ΝΟΤΙCΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

· 81-10138

NCC 5-22

An Investigation of Vegetation and Other Earth Resource/Feature Parameters Using Landsat and Other Remote

Sensing Date

I. Landsat

II.

Remote Sensing of Volcanic Emissions

Semi-Annual Status Report (#2) August 1, 1980 to January 31, 1981

> Dartmouth College Hanover, NH 03755

Principal Investigators:

Richard W. Birnie, Assistant Professor of Geology

Richard E. Stoiber, Emeritus Professor of Geology

Researchers:

"Made available under NASA spensorship

in the interest of early and wide dis-

Survey

Earth Resources

5

semination

and without

Program information

thereof,

made

or any use

Emily Bryant, Senior Research Assistant

A. G. Dodge, Area Forester, Cooperative Extension Service (UNH)

Kevin Doran, Assistant Grafton County Forester (UNH)

Tom Stone, graduate student

David Sussman, graduate student

Lawrence Malinconico, graduate student

Stanley Williams, graduate student

Undergraduate Student Assistants

AN INVESTIGATION OF VEGETATION (E81-10133) AND OTHER EARTH RESOURCE/FEATURE PARAMETERS USING LANDSAT AND OTHER REMOTE SENSING DATA. REMOTE SENSING OF VOLCANIC Unclas 2: LANDSAT. 1: G3/43 EMISSIONS Semiannual Status (Dartmouth

N81-22449

and a set of the least of the set of the

Dartmouth College Semi-Annual Status Report - NCC 5-22 August 1, 1980 - January 31, 1981

This report covers activities of the Landsat Sensing Research Group (Earth Resources) and of the Volcanic Gas Sensing Research Group (Planetary Science) which work in collaboration with the Goddard Institute for Space Studies, New York; Dr. Robert Jastrow, Director. Dr. Stephen Ungar of GISS is the Technical Officer for this project.

NCC 5-22 supports work which was started in 1974 under NSG 5014. The work described below I. B., (Geology and Geobotany) will in the future be supported under another Coopprative Agreement or Grant.

I. Landsat

The Dartmouth Landsat Research Group continued application studies for Landsat data under the general category of analysis of vegetation cover, especially forestry and geobotany, that is, the effects of soil/earth mineral content on vegetation.

A. Forestry

I. Introduction

In the past half year, we have had some changes in personnel, have worked on applications of Landsat data, developed applications techniques, and have maintained and established contacts with remote sensing colleagues. We have noticed an increased awareness of and interest in the use of Landsat data in New England:

II. Changes in Personnel

Kevin Doran has replaced Ken Sutherland as forestry advisor from the UNH Cooperative Extension Service and has guickly taken

-2-

hold of these responsibilities. Emily Bryant has entered the Computer and Information Sciences Program as a Master's candidate and has been working on this project half time. Gibb Dodge's role has remained the same. Undergraduate assistants were Mark Heuberger (fall), and Sally Johnson and Paul Fisher (winter).

III. Applications Projects

A. Investigation of the fanning algorithm as applied to Maine forests was completed, written up as an abstract, submitted, and accepted as a poster for the 15th ERIM Symposium in May, 1981. (Enclosure 1)

B. Deer yard habitat. Mark and Kevin field-checked areas in southwestern New Hampshire which the NH Fish and Game Department had indicated were deer yards. Mark used these areas (largely softwood) to develop signatures for potential doer yard habitat. In a field trip to Canaan, signs of deer were found in two out of four or five areas that had printed out as deer yard. Printouts of three towns in southwestern NH were made with these signatures. Reaction from the Fish and Game Department was positive. We are refining these signatures and developing output appropriate to their needs (e.g. overlays of topography).

C. Gypsy moth defoliation mapping. Tapes were finally acquired, but since they are in the wrong format, there is a delay in using them.

D. Recent report by Cooperative Extension Service (sub contract) is at Enclosure 2.

IV. Techniques

We are writing a program on the Dartmouth computer to calculate pixel coordinates given latitude and longitude and vice versa. Mark

-3-

determined ground control point coordinates for a significant portion of New Hampshire; Em and Paul have been writing code for the program.

V. Maintaining Contacts - spreading the word.

Em went to GISS in September to meet with Arch Park in regards to his project mapping biomass.

Gibb, Em, and Kevin attended the RSGNNE meeting in Burlington in September.

Gibb and Em gave a guest lecture for Dave Lingren's (Geography) remote sensing class.

Kevin and Em met with Kurt Olson (UNH) to see how his work is going and to catch up on news.

At our invitation, Helen Mustafa and Bob Edwards from the New England Area Remote Sensing System (NEARSS) visited Dartmouth. We discussed NEARSS and remote sensing in New Hampshire.

Gibb, Kevin, and Em visited Bob Barker of St. Regis Paper Company in Jacksonville, Florida. We saw their Forest Resource Inventory System which is being put together now. It incorporates Landsat data as one of many levels of information in their forest inventory.

Article "Landsat for Practical Forest Type Mapping: A Test Case" was (finally) published in <u>Photogrammetric</u> <u>Engineering</u> <u>and</u> Remote Sensing Magazine, December, 1980. (Reprint, Enclosure 3)

VI. Increased Awareness.

Over the past year or so, a number of projects involving Landsat have cropped up in New England. A Landsat Demonstration Project backed by ERRSAC has been initiated in New Hampshire. Maine has a similar project started within the last year. Vermont's demonstration project has been underway for a couple of years. The NEARSS group, whose concern in largely with access to real-time ocean and coastline remote sensing data, started gathering information and making plans last spring. The New England Inovation Group (funded by NSF) has a contract from NASA Headquarters to investigate the use of Landsat data on the local and regional government level. All in all, things are starting to cook!

-5-

B. Geology and Geobotany

The geobotany group have been involved in refining the data collected over the Mesatchee Creek prospect. A Chi squared statistical test was applied to the aircraft multispectral scanner data and it confirmed the extremely high correlation (>99.9%) of the anomalous spectral data to the mineralized zone. This data has been included in a revised paper sent to Economic Geology. (see previous semi-annual report) This paper has been accepted for publication.

II. Remote Sensing of Volcanic Emissions

This research group consists of Professor Richard Stoiber and Graduate Assistants Lawrence Malinconico, Stanley Williams (Ph.D. candidates) and David Sussman. During the period of this report (August 80 - January 81) they were concerned with:

> a. Mt. St. Helens Eruptions including the RAVE Mission.
> b. Monitoring volcanic activity in Nicaragua, El Salvador and Guatemala (Foreign travel supported by others)

c. Testing a Mini-Cospec.

d. Reporting various activities at Scientific Meetings.1. Mt. St. Helens

The RAVE Mission is described in Enclosure 4. Professor Stoiber participated with the group, in the remote sensing of SO₂. This report was presented at a symposium on the Mt. St. Helens Eruption in Washington, DC, November 18-19, 1980 (Enclosure 5). At this meeting, a paper was presented (Enclosure 6) to which Stoiber, Malinconico and Williams contributed. A similar paper was presented at the 1980 AGU Fall Meeting (see below and Enclosure 8, V 39).

2. The group visited Central America again in November - December, Mini-1980. This activity continues the field proofing of the Cospec loaned by Barringer Research, the manufacturer, Toronto, Canada. The field expenses, including travel, for this work, are supported by others (esp NSF) but the work contributes generally to the expertise and reputation of the group. Recent activities have been reported in the SEAN (Scientific Event Alert Network of the Smithsonian Institution) Bulletin #12, Dec. 31, 1980 (Extract at Enclosure 7) and at the 1980 AGU (American Geophysical Union) Fall Meeting Dec. 10-15, 1980 in San Francisco (Abstracts of 3 papers V 132, V 133, V 136, Enclosure 8).

Encl. 1-8, a/s

-6-

Fanning: A Classification Algorithm for Mixture Landscapes Applied to Landsat Data of Maine Forests

Stephen G. Ungar and Emily Bryant

I. Introduction

Most Landsat classification algorithms used today separate land cover into discrete categories on the basis of <u>presence or</u> <u>absence</u> of a land cover type: "wheat vs. non-wheat". Most landscapes, however, include a mixture of types: trees plus grass in an orchard, or corn plus soy along a field boundary. These would be better classified on the basis of the <u>proportion</u> of the area' covered by each type. The "fanning" algorithm was developed at the Goddard Institute for Space Studies by Stephen Ungar, to accomodate mixture landscapes. It quantifies the varying proportions of two "pure" land cover types within a pixel.

