in figure 3.14d, the same as in
figures 3.11 and 3.12, and correspond to formula (3.1). The appearance /91
of these graphs confirms all that has been said above. It once again
makes it possible to be convinced of the advantages of the tensorial
formulas that always have the same appearance, over the empirical formula
(3.6) in which the exponent n adopts other values in each separate
case and requires a selection based on processing experimental data.
At the same time, the empirical formula (3.6), even with the special
value n computed for each case, yields a worse correspondence (dotted
curves) with the testing results than the tensorial formulas used,
essentially, to construct the solid curves on Keylwerth's graphs.

Fatigue of parallel plywood. Testing of variously oriented planar
samples of parallel plywood for repeatedly varying pure bending with
a symmetrical cycle was carried out in the LTA [Leningrad Forestry
Engineering Academy] laboratory by A. A. Pozdnyakov [55-57]. The
endurance limits were determined with N=107 number of cycles. A, A. !
Pozdnyakov also studied the stressed state that develops in the sample
in which the fibers are not parallel to its axis due to the constraint i
of the shear deformations by the machine clamps. The maximum stresses
O ax computed by A. A. Pozdnyakov differ fairly significantly from the
stresses computed according to the elementary formula

M

e Ty
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Figure 3.15 presents the curves constructed by A. A. Pozdnyakov
for the dependences of the endurance limits (with N=107) of parallel
plywood on the angle of fiber incline. The curves were constructed
according to the tensorial formula (1.22). In figure 3.15a, the curve
and the points that conform to the experimental data are plotted in
the stresses oecomputed from the elementary formulas for material
resistance. Figure 3.15 b plots them in the maximum stresses Onax
determined by the methods of the theory of elasticity of an anisotropic
boay for the most stressed point of the sample.

The calculated plan used to define the stresses o is distinguished

from the actual conditions at the ends of the workingmggction of the
sample. It does not take into consideration the possible deviations in
the sample deformations from Hooke's law. This calculated plan makes
it possible to evaluate only in the first approximation the effect of
constraint of the shear deformations in the sample on the size of the
stresses developing in it.

It is apparent from fig. 3.15 a and b that the endurance limits

computed in the maximum stresses o agree fairly well with the ten-

max
sorial formula (1.22). This cannot be s3aid about the endurance limits

in the stresses Oq computed from the formulas for material resistance.

This can be explained by the nature of the fatigue strength: the /92

fatigue crack appears precisely where the maximum stresses are active.
The fatigue crack in samples of parallel plywood really always begin
at that point in the sample where computations predicted the greatest
amount of stresses Onax”

Thus, the fatigue strength of parallel plywood is determined not
by the stresses Oa but by the maximum stresses that can be determined
in the first approximation by the methods of the elasticity theory of
an anisotropic body.

The correlation equations of fatigue diagrams in the maximum stresses
have different angular coefficients with different angles of fiber
incline. The limits of (restricted) endurance are computed with
a smaller nvmber of cycles, therefore are separated more and more from

the tensorial curve. With over 30 million cycles, the points approach
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Figure 3.14. Testing Results

a and b--beech laminated wood sheet Sch-T-Bu-20;
¢ and d--multilayer plywocd according to Keyl-
werth [102]. Hatched region is actual dispersion
of experimental data.

the curve. The greatest coincidence is observed when the number of
cycles equals 50 million. The points further deviate from the curve to
the other side.

The good coincidence of the endurance limits with the tensorial
curve with N=50 million permitted A. A. Pozdnyakov to hypothesize that
with this base, the true endurancz limit of wood appears. In oxder to
verify this hypothesis, four samples from the series with «=30° were
tested with stresses near the suggested endurance limit. These samples
were not destroyed even with 100 million cycles. One can thus agree
with the hypothesis that the true endurance limit of wood is determined

with N=50 million cycles.
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Figure 3.15. Dependence of Endurance Limits of
Parallel Plywood on Angle of Fiber Incline

a and b--with N=107 cycles; c--tests for static

rupture; O——oe; RX=-0 2%

If, in turn , we compute the endurance limits in stresses o, with
the smallest bases using the correlation equations, then these amounts
will approach more and more to the tensorial relationships until N=l
coincides with it. Figure 3.15 c has constructed a curve for change
in the ultimate strengths of parallel plywood according to the data of
static tests for rupture. It alsc has the points corresponding to
the fatigue strength indicators with N=1 that were computed from the
correlation equations. The good coincidence of the fatigue strength
indicators with the temsorial curve of ultimate strength is clearly
visible in fig. 3.15 ¢ with N=1 in the elementary stresses ce(dots).
This is understandable since the ultimate strengths are computed in
the elementary stresses, based on the assumption of their uniform dis-
tribution over the width of the cross section. The fatigue strength
indicators with N=1 in the maximum stresses (crosses) deviate signi-
ficantly from the tensorial curve. For the direction with o=15°, the
point did not even fall within the drawing field. This indicates that
the static strength that can be viewed as a particular case of fatigue
strength with a single change in the load (N=l1) is determined for wood
not by the maximum stresses, but stresses 9a

Testing of wood for impact compression. Wood is often exposed to
the effect of short-term impact loads. At the same time, experimental
study of the dynamic strength of wood is a very complicated task due

"
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to its anisotropy. This explains the lack of data on the strength of
wood in impact compression, shearing and stretching in different di-
rections in relation to the fibers.

Impact tests are presently being conducted only for bending trans-
verse to the fibe“rs.1 The specific destruction work is used as the
characteristic of resistability to impact bending. It is determined
with considerable errors governed by the crumpling of the sample on
supports and under the impact knife, as well as by friction on the
supports, etc.

The amount of impact energy expended strictly for destruction of
the sample is unknowm. This to a considerable measure depreciates
the results of testing wood for impact bending.

It also needs to be noted that tests of wood for vending are generally
of lower interest than for compression or stretching. This is due to
the indefiniteness in the amount of stress devealoping in the sections /94
of anisotropic beam beyond the limits of elasticity.

In light of what has been said, the impact tests become especially
important in which strength characterstics of wood can be obtained in
a stressed state that is the closest to the uniform and linsar.

Impact testers are adapted. the best for determining the dynamic
strength characteristics of materials. There is no static force in
the loading process. ‘

The impact testers are designed, as is known, to test for impact
bending, and in certain cases, for impact stretching. The special
device suggested by B. P. Dutov and described in publication [&] permits
the tester to be used to test wood for compression.

B. P. Dutov used the impact tester equipped with a photoelectron
device to obtain diagrams of impact compression. He studied the strength
of wood along the fibers in different regimes of dynamic loading.

The impact resistance of wood,in the same way as in static loads,
strongly depends on the orientation of the applied forces in relation
to the fibers.

Publication [6] coverg « study of this relationship during impact.

The tensorial formula :..22) describes the dependence of static
resistances of wood on the force orientation. The hypothesis on the
possible extension of this formula to cover the case of impact compression
1see "Methods of Physical and Mechanical Testing of Wood" GOST 6336-52.
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was experimentally studied for pine.

The tests were carried out on samples made of the base part of
two experimental pine trees of large diameter (about 60 cm) acquired
in the Lisinsk educational-experimental forestry farm. The radii of
curvature for the measuring rod annual layers (4 x 4 cm) from which
the samples for these tests were made, were about 24 cm. With a 2 cm
edge of the sample, this makes it possible to consider the annual layers
practically rectilinear within the sample.

It was necessary for this study to guarantee the same loading regime
in all cases of orientation of the dynamic force in relation to the
fibers.

We did not succeed in preserving the same rate of increase in the
destructive stress as a parameter determining the loading regime as
B. P. Dutov did for the following reasons.

It is known that variously oriented samples have a different nature
of deformation. The wood is destroyed along the fibers almost as
a brittle material. Compression transverse to the fibers is accom-
panied by large residual deformations. This peculiarity of wood results
in a different rate of increase in the destructive stress. It will be
lower the more pliable the sample is. Only by changing the external
conditions of impact loading can one maintain this parameter constant
for different orientations. The considerable difficulties of this
testing technique and the indefiniteness of the practical application
of the results force us to give preference to the method of study in
which the constant parameters that determine the impact loading regime
are the velocity of the striking body at the moment it touches the
sample (impact velocity) and the reserve of kinetic energy of the
striking body.

The tests were done on impact tester PS V0-1000 with a pendulum
whose maximum work margin was 5 kg.m with impact velocity of
4 m/s.

The tester equipment permits direct production of an impact com-
pression diagram of the sample in the force-deformation coordinates.
The image of the diagram that develops on the screen of the oscillo-
graph dcuble-beam cathode tube is photographed on 9 x 12 em film .
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The block diagram of the photoelectron testing equipment is given in
publication [6].

The calibration testing of the impact compression oscillograms
consisted of photographing the loading of the piezoquartz testing sensor
with a static reference load of 500 kg.

Twelve batches of samples with nine variously oriented samples in
each batch were tested for impact compression with the same loading
regime. Six batches of samples were made so that the compression
forrves in testing were in the tangential plane. The axes of the samples
in the remaining six batches were arranged in a radial plane. The
angle between the directioc: of the compressing force and the direction
of the fibers was 0,15, 30, 40, 45, 50, 60, 75 and 90°.

In order to obtain comparable results from tests with different
orientation, it is necessary to preserve the same dimensions and shape
of all the samples, in addition to the same loading regime. GOST
6336-52 stipulates samples of varying length for compression along and
transverse to the fibers. The samples tested in the preliminary experi-
ments showed a considerable loss of stability in impact compression trans-
verse to the fibers. The length of these samples was therefore reduced
and the dimensions 2 x 2 x 2 cm were adopted for all the samples.

Figure 3.16 shows photographs of the destroyed pine samples in
impact compression.

Figure 3.17 presents the characteristic oscillograms of the tests.
The scale of the oscillogram differs and is indicated on the y-axis.
Figure 3.17 a illustrates the diagrams for tangential, while figure 3.
17b illustrates the radial, samples. As the angle changes between the
axis of the sample and the fiber direction,the nature of the compression /96
diagram also changes. Corresponding changes were also observed in
the form of destruction of the samples. Figure 3.17 c presents a
compression oscillogram along the wood fibers (a=0).

With compression at angles from 0 to 40° (in a tangential plane
and at 45° angle) a sharp increase is visible on the oscillograms, and
then a drop in the force. These diagrams conform to brittle failure
of the samples that are thus separated into several parts. Failure
occurred primarily by shearing along the fibers in the areas inclined
to the sample axis. 1In these diagrams, the repeated increase in force
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Figure 3.16. Photographs of Pine Samples (Tangential
Plane) after Testing for Impact Compression
left--along fibers, then at angle of 15°, 30°, 45°,
60°, 75° and 90° to direction of fibers.

is linked to wedging of parts of the destroyed sample between the support
and the striker, and therefore should be ignored.

In this group of oscillograms, the ultimate strength of wood is
determined by dividing the maximum force by the area of the sample
section measure before it was tested.

The process of impact compression is somewhat more complicated for
the remaining directions, and consequently, the processing of the
corresponding oscillograms is also. On the oscillograms of this
second group, the curves of deformation with definite values of the
stresses pass into oscillating, almost horizontal sections. In these
cases, the samples generally did not experience strict failure, i.e.,
were not divided into parts. They merely received significant residual
deformations.

The nature of plastic deformation is somewhat different for radial
and tangential samples.

The tangential samples experience a loss in stability of the late
wood layers. Protruding folds appear on their lateral edges, parallel
to the tangential plane. These folds pass parallel to the fibers, usually
on the side of swelling of the annual layers. Small cracks are
visible in places on the early wood (see fig.3.16).

The radial samples behave differently. Pressing of the wood in /97
the direction of the annual layer radii is mnoticeable here. The layers
of early, weaker wood are seemingly squeezed out, forming wavy pro-
jections on the lateral edges of the cubes. These projections are
arranged on the edges parallel to the radial plane.

There is another distinguishing feature among the two groups:
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Figure 3.17. Oscillograms of Impact Com-~
pression of Pine

a--tangential plane from top to bottom:
o= 30, 45, 60 and 90°; b--radial plane
from top to bottom: a=30, 45, 60 and 90°;
c--along fibers (a=0).

in those samples that underwent brittle failure, i.e.,were divided into
parts on impact,the angles between the base and the lateral sides remain
right angles after the failure. Apparently, the shear angles that ine-
vitably accompany compression at an angle to the symmetry axes in ani-
sotropic materials, in this case have the nature of elastic deformations.
The plastic samples experience fairly significant residual angular
deformations. Thus, for example, for a sample whose axis in the radial
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plane forms a 60° angle with the fiber direction, the coefficient of
mutual influence (ratio of the shear angle to the linear deformation)
in impact compression roughly equals 0.6. 1In the elastic region,
this coefficient must comprise 0.4 for pine.

The process of impact compression at an angle cover 45°, and in a
radial plane, over 40°, is thus reduced to plastic deformation of the
sample by its shortening and skewing (shear).

The oscillating parts of the compression diagram can be explained
in these cases by the discrete spasmodic nature of the plastic deforma-
tion of wood.

The loss of stability and the sudden formation of folds in the
“angential samples result in sharp fluctuations in the amount of force
on the diagrams. The amplitude of these fluctuations is comparatively
great. The number of peaks on the diagrams is generally lower than
for radial samples. The alternate "extrusion'" of the layers of early
wood in the radial samples results in stress fluctuations that lower
amplitudes are characteristic for.

It is important to note that the number of fluctuations in the
amount of force on the horizontal section of the compression diagram
of radial samples is roughly equal to the number of layers of early
wood that are alternately squeezed out during impact compression of
the sample.

The increase in the ordinates on the last section on certain nlastlc
diagrams can apparently be the same as the third phase of static com-
pression of wood. It is explained by the great strength of the late
parts of the annual layers that are involved in the work on this
section.

It was shown in the work of B. P. Dutov that the force fluctuations
on the deformation curve camnot be caused by changes in the contact
force that are linked to the application of natural oscillations in
the working organs of the testing unit. The discrete change in the
resistance of the sample as it is deformed can therefore serve as a
plausible explanation of these fluctuations.

The considerations given above made it possible to adopt the fol-

lowing order for processing oscillograms of the second group ('plastic').
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Besides the maximum force that can be measured at the top of the first

peak, a force was also noted that equals the ordinate of the average /99

line of the oscillating curve section. The first force during which

plastic deformation of the sample apparently begins, is used to com-

pute the ultimate strength of wood. The second force in which one can

consider that the plastic deformation continues, is used to compute
the characteristics we have conditionally called the yield stress.
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Figure 3.18. Strength of Pine in

Impact Compression Depending on Angle
of Incline of Fibers.

Experimental data: ®,0--in tangential
plane; X,+--in radial plane. Curves
constructed according to formula (1.22):

1--for radial; 2--for tangential plane;
3--static compression.

Of course, the division of the compression diagram and the nature
of sample failure into two groups called brittle and plastic here, in

actuality is not so definite. The transition occurs gradually, as the
angle of fiber incline rises (fig. 3.17).

Compared to the static g
compression, many features of deformation are less pronounced in impact,

and division into two different groups is more noticeable.
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Figure 3.18 presents the results of the tests in a graph. The
curves were constructed according to formula (1.22). The average values
for the strength characteristics obtained from the experiment are plotted
as points. The solid lines depict the curves for change in the ultimate
strength op, while the dotted lines are constructed for the yield
stresses Orp

Comparison of the curves with the corresponding points indicates
that the tensorial formula (1.22) reflects the laws governing the changes
in wood strength in impact compression in different directions.

The tests conducted with impact velocity equal to 4 m/s provide
the grounds to assume that even with high velocities, formula (1.22)
can conform to reality.

The curves (£fig. 3.18) that were constructed from the tensorial /100
formula coincide better with the experimental data in those cases where
plastic failure of the material occurs. Thus, the coincidence is
best for angles over 30°, and is better for the radial plane (curves 1)
than for the tangential (curves 2). The almost ideal coincidence with
the experimental results produces a curve for the change in yield
stresses of radial samples for angles over 45°.

Figure 3.18 presents curves of the change in pine strength in
static compression (curves 3) for comparison. The curves were con-
structed for roughly the same wood that the present studies were con-
ducted for(see fig. 3.4).

For all angles of fiber incline, the resistance to impact com-
pression averaged 2.45~fold higher for the radial and 2.17-fold higher
for the tangential plane than the corresponding resistance of wood to
static compression.

If one ignores the difference in the properties of wood in the
radial and tangential directiomns, i.e., accepts the assumption on the
transverse isotropy of wood, then formula (1.22) remains unchanged. The
effect of the angle of fiber incline is determined by the curve
passing between the solid curves for the change in impact strength
plotted on fig. 3.18. All the ordinates of this curve will average
2-2.5-fold higher than the ordinates of the curve corresponding to the
static loading of wood.

With impact velocity equal to 4 m/s, the curve of standardized
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resistances of wood passes higher than in static compression. The

ratio of the ordinates can be assumed to be roughly equal to from 2 to
2.5 units.

11. Stretching of Uniaxially Oriented Crystal Polymer Films

Crystal polymer materials acquire considerable anisotropy of mechan-
ical properties after large deformations in uniaxial stretching. The
development of a neck during stretching of samples of these polymers
is a phase transformation of unfavorably oriented crystal microforma-
tions into favorably oriented in relation to the force field of the
formation [30]. The new samples cut from the neck reveal very pro-
nounced anisotropy during stretching. During stretching in a direction
that coincides with the direction of primary stretching, the sample's
deformation is slight, but the strength is increased. The samples cut
in a transverse (in relation to the primary stretching) direction
reveal great deformation and low strength.

Ordering of the polymer structure during its orientation results /101

in anisotropy of the mechanical properties that has aot only a quanti-
tative but also a qualitative nature. During stretching in the orien-
tation direction, the strength is determined by the forces of chemical
bonds in the chain molecules. They are arranged more or less in paral-
lel. During stretching in a transverse direction, the strength of the
oriented polywer is mainly determined by the forces of intermolecular
interaction, These forces are considerably smaller than the first.

The work of T. A. Dikareva and G. L. Slonimskiy [307 presents the
results of stretching tests to rupture of polymer films that have been
uniaxially oriented by preliminary stretching. The authors obtained
data on the size of the rupture force depending on the angle between
the directions of orientation (preliminary stretching) and the stretching
force. In figures 3.16-1,2 and 3 these data are presented in the
form of points whose ordinates equal the average amounts of ultimate
strength ap that refer to the original area of the sample sectionms.
Figure 3.19a (curve 1) depicts the results of testing a technical
caprone film of plant manufacture that was oriemted by 5007 prelimi-
nary stretching. Figure 3.19 b illustrates (...ve 3) the tests of
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Figure 3.19. Change in Ultimate Strength
of Films

l--caprone; 2--polyethylene terephthalate;
3--polyethylene depending on angle o between
direction of stretching and direction of ori-
entation of the film. Experimental average
quantities of ultimate strength: ®--for
caprone and polyethylene; o--for lavsan.

high pressure polyethylene film made at the Okhtensk chemical plant

and oriented by 3007%, and then to 7007%. Figure 3.1%a (curve 2) illus-
trates the polyethylene terephthalate (lavsan) films made in the
Scientific Research Institute of Plastics by the r1.essure casting
method with rapid codling and orientation by 700%Z at 60° temperature.
The molecular weight of all three films is 20,000. All the tests were
done by the authors of publication [30] in the laboratory of the Insti-
tute of Organoelemental Compounds of the USSR Academy of Sciences on
samples 1.5 mm wide and 10 mm long with film thickness from 40 to 70 u.
Tests were done on a Polani instrument at 20° temperature. Each point
on the figures complies with the average arithmetical amount of the
ultimate strength obtained as a result of testing from 15 to 20 samples.
In figure 3.19, the curves were constructed [15] according to formula
(1.22). As is apparent from the figures, this formula, based on the
assumption on tensoriality of the strength specifications, also conforms
to the results of testing anisotropic films of oriented polymers.

12. Fiber Glass-Reinforced Plastics

The synthetic high-strength plastics that are reinforced with
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glass fiber, spun glass thread or fiber glass fabric possess fairly
significant anisotropy.

The author of [12] studied the following fiber glass-reinforced
plastics:

1. Fiber glass-reinforced plastic of cold hardening on polyester
resin PN-1 made of fiber glass fabric brand T (GOST 8481-57). The
sheet consisting of 31 layers of fiber glass fabric containing 50-55%
resin, 1000 x 880 x 10 mm in size, was fabricated by the method
of contact forming at 23°C. The employed hardener was 37 hyperize
and 87 MK accelerator (87 solution of cobalt naphthenate in styrene).

Ten of these sheets were tested. Samples were made from each
sheet for all types of tests.

Besides the indicated plates, a plate 5 mm thick, with 30x50 cm
format, from the same material was tested for shear.

In order to determine the ultimate strength in compression perpen-
dicular to the layers, samples were made from plates 15 mm thick with
20 x 20 cm format.

2. SVAM* type fiber glass-reinforced plastic on epoxy-phenol
binder No. 64 consisting of 707 epoxy resin ED-6 and 307 phenol aldehyde
resin.

SVAM fiber glass-reinforced plastic is made by pressure molding at
130 kg/cm2 with heating to 160° of sheets of laminated fiber glass
sheet crossed structure. The laminated fiber glass sheet was produced
by winding fiber drawn from a glass-melting vessel on a rotating drum
with simultaneous gluing of the glass fiber with the binding age...

In order to produce the crossed structure of the veneer sheet with
ratio of 1:5, after winding seven rows of glass fiber, the drum was
stopped and the fiber was cut off on the forming drum. The sheet was

then turned and the fiber of the next three rows was wound in a direction /103 ;

perpendicular to the first. The sheet was then turned by 90° and the
fiber of the last eight layers was wound in the same direction as the
first seven. In the laminated fiber glass sheet that resulted from
this winding of the fiber layers, the direction of the three middle
layers was perpendicular to the direction of the outer layers. The

*Fiber glass-reinforced anisotropic material [21].
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Figure 3.20. Photograph of
Plate of Isotropic SVAM with
"Stellar" Arrangement of
Layers of Anisotropic Glass
Laminated Sheet

overall structure of 7:3:8 guarantees a ratio of 1:5 in which one-fifth
of the fibers are perpendicular to the others.

Several SVAM versions were made on epoxy-phenol resin. They dif-
fered in nature of reinforcement, and consequently, in the degree of
anisotropy. Two versions of sheets were pressed from the laminated
sheet that was reinforced with glass fiber in a ratio of 1:5: with
1:1 laving in which all the laminated sheets were mutually perpendicu-
lar, and with 1: 5 laying in which all the laminated sheets had the
same fiber direction. The third v rsion of this material was
pressed from a laminated sheet with 1:13 glass fiber ratio and laying
of the laminated sheets also in a 1:13 ratio. Only one sheet was made
of this very anisotropic material. The data on its strength that were
obtained in testing a small number of samples therefore are approximate.

In addition, two sheets were fabricated with '"stellar" laving of the
laminated sheet in which the angle betweeen the fiber directions in
adjacent layers was 30° (fig. 3.20).

All types of SVAM on epoxy-phenol binder were made in the form of
sheets 100 x 500 x 5 mm in size or 1000 x 500 x 10 mm with resin con-
tent from 30 to 507.

All the sheets, except the sheets with fiber ratio of 1:13, were

made of laminated glass sheets with a 1:5 fiber ratio. The sheet
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molding regime was as follows: heating to 60-70° for 15 min., hold
time at 60-70° (com::act sheets of mold) for 60 min., elevaticn of pres-
sure to 200 atmospheres and temperature to 150-160°¢ for 10 min., and
hold time at 150-160° with this pressure for 12 minutes.

3. SVAM on binder of Butvar-phenol resin BF-4 with fiber ratio in /104
the sheet of 1:1. The sheets were 1000 x 500 x 5 mm in size. The
sheets were made of laminated fiber glass sheet with 1:1 fiber ratio
with a structure of 6:9:3. There was a roughly 307 resin content in
the sheet. The molding regime was the same as in SVAM on ED-6 binder.

The glass fibers in the SVAM were 1512y thick. TFibers were made
of alkali-free boron-containing glass. The laminated fiber glass—
sheets were 0.35+0.4 mm thick.

It should be noted that the technology for producing SVAM had still
not been completely perfected by the plant when these materials were
made. The absoilute values of the obtained mechanical characteristics
in a number of cases were therefore below the optimal [21]. These
absolute values do not have a lot of importance for the purposes of our
study since it is quite understandable that all the obtained laws will
be suitable for fiber glass-reinforced plastics of any high strength
.¥ the latter possess orthogonal anisotropy of the sheet structure.
SVAM fiber glass-reinforced plastic in this case is viewed not only
ag construction material, but also as a model of an anisotropic laminated
plastic whose structure and degree of anisotropy are easily modified
during manufacture.

Publication [12] presents tables for the statistical processing of
all testing results from fiber glass-reinforced plastics. They pre-
sent the number of samples for each orientation (10-20), variation
coefficients (4-127) and the accuracy indicator not exceeding 5%.

Strength in stretching. The ultimate stretching strength is
usually given as the main characteristic of mechanical properties,

usually used to judge the advantages of the construction material and
its suitability for certain purposes.

Testing of fiber glass-reinforced plastics for stretching is of
especial interest because the anisotropy of the materia® is revealed
most strongly from the results of this testing: in different struc-
tural directions, the ultimate stretching strengths differ more strongly
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than in compression, shear or bending. Thus, testing for stretching
with determination of the ultimate strength is one of the most impor-
tant mechanical tests of fiber glass-reinforced plastics.

Ik
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Figure 3.21. Photcgraphs of SVAM Samples
Cut at Different Angles a to the ¥ibers
and Destroyed by Stretching

~

Samples were taken for testing according to GOST = 23-35 to
determine the ultimate strength in stretching laminateu viastic sheets
of organic origin. In addition, samples corresponding to CGOST 1143-41
"Methods of Testing Physical and Mechanical Provnerties of Aviation /105
Plywood and Aviation Veneer Sheets' were used for comparison in
testing cold-hardened fiber glass-reinforced »nlastics on PN-1 binder.
These samples were called wide.

Clamps with wedge-shaped clamping jaws that moved on a set of
rollers were used for all the stretching tests. These clamps make it
possible to increase the clamping force of the sample and hold it
reliably in the clamps with a shallow notch of the jaw surface that
does not cause a significant concentration of stresses at the clamping
sites.

The majority of samples were destroyed in the working section. The
testing results from those samples that yere destroyed at the clamping

sites were not included in the processing of the testing results.
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Figure 3.21 presents SVAM samples on epoxy-phenol binder with 1:5
fiber ratio that were cut at different angles to the direction of the
glass fiber and were destroyed by stretching.

A characteristic feature of the SVAM type materials is failure on
the areas parallel to the fibers for all sizes of angles between the
direction of the stretching force and the direction of the fibers.

Fiber glass-reinforced plastic on PN-1 binder made of woven linen
fabric was destroyed in a different manner. When the direction of the
stretching force coincides with the direction of the threads in the
phase or the fabric weft, rupture occurs as for brittle metals, on the

area perpendicular to the sample axis. When this fiber-glass-reinforced /106

plastic is stretched at a 45° angle to the direction of the threads in
the fabric warp (in a diagonal direction), a drop occurs in the load.

It is caused by the appearance of a noticeable neck in the sample,

This neck is unique because its appearance is accompanied by a thickening
in the direction perpendicular to the sheet plane. The gradual, local
thickening of the sheet then results in its stratification. Rupture of
individual (initially outer) layers subsequently occurs,

The results of determining the ultimate strength of fiber glass-
reinforced plastic of cold hardening made of T fabric on PN-1 binder
according to GOST 4649-55 were higher than the results of testing the
wide samples.

All the tests were done on the IM-12-R tensile-testing machine
designed by TsNIITMASh [Central Scientific Research Institute of
Machine Construction Technologyl. The movement velocity of the clamps
was 16 mm per minute.

Figure 3.22 graphically illustrates the testing results of this
fiber glass-reinforced plastic. The curve was constructed from the
tensorial formula (1.22). As in all the following figures, the
region of actual spread of the experimental data is hatched. The points
that correspond to the average ultimate strengths from the tests
with o=30° and «=60°, as is apparent from the figure, lie very close
to the curve. This confirms the applicability of the tensorial formula
for this case.

The summary graph in figure 3.23 presents results of testing SVAM
on EF-4 binder with'l:1 fiber ratio, according to GOST 4649-55. 'The
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Figure 3.22. Ultimate Strengths

in Stretching Fiber Glass-Rein-
forced Plastic of Cold Hardening
@--average value; X--extreme value
from testing wide samples (GOST
1143-41); o--average from testing
samples according to GOST 4549-55.
Hatched zcones are actual scattering
of results.

difference between the ultimate strength values at o=0 and at «=90°

for this material shows that the laying of the laminated sheet did

not quite conform to

the assigned 1:1 fiber ratio. There were actually

more glass fibers arranged in the direction of the casing fibers than

in the perpendicular

direction.