II. Description of Algorithm

Assume each pixel to be composed of a mixture of cover type \underline{A} and cover type \underline{B} . "Pure" pixels of cover type \underline{A} have a mean spectral signature specified as A_1 , A_2 , A_3 , A_4 where A_1 is the energy received at the satellite in the ith spectral band. The energies in each of the four Landsat MSS bands may be thought of as the components of a 4-dimensional observation vector \overline{A} . In a similar manner $\overline{B} = (B_1, B_2, B_3, B_4)$ represents the spectral signature of a "pure" pixel of cover type \underline{B} . In principle, the signature of a pixel composed of a mixture of cover types \underline{A} and \underline{B} may be expressed as

$$\vec{S} = n\vec{A} + (1 - n)\vec{B}$$

-1-

Enclosure 1

where η represents the fractional area occupied by cover type $\underline{\Lambda}$, As η varies from 0 to 1 a "fan" of vectors is formed, ranging in direction from \overline{B} to \overline{A} and terminating on the line joining \overline{B} and \overline{A} .

In a real situation, the observed signature of a mixture pixel will generally not terminate on this line. Our technique determines which value of η minimizes the difference between observed signature and a theoretical signature terminating on the line. Geometrically, this is equivalent to finding the end point of the theoretical mixture vector by dropping a perpendicular from the observed signature to the line joining the pure types.

The problem may be analytically stated as follows: If, $\delta S = |\vec{S}_{obs} - [\eta \vec{A} + (1 - \eta) \vec{B}]|$; find η such that $\frac{\partial}{\partial \eta} (\delta S) = 0$. The formal solution is simply the least squares fit determination of η among the four values obtained by considering each Landsat band independently.

The fanning algorithm is available in both an unsupervised and supervised mode. In the unsupervised mode, the GISS chaining algorithm is used to allow pixels to chain together into clusters and fans. The algorithm selects the signatures for the pixel pair with the largest separation in each fan as the endpoints or "pure" types. A value of η is then determined for each remaining pixel in the fan in terms of these pure types. In the supervised , mode, the user specifies the pure type signatures which are applied to a category of pixels defined from some previous supervised or unsupervised classification.

-2-

In both modes, the algorithm tests: (a) the value of η derived for each pixel for physical reasonableness (i.e., $0 < \eta < 1$, if the fractional area hypothesis for a two component mixture is correct); and (b) the goodness of fit of the observed signature to the fan (i.e., $\delta S \approx 0$ if the observed vector is close to a theoretical vector lying in the fan).

This study uses only the supervised mode.

III. Application of the Fanning Algorithm in Forestry

One goal of the Earth Resources Group at GISS is to make useful forest type maps with Landsat data. Forest types used in current practical forest inventories in the northeastern U.S. are defined by the proportion of hardwood (deciduous) and softwood (evergreen) trees in an area. Definitions and their interpretation vary from user to user. If the fanning algorithm could provide objective and consistent quantification of forest type proportions, Landsat maps could meet or even surpass users' inventory specifications.

IV. Results to Date

As a test of the fanning technique, a classification was compared with a detailed inventory of ½ million acres of forest land in northern Maine, managed by the Seven Islands Land Company, Bangor, Maine. Landsat data was recorded in August, 1976. The inventory, done the same year, breaks out four general forest types:

-3-

Туре	H/S	Rat	<u>tio</u>
boowbrisH	100/0	to	75/25
HS	75/25	to	50/50
Sh	50/50	to	25/75
Softwood	25/75	to	0/100

A scale for the fan was set up where 0.0 represented pure hardwood and 1.0 pure softwood. One would expect, therefore, to partition the forest types at values of 0.25, 0.50, and 0.75 on the scale. To match inventory acreages on the 29 subareas (townships) of the applications area, however, the scale had to be partitioned at mean values of 0.294 (± 0.046), 0.536 (± 0.044), and 0.642 (± 0.043). Although these values were significantly different from expected, they were consistent across the applications area. This suggested that actual partition values could be determined quite confidently from a sample area. The partitioning determined from two sample townships (10% of the area) was used to make acreage estimates for the four forest types in the applications area. Differences between classification and inventory were within 55% over the area as a whole, and within an average of 22% by township. These differences are similar to those observed in a classification of the same area using a "discrete categories" algorithm.

To test temporal consistency, the fanning algorithm was also applied to Landsat data from July, 1976. Over an application 'area which was limited by clouds, August partition values were 0.271, 0.522, and 0.638; July values were 0.212, 0.500, and 0.647. Slope of the regression line between dates was close to 1, and correlation was high (0.997).

-4-

It can be concluded from the project that the fanning algorithm provides consistent quantification of mixtures of two forest types. Partition values for specific ratios of pure types, however, have to be derived empirically at this point.

V. Advantages of Approach

Several approaches which treat pixels as two component mixtures have appeared in the literature. Two strong points of the GISS approach are:

 The technique is based on a simplistic physical model rather than a statistical approach, and readily allows for improvement by model refinement (e.g., a more recent version of the algorithm takes into account shadowing and slope effects by permitting the fractional areas of the two components to sum to less than one).
 In unsupervised mode "pure" type signatures are extracted for the end points in a group of pixels and the mixture ratio is determined for each remaining pixel in terms of these pure types. The algorithm automatically rejects pixels which are inconsistent with the two component mixture hypothesis.

The practical application ouclined in this paper provides perhaps the first quantitative evaluation of a mixture classification algorithm for large area inventories.

-5-

PROGRESS REPORT

APPLYING LANDSAT MEASUREMENTS

TO FOREST RESOURCE INVENTORIES

May 31, 1980 through December 31, 1980

Kevin Doran and Gibb Dodge, Cooperative Extension Service, coodinated their activities with Emily Bryant, Dartmouth College and other representatives of GISS.

SITE SELECTION

- 1. Finished developing field maps of deer yard areas in the towns of Washington, Stoddard and Henniker for the N.H. Fish and Game Department. Will deliver to the Department and test usefulness.
- 2. Select gypsy moth defoliation training sites.
- 3. Select new spruce-fir defoliation training sites

GUIDANCE AND EVALUATION

- a) GISS on making changes in computer programs to produce better products continued.
- b) Dartmouth work-study students mapping techniques, observing ground truth sites, development of rotation and scale change program.
- c) Private landowners with large ownership using computer maps as field tools
- d) Revise and update 1981 work plans
- e) Evaluation analyze computer outputs resulting from GISS program changes

COLLABORATION

- Serving on Cooperative Extension Service National Task Force for remote sensing - advice to Extension Committee on policy related to Extension activity in remote sensing technology transfer.
- Update information to the University of Vermont, University of New Hampshire, Maine Forestry Group, GISS, ERRSAC, GSFS, Remote Sensing Group of Northern New England, New Hampshire Fish and Game Department and Office of State Planning and NEARS personnel.
- 3. Remote sensing meetings with University of New Hampshire and Office of State Planning, and Dartmouth.
- 4. Met with N.H. Office of State Planning personnel on New Hampshire Landsat demonstration project with ERRSAC.

Enclosure 2

TECHNOLOGY TRANSFER AND REPORTING

- 1. Landsat presentations to classes of Dartmouth
- 2. Generate remote sensing technology to New Hampshire Fish and Game Department and Division of Forests and Lands.

SUBMITTED BY:

Kevin Doran, Program Assistant

Arthur "Gibb" Dodge, Jr., Program Leader

EMILY BRYANT Department of Earth Sciences Dartmouth College Hanover, NH 03755 and NASA/Goddard Institute for Space Studies New York, NY 10025 ARTHUR G. DODGE, JR. Cooperative Forestry Programs Cooperative Extension Service University of New Hampshire Durham, NH 03824 SAMUEI, D. WARREN Seven Islands Land Company Bangor, ME 04401

Landsat for Practical Forest Type Mapping: A Test Case

Computer classified Landsat maps agreed to within 5 percent of a conventional inventory of forest lands in northern Maine.

INTRODUCTION

MANY PEOPLE have used Landsat data in mapping natural resources and cultural features (Bauer et al., 1978; Dejace et al., 1977; Gaydos and Newland, 1978; George et al., 1977; Krebs and Hoffer, 1976; Mukaj and Takeuchi, 1979; Odenyo and Pettry, 1977). In particular, researchers across North America have reported use of Landsat data in mapping forest resources (Beaubien, 1979; Dodge and Bryant, 1976; Harding and Scott, 1978; Johnson et al., 1979; Kalensky et al. 1979; Kirby et al., 1975; Kourtz, 1977; Mead and Meyer, 1977;

SEVEN ISLANDS PROJECT

The Seven Islands project developed from a contact with a potential Landsat data user employed by the Seven Islands Land Company, Bangor, Maine. Seven Islands manages 690 thousand hectares (1.7 million acres) of forest land in northern Maine and New Hampshire. They require information about forest types on their lands for management decisions and for taxation purposes. (The state of Maine taxes forest land by applying different values to softwood, mixed wood, and hardwood forest areas.) A detailed inventory

ABSTRACT: In a cooperative project, computer classified Landsat maps were compared with a recent inventory of forest lands in northern Maine. Over the 196,000 hectare (485,000 acre) area mapped, estimates of area of softwood, mixed wood, and hardwood forest types by the two methods agreed to within 5 percent. Cost of the Landsat maps is estimated at 6.5 cents per hectare (2.6 cents per acre). Although the information derived from Landsat is not yet refined enough to be incorporated in current forest inventories, the techniques used are worth developing.