SVAM with 1:1 fiber ratio on epoxy-phenol binder (fig. 3.23, curve

1 and figure 3.24) was fabricated more carefully. The sheet was 10 mm
thick. Here the average value of ultimate strength with «=0 and with

¢=90° was the same.
along and transverse
was very significant:

Despite the equality of the ultimate strengths
to the sheet, the anisotropy of these materials
SVAM on BF-4 binder in the diagonal direction

(with ¢=45°) has ultimate strength 4 times lower, and on the epoxy-
phenol binder, 3 times lower than the ultimate strength in the
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Figure 3.23. Summary Graph of Strength Aniso-
tropy of Fiber Glass-Reinforced Plastics in
Stretching

1,3,4,5--SVAM on epoxy-phenol binder (fiber
ratios: 1--1:1; 3--1:5; 4--1:13; 5--"stellar"
structure); 2--fiber glass-reinforced plastic
of cold hardening made of woven linen fabric
(T); 6--SVAM on Butvar-phenol binder BF-4 with
1:1 fiber ratio.

longitudinal direction (with o=0). It is evi-
dent that the epoxy-phenol binder that guaran-
tees higher strength of the material than BF-4,
at the same time provides somewhat lower aniso-
tropy. This can be explained by the fact that
in a diagonal direction in which the glass fiber
has relatively little participation in the
absorption of the load, the material strength
is mainly determined by the resin mechanical
properties.

For SVAM with 1:1 fiber ratio, the diagonal
direction coincides with the material's symmetry

axis. The strength in this direction is minimal.

With another fiber ratio, the least strength
occurs with a somewhat larger angle with the
fiber direction. Thus with a 1:5 fiber ratio,
the minimum strength is obtained with a=50°,
and with fiber ratio of 1:13 with a=60° (see
figure 3.23, curves 3 and 4).

Comparison of the curves constructed according to the tensorial

formula (1.22) with the average data of the testing results for variously

oriented samples confirms the applicability of this formula to compute

the ultimate strengths of all the tested fiber glass-reinforced plastics /108

devending on the orientation of the stretching force [12].
The Madison Laboratory of Forestry Products (United States) used

another, more complicated formula [113] for these same purposes.

However ,the results that were obtained with this formula for the fiber
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glass-reinforced plastics are very close to the results of formula

(1.22).
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Figure 3.24,

Results of Stretching

Testing of SVAM 10 mm Thick on Epoxy-
Phenol Binder with Fiber Ratio of 1:1

®--average and X--extreme values of
ultimate strength.

Figure 3.25 presents two curves for comparison:

curve 1 was con~-

structed according to tensorial formula (1.22), curve 2 used the formula

of the Madison Laboratory of Forestry Products, which has the following

appearance in our designations:

‘ 3p =

1

sint a sin? 2a

/ cost 2
-"/ i) -+

%
i
i

essaser 1 2

-2 -2
~90 4 Rt

(3.7)

Both curves were constructed according to the data obtained in the
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Figure 3.25. Results of Stretching
Testing of American Fiber Glass-
Reinforced Plastic Fabric [107]
l--curve constructed according to
tensorial formula (1.22); 2--curve
accordng to Madison laboratory
(3.7); ®--average ultimate strengths
in 1b per sq. inch.

Madison laboratory for stretching testing of fiber glass-reinforced
plastic made of 143-114 fabric on polyester resins. They practically
coincide with all force orientations.

The ultimate strengths of this fiber~glass-reinforced plastic are
as follows [113]: 0y=6150 kg/em’; o,5=966 kg/cm’ and o0qy=700 ke/cm”.
Compression. Cold-hardened fiber glass-reinforced plastic was
tested for compression for comparison by two methods, according to

GOST 4651-49 and in the device of I. P. Boksberg [5,12].

The samples for testing in the device were made so that the direc-
tion of the compressing force with the direction of the fiber glass
fabric warp threads comprised the angle a. It was assumed to be
successively equal to 0, 15, 30, 45, 60 and 90°. According to GOST
4651-63, samples were only tested with a= 0, 45 and 90°. All the tests
were done on a universal testing machine UIM-~50 with movement velocity
of the pad 4 mm/min.

The results of testing the fiber glass-reinforced plastic fabric /109
of cold hardening for compression in the device are presented in fig.

3.26. The points correspond to the average values of ultimate strength

113

P ——



A tgﬂz‘m

of the variocusly oriented samples. The region of actual scattering of
the testing results is hatched. The solid curve was constructed from
the tensorial formula (1.22). The dotted curve was constructed from
the same formula for the testing results according to GOST 4651-63.

As is apparent from this graph, the tensorial formula agrees
well with the experimental data for the examined material.

Comparison of the curves that were computed from the tensorial
formula for the two compression testing methods shows that the testing
results in the device with all sizes of angle a are exaggerated as
compared to the testing results according to GOST 4651-63.

It is generally known that the ultimate strength increases with a
decrease in the dimensions of the tested samples. Something different
happens here: the ultimate strengths of the small samples (10 x 10 x
15 mm) are lower than the ultimate strengths of large samples (10 x
30 x 70 mm). This difference, consequently, cannot be explained by
the scale factor. It permits the assumption that when samples were
tested in the device, their selected width was too great (see section
7).

The type of failure of the cold-hardened fiber glass-reinforced
plastic fabric samples during compression depends little on the angle
between the direction of the fiber glass fabric warp and the direction
of the compressing force. This is characteristic for weakly anisotropic
materials,

For a strongly anisotropic SVAM, for all angles between the fiber
direction and the direction of the compressive force, the failure plane
coinc¢ides with the plane that is parallel to the fibers. The external
appearance of the destruction is similar to the appearance of crystal
destruction. Crystals are also always characterized by failure in the
soldering plane.

Figure 3.27 presents a summary graph for the testing results of
fiber glass-reinforced plastic for compression. The nature of these
curvns shows that during compression, anisotropy of SVAM appears. It
requires the intent attention of the designer and a special approach
in using this material.

Figure 3.28 presents the testing results for stretching (according
to GOST 4649-55) and for compression (according to GOST 4651-63) of
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cold-hardened fiber glass-reinforced plastic fabric made of AS TT (b)
-C- O brand fabric based on polyester resin PN-3. These tests were
done by E. V. Ganov [24] under conditions of a spatial problem. The

G z
70&3 kg /cm

-

2 1

o5 15° J0° 45° 60° 75° T0°a !

Figure 3.26. Results of Testing

Cold-Hardened Fiber Glass=Reinforced

Plastic Fabric for Compression in

Device

Dotted curve--for testing results

according to GOST 4651-63.
solid lines on this figure show the testing results for stretching, and
the dotted for compression. These lines restrict the reflecting surface,
while the point vector radii of this surface equal the ultimate strengths
in the corresponding direction (including the direction perpendicular
to the sheet plane). Both surfaces conform to formula (1.20) &nd pro-
vide an approximate idea about the resistance of the fiber glass-
reinforced plastic to the perpendicular stresses in a uniaxial stressed
state that is randomly oriented in relation teo the three axes of
symmetry of the orthotropic fiber glass-reinforced plastic.

Testing for shear and simple shearing. The all-union 1964 standard
for methods of testing plastics of organic origin has OST 11044-38
"Determination of Temporary Shear Resistance.'' It is used to produce
double shear of a 10 x 10 mm square section sample that is tightly
clamped into a device.
The technique developed for testing plywood [5] is also customarily

used to test for double shear a tightly clamped sample, but the device
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is equipped with changeable chuck jaws that allow testing of a sample
whose thickness equals the sheet thickness and can be smaller or greater
than 10 mm. This device can be used to test samples made without
disrupting the surface layer of material over 10 mm thick, as well as
samples made of material less than 10 mm thick. 7%’ is not possible

according to OST.

Figure 3.27. Summary graph of Anisotropy of
of Fiber Glass-Reinforced Plastics in Com-

2 pression

saike [em 1,3,4,5--SVAM on epoxy-phenol binder (fiber
ratio: 1--1:1; 3--1:5; 4--1:13; 5--"stellar"
P structure); 2--cold-hardened fiber glass-
X reinforced plastic fabric; 6--SVAM on BF-4
% | with 1:1 fiber ratio.
So0: ? o"f
% ’—"? : Figure 1.1 shows three possible types
=y /i' , z:_ | of shear testing, i.e., determination (£
wono—S ! ! the material's resistance to tangential
% d ; (shearing) stresses: shear in the sheet
%} % ) ? plane, shear perpendicular to the sheet plane,
s g, o i and simple shearing in the layer (interlayer
|\ °° | shear) (see section 4).
\' \;QO,O ¢§7‘ The amount of shear resistance in the
| X '\X/J ;ﬂ/; sheet plane was experimentally determined
28— y/“:'* [+ for 7 directions.
‘\- /‘ , The tests were conducted on a UIM-50
~\\\l gy machine with 5 T on it and movement velocity
1000 -l of the pad about 4 mm/min.
The destructive load was considered the
greatest load after which the load-bearing
. capacity of the sample was exhausted. Usually
qjqfhxﬁjqifziv°:mg d the subsequeht drop in load was accompanied

by a snap and sudden shear on the areas where

the shearing forces were active.

Figure 3.29 presents a photograph of the SVAM fiber glass-reinforced
samples with 1:13 ratio that were destroyed by shear in the sheet plane
with all seven orientations in relation to the fibers.
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Figure 3.28. Spatial Graph of Testing Results of /112
Cold Rardened Fiber Glass-Reinforced Plastic Fabric

for Stretching and Compression (according to E. V.

Ganov)

a--angle between plane of fabric and direction of

force; ¢ --angle between direction of waft and

projections of direction of force on fabric plane.

Figure 3.30 presents the results of testing for shear in the sheet
plane of fiber glass-reinforced plastic made of T fabric on PH-1 /113
binder. The testing results for 10 mm thick sheets are guite reliable.

As is apparent from this figure, the difference in the amount of
resistances immediately for sheets 5 mm and 10 mm thick is not great.
Almost everywhere it is in the limits of the actual spread of the
testing results. The curve that is constructed according to the
tensorial formula (1.24), for a 10 mm thick sheet passes with all
angles of incline, close to the points that conform to the average
testing results.
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Figure 3.29. Photographe <[ 5VAM Samples
with 1:13 Fiber Ratio That Were Destroyed

in the Device by Shear in the Sheet Plane
with Seven Different Orientations in Relation
to the Fibers
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Figure 3.20. Results of Testing
for Shear of Cold-Hardened Fiber Glass-

. Reinforced Plastic Fabric 5 mm Thick
(O--average amounts of ultimate strength)
and 10 mm (@--average amounts and x--
extreme amounts of ultimate strengths).

Figure 3.3la and b present the results of testing for shear in the
plane of SVAM layers on epoxy-phenol binder for sheets 5 and 10 mm
thick. For this material, especially with 5 mm thickness (the area of
crumpling is small), during testing of diagonal samples, there was
considerable crumpling of the sample surface preceding shear. As a

result of the crumpling, the shear area was considerably reduced.

Apparently, this resulted in an underestimation of the ultimate strength

referring to the initial shear area. Figure 3.31 a shows two points
for the diagonal direction. One conforms to the average ultimate

strength 45 that is computed as the quotient from dividing the load
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Figure 3.31. Ultimate Strengths in Shear in Plane
of SVAM Sheet on Epoxy-Phenol Binder with 1:1 Fiber
Ratio and Sheet Thickness

a--5 mm; b--10 mm.

Pmax by the initial shear area, equal to double the initial cross section
of the sample. This point that is depicted on the graph by a hatched
circle, lies very low. It clearly drops out of the general law
governing the change in resistances. The other quantity of ultimate
strength T45 is computed for a=45° by dividing P__ by the doubled
area of the sample cross section at the shear site measured after
testing. The point illustrated by the circle is used to construct

the curve in fig. 3.3la. This correction is not made for SVAM 10 mm
thick, since the crumpling here is less significant. It is apparent
from fig. 3.31 b that even in this case, if one considers the crumpling
at a=45°, then the curve could be somewhat «levated, approaching the
experimental results.

As is apparent from the cited graphs, the shear resistance in the
sheet plane has comparatively little anisotropy. It has the maximum
values for the directions that are close to the diagonal.

It is evident that under the influence of the transverse forces
in the sheet plane, it is efficient to place the reinforcing glass fiber
at a 45° angle to the direction of these forces. For the 'stellar"
fiber glass-reinforced plastic, as should be expected, the shear /115
resistance is higher for all directions than for SVAM of another design
(1:1 or 1:5). 1In figure 3.32, the approximate results of testing
fiber glass-reinforced plastic of '"stellar" structure are depicted in

119




the form of a curve that refers to the polar coordinates. Despite the
small number of samples, the curve is close to the circle shown by the
dotted line.
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Figure. 3.32. Ultimate Strengths

in Shear in SVAM Sheet Plane of
"Stellar" Structure Depicted in
Polar Coordinates

——--according to experimental data;
~--- --on the agsumption of isotropy.

For a strongly anisotropic material (1:13) the greatest amount of
shear resistance approaches the direction in which shear passes on the
greatest number of glass fibers.Figure 3.33 shows the tensorial curves
of shear resistance for all studied fiber glass-reinforced plastics.
Figure 3.34 presents a comparison of the nature of curves for three
types of testing for a strongly anisotropic fiber glass-reinforced
plastic.

The shear testing results in the device do not yield the true
amount of resistance of the anisotropic material to pure shear. At
the same time, the method of shear testing in the device permits a
judgment regarding the comparative strength of materials with con-
strained shearing in different directions.

When selecting the permissible tangential stresses to verify the
strength of fiber glass-reinforced plastic for shear in the mneutral
layer during bending in the sheet plane, it is necessary to bear in
mind that the absolute quantities of ultimate strength that were
obtained from the shear tests in the device are inaccurate.
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Another type of device that was suggested by A. L. Rabinovich [64]
for shear testing of samples of more complex configuration has the
advantage that crumpling of the sample surface is missing; how-
ever, the stress there is aistinguished from pure shear.

Samples of other dimensions, and consequently, another device [51],
are used for shear testing under the influence of forces perpendicular
to the sheet plane. This device is designed to test sheets from 4 to
6 mm thick. The sample whose thickness equals the sheet thickness, has

the shape of a rectangular parallelepiped whose area equals [illegible] /116

mm. T'.e comparatively great width of the sample is selected to reduce
the stress of crumpling on the surface.

In order t> compute the ultimate strength in shear perpendicular to
the sheet plane depending on the angle between the shear area and the
direction of the casing fibers, chapter 1 presents tensorial formula
(1.25). 1In this case, the direction of the shearing force with dif-
ferent values of angle o coincides with the direction of one of the
axes of symmetry, that which is perpendicular to the sheet plane. The
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Figure 3.33. Summary Graph of
Anisotropy of Fiber CGlass-
Reinforced Plastic in Shear
1,2,3,4,5--SVAM on epoxy-phenol
binder with sheet thickness 10 mm;

[continued on next pagel
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[continued from previous page]

fiber ratio: 1--?:1;3—-1:5; 4--1:13;
5--"stellar" structure; 2--thickness

of sheet 5 mm (l:1 ratio) (inaccurate) ;
6--SVAM on BF-4 (ratio 1:1); 7--cold-
hardened fiber glass-reinforced plastic
fabric.

censorial formula therefore has another appearance than during shear

in the sheet plane where the direction of the shearing force changes
depending on the angle o and continues to lie in the symmetry plane,

but only coincides with the direction of the symmetry axis for two
values.
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Figure 3.34. Dependence of Ultimate Strength on
Orientation of Samples for SVAM with Fiber Ratio
1:13.

l--in stretching; 2--in compression; 3--in shear.

As the experiments showed, the amount of shear
resistance in the direction perpendicular to the sheet
plane remains almost constant with all orientations
of the sample in relation to the glass fiber. Figure
3.35 as an example presents the results of testing
SVAM with 1:5 fiber ratio for different orientations.
The actual dispersion of results, as is apparent from
this graph, significantly exceeds the discrepancy in
the amounts of resistances with different angles of o.
The theoretically constructed curve also differs
little from the horizontal straight line. Thus,
even for fiber glass-reinforced plastic with compara-
tively high anisctropy, with 1:5 fiber ratio, the shear
resistance perpendicular to the layer is a practically
constant amount for all orientations in relation to
the glass fiber.

The third appearance of fiber glass-reinforced plastic resistance

to tangential stresses bears the name of simple shearing in the layer
(interlayer shear). Here the tangential stresses act in all cases in
one plane that is parallel to the veneer sheet layers. The angle «

between the direction of effect of these stresses and the direction of
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the glass fiber is changed. In this case, the tensorial formula
acquires the same appearance as in shear perpendicular to the layers
(1.25). Experiments show that essentially this resistance does not
depend on the size of the o angle [12].
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Figure 3.35. Ultimate Strengths

in Shear Perpendicular to Plane

of Sheet for SVAM on Epoxy-Phenol
Binder with 1:5 Fiber Ratio. Hatched
region is actual dispersion of testing
results.

The amount of resistance to simple shearing in the layer for these
fiber glass-reinforced plastics is very low. It is from 100 to 200
kg/cmz. This is the only resistance in which the reinforcing effect
of the glass fiber is essentially lacking and only one binding agent
operates. In the structural materials one should therefore try to
avoid that transmission of loads in which the fiber glass-reinforced
plastic operates on simple shearing in the layer.

Results of fatigue testing. The anisotropy of fatigue strength of

fiber glass-reinforced plastics during bending according to fig. 3.37 a

is considerably lower than its anisotropy during static stretching. Fig.

3.36 presents the curves for change in the endurance limits of the tested /118
fiber glass-reinforced plastics depending on the angle « between the

sample bending plane and the fiber direction (or threads of the fabric

warp). The curves are constructed according to the tensorial formula

(1.22) and according to the quantities of ultimate endurance obtained
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experimentally in publication [12].
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Figure 3.36. Endurance Limits in
Pure Planar Bending

1--for SVAM on epoxy-phenol binder
with 1:1 fiber ratio; 2--for fiber
glass-reinforced plastic fiber of
cold hardening (on PM-1).

The fatigue strength of glass textolite made of T fabric on PNLI
binder, as is apparent from fig. 3.36, in this case practically does
not depend on the orientation of stress in relation to the fabric
wary.

The anisotropy is more significant for SVAM. The endurance limits
were defined on the basis of 107 cycles with pure bending of flat
samples according to tests with assigned amplitude of deformation (angles
of rotation of the end sample sections) in the machine designed by
I. P. Boksberg. The bending plane passed perpendicularly "o the plane
of the fiber glass-reinforced plastic sheet. The samples had the
shape of a blade with openings of the clamping bolts [12]. In the tests
of SVAM with 1:13 fiber ratio, there were cases of cracks appearing
from these openings parallel to the direction of greatest material
strength. In subsequent experiments, the clamps were redesigned. A
square shape of the samples''without heads' was adopted. Their failure
occurred in the middle of the length.
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Figure 3.37. Schematic Illustration

of Sample Bending during Fatigue Testing
in Three Different Cross Grain Cases
a--cross grain in sheet plane; b--during
bending onwarp ; c--during bending on
weft.

In many machine parts and designs, fiber glass-reinforced plastic
is used under such conditions in which fabrication inaccuracies, and
sometimes the design features of the item (site of connection of elements
by molding on), result in the appearance of a type of cross grain, i.e.,
slight noncoincidence of the material symmetry plane with the plane of
action of the external forces. In contrast to the biologically governed
cross grain of wood, this cross grain of fiber glass-reinforced plastics
can be simulated by the corresponding orientation of the samples. The
effect of cross grain on the static strength of fiber glass-reinforced
plastics can be easily evaluated from the curves given above (fig. 3.22-
3.34). The effect of cross grain on the fatigue strength during
bending of one type of fiber glass-reinforced plastic was studied in /119]

i

publication [83]. Figure 3.37 presents three possible cases of cross
grain in a fiber glass-reinforced plastic fabric during pure bending
perpendicular to the sheet plane. Case a corresponds to the testing
results presented in fig. 3.36. With small values of the angle a, the
effect of cross grain here is not great: curve 2 in fig. 3.36 travels

125



S S i o b AR S el At s s

NN NN
w300 \\\ NN \\\ ‘
I N \\"\ \\\
706 ’ ATRLITAN B ;
500 . \J‘\\\‘X \\‘> )
l QAR
'500 NN
ww\\»ﬁj ‘YQQ \\} . .
1300 \ \X /J \\:J\:.\\\\\‘\
RN ORRRROK ;
! zm\ Q’\[\t:hﬁ(\ A \F\\\\l\ =1
1190 SN \kﬁ*ﬂ\\i\\ RN 1
<N N T~ ' r~
1090 : :\\~\>\>t\: *4\ :‘E
S N *$l1¢
900 \\ \\\\:.\MJ\\\ 1
o v ~ T~ e -
400 \:NSL\N;\\ e i 251 S
L
700 [T L zgm

09 2 T A5678910% 2 3 456780105 2 3 456789095 2 3 w56789107 N

¥

Figure 3.38. Fatigue Diagrams for Cross Grain Series
of Samples

1 and 2--cross layer on warp; 3 and 4--cross layer on
weft; --according to correlation equations;-—
~--dispersion bands; -+ --intact samples.

in limits from a=0 to «=15° almost horizontally. Cases b and c were
experimentally studied in publication [83] with small values of the angle
(about 1°).

Figure 3.38 presents in semilogarithmic coordinates the results of
testing two series of cross grain samples that conform to cases b and c
in fig. 3.37.

In figure 3.38, the points mark the results of testing individual
samples. The ordinates are the amounts of stresses o that were computed
from the sample deflection and the modulus of elasticity of the material
deterwined before the beginning of the tests.

The logarithm is plotted on the x-axis in fig. 3.38 for the number
of cycles N (durability) that the sample withstood before failure.

The correlation straight lines were constructed according to A. K.
Mitropol'skiy's method [55] for processing results of a small number of
observations, with the assumption of M. Ya. Shashin on the independence
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Figure 3.39. Fatigue Diagrams for
Series of Samples during Bending on Warp
l--non-cross grain (fig. 3.37, b with
a=0); 2--cross grain (fig. 3.37,b with
2=1°) and on weft; 3--non-cross grain
(fig. 3.37, ¢ with a=0); 4--cross-grain
(fig. 3.37, ¢ with a=1°); 5--cross-grain
unprotected (fig. 3.37, ¢ with a=1°).

of the measure of individual dispersion from the amount of stress, and
the assumption on the linear link between the amplitude of deformations
and the logarithm of sample durability.

The presence on the fatigue diagram of points that are arranged
on one level with the points that correspond to the intact sample made
it possible to approximately construct horizontal sections of the %
diagram (straight lines 2 and 4 on fig. 3.38). Continuation of the
tests on individual samples resulted in their destruction at 5‘106
cycles. This provides the grounds to hypothesize that the straight
lines 2 and 4 must actually be slightly inclined to the horizontal, and
do not conform to the true endurance limit. With a base of 2-10° cycles, /12
one can assume that these straight lines are almost horizontal. |

Figure 3.38 shows the dispersion bands that pass at a distance of
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one, two and three measures of individual dispersion from the correlation
straight lines. Figure 3.39 and table 3.1 present the results of
determining the endurance limits for five series of the studied fiber
glass-reinforced plastic. The fifth series of samples was distinguished
by the fact that the material lacked a protective layer of fabric laid
parallel to the sheet plane on its upper and lower surfaces as in the
material of the second and fourth series. The greatest decrease in
fatigue strength is found in the fifth case in which the stretchking
stress acts during sample bending on the layer of the binder at the
site where the fabric emerges onto the sheet surface.

Table 3.1 presents the quantities of the coefficients a and k that
characterize the fatigue strength of the tested series of samples. The
coefficient a shows what percentage the endurance limit o_; is of the /1213

ultimate strength in static bending O, -

The coefficient k shows the ratio between the endurance limits of

.k . . .
cross grain oy and non-cross grain o_; material, i.e., evaluates the

reinforced plastic.

effect of slight cross grain on the fatigue strength of fiber glass- ‘

k
A :_::L .

S

-1

As is apparent from the data of fig. 3.39 and table 3.1, even very
slight cross grain during bending in the weft plane (fig. 3.37, c)
results in a decrease of the endurance limit for the unprotected material
by an average of 19%.

Thus, eveén for a comparatively weakly anisotropic fiber glass- /122
reinforced plastic fabric,slight deviations in the direction of the
stress effect on the material's symmetry plane (only by 1°) result in

certain cases (fig. 3.37 c¢) in a considerable decrease in the fatigue
strength in contrast to the case in fig. 3.37 a. It should be noted
[83] that the static strength of samples for the fourth and fifth series
is 57 lower than for the third, i.e., this case of cross grain (on the
weft) has a considerably stronger effect on the amount of endurance
limit than on the ultimate strength of the material. Thus, the
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anisotropy of fatigue strength can sometimes be more pronounced than in
static tests.,

TABLE 3.1. TABLE 3.1. VALUES OF a AND k COEFFICIENTS
Number of diagran Series of samples sy o, Type of
on fig. 3.39 . e | cross grain
] ﬁ in fig. 3.37
1 Non-cross grain during 0.316 1
bending on warp
2 Cross grain during 0.296 [0.915 b
bending on warp
3 Non-cross grain during |[0.348 |1
bending on weft
4 Cross grain during 0.312 |0.86 c
bending on weft
5 Cross grain, unprotected 0.290 0.81 c
during bending on weft
13. Metals

The data on strength of metal anisotropic materials are given in
this work mainly from published data.

The author tested one sheet of cold-rolled steel 0.8 KP for
stretching in seven different directions in relation to the rolling [13].
The steel had 757 shrinkage in cold rolling. The chemical compo-

sition of the steel was: C(€--0.97, Si--traces, Mn--0.45%, S--0.0207,
P--0.0247, Cr--0.03%, Ni--0.09%. The initial sheet thickness was 2,
the final was 0.5 mm. The tested steel sheet was not thermally treated.
E. I. Braynin (ZhTF, Vol. 30, No. 8, 1960) for this cold-rolled
steel compared the experimentally obtained values of ultimate strength

0, in rupture of variously oriented samples with the calculated curves /124
constructed from the tensorial formula (1.22).

E. I. Braynin tested one-two samples 130 x 18 x 0.5 mm in size with
each of the seven different orientations (u=0,15,30,45,60,75, 90°) for
four different conditions of steel. 1In three out of the four states
he obtained considerable discrepancies between the results computed
from tensorial formula (1.22) and the experimental data. The greatest
discrepancy was obtained for steel in condition a, after cold rolling
with 757 shrinkage. For this condition of steel, the curve for change
in oy depending on o, according to E. 1. Braynin's data, had a maximum
at o=15° and minimum at «=50°.
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Figure 3.40. Arrangement of Samples on Sheet of Cold Rolled Steel. /123

Angles designated between axes of samples and direction of rolling and
number of samples.

A steel sheet 250x260x0.5 mm in size made of the same batch in
condition a was supplied by E. I. Braynin to repeat the experiments.
For the repeated experiments, smaller dimensions of the samples were
taken in order to check the degree of uniformity of the material in the
sheet and to obtain reliable average data of the tests on a large number
of samples.

Samples 80 x 5 x 0.5 mm in size were cut according to the mark pre-
sented in figure 3.40. The samples that were cut perpendicularly to
the direction of rolling (¢=90°) from the left and right side of the
sheet (fig. 3.40) yielded the same average quantities of ultimate
strength. The samples that were cut parallel to the direction of
rolling had varying strength depending on their site of arrangement on
the sheet. Samples cut from the middle of the sheet had the greatest
ultimate strength, and those cut from the lower part of the sheet had
the least.
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Figure 3.41., Change in Steel
Ultimate Strengths in Rupture
Depending on the Angle between

the Sample Axis and the Rolling
Direction (Curves consyructed

from tensorial formula (1.22):
A--average for sheet; l--on upper
sheet; 2--in middle; 3--on lower
sheet. Average ultimate strengths
according to our data: O--average
for sheet; ®--for lower part; a--
for upper; ®--for middle; X--
according to Braynin's experiments.

Here the differences in the ultimate strengths of the samples cut
from different parts of the sheet with the same orientation exceed the
differences between the ultimate strengths of the samples cut from
one part of the sheet, but with different orientation.

Figure 3.41 presents the ultimate strengths experimentally obtained /125
by E. I. Braynin (designated x) in addition to our data. Along and
transverse to the rolling direction they are considerably lower than
our average data. With o=0, only two samples from the total number of
19 tested samples showed such low strength. These were the samples
that were arranged in fig. 3.40 in the lower part of the sheet. A
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certain increase in strength with o=15° as compared to the strength
along rolling (with o=0) is also apparent according to the results

of our tests, but they only average 1.3%7 for the sheet, while the
difference in strength with o=0, depending only on the site of arrange-
ment of the sample, reaches 147.

Thus, the existence of maximum strength with «=15° is doubtful, and
the values of ultimate strength obtained with a=15° that were increased
as compared to a=0 can be explained by the heterogeneity of the material.

Figure 3.41 presents the curves that were constructed from the
tensorial formula separately for different parts of the sheet and average
for the entire sheet.

As far as can be judged from the cited data and the data of publi-
cation [119], tensorial formula (1.22) correctly describes the laws
governing the change in characteristics of resistance to plastic de-
formation and failure of metal alloys depending on the angle between
the direction of force and the direction of rolling.