Sayn-Wittgenstein, 1977; Titus et al., 1975; Williams and Haver, 1976).

The goal of the Dartmouth forestry section of the Goddard Institute for Space Studies is to use computer classification of Landsat data to make fores type maps which are useful to the field forester Thus, the person who cruises the forest rather thar the upper level manager is the "user" for whom the Landsat maps are being developed.

> PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, Vol. 46, No. 12, December 1980, pp. 1575-1584.

of the Seven Islands lands was underway at the time the contact was made. This presented a rare opportunity to test Landsat's ability to meet practical user information needs: the user requirements were well defined (in the inventory specifications) and there was a product, the standard inventory, against which to measure Landsat mapping performance.

With the cooperation of the Seven Islands Land

Enclosure 3

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, 1980

Company, a project was started. The goal was to match their inventory specifications as closely as possible using computer classification of Landsat data, and to create, quickly and inexpensively, a product suitable to submit to the Bureau of Taxation. There is a difference between this and some other Landsat applications projects. Success is measured by agreement with a given inventory, not by agreement with "ground truth" gathered by the Landsat investigators. A positive aspect of this approach is the elimination of biases which Landsat investigators might introduce in gathering their own ground truth.

More specific goals of the project were

1576

- To map the Ashland District portion of the Seven Islands lands (Figure 1);
- To match computer-classified Landsat categories with Seven Islands inventory categories: softwood, mixed wood, and hardwood forest types, conforest areas, water, and roads;
- To calculate area for each category in each Seven Islands management unit (units are usually townships or parts of townships); and
- To produce geometrically corrected computer printout maps of the area at 1:24,000 scale.

The following constraints were put on the project in order to approximate an operational situation:

 Minimize the amount of ground truth used in creating and checking the Landsat classification (methods dependent on large amounts of ground

FIG. 1. Ashland District portion of Seven Islands Land Company lands, an area of about 196,000 hectares (485,%00 acres). Individual parcels are not always contiguous and range in size from 400 to 10,500 hectares (1,000 to 26,000 acres).

truth are suitable only for research situation;;, and

 Keep track of expenses—human and computer time, cost of data and supplies—to give an estimate of cost per unit area.

THE ASHLAND DISTRICT

The Ashland District, managed by Seven Islands Land Company, consists of land in 29 townships in northern Maine located between 46 and 47 degrees north latitude. In most of the area, the political subdivisions are "unincorporated townships" where there is very little permanent human settlement.

The individual parcels or townships in the Ashland District are not always contiguous and range in size from 400 to 10,500 hectares (1,000 to 26,000 acres). The District comprises a total of 196,356

FIG. 2. Oblique (above) and vertical (below) views of a portion of the Ashland District. The vert:cal view is an example of the black-and-white infrared photos used in the Seven Islands inventory (original scale 1:15,840; photos taken in May, 1976).

ORIGINAL PAGE IS OF FOOR QUALTTY

hectares (485,310 acres) (Figure 1). The most common forest types in this area are

- spruce-fir (Picea sp.-Abies balsamea)
- maple-beech-birch (Acer saccharum—Fagus grandifolia—Betula alleghaniensis)
- northern white cedar—black spruce (Thuja occidentalis—Picea mariana)

Figure 2 shows oblique and vertical views of part of the Ashland District.

THE SEVEN ISLANDS INVENTORY

The Seven Islands inventory is based on aerial photo-interpretation, "3-P" (probability proportional to prediction) field sampling, and the sTX computer program (a standard forest measurement program). Figure 2 includes an example of the photos used in the inventory. The inventory consists of type maps, acreage tallies, and volume estimates. This project concentrated on matching the maps and acreage tallies, leaving volume estimation to other techniques.

The Seven Islands maps distinguish vegetation by type, size, and density to a 10 acre minimum. Acreage is determined for each forest stand, and totals are computed by type for each township. For tax purposes, the many forest types distinguished in the inventory are grouped into three more general types according to the proportion of softwood (conifer) to hardwood (deciduous) trees in an area:

- softwood—at least 75 percent of the trees are softwood.
- hardwood—at least 75 percent of the trees are hardwood.
- mixed wood—the proportion of softwood to hardwood trees lies between those of the softwood and hardwood categories as defined above.

The above are the general forest categories that were to be matched in the Landsat classification.

PROCEDURE

GENERAL OUTLINE

The project employed computer programs to make maps and acreage tallies from Landsat multispectral scanner (MSS) digital data. A supervised classification approach was used. It was developed at the Goddard Institute for Space Studies (GISS) by Stephen G. Ungar and is described in Merry et al. (1977). With the GISS classification algorithm, the program use defines a volume in four-dimensional color space around an average signature for each land cover category. The signature is usually the average reflectance of a land cover type as taken from a representative sample of the Mss data (a "training site"). The user can create a classification category for which there is no training site, if there is another source of signatures.

FIG. 3. MSS band 6 image of the 11 August 1976 Landsat scenes used in classifying the Ashland District (scene identification numbers 5480-14040 and 5480-14043). Ashland District is outlined; sample townships are labeled 1 and 2. Water is black, softwood dark gray, and hardwood light gray.

DETAILS OF THE SEVEN ISLANDS PROJECT

Ground truth consisted of

- Representative copies of the photos used in the Seven Islands inventory (Figure 2);
- Seven Islands inventory maps and acreage tallies for two of the 29 townships in the District;
- Personal knowledge from an overflight of the area;
- Prints of photo-mosaics used for location of forest
- harvests (scale 1:31,680); and
- Topographic maps (scale 1:62,500).

There was no ground checking except indirectly through the inventory information.

We chose signature training sites in the MSS data (usually 10 to 30 pixels in size) for softwood, hardwood, water, bog, and open categories using the aerial photographs. Mixed wood signatures were made by interpolating between hardwood and softwood signatures.

The tolerance parameters for the forest categories were adjusted so that the acreage tallies would agree with the Seven Islands inventory on two sample townships (Table 1). Discrepancy in acreage figures on the two townships taken together was under 3.5 percent; it was under 10 percent when they were considered separately. The two townships comprise 19,000 hectares (47,000 acres), about 10 percent of the Ashland District (Figure 3).

Forest Type	7 Is Tall	lands y (ha)	Lar Tall	ndsat y (ha)	Percent Diff.
	Sam	ple Tow	nship	#1	
Softwood	4	331	4	573	+5.6%
Mixed Wood	3	320	3	117	-6.1%
Hardwood		830		906	+9.2%
Total For.	8	481	8	596	+1.4%
	Sam	ple Tow	nship	•2	
Softwood	4	247	4	017	-5.4%
Mixed Wood	3	286	3	591	+9.3%
Hardwood	1	826	1	667	-8.8%
Total For.	9	360	9	275	-0.9%
Sample	Towns	ships #1	and #	2 Com	oined
Softwood	8	578	8	591	+0.2%
Mixed Wood	6	606	6	707	+1.5%
Hardwood	2	656	2	572	-3.2%
Total For.	17	840	17	870	+0.2%

TABLE 1. FOREST TYPE AREA ESTIMATES FOR SAMPLE TOWNSHIPS FROM SEVEN ISLANDS LAND COMPANY AND LANDSAT INVENTORIES.*

* Both Seven Islands and Landsat tallies were normalized so that total area in each township matched the deeded acreage as listed in the Seven Islands records.

Boundaries of the management units (townships) were superimposed on the Landsat data using a masking program. They were taken from topographic maps, using water bodies as control points.

FIG. 4. Seven Islands Land Company inventory tallies for the Ashland District and Landsat computer classification results for the same area.

RESULTS

RESULTS RELATIVE TO THE GOALS

Map the District. A printout map and acreage tally by category was made for each management unit in the Ashland District.

Match Seven Islands categories. Area comparison is one measure of how well the Landsat categories match Seven Islands categories. Area tallies for the entire district are shown in Table 2 and Figure 4. Differences between Landsat and Seven Islands forest type acreage estimates are under 5 percent. As is to be expected, they are larger for the individual township tallies. Figure 5 shows Seven Islands versus Landsat acreage estimates for the individual townships for softwood, mixed wood, hardwood, total forest, water, and open categories. Both the Landsat and the Seven Islands inventory acreage tallies were normalized so that the total acreage in each township matched

TABLE 2. AREA ESTIMATES OF FOREST TYPES AND RELATED FEATURES IN THE ASHLAND, MAINE DISTRICT DERIVED FROM SI EN ISLANDS LAND COMPANY INVENTORY AND LANDSAT COMPUTER CLASSIFICATION.