H. Hoover [95] tested rolled steel in different directions in
relation to the rolling.

A number of the steel bands (first) were rolled only in a longi-
tudinal direction. The length of the rolled band was 210 times greater
than the length of the casting. The second group of bands was initially
rolled in a lengitudinal direction (length of the slab was 13 times
greater than the length cf the casting), and then in a perpendicular
direction. The slab was rolled in this direction so that its length
was increased 19-fold. No damages or defects were found on the surface
of the bands. The thickness of the bands was from 0.145 to 0.154 in.
The strength anisotropy of this steel was not great and according to
the amount of temporary resistance on standard samples it was:

-

S,
e 1]
H. Hoover made tests of an anisotropic steel band on samples that
were plates with a deep notch and drilling at “he end of the notch.
These samples were tested for stretching with different angles of in-
cline of the destructive force to the direction of band rolling. The
notch always remained perpendicular to the rupture force. Two types of /126,
{
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Figure 3.42. Dependence of TUltimate
Strength of Rolled Steel on Angle of
Incline o« of Force to Direction of
Rolling according to Data of H. Hoover
1,2 ,--rupture forces for steel St.1l
andlst. 2; 3--rupture work for steel
St.1l.

material were tested: steel 1 was exposed before testing to preliminary
rolling in one direction, while steel 2 differed from steel 1 only in
the fact that it was rolled in two mutually perpendicular directions.
Figure 3.42 shows curves for the change in rupture force (1,2) and the
rupture work (3) for these two materials. The ordinates of the curves
were computed from tensorial formula (1.22). A fairly rlose corres-
pondence was obtained between the data of the calculation and the
experiment.

Apparently as a consequence of the slight anisotropy »f the elastic
properties of the rolled steel, differences in the stressed states of
variously oriented samples were negligible in these experiments. The
coefficient of stress concentration (that changes depending on the
direction of the stretching force more strongly,the greater the difference
is in the moduli of elasticity E along and transverse to the rolled
product) in this case remained almost constant. It therefore happened
that formula (1.22) that was derived for the strength characteristics
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with uniform simple stresses is approximately correct for complex
stresses that almost do not change depending on the orientation of
the sample.1
It should be noted that with the same nature of mathematical
relationships, the type of curves that define the resistance of materials
to perpendicular and tangential stresses is quite different. The
diagonal direction often conforms to the greatest shear resistance,
but the least rupture resistance (see fig. 3.13 and 3.34). If the
strength characteristics along and transverse to the fibers (or rolled
product) differ little among themselves, then the diagonal directi.n /127
generally corresponds to extreme quantities of resistances: maximum
shear resistance and minimum rupture resistance.
This rule was confirmed in the fatigue tests of the metals.
Findley and Mathur [88] in studying the fatigue strength of weakly
anisotropic metals (steel and aluminum alloys) during bending and
torsion noticed the same law. During bending, the least endurance
limit was found in the samples that were cut at a 45° angle to the
direction of greatest strength of the material (longitudinal). During
torsion these (diagonal) samples possessed the greatest fatigue strength
exceeding the strength in longitudinal and transverse directioms.
Here the strength in the longitudinal and transverse directions differed
little for these materials both in tests for repeatedly changed bending,
and for torsion.
With an increase in the degree of anisotropy of the material, the
extreme values no longer coincide with the diagonal direction (curves
in fig. 3.34), but as before, the resistance to the perpendicular
stresses is the minimum, whille the resistance to the perpendicular
stresses is the maximum. With a very great degreec of anisotropy, the
extremum coincides with the longitudinal or transverse directiom.
The mathematical relationships make it possible, as shown in
section 9, to establish the direction of least or greatest strength
of the anisotropic material, in contrast to the purely empirical
approach to the question that does mnot afford such a possibility. Here

the same, or almost the same characteristics of strength in the

IA more detailed study of anisotropy in the characteristics of sensi-
tivity of the metals to the notch was made in the candidate disser-
tation of P. G. Miklyayev "Study of Anisotropy of Mechanical Properties
of Intermediate Products Made of High-Strength Light Alloys," VILS
[All-Union Institute of Light Alloysl, 1965.
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longitudinél and transverse directions are still not an indicator of

the material's isotropy. Iis strength in any other direction (for
example , diagonal) can prove to be considerably reduced and have an
unfavorable effect on the overall strength of the design.

1 studied by Gatto and Mori [92] had considerably
greater anisotropy than the rolled steel. They studied two alloys,

The aluminum alloys

ergal and avional of the following chemical composition: Ergal 65:
Zn--7.7%, Cu--1.77%, Mg--2.627%, Mn--0,18%, Fe--0.15%, S8i--0.097 and Cr--
0.15%.

Avional 24: Cu--4.85%, Mg--1.457%, Mn--0.637%, Fe--0.327, Si--0,36%.

Both alloys were tested in the rolled state and after annealing.

Figure 3.43 presents curves for the change in characteristics of /128
plastic deformation resistance during rupnture and impaet strength a of
two aluminum alloys, ergal and avional. The experimental data were
taken from the work of Gatto and Mori [92]. The tests for static
stretching were done on samples 10 mm in diameter (curves 1,2 and 3).
During stretching, an analysis was made of the ultimate strengths a1
and conditional yield stresses 9g. 9" The ordinates of all curves were
computed from the tensorial formula (1.22). The same relationship is
accepted for the impact strength (curve 4).

With a difference in the ultimate strengths for rupture along and
transverse to the rolled product not exceeding 27, the ultimate strengths
of these alloys in a diagonal direction (i.e. at a 45° angle to the
direction of the rolled product) were lower by 11.67 for avional and by
5% for ergal. The difference in the amount of yield stress along and
transverse to the direction of rolling was more significant. And
finally, the impact strength shtowed the greatest anisotropy.

Strictly speaking, the impact strength cannot be computed from the
tensorial formulas, since it neither conforms to the material's resis-
tance to the effect of perpendicular stresses in simple stretching, nor
its resistance to tangential stresses under pure shear conditiomns.

At the same time, the impact strength is undoubtedly an indicator of
the material's resistance with a certain complex stressed state and
under the dynamic effect of loads.

lMore complete and newer data are presented in publication [119]} and
in the dissertation of P. G. Miklyayev (see p. 134).
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Figure 3.43. Dependence of Charac-
teristics of Plastic Deformation Re-
sistance during Rupture and Impact
Strength a of Aluminum Alloys on the
Angle of Incline of the Force to the
Direction of Rolling (according to
data of Gatto and Mori):

a,3-—cB and og 9 for avional; 2,4--
op and“a for gtgal.

Formula (1.22) can conform to the change in impact strength if the
nature of the stress changes little with the change in orientation of
the sample. The dynamic nature of load application does not contradict
the assumptions that are the basis for the derivation of this formula.

They are therefore applicable in impact tests in which the loading
regime does not change with a change in the sample orientation.

14. Determination of Ultimate Strengths for Simple Shearing from Results

of Testing for Stretching or Compression of Wood Samples and Directed

Fiber Glass-Reinforced Plastics.

During stretching of a sample whose axis forms angle o with the

direction of the fibers (fig. 3.44,a), destruction often occurs on

areas parallel to the fiber. Perpendicular Oy and tangential Cxy
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stresses simultaneously act on these weak areas. The quantity of
these stresses changes depending on the ultimate strength of the
sample o and the angle a«. If one constructs (fig. 3.44,b) a curve
of the mutual relationship of stresses Txy and oy that are active at
the moment of destruction on the areas parallel te the fibers, then one
can make an approximate estimate of which of these stresses was the
primary cause of destruction of the material, i.e., does separation
or simple shearing occur on the weak interlayer. Those points on the
curve for which the perpendicular stress cywill be variable, and the
amount of Txy constant, must evidently correspond to the destruction
by shearing. Consequently, one can judge the material's resistance
to shearing along the fibers from the size of the ordinates of these
points Txy.

These curves,called limiting, are constructed in fig. 3.44.,b for
pine.

Figure 3.44b presents the limiting curves that were constructed
from the experimental data on strength of pine: Ffor static stretching
curve 1 (form the author's experiments [5]), in static compression,
curves 2 and 3 (from the experiments of A. N. Flakserman [71]) and
in impact compression, curves 4 and 5 (from the data given in section
10). The amount of perpendicular stress o_ that acts on the area
parallel to the fibers is plotted on the x-axis in figure 3.44b. During
rupture of the sample whose axis comprises angle o with the fiber
direction (see fig. 3.44,a), the amount of stress oy is computed accor-

ding to the fermula

5, < 3, 8in%a, 3.8)
where o, --ultimate strength during stretching at an angle « to the
fibers.

During compression of variously oriented samples, the amount o
that conforms to the ultimate strength gy, will be considered negative
and will be computed according to formula (3.8).

The amount of tangential stress 1 that acts on the areas parallel

Xy
to the fibers of wood, is computed according to the following formula

in the stretched or compressed sample

- — % sin 22 .
Sy T '"T_ . (3'9)
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The stresses o and Txy act simultaneously on the same ''weak"
areas of the samples at the moment they are destroyed. Each point of
the curves depicted in fig. 3.44 b conforms to the results of testing
a series of samples oriented in the same way in relation to the fibers.

Curve 1 was constructed according to the results of tests for
stretching in which the orientation of the samples in relation to the
annual wood rings was not fixed. (As a consequence of the heterogeneous
structure and considerable length of the samples [5], it was difficult
to maintain this orientation constant over the entire length even in
the case where the orientation of the sample axis in relation to the
fibers was fixed fairly accurately). Thus, data were used for curve 1
that present the average amounts of resistence that occur with the same
incline of the fibers.

Curve 2 was constructed from the results of compression testing
of samples whose axes are arranged in a radial plane with all angles of
fiber incline. Curve 3 is constructed according to the results of
compression tests on samples whose axes are arranged in the tangential
plane. Curves 1,2 and 3 were constructed from experimental data obtained
by different authors, but the pine had almost the same ultimate strength
for compression along the fibers, comprising about 450 kg/cm2

Curves 4 and 5 were constructed similarily to curves 2, and 3.
respectively for the radial and tangential planes, but for impact com-
pression.

All the curves in figure 3.44 b have a clearly pronounced section
for which Txy changes little. This section has a maximum that corres-
ponds to the angles of fiber incline from 20° to 25° to the sample axis.
The greatest amount of tangential stress Ty that is active on the area
parallel to the fibers is obtained with «=20-25°.

If one compares the amount (t_ ) during stretching (curve 1) with

xy’max

the average amount (ty ) obtained in compression (curves 2 and 3),

y’/max
then one can note that they do not differ strongly. Thus, not only

angle o« that conforms to the maximum amount of shearing stress, but the

actual amount (rxy)max is roughly the same during stretching and
during compression. Consequently, (Txy)max depends little on whether
138



additional stretching or additional compressing stresses are acting

on the area parallel to the fibers. Failure of the samples with

these angles of incline of the fibers occurs by simple shearing along
the fibers. This is confirmed by the external appearance of the

failure during stretching and compression. Consequently, the amount
(Txy)max approximately conforms to the ultimate strength of the material
for simple shearing along the fibers Ty, -

This nature of failure is possible only with a certain correlation
between the quantities of perpendicular and tangential stresses acting
on the areas parallel to the fibers. This correlation, in turn,
depends on the angle o between the axis of the sample and the direction
of the wood fiber. The effect of additional perpendicular stresses ¢
is small only for those angles o that correspond to the tops of the
curves illustrated in fig. 3.44.

With large angles of incline of the fibers, the effect of perpen-
dicular stresses oy that act on the areas parallel to the fibers,
becomes more significant, and even definitive, since the curves here
travel amost vertically, and the amount - is close to the amount of
the ultimate stretching strength (or correspondingly the compression
strength) transverse to the fibers.

When tangential and stretching stresses act simultaneously on the
areas parallel to the fibers, the wood failure occurs by rupture if
the amount of stretching stresses exceed the amount of tangential (al-
most vertical section of curve 1). One can draw the conclusion from
here that failure of the samples for shearing along the fibers according
to GOST 6336-52 occurs primarily by rupture of the wood transverse to
the fibers.

As shown by the studies done by F. P. Belyankin [18] on isotropic
models by the optic method, the amount of the greatest stretching
stress that is active on the shearing plane in the OST-NKLes-250
samples, is 1.6-fold greater than the average tangential stresses that
are active on this plane.

According to GOST 6336-52, the sample differs slightly from the

sample studied by F. P. Belyankin. It has the same shortcomings. V. Ye.

Moskalev [47] also showed that the destruction of samples according to
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GOST 6336-52 is accompanied by rupture of the tracheid walls, i.e.,
occurs not by shearing.

The method suggested here for determining the resistance of wood
to shearing along the fibers by constructing limiting curves illustrated
in fig. 3.44 b from the results of testing for stretching or compression,
makes it possible to correctly approach an evaluation of the amount of
corresponding resistance.

As for the actual amount of ultimate strength for static shearing
aleng the fibers, according to this method it is somewhat higher than
when it is determined according to GOST 6336-52. According to fig. 3.44
(Txy)maX=Tg averages about 110 kg/gmz, while according to GOST 4631-49
for pine 1ty is from 60 to 82 kf/cm”™ (see GOST 4631-49 "Indicators of
Physical and Mechanical Properties of Wood").

, kg /cmd]
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G impact stretching

Figure 3.44. Limiting Curves for Pine
a--stress in stretched sample; b--limiting
curves; l--for stretching; 2 and 3--for com-
pression; 4 and 5--for impact compression.

/132
Comparison of curves 2 and 4, as well as curves 3 and 5 on figure
3.44 b shows that the ultimate strength in impact shearing is increased
in relation to its amount with static loading roughly 2.2-2.5-fold.
It should be noted that during impact compression at an angle from
10 to 40° to the direction of the fibers, the destruction of the samples,
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judging from their external appearance, occurs by simple shearing along
the fibers. The compression oscillograms (fig. 3.17) of these samples
have a clearly pronounced brittle nature: after the sharp increase there
is a drop in the force in the same way as on the diagrams of static com-
pression [71] with these angles of fiber incline.!l

A complete graph for the change in ultimate strength during stretching

or compression of an orthotropic material depending on the angle of
fiber incline can be constructed using the tensorial formula. Here it
is necessary to experimentally determine the ultimate strengths of only
three directions: along and transverse to the fibers, and at a 45° angle
to the fiber direction. This allows us to construct graphs to determine
the shear resistance along the fibers that are similar to those depicted
in fig. 3.44b. The graphs are constructed on the basis of three experi-
mentally defined quantities of ultimate strength oy for stretching or
compression: o, along the fibers, 09y transverse to the fibers, and

045 in a diagonal direction. All three directions must be arranged in
one symmetry plane of the material structure.

The method suggested [11] for determining shear resistance of wood
along the fibers is significantly simpler than all the extant methods
because it does not require any special devices. The quantity of ulti-
mate strength in shear along the fibers is determined based on tests
for normal compression (or stretching) of three types of samples: paral-
lel to the fibers, perpendicular to them and diagonal. Here the shape
and dimensions of all three types of samnles must be the same. The
angle in relation to the fibers must be held as carefully as possible.

This method also has the same advantage as the method accepted in
GOST 6336-52 for determining the shear modulus of wood according to the
compression of samples whose axes form a 45° angle with the direction
of the fibers.2 Testing of diagonal samples determines not only the
characteristics of the elastic properties in shear, but also the
1Publication [55] presents the limiting curve that was constructed from
fatigue testing results of variously oriented samples made of birch.
Judging from this curve and from the data of GOST 4631-49, the resis-
tance to repeatedly changing shear along the fibers is roughly two
times lower than the resistance to static shearing.

“The shear modulus of plywood is determined analogously according to
GOST 1143-41.
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strength characteristics of wood in shear along the fibers.1

The use of the suggested method to evaluate the resistance of
SVAM type directed fiber glass-reinforced plastics to the effect of
tangential stresses on a plane parallel to the direction of the greatest
reinforcement is shown in publication [11}. The ultimate strengths
in shear on an area parallel to the fibers can be determined for these
materials with the help of limiting curves constructed without con-
sideration for the stress Oy only in the case of unidirectional rein-
forcement (see section 17).

In a stretched sample, the stress field is usually more uniform
than in a compressed sample. One should therefore prefer the
limiting curves that are constructed from the results of stretching
tests.

For practical purposes, one can employ the results from stretching
tests and approximately define the lower limit of the resistance of
any anisotropic fiber glass-reinforced plastic to the effect of tan-
gential str.sses by using the limiting curves. The upper limit of
this resistance can be defined by shear testing according to GOST
10044-38 when the shear areas are superposed with the direction of the
greatest fiber glass-reinforced plastic reinforcement.

15. Experiments on Biaxial Compression /134

Figure 3.45 presents a plan of a reverser that is known by the
name ''Fepply's cross'. It permits production of biaxial compression
of samples by equal stresses on a normal press. The dimensions of the
samples were 20x20x20 mm. The tests were made on Gagarin's press with
recording of the compression diagram. The tests were continued either
until the samples were destroyed (decrease in load on the diagram), or
until a clearly pronounced break occurred in the curve, after which
the sample was not destroyed.

When the samples were carefully fabricated and accurately installed
in the reverser, the stress field was fairly uniferm. In the sample
made of optically active (isotropic) material, during biaxial com-
pression in the reverser, the stress field, judging from the color
pattern of the bands, was uniform to roughly the same measure as in

lIn publication [84], A. Jlinen used an analogous method to determine
the shear resistance of Finnish species of wood. The ultimate
strengths op were experimentally determined for all sample orientatioms.
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Figure 3.45. Plan of "Fepply's
Cross'' Reverser

the same sample that was compressed in one direction between two paral-
lel pads.

Of course, the results of testing samples of anisotropic materials
for biaxial compression in this reverser make no pretense of accuracy
or high degree of uniformity of the stressed state in the tests.

For an anisotropic sample, even when it is tested in the direction
of two axes of symmetry, the stress field undoubtedly differs from the
calculated scheme of a uniform biaxial compression to the same degree
as uniaxial compression.

The results of these tests can be viewed only as an attempt to
obtain certain, very approximate data on strength in biaxial stress for
those materials used to study anisotropy of mechanical properties in
this chapter.

Table 3.2 presents the results of testing pine for bi- and uniaxial
compression. The first line gives the average values of M for ultimate
resistances that were obtained in testing n samples. The table presents
the standard deviations o, variation coefficients v, average errors
m and index of accuracy p for these tests.

The following average results were obtained when nine-layer avia-
tion plywood, 10 mm thick was tested.

The ultimate resistance in one-sided compression along the casing
fibers was o,=640 kg/cmz, transverse to the casing fibers o =450 kg/cmz.
During biaxial compression in the same directions, cat=438 kg /em™.
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TABLE 3.2. RESULTS OF COMPFRESSION EXPERIMENTS ON WOOD

Indices | Biaxial com- Uniaxial com- ™\
pression pression
o |
Uat Ul’. ‘ :af |' Gr ‘ " ’ﬂ .
————— . - |
2 565 | 41.61 - 66,55 42.76 | 420,10
ﬁhkg Ems e I T 0 | 1o | 0| 10
o tems ot g ke | 377 | 848 ¢ 8,67 1 4.66 | 14,59
A a0 | sl0s | iges ident bian) T
oL 4, ,2 2, C 2.7 . ,
?1'+}%%/cnl A | 654 | 800 | 601 . 4.1t} 344 | 1,09
+ 9% L. . : ‘

The uniaxial compression testing results are distinguished for
plywood from those previously cited (sectionl0O), because the shape of
the samples and the testing method differ. Section 10 presents the
results of testing samples whose dimensions were larger. They were
tested in a different device.

As is apparent from an analysis of the results, the strength in
biaxial compression for plywood, in the same way as for wood, is de-
termined by the amount of ultimate resistance in the weaker direction.

Table 3.3 presents the results of testing cold-hardened fiber glass-
reinforced plastic made of T fabric on PN-1 binder and SVAM on epoxy-
phenol binder with 1:1 fiber ratio. The tests were done in the same
reverser for biaxial compression. The samples were 10 mm thick, equal
to the thickness of the material itself. They were cut from the fiber
glass-reinforced plastic sheet in such a way that their 20 mm edges were
oriented either parallel to the warp threads (a=0) and the weft (a=90°)
of the fabric, or at a 45° angle to these threads (o=45°).

The strength in biaxial compression of the fabric plastic in the
direction of the symmetry axis was intermediate in relation to the
strength characteristics in uniaxial compression in the direction of
these axes. The strength of the diagonal (a=45°) samples was slightly
higher in biaxial compression as compared to uniaxial. Thus, for
strongly anisotropic wood, the effect of biaxiality was the most pro-
nounced. The strength of a weakly anisotropic fiber glass-reinforced
plastic fabric is practically the same in biaxial and uniaxial com-
pression.

The anisotropy of SVAM fiber glass-reinforced plastic is stronger
and its strength in biaxial compression is somewﬁat lower than in uni-
axial.
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TABLE 3. 3.

FIBER GLASS-REINFORCED PLASTICS

RESULTS OF COMPRESSION EXPERIMENTS ON

/136

Indices Biaxial compression Uniaxial compression
°0-90 945 0 990 945

PTa8stic made of glass

fabric T on PN-1 resin:

M, kg/cm? 800 826 900 650  |725

n, items 15 11 16 14 8

o , kg/cm2 134 158 154 91.5 |{88.5

v,k 16.8 19.2 17.1 14 12.2

m kg /cm? 34.6 47.7 38.5 24,5 |31.3

A 4.3 5.8 4.3 3.8 4.3

SVAM on epoxy-phenol

binder (%:1 fiber ratio)

M, kg/cm 2775 - 3620 - -

n,items 11 23

o kg /cm? 184 374

VoA 9 6.6 10.3

m,kg /cm 55 78

P A 2.0 2.2

The testing results from uniaxial compression here, as above, differ

from those previously obtained in tests according to GOST since the

samples have different dimensions and shape.

Chapter IV.

Strength Anisotropy in Couplex Stresses

16. Study of Applicability of Mises' Plasticity Conditions as Strength

Conditions of Anisotropic Materials

The strength criteria or the theories of ultimate stresses are one

of the most controversial, and at the same time, important problems

in material resistance.
anisotropic bodies.

This problem is even more complicated for

The main problem is to establish the function that determines the

equally dangerous stresses.
that are characterized by the quantity of main stresses.
solve the problem of equally
it is sufficient to know the
three main stresses with the
This equation does not solve
since in themselves the main
condition of the material.

dangerous stresses for isotropi:

Uniform complex stresses are examined

In order to

bodies,

equation that links the amount of the

the problem for anisotropic materials,
stresses do not determine the mechanical
It is also necessary to know the orientation
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of the stress in relation to the structural axes of material symmetry.

The equation of equally dangerous states for orthotropic material
must thus contain not three, but six quantities that characterize the
stress. These can be, for example, the three main directions and the
three directing cosines that fix the orientation of one of the stresses
in relation to the axes of symmetry of the material.

The equations of equally dangerous states for orthotropic bodies
have a simpler and more symmetrical appearance if they include not
the main stresses, but the stresses that are active on the areas per-
pendicular to the axes of symmetry of the material further designated /138
(as in chapter 1) by the letters x, y and z, since the material charac-
teristics that are included in the equation can then be defined for the
directions that correspond to the main axes of symmetry.

In 1928, Mises in his classic work [106] suggested the condition
of plasticity that linkes six stress components with the yield stresses
in a uniaxial stress state and in pure shear in different crystallogra-
phic directions.

Hill's work [75] applies Mises condition to weakly anisotropic
plastic materials (rolled steel).

The condition of plasticity can be viewed as a particular case of
the equation of equally dangerous states. The plasticity function
suggested by Mises as applied to strongly anisotropic materials should
be studied in the sense of its suitability as a general condition
for equally dangerous states (strength condition) since these materials
do not always reveal plastic deformations.

Bearing in mind only the materials that equally resist stretching
and compression, Mises suggested the function of plasticity in the
form of a uniform second degree polynomial that he conditionally called
the plastic potential.

The plasticity function was first written by Mises in a general
form without introducing anassumption regarding the independence of
rhe crystal yield stress from the amount of hydrostatic pressure. For
a material that posseses general anisotropy, Mises'condition [106]

has the following form in our designations:
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In equation (4.1), the coefficients Aikop are constants of the
material whose number equals 21 in the general case of anisotropy.

If axes x,y and z are superposed with the axes of symmetry of the
orthotropic material, then one should discard from the symmetry con-
siderations all the components that contain tangential stresses in the
first degree and the products of different tangential stresses since
these components can change their sign when reflected in the plane of
symmetry of the material.

In the axes of symmetry of the orthotropic material, equation (4.1)
will contain 9 constants Aikop and adopt the following appearance:

Ay A Ag® + Agga®t + 24073y 2A0ms%y%
-+ 2A““ JENE K ¥ S A AR, R Ay = F (1.2)
In this expression one can select the correlations between the
coefficients Alkop so that the addition of the spherical portion of
the stress tensor does not change the size of the T function. Then
the equation loses generality and conforms to Mises' particular assump-
tion regarding the invariability of function F when the spherical
stress tensor is added.
By using the designations of I. I. Gol'denblat [25,26], one can
write Mises' plasticity function as a condition of constancy of the
second joint invariant of the stress tensor Os % and the transformed

stress tensor A, , Where AikOD is the tensor that characterizes

1kop op
the material's resistance to plastic deformations

| = Az‘hol’:iksop =1 (43)
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It is easy to show that the plasticity tensor Ay
has a fourth order.

kop in this case

The condition of constancy of the plastic potential results in an
assumption regarding the existence of a fourth rank (order) tensor
whose components characterize the plastic properties (yield stresses)
of anisotropic material.

It follows from equation (4.2) that, for example, the component
A1111 is determined from the experiment for uniaxial stretching on
the x axis of symmetry, whereupon

| 1
Ay = =

ditt 5y

' (+.4)

o

where 01111=02 is the yield stress of orthotropic material during
stretching in the direction of the x axis.
We correspondingly obtain

Apye = —g— = 5, (+.5)
1

where 01912=12y is the yield stress in pure shear under the influence

oL stresses = .
£ s Xy
Or in general

S R (1.6)

(:2)1 Ke®

A

[ ane

Thus, the components of the plasticity tensor according to Mises
have another dimensionality than the components of the tensor of

elastic deformation constants and the components of the strength tensor.

The assumption regarding its existence is substantiated in section 3.

By using Mises' condition as a function of the equally dangerous
states, one can understand by the amount Uikopin formula (4.6) the
corresponding ultimate resistance (ultimate strength) in the previously
stated general sense.

Thus, the use of Mises' plasticity condition as a condition of
strength results in a conclusion about the existence of a fourth rank
strength tensor, but the physical dimensionaliry of the size of this

tensor's components is different than assumed in section 3, where
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Mises' condition of plasticity should be viewed for anisotropic
materials from the aspect of its suitability as a condition that
determines the equally dangerous stresses (strength conditions). For
this purpose it is necessary to solve three main problems.

1. 1Is this condition experimentally confirmed. This can be
verified by comparing it to the results of tests even for simple
stratching of variously oriented samples of strongly anisotropic
materials (Mises in the mentioned work indicates this possibility
which is characteristic only for anisotropic materials).

2. Should ratios be introduced between the constants Aikop that
follow from Mises' assumption on the independence of the F function
from the spherical stress tensor.

3. Can Mises' equation that he wrote for material that equally
resists stretching and compression, be applied to those anisotropic
materials where these resistances differ.

We will examine the first question. The function (4.2) can be
written as follows for planar stress as conveniently oriented in the
symmetry plane of an orthotropic material

A+ 53-"2222 - 2‘411223.\’y + 4‘41212’.":-)- =l (4.7)

In order to define the four constants, we use four particular

stress states: 1) stretching on the symmetry axis x of the material

in which the ultimate resistance o equals 9y 2) stretching on another
axis of symmetry {lower strength) y, where the ultimate resistance is
designated 03 =090} 3) stretching in a diagonal direction, i.e., at a
45° angle to the x axis in the plane Xy-0,5, and 4) pure shear in the
Xy plane on areas parallel to the symmetry axes in which the ultimate
resistance correspondingly rgynto. Then equation (4.7) after determi-

nation of the constants will adopt the following appearance [117]:

s Ty .(_i_,_l_.__“‘__.__‘,_)z,sy-;n. (4.8)

2

x Y
""'2 ~ 2 + "2 T
%9 Sqp 0

If one assumes that in equation (4.8)

1Bridgman's experiments [123] on quartz compression contradict thiz
assumption. 9
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Sy == 3, cos*® 2;

o, =3 sin? z; (4.9) .
sin2x

Txy = %

then the following expression is obtained for the ultimate resistance

%ikop b of the sample whose axis forms angle o and lies in the xy
plane (see fig. 344 ,a).

- (4.10)

«' } costa -+ Bsin®21 - ¢*sinfa

where

After substituting into equation (4.8) the quantities

op = 7,8iN22 =—c; .10

Tyy = T, €05 22,

we obtain a formula that expresses the relationship of ultimate
strength Oikik~Tp 1n pure shear depending on the angle a between the
x axis and the perpendicular to one of the areas of action of tan-
gential stresses

-

Ty = 2 , (4.12)
l,//-cos'-' 21 ( o

—— sin*2z
, T4

where T and T,5--ultimate strengths in shear in plane of symmetry xy
respectively with o=0 and ao=45°. It was assumed in chapter 1

! (4.13)

Q; kop = 3t xop v

where %ikop is the ultimate resistance.

Instead of formulas (4.10) and (4.12), chapter 1 respectively
obtained tensorial formulas (1.22) and (1.24) that differ only in the
exponent of the ultimate strengths.

From correlation (4.6) one can obtain a formula for °5 =03 kop and
in the general case of random orientation of this quantity in space.

This formula will differ from formula (1.20) only in the higher (second)
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exponent of the constants.
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Figure 4.1. Comparison of Curves 1

and 2 Constructed according to

Formula (1.22) (1 for compression and

2 for stretching) and Curves 3 and 4
Constructed according to Formula (4.10)
(3 for compression and 4 for stretching)
with Results of Testing Pine for
Compression (o) and for Stretching (x).