	Seven 1	slands	Land	dsat	Diffe	rence
	Hectares Acres	% of Total	Hectares Acres	% of Total	Hectares Acres	%
Softwood	87 104	44.4%	88 884	45.3%	+1 780	+ 2.0%
	215 285		219 683		+4 398	
Mixed Wood	71 976	36.7	74 498	37.9	+2 522	+ 3.5
	177 895		184 127		+6 232	
Hardwood	27 482	14.0	26 121	13.3	-1 361	- 5.0
	67 924		64 561		-3 363	
Water	5 911	3.0	4 695	2.4	-1 216	-20.6
	14 609		11 605		-3 004	
Open Land	823	0.4	663	0.3	- 160	-19.5
	2 035		1 639		- 396	
Bog	3 060	1.6	242	0.1	-2 818	-92.1
	7 562		599		-6 963	
Unclassified*			1 255	0.6		
e neusonica			3 102			
Total Forest	186 562	95.0	189 503	96.5	+2 941	+ 1.6
roun rones.	461 104		468 371		+7 267	
Total Area**	196 356	100.0	196 356	100.0		10000
Total Alea	485 310	100.0	485 310	100.0		

* The Seven Islands inventory included no "unclassified" category, ** Both Seven Islands and Landsat tallies were normalized so that total area in each township matched the deeded acreage as listed in the Seven Islands records

LANDSAT FOR PRACTICAL FOREST TYPE MAPPING

F1G. 5. Seven Islands inventory tallies for each management unit (township) are plotted against Landsat computer classification results for six land cover classes. Discrepancies in one township could be attributed to differences in classification of partially cut areas (data point is circled).

its deeded acreage as listed in the Seven Islands records.

Agreement in locations of features on maps was desired as well as area agreement. An informal comparison of Landsat maps and Seven Islands inventory maps shows that the positions and shapes of the forest stands generally coincide (Figure 6). As a more formal test of locational agreement, 130 sample pixels in one ground truth township were selected at random, and their Landsat and Seven islands categories were compared. Results are in Table 3. The overall agreement (diagonal entries in the table divided by the total number of samples; 83/130) is 63 percent. While this seems rather low, other Landsat applications studies involving forest types have similarly low overall agreement, depending on exactly what the categories are, how they are aggregated, and how the samples are chosen (Table 4). Overall agreement ranges from 43 percent to 98 percent.

This single pixel method of measuring classification accuracy has inherent problems. Minimum feature size classified on the ground truth maps is often greater than one pixel (0.4 hectares or 1.1 acres); in this case it was 4 hectares (10 acres). Exact location of one-pixel samples on ground truth maps is uncertain. Each of these problems can lower the measured accuracy of a classification, regardless of its actual accuracy.

In the non-forest categories, it was found that roads were not located with enough accuracy to be useful; also, bogs were often classified as forest, and small streams were not identified.

Tallies for each township. Acreage by township and category is in Figure 5 as mentioned above. Locating township boundaries was very time consuming but essential for comparison with the standard inventory results.

Geocorrected data. The Landsat geometric correction used was a systematic correction applied to the entire Landsat scene, using a nearest neighbor resampling scheme. The accuracy was acceptable over the one-township size units (8000 hectares or 20,000 acres) used in the Seven Islands project.

REMARKS ON THE CONSTRAINTS

Minimize ground truth. Originally, the Seven Islands inventory of the two sample townships

FIG. 6. Seven Islands inventory map (above) and Landsat computer classification (below) from one of the two sample townships. Informal comparison shows that positions and shapes of forest stands generally coincide. Landsat data has been systematically geometrically corrected (original scale 1:24,00).

LANDSAT FOR PRACTICAL FOREST TYPE MAPPING

Landeni			Seve	n Islands Cat	egories		
Category	Soft	Mixed	Hard	Water	Open	Other	Total
Softwood	41	12	1	1	0	3	58
Mixed Wood	16	23	3	Ö	0	2	44 -
Hardwood	0	8	6	0	0	1	15
Water	0	0	0	12	0	0	12
Open	0	0	0	0	0	0	0
Other	0	0	1	0	0	0	1
Total	57	43	11	13	0	6	130

TABLE 3. COMPARISON OF SEVEN ISLANDS AND LANDSAT CLASSIFICATIONS. THE 130 ONE-PIXEL SAMPLES WERE SELECTED AT RANDOM FROM ONE SAMPLE TOWNSHIP.

Sum of diagonal entries = 82, or 63% of the 130 samples total,

was not included in ground truth. Preliminary results, however, showed a large discrepancy between Landsat and inventory maps. The only way to match given categories was to have a sample of them, not just the inventory specifications. Since the size of the ground truth sample townships was large, the original goal was expanded from mapping three townships to mapping the entire district.

Crosts. The cost estimates for this project are listed in Table 5. The overall cost of 6.5 cents per hectare (2.6 cents per acre) includes human time at ten dollars per hour, computer time at 600 dollars per hour (on an IBM 360/95), and ground truth. The cost of ground truth for the two sample townships is 37 percent of the total cost—2.4 cents per hectare (0.99 cents per acre). The cost also reflects inefficiencies which, would be eliminated in subsequent projects. The estimate excludes cost of software development, depreciation on the computer, photo-mosaics, topographic maps, and geocorrection of data. Classification of a larger area would reduce the per area cost; estimated cost for 800,000 hectares (2 million acres) is 2.4 cents per hectare (0.96 cents per acre). Table 6

compares this cost estimate with those from other Landsat applications projects. They vary from 0.078 to 8.6 cents per hectare (0.032 to 3.5 cents per acre). Much of this variation is due to differences in the items included in the estimates (sometimes ground truth is excluded) and the cost assigned to the items (cost of human time varies from 5 to 21 dollars per hour).

The information derived by computerclassification of Landsat data could also be derived from standard photo-interpretation techniques. The company that did the Seven Islands inventory gave a ball-park estimate of the cost as 11.0 to 16.0 cents per hectare (4.5 to 6.5 cents per acre). (Rate for the Seven Islands inventory itself would be higher because it is more detailed).

Discussion

Although acreage results on the forest categories were within 5 percent, those for the remaining categories (water, bog, open land) had much larger discrepancies (Table 2; Figure 5). Possible explanations of these discrepancies follow. First, there is a smaller sample: together the open, bog, and water categories comprise only 5 percent of the

TABLE 4. COMPARISON	OF	LOCATIONAL A	GREEMENT	RESULTS
---------------------	----	--------------	----------	---------

Reference	# Categories	Diagonal Entries (Pixels)	Total # of Samples (Pixels)	Overall Agreement (Percent)	Sample Selection Scheme
Bryant et al.	6	82	130	63%	Random
Harding and Scott 1978	5	142	302	47%	Stratified
Johnson et al. 1979	6	107	200	54%	Grid
Johnson et al. 1979	3	169	200	85%	Grid
Kalensky and Scherk 1975	4	1119	1342	83% (4-date)	•
Kalensky and Scherk 1975	4	•	•	67%-82% (1-date)	•
Kalensky et al. 1979	9	4024	4123	98%	Control Areas
Kalensky et al. 1979	9	4061	4123	98%	Control Areas
Kalensky et al. 1979	9	3978	4123	96%	Control Areas
Kirby et al. 1975	6	401	676	59%	Pixel Columns
Mead and Meyer 1977	11	560	1305	43%	Pixel Rows
Mead and Meyer 1977	11	779	1478	53%	Pixel Rows
Williams and Haver 1976	6	162	232	70%	Random
Williams and Haver 1976	3,	208	232	90%	Random

* Information not provided.

ltem	Co (Dol	ost Iars)	% a Tou	f	Cost/ha (Cents)	Cost/a (Cents)
Materials ¹ Field Expenses ⁸ Inventory of Sample Townships ⁸ Signature Development ⁴	¥ 4 4	699 780 800 490	5. 6. 37 35	1% 1	0,3 6¢ 0,40 2,4 2.3	0.14¢ 0.16 0.99 0.93
Subtotal: Initial Costs	\$10	769	84	%	5.5 ¢	22 🦿
Run-off and Tally of Ashland District ^a	\$ 2	070	16	%	1.1 ¢	0. 43 ¢
Total Cost	\$12	839	100	%	6.5 ¢	2.6 ¢
Projected C	lost Estin	nate for 80	0 000 hects	ires (2 0	00 000 acres)	
Initial Costs (As Above) Run-off and Tally	\$10 8	769 600	56 44	%	1,3 ¢ 1.1	0.54¢ 0.43
Total Cost	\$19	369	100	%	2,4 ¢	0.97¢

TABLE 5. SEVEN ISLANDS PROJECT COST ESTIMATES. Size of Area Classified: 196 400 Hectares (485 310 Acres).

Includes air photos, Landsat images, Landsat CCT's, and computer supplies.

Includes travel and labor costs. (Labor valued at \$10 per hour.)
 Estimated cost for 19 500 hectares (48 000 acres) at 25g per hectare (10g per acre).
 Includes 305 hours labor and 144 minutes computer time (valued at \$10 per minute).

* Includes 106 hours labor and 90 minutes computer time.

area classified; the rest is forested. Next, the resolution of Landsat (80 metres) is coarse relative to streams and narrow roads. These features are absorbed into the surrounding forest types. This may account for the Landsat underestimation of water and open categories.

Confusion in Landsat categories may account for the underestimation of the bog category, Bogs were often classified as mixed wood or hardwood.

Forest acreage tallies for some individual townships had noticeably large discrepancies. In one case (circled in Figure 5) this could be attributed to difference in classification of partially cut areas which included many small softwood trees and a few large hardwood trees. The photointerpretation in the Seven Islands inventory, which is based on numbers of trees, indicated softwood; the computer classification, based on average reflection, indicated mixed wood.

A factor influencing forest classification is sun illumination. Classifications of forest areas within terrain shadows have a bias toward softwood. Merging of digital topographic data and Landsat data could improve this situation (Krebs and Hoffer, 1976; Strahler et al., 1979). Over a large enough area, these differences balance each other out.

There are some problems which researchers cannot solve. One is New England weather, which is relatively cloudy. It is possible that in some years there would be not Landsat coverage at the desired times of year. Another problem is the ac-

quisition of data. At this point there is a long turnaround time in ordering Landsat computer compatible tapes (ccr's). Also some private organizations do not want to depend on government sources for their data.

CONCLUSION

Bearing in mind the objective to give quick, inexpensive, and accurate acreage estimates of forest types to the Bureau of Taxation, the following conclusions are drawn. Results were very good on the district as a whole, but were not good for the individual townships. Each township has unique records of accounting and ownership and must have proven and precise forest type information. In some cases this is needed for portions of a township that are as small as 400 hectares (1000 acres). The 400 hectare tract requires the same level of precision that was reached in this project with the tallies for the 200,000 hectare tract.

On the other hand, the energy situation is becoming more burdensome, and satellite information will become more important as a supplement to aerial photographs and other information sources. Further research in satellite data processing techniques could bring the information to a more useable level and is worth pursuing.

RECOMMENDATIONS

More experience using satellite data in practical situations is recommended. Computer classification may currently be as reliable as photo-

		Item	is Includ	ed.		Value								
Reference	Lndst Data	Geocor. Of Data	Pup Curd	Duter Duter	Com- Depre- ciato.	of Human Time	Related to Other Mans?	Siz Sub 1 000ha	e of units 1 000a	Total Class 1 000ha	Area lified 1 000a		ë 1 i ë	
ant et al.	yes	ou	yes	yes	ou	\$10	15' USGS	6.8	16.7	196	₽¥	\$12 839	65 ¢	26 ¢
vdos, 1978	yes	yes	00	yes	7	1-	1:250 000	1 700	1 200	260	00	힌	0.078	2000
l-Rowley &	•													
inslin, 1979	70	2	ja	yes	ী	7	1:250 000	1 700	1 200	2 300	5 600	5 420	024	1000
ensky														
t al., 1979	no	yes	7	yes	yes	ន	NTU	9	ន	250	617	21 512	8.6	35
brand														
loffer, 1976	2	yes	ou	yes	'a	n)	7.5' USCS	58		191	1 148	2 900 7	200	220
but surd				ŀ			•							
loffer•	3	yes	yes	yes	'n	ŝ	7.5' USCS	85	144	14	1 148	106 11	33	2
berts and														
Jerritt, 1977	yes	5	0U	yes	Q	j,	7	8	ផ	8	123	8	090	0.33
lliams and														
faver, 1976	yes	'n	WQ	yes	a	0	7.5' USGS	<u>88</u>	H	22	20	2 250	96.0	0.34
Includes mergi Information no	ng Landse t provided.	i data with dig	ptal topog	maphic da		al analysis	of imagery.							ĺ

interpretation, but there are differences, and they need to be identified. Perhaps some of the information missing in the current Landsat maps can be extracted from higher resolution data such as the quarter acre resolution projected for Landsat D (Williams and Stauffer, 1979). Already, examination of Landsat 3 RBV imagery suggests that woods roads will be much more distinct with 30 metre resolution.

SUMMARY

Landsat classification maps were made for a forested area in northern Maine, managed by the Seven Islands Land Company. Over the 200,000 hectare (half million acre) district, results agreed with a standard inventory to within 5 percent on area of general forest types. Cost was estimated at 6.5 cents per hectare (2.6 cents per acre). Accuracy measurements and cost estimates were comparable with other Landsat forestry applications projects.

The techniques described here are promising, but are not yet practical for Seven Islands Land Company's needs. Further research and perhaps better spatial resolution are needed to ensure reliable Landsat results on smaller geographic areas.

ACKNOWLEDGMENTS

This project was supported by NASA Science Grant 5014. We wish to thank Seven Islands Land Company for their cooperation and for the use of inventory data.

References

- Bauer, Marvin E., Marilyn M. Hixson, Barbara J. Davis, and Jeanne B. Etheridge, 1978. Area Estimation of Crops by Digital Analysis of Landsat Data, Photogrammetric Engineering and Remote Sensing, 44(8):1033-1043.
- Beaubien, Jean, 1979. Forest Type Mapping From Landsat Digital Data, Photogrammetric Engineering and Remote Sensing, 45(8):1135-1144.
- Dejace, J., J. Mégier, and W. Mehl, 1977. Computer-Aided Classification for Remote Sensing in Agriculture and Forestry in Northern Italy, Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, 2:1269-1278.
- Dodge, Arthur G., Jr., and Emily S. Bryant, 1976. Forest Type Mapping With Satellite Data, *Journal* of Forestry, 74(8):526-531.
- Gaydos, Leonard, and Willard L. Newland, 1978. Inventory of Land Use and Land Cover of the Puget Sound Region Using Landsat Data, *Jour. Research* U.S. Geol. Survey, 6(6):807-814.
- Gaydos, Leonard, 1978. Low-Cost Computer Classification of Land Cover in the Portland Area, Oregon, by Signature Extension Techniques, Jour. Research U.S. Geol. Survey, 6(6):815-819.

George, T. H., W. J. Stringer, and J. N. Baldridge, 1977. Reindeer Range Inventory in Western Alaska from Computer-Aided Digital Classification of

TARLE 6. COST ESTIMATE COMPARISON

Landsat Data, Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, 1:671-682.

- Harding, Roger A., and Robert B. Scott, 1978. Forest Inventory with Landsat, Phase II, Washington Forest Productivity Study, State of Washington Department of Natural Resources, Olympia, WA 98504. 221 p.
- Hill-Rowley, Richard, and William R. Enslin, 1979. An Evaluation of Michigan Land Cover/Use Inventories Derived from Remote Sensing: Characteristics and Costs, Proceedings of the Thirteenth International Symposium on Remote Sensing of Environment, 3:1251-1259.
- Johnson, Gregg R., Eric W. Barthmaier, Tim W. D. Gregg, and Robert E. Aulds, 1979. Forest Stand Classification in Western Washington Using Landsat and Computer-Based Resource Data, Proceedings of the Thirteenth International Symposium on Remote Sensing of Environment, 3:1681-1696.
- Kalensky, Z., and L. R. Scherk, 1975. Accuracy of Forest Type Mapping from Landsat Computer Compatible Tapes, Proceedings of the Tenth International Symposium on Remote Sensing of Environment, 2:1159-1167.
- Kalensky, Z. D., W. C. Moore, G. A. Campbell, D. A. Wilson, and A. J. Scott, 1979. Forest Statistics by ARIES Classification of Landsat Multispectral Images in Northern Canada, Proceedings of the Thirteenth International Symposium on Remote Sensing of Environment, 2:789-811.
- Kirby, C. L., D. Goodenough, D. Day, and P. Van Eck. 1975. Landsat Imagery for Banff and Jasper National Parks Inventory and Management, Proceedings of the Third Canadian Symposium on Remote Sensing, Edmonton, Alberta, pp. 207-225.
- Kourtz, P. H., 1977. An Application of Landsat Digital Technology to Forest File Fuel Type Mapping, Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, 2:1111-1115.
- Krebs, Paula V., and Roger M. Hoffer, 1976. Multiple Resource Evaluation of Region 2 U.S. Forest Service Lands Utilizing Landsat MSS Data, Final Report—Type III. Prepared for NASA/Goddard Space Flight Center, Greenbelt, MD. Institute of Arctic and Alpine Research, University of Colorado; Laboratory for Applications of Remote Sensing, Purdue University; Region 2 U.S. Forest Service, U.S.D.A., 298 p.
- Mead, R., and M. Meyer, 1977. Landsat Digital Data Application to Forest Vegetation and Land-Use Classification in Minnesota, IAFHE RSL Research

Report 77-6, University of Minnesota, St. Paul, Minnesota, 57 p.