Formula (1.22) was verified in chapter III by comparison with
experimental data for different anisotropic materials. A verii ication
of the suitability of Mises' function as a strength condition will
be, for example, a comparison of formula (4.10) with the experimental
data of chaptar III.

One should note first of all that formula (4.10) for certain materials
(mainly wood) that are distinguished by a high degree of anisotropy,
yields a break in the continuity on curve op=f(a) [117].

With certain ratios between the strength characteristics of the
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material °0‘°9Oand045' the size of the coefficient B in formula (4.10)
becomes negative, and namely with

I —.—2_.:.-2'.:;0-—‘. (414)

In this case, with certain values of the angle (close to a=15-20°),
the curve that illustrates the change in oy depending on the size of
o ,undergoes a break in continuity (o =), which contradicts the
experimental data. For weakly anisotropic bodies, usually B>0 and
formula (4.10) is confirmed by experiment.

Figure 4,1 shows curves 3 and 4 for the change in the quantity oy
depending on o, constructed from formula (4.10) for such a strongly
anisotropic material as pine in compression and stretching. The curves
have a break in continuity.

Thus, for strongly anisotropic materials, condition (4.2) contra- /144
dicts the experimental data.

Table 4.1 presents the data showing in which case a break in con-
tinuity is possible during computation with formulas (4.10) and (1.22).
As is apparent from the data of these tables, the following is obtained
for all tested materials (column 5 and 6):

4z 5
- 6700
Igy < m——

Sy ¢ Tpo

and tensorial formula (1.22), derived from ratio (4.13) does not yield
the values oy~ =.

Formula (4.10) does not yield a break in continuity only in the
case of weakly pronounced anisotropy, and for wood materials in four
cases (table 4.1) results in op+ = (columns 8 and 7 in table 4.1).

Section 15 describes experiments on biaxial compression of certain
anisotropic materials. For this case, we obtain the following from
equation (4.8), if we designate oy as the amount of resistance to
biaxial compression:

Sen=u
e

S gD e
Y

322
Vo435

For aviation plywood, this formula yields a quite satisfactory
coincidence (od=428.5 kg/cmz) with experimental results (433 kg/cmz),
but for wood the formula results in imaginary quantities,since 045>2T0.
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TABLE 4.1.
Material Type of Is there [Published
testing break in |source
continuity
! - in calcu-
. I T R B ” lation by
'k'g/‘ wikgew | Ta s, Kgiew ’é % s formula
i (4.10)
1 2 T4 s 6 7 T s 9 [ 10
Pine Compression 4431 661 198.3 | 151 17045 , 2280l Yes 1]
" Stretching 593 | 48| 178,0 | 114 | 9156 12996 Yes [75]
Birch veneer sheet " Moo | 351 1366 | 72]  48% 5184 Yes 15]
7 mm bakelite plywood " 1050 xss! 1898,7 | 477 1785650 227 529 No (5]
Aluminum alloy 3850 | 3500 | 7333 | 3250 | 26828053 | 10562500 » [92)
Avional ‘.
-1 i 9000 | 1900 | 4647 | 1060 [ 10986 576 1 1123600 » 12]
Co hardene iber 112
glass-reinforced plasH _ | f
tic on PN-1 | |
SVAM on epoxy-phenol 5478 I 2400 1 6KI7,7 | 1154 | 10748825 | 1331716 » (12]
resin 1:5 | |
I on epoxVy-p 7900 0 140 ) 3085 110200 5002358 | 1562500 » 12
VAM on epoxy-pheno ' | i 12l
resin 1:13 ‘ ;
Parallel plywood Compression c’ 8O3, 814 306.3 3ol 27963 16900 » 5]
e 151 . 3
Stretching 55| 50! o251 121 138w 1537 |  Yes 51
1 t + i . [ ]
N V i '




Thus, the experiments on biaxial compression also confirm that the
strength condition (4.8) cannot be applied to strongly anisotropic wood
materials whose strength in pure shear on the symmetry areas 0 is
considerably lower than the strength of uniaxial stresses.

Figures 4.2 and 4.3 show that formulas (4.10) and (1.22) conform
equally well to the results of testing weakly anisotropic materials:
bakelite plywood and aluminum alloy.

Figure 1.2 a presented a comparison of the calculation results
using different formulas with the results of testing SVAM fiber glass-
reinforced plastic. This comparison referred to the polar coordinates.

For SVAM with 1:3 fiber ratio, the solid line (curve 1) is con-
structed from formula (1.22) (fig. 1.2). With «=15°, this formula
yields the amount 9y, which is greater than the experiment (black dots).
In this case, curve 3 (dot-dash) that is constructed from formula (4.10)
yields amounts that aresmaller than the experiment.based on an assumption
regarding the fourth order tensor whose components are quantities that
are inverse to the ultimate strength taken not in the first, but in
the second degree.

For SVAM with 1:1 fiber ratio, the computation results from formula /145
(4.10) yield curve 6 that conforms somewhat better to the experimental
data (circles in fig. 1.2a) than curve 4 that was constructed from
formula (1.22).

Figure 4.4 presents the results of compression tests on pine in
which the amounts Onf of the limit of plastic flow [36] were defined
by Yu. M. Ivanov using the same technique with all sample orientationms.
In this case, curve 2 for change in o that was constructed from
formula (4.10) has a break in continuity, while curve 1, constructed
from formula (1.22) does not.

Since the material's anisotropy has a stronger effect in determining
the ultimate strengths for stretching than for compression, then a case
is possible where formula (4.10), conforming to the compression experi-
ments, will yield a break in continuity during stretching. The paral-
lel birch plywood (table 4.1 and fig. 4.5) is an example of this
material.

Thus, a break in the continuity of the curve in calculation by
formula (4.10) is not linked to the different physical nature of the
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dangerous state of the material with different values of angle o, and
perhaps, can apparently be explained by the unsuitability of formula

(4.2) for strongly anisorropic materials. However, for a number of /146
fiber glass-reinforced plastic fabrics, metals and certain other

weakly anisotropic materials, Mises' function (4.7) that was adopted

as the strength condition, permits a good approximation of the testing
results.

Passing to the second question,'one should stipulate that the
correlations between the material constants that follow from the
hypothesis on the invariability of the F function when the spherical
stress tensor is added and which result in'rariconstancy," i.e.,decrease
in the number of constants, were not included in formula (4.10), since
the coefficients of equation (4.8) were determined experimentally for
the particular cases of stress states.

The correlations between the constants A, in equation (4.2) that

ikop
follow from the rariconstant assumption of Mises were studied by Hill

[751.
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Figure 4.4. Comparison of Curve

1 Constructed from Formula (1.22)

and Curve 2 Constructed from Formu-
la (4.10) with Results of Determining
Limit of Plastic Flow [36] of Pine

in Compression

For strongly anisotropic wood where the ultimate strength in
stretching (and compression) along the fibers is much greater than the
resistance to simple shearing transverse to the fibers, this correlation
is not confirmed even approximately. It is apparently better to take
Mises' condition of plasticity in its original form, without intro-
ducing hypotheses that artificially reduce the number of independent
constants in equation (4.2).

By introducing an assumption on the independence of the yield stress
of crystals from the amount of hydrostatic pressure, Mises modifies the
plasticity condition (4.1). This results in ratios that are formulated
in detail in chapter XII of Hill's book Mathematical Theory of Plasti-
city as applied to rolled steel. Mises' assumption results in a de-
crease in the number of independent components of tensor Aik in the

op
general case of anisotropy from 21 to 15, and in the symmetry axes of

orthotropic material, from 9 to 6.

. g

This assumption is analogous to the known correlations of Cauchy
that were suggested as the basis for the rariconstant theory of elastic :
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constants of anisotropic bodies, and also because these correlations
do not have experimental confirmation forstrongly anisotropic bodies.

The erroneous nature of Mises' assumption as applied to the /147
strength of strongly anisotropic bodies even in such a comparatively
plastic form of testing as compression of wood, can be substantiated
by the following simple comparison.

The assumption that Mises [106] introduced and that is used in
several modern works on strength of anisotropic bodies, assumes
the limit state of the anisotropic body to be unchanged when hydro-
static pressure understood as an algebraic quantity is added to the
stress.

This assumption leads to a requirement for equality of the ultimate
resistance of the material in biaxial eq.al compression in the sheet
plane and uniaxial stretching in a direction perpendicular to the sheet
plane. This is because the addition of triaxial equal stretching should
not alter the amount of resistance to biaxial compression. This require-
ment can be fulfilled, for example, for an isotropic material that
resists stretching and compression equally, if biaxial compression
under equal conditions yields the same amount of ultimate resistance as
uniaxial stretching.

The results of testing anisotropic materials under conditions of
biaxial compression demonstrate that this assumption does not conform to
reality for stronglyanisotropic pine.

The strength of wood in biaxial compression (see section 15) in
two directions that are perpendicular to the fibers is considerably
lower than its strength during stretching along the fibers. Conse-
quently, the addition of a positive spherical tensor of stresses sig-
nificantly affects the wood resistance. One can draw a conclusion
from here that Mises' assumption is doubtful as applied to the ultimate
strengths of strongly anisotropic wood materials. For fiber glass-

reinforced plastic made of T fabric on PN-1 resin, the strength in /148
biaxial compression in the sheet plane (see section 15) is roughly

8 times higher than its strength in stretching in a direction perpen-
dicular to the sheet plane.

Pagsing to Mises' third case, equality of ultimate resistances to
stretching and compression of the material, one can note that for many
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for Compression (o) and for
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materials whose anisotropy is considerable (wood, fiber glass-reinfor-
ced plastic), the difference between the amount of resistance to
stretching in different structural directions exceeds the difference
between the resistances to stretching and compression in the same di-
rection. Mises' equation can therefore be generalized for a planar
stress, for example: for all stresses in which the areas of symmetry
are only affected by stretching stresses Oy and Oy OT One of the
compressing that in absolute amount is smaller than the second,

stretching, one should consider that the coefficients Aikop are

i IR ¥ 24

determined by stretching and shear.
For those planar stresses in which both stresses Oy and Oy are

compressing or compressing more than stretching, the coefficients
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Saw

Aikop

of the question becomes clear with a graphic illustration of the surface

of equally dangerous planar stresses in the coordinate axes Oxs0ys Ty
that is examined in section 17 of this chapter and that represents
the application of the method of piecewise approximation.

Thus, Mises' condition of plasticity in the suggested formulation

are determined according to compression and shear. This statement

(4.8) , adopted as the phenomenological strength theory for planar stresses,

does not contradict the experiments described in chapter III, in-
cluding for materials that have varying resistance to stretching and
compression. This is on the dondition that the following correlation
is fulfilled between the ultimate strengths of the orthotropic sheet
material along (oo), transverse (090) and at a 45° angle (045) to the
axis of symmetry.

4-'2 2
o2 .- *0%%0
B~ T2 9

30~ g0

(4.15)

17. Approximate Structure of Surface of Equally Dangerous Planar
Stresses from Experimental Data

W2 hypothesize that the anisotropic material can be viewed as a
homogeneous continuum and that a certain surface exists that can be
expressed by the equation

(4.16)

Fo(:’.n I "xy):= 0,

All of its points conform to the equally dangerous planar stresses

variously oriented in the symmetry plane of this (orthotropic) material.

The letters 0y 20 and 1 here, as in the previous paragraph, desig-

nate the stressez thatXZre active in the dangerous state on the
material's symmetry areas. The axes x, y and z are superposed with
its symmetry axes.

The anisotropic materials have features that permit approximate
construction of the surface (4.16) from the results of testing
variously oriented samples for "miaxial stretching, compression and
shearing. With simple (uniform) stretching (or compress’-m) of the
samples whose axes lie in the plane xy and form the a 1ith the

X axis, one can write the currelation (4.9), where o - -
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experimentally determined ultimate strength of the sample.

All the points with coordinates comouted from formula (4.9) must
lie on surface (4.16) if this surface exists. In order to construct
the surface of equally dangerous stresses, we will reserve the stresses
Ox1 Oy and Txy O the coordinate axes. Figures 4.%5a, 4.7a, 4.8a and
4.9a construct points with coordinates Oy s oy and Txy computed from
formulas 4.9 for the average testing results of variously oriented
samples of wnold-hardened fiber glass-reinforced fabric plastic (fig.
4.6a), aviation plywood (4.7a), pine (4.8,a) and SVAM fiber glass-
reinforced plastic with 1:1 fiber ratio (fig. 4.9a). All the experi-
mental data were taken from chapter III. The testing results for
stretching conform to the points with positive abscissas o, and Oy
and for compression to the negative.

The corresponding points are united into curves in figures 4.6b,
4.7b, 4.8b and 4.9b. The curves that conform to the stretching testing
results of varicusly oriented samples are designated by the letter
P on all three figures, and C for compression.

The points whose abscissas Oy and oy have different signs, were
constructed irom the shear testing results of variously oriented
samples made of the same materials. The shear testing results were
used to construct the points in an a fortiori inaccurate hypothesis
that a uniform stress of pure shear exists in the sample of any ori-
entation at the moment of failure. With this hyvpothesis, the stresses
Ox» Oy and Ty can be computed depending on the amount T} of ultimate
shear resistance on the area that comprises angle o with the x axis
and is perpendicular to the xy plane according to formulas (4.11).

The points with coordinates that are computed from formulas (4.11)
are plotted on fig. 4.6a and b, 4.7 a and b, 4.8 a and b and 4.9 a and
b. They are united by curves that are designated by the letter T on
the figures.

Points on the coordinate plane t__=0 are also plotted in the region

of negative abscissas. These pointsXZoorespond to the testing results
for biaxial compression of square samples 2 x 2 cm2 with the same
quantity of main stresses acting on the direction of x and y symmetry
axes of the material. These tests were carried out on a special

"Fepply's cross" type reverser (see section 15).
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Figure 4.6. Surface of Equally Dangerous Planar /150
Stresses for Fiber Glass-Reinforced Fabric Plastic
of Cold Hardening.

On the coordinate plane Txyro that conforms to those planar stresses
in which the main stresses act in the direction of the material's axis

of symmetry, we arranged only seven points for each material. The

l6l




Figure 4.7. Surface of Equally Dangerous Planar
Stresses for Aviation Plywood 10 mm Thick.

entire curve for intersection of the limiting surface with this coordi-

nate plane was constructed approximately by extrapolation of experimen-
1

tal data.