- Merry, C. J., H. L. McKim, S. Cooper, and S. G. Ungar, 1977. Preliminary Analysis of Water Equivalent/ Snow Characteristics Using Landsat Digital Processing Techniques, Proceedings of the 1977 Eastern Snow Conference, Belleville, Ontario, Canada, pp. 39-54.
- Mukai, Yukio, and Shoji Takeuchi, 1979. Estimation of Primary Production of Vegetation in Agricultural and Forested Areas Using Landsat Data, Proceedings of the Thirteenth International Symposium on Remote Sensing of Environment, 2:1177-1188.
- Odenyo, Victor A. O., and David E. Pettry, 1977, Land-Use Mapping by Machine Processing of Landsat-1 Data, Photogrammetric Engineering and Remote Sensing, 43(4):515-524.
- Roberts, Edwin H., and Norman E. Merritt, 1977. Computer Aided Inventory of Forestland, pp. 65-82, In Inventory of Forest Resources (including water) by Multilevel Sampling, R. C. Aldrich (Principal Investigator), Type III, Final Report to NASA/ Goddard Space Flight Center, USDA Forest Service, Rocky Mountain Forest and Range Experiment Center, Fort Collins, CO.
- Sayn-Wittgenstein, L., 1977. Remote Sensing and Today's Forestry Issues, Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, 1:267-276.
- Strahler, Alan H., Thomas L. Logan, and Curtis E. Woodcock, 1979. Forest Classification and Inventory System Using Landsat, Digital Terrain, and Ground Sample Data, Proceedings of the Thirteenth International Symposium on Remote Sensing of Environment, 3:1541-1557.
- Titus, S., M. Gialdini, and J. Nichols, 1975. A Total Timber Resource Inventory Based Upon Manual and Automated Analysis of Landsat-I and Supporting Aircraft Data Using Stratified Multistage Sampling Techniques, Proceedings of the Tenth International Symposium on Remote Sensing of Environment, 2:1093-1099.
- Williams, Darrel L., and Gerald F. Haver, 1976. Forest Land Management by Satellite: Landsat-Derived Information as Input to a Forest Inventory System, Intralab Project #75-1, NASA/Goddard Space Flight Center, Greenbelt, MD, 36 p.
- Williams, Darrel L., and Mark L. Stauffer, 1979. What Can the Forestry Community Expect from Landsat-D Thematic Mapper Data, Proceedings of the Symposium on Remote Sensing of Natural Resources, University of Idaho, Moscow, Idaho.
- (Received 30 May 1979; revised and accepted 5 June 1980)

RESULTS OF THE SEPTEMBER 22, 1980 RAVE STUDY

OF THE MOUNT ST. HELENS PLUME

Jarvis Moyers University of 'Arizona^a

This paper presents a description of the joint University-NASA research project RAVE (Research on Atmospheric Volcanic Emissions) and preliminary results from a recent Mount St. Helens expedition. The RAVE scientific team consists of scientists from Drexel University, Dartmouth, Michigan Technological Institute, University of Arizona, University of Maryland, and NASA. A Lockheed Orion P-3 four engine turbo-prop aircraft has been outfitted with active and passive instrumentation for monitoring and sampling gases and aerosols in volcanic plumes. The first field study in this project was performed on September 22, 1980 at the Mount St. Helens volcano. Measurements made in this study include remote sensing of SO, and aerosol burdens and fluxes; in plume analysis of SO,, H,S, NO, NO, O, and particle size distribution; and the filter collection of aerosols and reactive gases for subsequent laboratory analysis. There was a very successful integration and operation of all onload equipment and experiments. Available results obtained in this are presented and discussed.

Chemistry Department, Tucson, AZ 85721

Enclusure 4

ABSTRACT DIGEST

SYMPOSIUM ON

MOUNT ST. HELENS ERUPTION: ITS ATMOSPHERIC EFFECTS AND

POTENTIAL CLIMATIC IMPACT

Washington, D.C. November 18-19, 1980

Sponsored by:

NASA-Office of Space and Terrestrial Applications

On behalf of:

U.S. National Climate Program

Organized by:

Institute for Atmospheric Optics and Remote Sensing

ORIGINAL PAGE IS

Institute for Atmospheric Optics and Remote Sensing, P.O. BOX P • HAMPTON, VA 23666

Enclosure 5

CONTRIBUTIONS OF CO2 AND SO2 TO THE ATMOSPHERE

FROM VOLCANIC ACTIVITY AT MOUNT ST. HELENS

D. M. Harris^a, T. J. Casadevall^b, and D. A. Johnston^C U.S. Geological Survey

> W. I. Rose, Jr., and T. J. Bornhorst Michigan Technological Universityd

R. E. Stoiber, L. L. Malinconico, and S. N. Williams Dartmouth College

The resumption of volcanic activity at Mount St. Helens in March 1980 prompted measurements and study of CO, and SO, emission rates. The objective of these studies is to provide information about the degassing of the subsurface magma body. Although the principal propellant of the explosive eruptions at Nount St. Helens is probably H₂O vapor, emission rates for CO₂ and SO₂ may also be useful indicators of volcanic activity. Significant changes in emission rates for these gases may occur as a result of various factors such as migration of gases from deeper magma, intrusion of magma toward the surface, changes in the concentrations of CO. and/or SO2 in the silicate liquid, changes in the degassing rate of the silicate liquid, and changes in the permeability of the vent. Aside from providing information relevant to eruption mechanisms, the measurements of sustained gas emissions together with the pre-eruption volatile concentrations provide a basis for inferring the presence of a magma body and for estimating the volume of degassed silicate liquid remaining at depth. The total amounts of CO_2 and SO_2 released to the atmosphere by wagma degassing during non-eruptive periods at Mount St. Helens can be estimated from the movie than 70 measurements of emission rates. One must increase these numbers by the amounts released during explosive eruptions.

17

^aReston, VA 22092 ^bVancouver, WA 97663 ^CMenlo Park, CA 94025 (deceased) ^dHoughton, MI 49931 ^eHanover, NH 03755

Enclosure 6

SEAN BUILVELS # 12 Dec 31, 1980

Volcanic Activity

Tarumai Volcano (cont.)

Figure 3: Monthly numbers of: days in which eruptions occurred (top): harmonic tremor events (center); and recorded earthquakes (bottom) at Tarumai. January 1978 - December 1980.

Enclusure

Extract SEAN Bulletin #12

Mayon Volcano, SE Luzon Island, Philippines (13.26°N, 123.62°E). All times are local (= GMT + 8 hours).

A moderate quantity of dirty white steam rose weakly to 200 m above the crater rim on 4 December at 1247, accompanied by short-duration harmonic tremor on the Mayon Resthouse Observatory seismograph. Faint crater glow was first noted at 2315 the same day. Additional steam emission was observed 12 and 14 December.

Harmonic tremor was first recorded at Mayon on 16 August (see SEAN Bulletin v.5, no. 8). Episodes of tremor and discrete earthquakes continued through December. Similar seismic activity preceded the 1978 eruption (see SEAN Bulletins v.3, nos. 2, 5, and 8) and accompanied crater glow in July 1979 (see SEAN Bulletin v.4, no. 8).

Information Contact: Olimpio Peña, Acting Commissioner, Commission on Volcanology, 5th Floor, Hizon Bldg., Quezon Blvd. Ext., Quezon City, Philippines.

Volcanic Activity in Nicaragua, El Salvador, and Guatemala, late 1980

Geologists from Dartmouth College, the Instituto Geográfico Nacional of Guatemala, and the Instituto de Investigaciones Sísmicas of Nicaragua observed 8 Nicaraguan, 2 Salvadoran, and 2 Guatemalan volcanoes between mid-November and early December. Dartmouth geologists provided the following report.

Nicaragua

Cerro Negro (12.52°N, 86.73°W) - Summit crater fumaroles remained at temperatures as high as 300°C. A small vapor plume was intermittently visible. Seismic activity had dropped from the high level of June.

Cosiguina (12.97°N, 87.58°W) - No fumarolic activity was visible from the rim.

Volcanic Activity

Nicaragua, El Salvador, Guatemala, (cont.)

Las Pilas (El Hoyo) (12.48°N, 86.68°W) - A small continuous vapor plume was still being emitted from the top of the km-long crack in the summit.

- <u>Masaya</u> (11.95°N, 86.15W) Emission of a very large gas plume has continued without interruption since fall, 1979. <u>Remote sensing of SO2</u> revealed continued high level flux, with 1,500 - 2,000 tons/day average for the entire year. The hole through the surface of the lava lake was larger than in previous years and a great deal of sublimation was occurring around its edge. No lava or red glow was visible during daylight. Acid gas and rain continued to cause considerable damage downwind.
- Mombacho (11.83°N, 85.98°W) A small, intermittent plume was visible, rising from the SF section of the summit.
- Momotombo (12.42°N, 86.55°W) The summit crater fumaroles continued to
 be very hot with temperatures measured up to 735°C and reported to >900°C.
 A small vapor plume continued and remote sensing revealed very low rates
 of SO₂ emission. Portions of the crater were seen to glow red and orange
 when observed at night, with the highest temperatures on the steep S wall
 of the crater. No seismic activity has occurred recently at Momotombo.
- San Cistóbal (12.70°N, 87.02°W) A moderate-sized vapor plume rose continuously from the summit. Remote sensing of SO2 revealed increased flux since June 1980, but SO2 emission remained far below the levels of the mid-1970's.
- <u>Telica</u> (12.60°N, 86.87°W) A moderate-sized but continuous vapor plume rose from the summit crater. SO₂ flux was remotely measured and found to be approximately 150 tons/day.

El Salvador

Observations were made during a flight over the country.

- Santa Ana (13.85°N, 89.63°W) A moderate plume rose from a bank of fumaroles on the SE wall of the inner crater, very similar to its appearance in November 1978.
- San Miguel (13.44°N, 88.27°W) A small, continuous vapor plume rose from the summit crater.

Guatemala

- <u>Pacaya</u> (14.38°N, 90.60°W) A very small cinder cone had grown inside MacKenney Crater in the last 2 months. A large gas plume rose continuously from the summit.
- Santiaguito (14.76°N, 91.55°W) Ash and gas eruptions from Caliente vent (at the E end of Santiaguito Dome) occurred irregularly over the 3-day period of observation, with intervals of 1/2 hour to 4 hours between eruptions. Most eruptions lasted 2-3 minutes and sent ash and gas columns to heights of several hundred m to 1 km above the vent. Five mm of ash accumulated at the foot of the dome over one 12-hour period. Eruptions

occasionally threw 10-cm blocks several hundred m and ejected tephra to well above the summit of Santa María. Although not directly observed, the plug dome and blocky lava flow that was seen being extruded from Caliente vent in February was apparently still very active. Large avalanches of glassy material could be heard from Caliente vista many times per hour. Debris from these avalanches was visible in the barranca below Santiaguito.

Information Contacts: Richard E. Stoiber, Stanley N. Williams, H. Richard Naslund, Lawrence L. Malinconico, and Mark Conrad, Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755 USA.

Samuel Bonis, Instituto Geográfico Nacional, Avenida las Américas, 5-76, Zona 13, Guatemala City, Guatemala.

Arturo Aburto and Douglas Fajardo, Instituto de Investigaciones Sísmicas, Apartado Postal 1761, Managua, Nicaragua.

			SEISMIC	EVENTS		•		
Earthqu	akes	9 Q	•			•		
DATE	TIME (<u>GMT</u>)	MAGNITUDE	LAT.	LONG.	DEPTH OF FOCUS	REGION		
7 Dec.	1737	5.7 Ms	36.02°N	1.23°E	10 km	N Algeria		
17 Dec.	1622	6.7 Ms	49.41°N	129.61°W	10 km	W of Vancouver	Is.,	Can
19 Dec.	0117	6.1 Ms	34.54°N	50.70°E	Shallow	N-central Iran		
22 Dec.	1251	5.5 m	34.39°N	50.49°E	32 km	Nacentral Tran		

The Algeria event injured 20 persons in the El Asnam area, devastated by earthquakes 10 October that killed thousands and left about 400,000 homeless (see SEAN Bulletin v.5, no. 10). There were no reports of casualties or damage from the 17 December shock. The 19 December earthquake killed 26 persons. The nearby event 3 days later caused 3 deaths and 139 injuries according to official reports.

Information Contacts: National Earthquake Information Service, U.S. Geological Survey, Stop 967, Denver Federal Center, Box 25046, Denver, Colorado 80225 USA.

United Press International.

The Associated Press.

Earthquake Swarm Siquijor Island, Philippines.

A swarm of earthquakes began to be felt at Lazi, on the S coast of Siquijor Island, on 17 December. By 19 December, recorded events averaged 102/hour and several may have reached magnitude 4-5. Loud detonations reportedly accompanied the seismicity. The next day, 95 strong earthquakes

TRANSACTIONS AMERICAN GEOPHYSICAL UNION VOLUME 61 NUMBER 46 NOVEMBER 11, 1980

Enclosure

142- 214:

1980 ACU FALL MEETINC

December 10-15, 1980, Sun Francisco

rest on a fan of earlier 1980 pyroclastic flow deposits. The paths of the basel portions of the flows were controlled by topography. Bil-lowing, convecting clouds of ash that omanated from the dense, ground-hugging flows probably were produced by elutration of fine particles from the fluidized mass by escaping gasgs. That incorporated air may have been an imperiant com-ponent of those gases is suggested by tervera-tures determined on a flowage deposit soon after emplacement, which generally decreased toward the terminus of the flow. This decrease, of more than 200°C, may be due to progressively greater cooling of the flowing mass by incorpo-rated air with increasing distance from the vent, Expansion of air incorporated and heated in the pyroclastic flows could have contributed to the fluid behavior of the flows. One pyro-clastic flow observed on August 7 traversed 5.7 km in 7 minutes through an elevation drop of 750 m, attaining a mainum speed of 100 km/hr. Ve-locities over verious segments of the flow path appear to have been controlled by slepe angles.

¥ 35

NT. ST. HELENS LAVA DONE: PETROGRAPHY AND MINERAL CHEMISTRY

L.D. Raedeke, E.Ä. Mathez and <u>A.J. Irving</u> (Dept. of Geologica) Sciences. University of Mashington, Seattle, MA **98**195)

(Dept. of Geological Sciences, University of Mashington, Seattle, MA 90195) The Mt. St. Helens lava dome, emplaced short-ly after the June 12, 1980 eruption is a porphy-ritic dacite. Plaqioclase (32 modal %) dominates the phenocryst assemblage as. 5-2m euhedral to subhedral laths. Most plagioclase show concentric, nearly continuous zoning from a subhedral core to a euhedral rim. Glass (a fluid) inclusions mottle the cores of some crystals, or occur along distinct growth zones near rims. Orthopyroxene phenocrysts (5%) occur as elongate euhedral prisms (\leq rm). Hornblende (3.5%) forms subhedral crystals which commonly are rimmed by a zone of fine-grained magnetite + pyroxene splass. Magne-tite and limenite (0.5%) occur as small pheno-crysts or as inclusions in silicates. Clinopyro-kene phenocrysts (0.5%) occur as small pheno-crysts or as inclusions in silicates. Clinopyro-kene phenocrysts of plagioclase filectron microprobe analysis of the plagioclase filectron microprobe analysis of fan 56 (range An 48-56) and rims of An 50 (range An 44-59). Although rare, some plagioclases were found with strong reverse zo-ning from cores of An 33 to rims of An 50. Horn-blendes (tschermakite) are also slightly zomed and have two distinct populations: 1) malar Mg/ Mg+fe*-.22, molar KkNam.07 and 2) Mg/Mg+fe*-.66 K/KNam.14. Hypersthene (Ho2En65f33) and augite (Ho3En42Ei5) are relatively constant in compo-sition. The onides are typically Usp3Mt67, and limblinds, Using the Buddington and Lindsley (1964) gethermoneter and assuming equilibrium, these oxide compositions yield a crystallization rise oxide compositions of plagioclase and hornblende indicate the participation of at least two compo-sition. The oxides are typically usp3Mt67, and limblinds, Using the Buddington and Lindsley (1964) gethermoneter and assuming equilibrium, these oxide compositions yield a crystallization rise oxide compositions yield a crystallization rise oxide the participation of at least two compo-sitionally distinct magnes in the formati

V 16

MT. ST. HELENS LAVA DOME, PYROCLASTIC FLOW AND ASH SAMPLES: MAJOR AND TRACE ELEMENT CHEMISTRY

A.J. Irving (Dept. of Geological Sciences, Univ. of Washington, Seattle, WA 98195) J.M. Rhodes and J.W. Sparks (Dept. of Geology, Univ. of Massachusetts, Amberst, MA 01003)

Univ. of Massachusetts, Amherst, MA 01003) Samples of the lava dome emplaced in the crater of Mt. St. Helens several days after the June 12. 1980 eruption, punice boulders from the May 18. May 25. July 22 and August 7 pyroclastic flows, and various ash samples from different locations have been collected for chemical analysis, here we present RRF and INAA data for the dome, one pumkee boulder and three ash samples. The rock samples end two of the three ash samples are similar in major elements, indicating that the 1960 magma has remained fairly uniform in composition over the period May to August. The magma is a medium-k, Si-poor dacite. The June 12 ash sample has lower Sio, and KoO, and higher AlaO, total FeO. MgO and CaO; and may have experiexced airborne enrichment in phenocryst minerais. The rock samples are light-REE enriched with a possible slight positive Eu anomaly, and contain 12-13 ppm Co. 8-13 ppm Cr. 71-100 ppm V, 9-10 ppm Sc and 270-250 ppm Ba.