1The eighth point is plotted on figure 4.6b according to published
data [124] for biaxial stretching.
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Figure 4.8. Surface of Equally Dangerous Planar
Stresses for Pine

The entire surface of equally dangerous states (limiting surface)

is constructed in fig. 4.6c and 4.7 ¢ for fiber glass-reinforced fabric

plastic [117] and for aviation plywood [14] such that all the
that were obtained from testing results lie on this surface.

points
The

limiting surface for these comparatively weakly anisotropic materials

by its appearance allows the hypothesis that it can be presented by

an algebraic equation of the second order. After its intersection

with the coordinate plane, Txy=0 can apparently be described by Mises'

equation (4.7) or the equations suggested in the works of K. V. Zakharov

[33,34] or J. Marin [105].
For pine, material with more pronounced anisotropy, these

equations

can no longer approximate experimental data. The limiting surface

constructed for pine [14] in fig. 4.8c, is not convex everywhere. It

consequently cannot be represented by a second order equation.

An even
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Figure 4.9. Surface of Equally Dangerous

Planar Stresses for SVAM Fiber Glass-Reinforced

Plastic on Epoxy-Phenol Binder with 1:1 Fiber

Ratio
more complicated surface (fig. 4.9c) is obtained for SVAM fiber glass-
reinforced plastic (see also article [14]).

However , one cannot draw any conclusions from the appearance of
the limiting surfaces constructed above in regards to the plasticity
functions of anisotropic materials, since the ultimate resistances
oy and T, Were determined, as is¢ customary in mechanical tests, in
the majority of cases according to the failure of the samples, cften
of a quite brittle nature. Only for certain directions, mainly in
compression, was the analysis made from that place on the testing

diagram where the initial inclined section becomes a horizontal, or
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almost horizontal line. Strength anisotropy for the examined materials
has not only a quantitative, bur also a qualitative nature. Undergoing
brittle failure with one orientation of forces, the same material, with
another orientation of the same forces, reveals clearly plastic pro-
perties. 7The limiting surfaces are surfaces of equally dangerous
states. Constructed from the results of standard tests for stretching,
compression and shear, they can be used for an approximate solution

to the problemof the technical strength of the anisotrovie material

in the planar stressed state, as well as the problem that inevitably
arises in designing machine parts made of reinforced plastics and

other anisotropic materials.

The accuracy of the suggested solution to the problem depends on
the number of points used to construct the surface, and on the degree
of accuracy of defining the coordinates of these points. Here not only /155
the number of samples that guarantee thc reliability of the experi-
mental results is important, but also the most accurate possible cor-
respondence between the calculated plan of uniform stress and the
actual stress field that develops in the tested samples by the moment
the amount of ultimate resistance is determined. This correspondence
is fulfilled for anisotropic materials in the majority of cases in a
worse form than for isotropic (see chapter II).

Of course it is necessary to observe the same temperature, humidity,
rate of testing and order of sample dimensions for all orientations
and all stresses.

By having a surface of equally dangerous planar stresses for a real
anisotropic structural material, one can select the analytical expres-
sion for it.

18. Possible Forms of Strength Condition for Strongly Anisotropic Bodies

We will examine the surfaces of equally danerous planar stresses
that were approximately constructed in the previous section from experi-
mental data, from the viewpoint of their possible approximation to an
equation in the form of a polynomial. For materials whose anisotropy
is low (plywood, fiber glass-reinforced fabxic plastic), the
surfaces are primarily convex. They can be fully approximated by an
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equation in the form of a second degree polynomial suggested by Mises 5
and resulting in formulas (4.7) and (4.8). If the material resists
stretching and compression in different -rays, i.e., the segments on
the coordinate axes o, and Oy (fig. 4.6-4.9) vary in the positive ;
and negative quadrants, then equation (4.7) and (4.8) should be written

separately for that part of the limiting surface that lies on one

side from the plane diagonal, and separately for the other side. By
diagonal, we mean the vertical plane that forms a 45° angle with the
coordinate planes. The curves T that are constructed from the shear

testing results of variously oriented samples lie in the diagonal
planes.

The works of K. V. Zakharov [34] suggest another equation of the
limiting surface in the form of a nonuniform polynomial of the second
degree with a free term.

The polynomial coefficients are determined based on experiments on
uniaxial stretching and compression in the direction of two axes of
symmetry (08,080, 08,080) and in pure shear in the direction of the
same axes Tt at a 45° angle to it, T45 The equation is confirmed by
experiments conducted for weakly anisotropic brittle materials where
the difference between the resistances in stretching in the direction /156
of the two axes of symmetry is considerably smaller than the difference
between the resistances to stretching and compression. For strongly
anisotropic bodies, one can, in the first approximation, ignore the
differences in the resistance to stretching and compression, since these
differences are usually less significant than the differences between

strength in stretching in the directions of the two axes of symmetry
(for example, for oriented fiber glass-reinforced plastics when the

fibers are primarily laid in one direction). Then one can consider
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Equation (8) of Zakharov's work [34]1, after substitution of (4.9) and
calculation of o, with a=45° results in formula (4.10) with all of its
shortcomings.

Mises [106] made the note that the plasticity function can change

little depending on the spherical stress tensor (Mises cited here the
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experiments of Lode and the hypothesis advanced by Shleykher for
isotropic bodies).

The problem of constructing the plasticity function for anisotropic
bodies is solved in the works of V. 0. Geogdzhayev [23], V. A. Lomakin
[46] and certain other authors in the spirit of Mises' remark.

The invariant quantity that contains second degree components of
the stress tensor and components of the anisotropy tensor, is written
in these works depending on the invariant quantity that contains the
first degrees of stress. The type of dependence is unknown and re-
quires experimontal analysis.

The condition that is written below based on systematization of

the experimental results, can be viewed as an attempt to establish
this relationship for strength (but not plasticity) of strongly aniso-

T

tropic bodies.

Returning to the apyp.arance of the surfaces of equally dangerous
stresses, we note that the degree of the polynomial for wood must be
higher than the second. The same conclusion can be drawn for the
appearance of the limiting surface for SVAM fiber glass-reinforced
plastic.

For the latter, the unique appearance of the limiting surface is
a consequence of the relatively small quantity of ultimate strength
(1,5) in shear at a 45° angle to the fibers. A. L. Rabinovich [64]
obtained roughly the same quantity with a completely different testing
method.

It is possible that with more accurate tests for the pure shear
plan, one could pinpoint this quantity, and correspondingly, the shape
of the limiting surface. For wood this pinpointing can hardly attri-
bute to the limiting surface a shape that is characteristic for the
second order surfaces.

A higher order of limiting surface can be obtained if one starts /157
from the tensor of ultimate resistances in the form adopted in chapter
1. We will take the higher, fourth, order of the polynomial that
expresses the link between the invariants of the stress tensor and
permits approximation of the surface of equally dangerous planar stresses

for strongly anisotropic materials.
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We will take the following polynomial as an example [117]
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In equation (4.17), the coefficients u,A» and p require experimental
analysis with three biaxial stresses that comply with three different
x %y andrxy. These can be, for example, stresses in
which the main stresses oy=20, form 0.90° and 45° angles to the x axis.

points in space ¢

The first two cases are illustrated by points on the coordinate plane
Txy=0, and the third does not lie in this plane. One of these

stresses can be replaced by a biaxial stress with o;=0,. With any
orientation in the plane, the latter conforms to the same point on the
coordinate plane Ty ™ =0, We therefore assume that the strength of the
orthotropic material in biaxial equal compression or stretching,
oriented as we please in the symmetry plane of the orthotropic material,
remains fixed (does not depend on the orientation). The experiments
described in section 15 confirm this conclusion to a certain measure.
The polynomial (4.17) can be written in Gol'denblat's designations [122]
that stress the tensorial dimensionality of the quantities included in

it
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where
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During simple stretching at angle o to the x axis, the strength condi-
tion (4.18) after substitution of (4.9) results in formula (1.22). Thus,
this condition is confirmed by the experiments in chapter III for dif-
ferent, including strongly anisotropic, materials with uniaxial stress
states, randomly oriented in the material. During pure shear at angle
o to the x axis, condition (4.18) after substitution of (4.11) results
in formula (1.23). In turn, this formula is confirmed by approximate
experiments on shear of orthotropic materials presented in chapter III.
We do not have experimental data for an exhaustive, comprehensive
verification of equation (4.18). It therefore should be viewed as one
of the possible versions for sclving the stated problem that is not in
contradiction to the experimental data stated in chapter III, and is
applicable in the case of materials that have varying resistance to
stretching and compression with the help of the method of piecewise

approximation,

Conclusion

The study of .strength problems of various wood and synthetic
structural materials is complicated by their heterogeneous structure.
This work made calculations based on a simplifying hypothesis that
views all the materials as a homogeneous anisotropic continuum.

The structure of the majority of wood and many synthetic materials
determines the existence of at least three mutually perpendicular
symmetry planes. This allows us to attribute to them orthogonal or
transverse symmetry of strength properties.

A study of the symmetry of mechanical properties permits generali-
zation of the results from testing variously oriented samples by
introducing an assumption regarding the tensoriality of the strength

characteristics of anisotropic materials.
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The assumption regarding the tensoriality of the strength charac- /159
teristics is made here in the sense that their change depending on the
stress orientation in the material occurs according to laws that can
be approximated by formulas for the transformation of tensor components
during rotation of the coordinate axes.

Since the phenomenon has a center of symmetry, the rank of the
tensor must be even. The equality of the strength characteristics in
the direction of three mutually pervendicular symmetry axes of the
material still does not determine its isotropy. The second rank of
the strength tensor is therefore insufficient. The nearest, smaller,
fourth, rank of the tensor has been suggested to characterize the
strength.

Examination of the figures for change in the elasticity moduli and
the ultimate strengths of different orthotropic materials shows that
the equations of the corresponding surfaces have the same (fourth) order,
and consequently, the coefficients of these equations are components
of the fourth order tensor that have the same physical dimensionality.

A concept has been introduced on the strength tensor whose compo-
nents are suitable to approximate the laws for change in the strength
characteristics of anisotropic bodies in stresses of stretching, com-

pression and pure shear. The strength tensor is constructed analogously
to the tensor of elastic constants.

Based on the concept regarding the fourth order strength tensor,
formulas were obtained that were common for all materials for the change
in the strength characteristics depending on orientation of the stress
in the material. These formulas, called tensorial, can be used in
static, impact and repeatedly variable loading on the condition that Q
the same testing conditions are observed (same order of deformation rate,
temperature, humidity, dimensions of the sample and nature of the stress)
with all orientations of the material.

The tensorial formulas that determine the size of the strength

characteristics of orthotropic and transtropic materials in stretching,
compression and pure shear were obtained for a general case of random
orientation of these stresses in relation to three axes of symmetry of
the orthotropic material.

Separate examination was made of cases of shearing testing, in which
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the resistances in mutually perpendicular directions can vary, and a
case of pure shear in which the resistance is determined by the smaller
of its two quantities experimentally obtained in shearing on two
mutually perpendicular planes.

Based on the introduced concept regarding the strength tensor, it
was established, how many and precisely which strength characteristics
of the orthotropic material should be determined experimentally in order
to be able to compute the amount of resistance of this material in any
orientation of the stretching, compression and pure shear stresses.

It was established that the isotropy criterion, for example, of
sheet material in the sheet plane can only be the equality of its
three stretching resistances to each other in the following directioms:
longitudinal, transverse and diagonal. The equality of the first two
is not an indicator of isotropy or equal strength of the material.

It has been shown that the sheet plates with mnonorthogonal laying
of the reinforcing fibers can be classified as orthotropic materials.
In a particular case of placement of the fibers in three (or more)
directions that form equal angles of 60° (or less), this material will
be transverse-isotropic (transtropic) in its strength.

Experimental studies on the mechanical properties of different
structural materials showed that the tensorial formulas of chapter I
are good approximations of the law for change in the strength charac-
teristics depending on the orientation in relation to the symmetry
axes of the orthotropic materials.

The tensorial formulas were compared with the results of static
(machine) tests for stretching, compression, shiear, simple shearing,
tests for impact compression and repeatedly changing pure bending. The
tests were conducted partially by the author and partially by a group
from the department of construction mechanics of the Forest Engineering
Academy with the author's participation. Results were also used from
works published in the literature.

The tensorial formulas were confirmed by experimental results for
the following anisotropic materials:

pine, stripped birch veneer sheet, laminated wood plastics DSP-B
and DSP-V, aviation and bakelite multilayer plywood, German wood plas-
tics, parallel plywood glued out of birch veneer sheet layers of the
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same orientation;

fiber glass-reinforced plastics on Butvar-phenol, epoxy-phenol and
polyester binders with fabric and fibrcus (SVAM) reinforcement. For
the latter, cases were studied of orthogonal (with fiber ratio of 1:1,
1:5 and 1:13) and nonorthogonal arrangement in two and three direc-
tions;

metals: cold-rolled steel and aluminum alloys;

directed films of crystal polymers (caprone, polyethylene and lavsan).

It was thus demonstrated that instead of different empirical formu-
las used for this purpose, the strength of anisotropic materials
depending on the orientation can be computed with sufficient accuracy
by using the tensorial formulas of chapter I that are common for all
materials

The tensorial formulas make it possible to determine the direction /161
of the greatest and least strength of the material depending on the
ratio of its original characteristics. Selection of the material of
the optimal anisotropy for each structural element affords new possi-
bilities for implementing the principle of equal strength with regards
for anisotropy.

According to the results of testing variously oriented samples, it
is possible to approximately construct the surface of equally dangerous
planar stresses that are randomly oriented in the symmetry planes of
the orthotropic materials. These surfaces are constructed in the work
for pine in a tangential plane, for aviation multilayer plywood, and
for two fiber glass-reinforced plastics, fabric and fibrous.

The surface of equally dangerous stresses is a graphic presentation
of the strength condition for an anisotropic body that is approximately
constructed from experimental data. The nature of these surfaces
permits us to draw the conclusion that the strength condition cannot
be presented in the form of a second degree polynomial for all aniso-
tropic materials. The comnstructed surfaces for wood and for SVAM fiber
glass~-reinforced plastic correspond to equations of a higher order.

Study of the plasticity condition suggested by Mises in the form
of a uniform second degree polynomial shows that it is applicable as
the strength condition for many anisotropic materials in form (4.8)

in piecewise approximation.
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For wood and certain other strongly anisotropic materials, the
strength condition in the form of a second degree polynomial contra-
dicts the results of tests for uniaxial stretching of variously ori-
ented samples. For this case, the strength condition in the form of
a fourth order polynomial can be suggested. Its use does not contra-
dict the experimental data presented in this work.

The fourth rank of the strength tensor follows from the strength
condition in the form of a second degree polynomial (Mises). Its
components are quantities that are the inverse of the strength charac-
tersitics squs °d. The strength condition in the form of a fourth
degree polynomi :: nakes it possible to maintain the same physical
dimensionality fou. the components of the strength tensor (fourth rank)
as for the components of the tensor of elastic constants (the components
are quantities that are the inverse of the strength characteristics
taken in the first degree).

The conducted study does not pretend to exhaust the examination of
the question. TIts main task was to generalize the experimental data
on the strength of anisotropic media into a single harmonious system,

and at the same time, to promote the creation of a science on resis-

tance of materials whose strength varies in different directiomns.
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