V 77

RHZOLOGICAL PROPERTIES OF MUDPLOWS ASSOCIATED WITH RECENT ERUPTIONS OF MOUNT ST. MELENS

3. Finh H. Holin (Coolegy Department, Arisona State University, Tempe, AZ 83281)

Whitesity, Temps, AZ 85281) Mheological properties of three superposed multipose on the south side of Mount St. Helens were calculated using techniques based on the geometry of the flow deposits. Measurements of the sizes and densities of supended blocks, thicknesses and slopes of levers, and incli-nation of the flow surfaces as they moved eround banked curves gave estimates for yield strengths, plastic viscostices, mean flow velocities, and volumetric flow rates. The lowermost flow had the larguet volume, smallest edian grain size (1150), lowest yield strength (400 M/m²), highest mean velocity (31 m/s) and volumetric flow rate (3400 m³/s). The two later flow(siddle; upper) had larguer grain size (400; 6000) and strengths (1000 M/s²; 1100 M/m²) and lower velocities (10 m/s) and flow gates (300 m³/s). An upper bound of 300 N-s/s⁴ was placed on plastic viscosity of the lowermost flow; estimates for the upper flows roubably caused by the catastrophic eruption of May 18, when large volumes of ice and rock were mobilized. Large multer multiows were observed forming by failure of the snow and sah-coverd slopes on the south rim of the mountain in mid-june. Tield arrength messurements are being used in conjunction with tainfail, topogetaphic and

in conjunction with rainfall, topostaphic and ash thickness data to predict areas of highest susceptibility to new mudflow formation during the upcoming rainy season,

The 1980 Eruption of Mt. St. Helens IV **Emerald Room HI Tuesday PM** Robert L. Christiansen (USGS), Stephen D. Malone (U of Washington), Presiding

VTR

EXPLOSIVE VOLCANISH: POSSIBLE SOURCE OF ACCREGATE FORMATION ON MARS

D.W. Krinkley, J. Fink, and R. Graeley (Department of Geology, Arizona State University, Temps, AZ 05281)

The recent eruptions of Hount St, Helens illustrate the important effects which large vol-umes of volcanic ejects may have on the opecity of the atmorphere, which in turn could effect cli-mate, Hence, any process which modifies grain size will strongly influence atmospheric dispers-al, as well as effecting subsequent near surface eolism transport.

eolian transport. During the ash fall in Portland, Oregon, which accompanied the June 12 eruption, large

<text>

V 39 INVITED PATERS

VARIATIONS OF 502 AND CO2 EMISSION RATES AT MOUNT ST. HELENS, MARCH 29 TO JULY 22, 1900

- J. Casadevall, D. Johnston, D. M. Marris (U. S. Geological Survey, Vancouver, VM 98660) E. Stolber, S. N. Williams, and L. Malinconico (Dartmouth Callege, Manover, NH 03755) L.

L. L. Malinconico (Dartmouth Cellege, Nanover, MH 03755) The objective of these studies is to provide information about the degassing of the subsurface magna body at HL SL. Helens. Emission rates of SD2 were determined by ground-based and airborne correlation spectrometry of SO2 in plumes. Emiss-sion rates for CD2 were determined by measuring CD2 anomalies along flight paths normal to the plume trajectory at various altitudes, the cross sectional area of the plume, and the wind velac-ity. SO2 measurements began on March 29 and CD2 on July 6. From March 29 to May 14 SO2 emission rates were between 10 and 50 metric tons/day (Te⁻¹) No additional SO2 emission data was obtained until the afternoon of the May 26 eruption, when the rate was 2000 Td⁻¹ during light emis-sion of ash. Later, the rate decreased to about 150 Td⁻¹ in the absence of ash emission rate remained at 1000 Td⁻¹ through June 22. On or before July 25, the rate increased to about 2600 Td⁻¹; then from July 6 to 18 it decreased of premonitory scisnicity, a measurement of 1900 Td⁻¹ was obtained. Whether this increase in SD2 preceded or followed the seisnicity is not known. During the period July 6 - 22, measure uregents of CD3 showed a decrease from 10,000 Td⁻¹ was obtained. Whether this increase in SD2 preceded or followed the seisnicity is not known. During the period July 6 - 22, emission rate increased abruptly on July 22, the CO2 emission rate remained low. This caused a large decrease in the CO2/SO2 ratio; several interpretations are possible.

V 40 LINITED PAPER

CO2 EMISSION RATES AT MOUNT ST. WELENS. BY AIRBORNE PLUME MEASUREMENTS

D. M. Harris (U. S. Geological Survey, 959 National Center, Reston, VA (22092) M. Sato (same address)

A. Sato (same address) An alrborne method for determining the CO₂ emission rate at Mt. St. Helens was developed because the rate is difficult to obtain from measurements at fumaroles in the crater. The CO₂ concentration variations along flight paths are obtained by an infrared method using con-tinuous flow of air through a 6.75 m pathlength gas cell and transmission measurements at the 4.26 ... an absorption band for CO₂. Data from each flight path are corrected for pressure and temperature by using the National Advisory Committee for Aeronautics (NACA) standard atmosphere. Measurements of the CO₂ concen-tration along flight paths perpendicular to the plume trajectory at various altitudes yield a set of concentration profiles. The mass rate of emission is calculated from the spatially

' - V 126

PERRIC-PERROUS EQUILIBRIUM IN SILICATE LIQUIDS AT 3 848

<u>B.O. Sach</u> (Dept. of Coology & Geophysics, University of <u>Colifernia</u>, Berkeley, Cu., 94720) B.B.B. Carmichael

The concentration of Fe₂O₃ and FeO has been determined in 57 allicate liquide, cuvering vigtually the whole natural range of lavan, guesched from superliquidus temperaturen f1200-1330°C) and with subject paysen fugacities closet to FWO, in conjunction with published data, the forgle-formus ration in 153 multicrempoints allicate liquids [e heat fitted by an empirical equation relating the natural log of oxygen fugacity, shealts temperature and the componi-tion of the liquid as follows:

 $\ln \left(\frac{119}{P_2 O_3} / \frac{119}{P_0 O} \right) = 0.21013 \ln f_{O_3} + 13104.0/T$ -4,49933 - 2.15034X8102 1 -0,351438AL203 - 4,495078Fe0 -5,434395 + 0,073118 Cap +3.541403,4420 + 4.186003,420

where N_{FeO} refers to total from calculated as For the function of the Makaopuhi lave inke are systematically low by 0.4 to 1 $\log_10 f_{O_2}$ dependence.

ing on temperature, but the correspondence with values derived from coesisting Fe-Ti oxides in fresh andesites and stliceous obsidians is good. The higher oxidation state of sikali-rich hasis laves indicates higher oxygen fugacities (at the sees temp.) than is typical of tholetitic laves; these necessizes more magnesian olivines to counteract both oxygen fugacity and lower silics activity, in comperison to their tholetitic geometra.

V 127

ACCURATE FIRST PRINCIPLES ISOTHERMS FOR NACT

H.S.T. Bukawinski (Bept, of Geology and Geo-physics, University of California, Berkeley, physics, U Ca, 94720)

Ca. 34720) Backer's equation of state for MaCl, fra-quently used for pressure calibration, has satisfactory accuracy to pressures of the order of 150 kilobars. We report an attempt to gen-erate accurate theoretical isotherms for NaCl that are reliable to 300 kilobars. The 0°4 isotherm of NaCl is computed with the eld of a first principles calculation of the energy spectrum and charge density in the Bi structure. The Augmented Plane Wave method wes used to oblain the self-consistent band struc-ture. The exchange and correlation interac-tions were approximated by the Medin-Lundquist potential, which contains no adjustable para-meters. A modified version of the Virial theorem was used to compute the pressure. The predicted 0°K lattice constant of NaCl is in very good agreement with the best available estimates, as are the zero pressure bulk-modulus and its pressure derivative. Since the accuracy of the theoretical methods improves with compression, we feel that we have a very accurace of K isotherm. Finits temperature isotherms are being gen-erated with the help of available thermodynemic date, including the temperature dependent Grumeisen parameter. Room temperature results will be compared with Concers equation and available static compression results,

V 128

DISSOLUTION KINETICS OF SELECTED SILICATE MINUMALS UNDER ACID CONSITIONS

0. 1. Siegel (U.S. Geological Survey, St. Paul, Minn. 55101)

The dissolution of bytownite, wicrocline, enstatite, augite, blottle, and forsterite in acidified delonized water was investigated at near standard temperature and pressure and com-stant pi of A.00 to deternine the kinetics of the release of silica, calcium, and magnesium, Release of cations and silica followed parabolic rate law for about the first 700 hours of re-action time, then linear rate laws from about 700 to 1,800 hours of reaction time. Estimated

linear-rais constants for release of silica renged fram 10⁻¹²⁺³ anles per suyarg contineter per socied for forstarity to 10⁻¹³⁺⁴ moles per supare contineter per second for entatite. -Linear-rate constants for release of magnetius renged from 10⁻¹³⁺⁵ to 10⁻¹⁰⁴ moles per centi-enter squared per second for entatite. Linear rates ranging fram 10⁻¹⁵, to 10⁻¹⁵ moles per constant and entations, respectively. Release of magneting fram 10⁻¹⁵, to 10⁻¹⁵ moles rester than the release of catcium fram by them the release of catcium fram by that the release of aspectively. Release of sugment in minimum fram the stater than the release of magnetium fram by the frame fram by the stater than catcium release fram bytownite. The dif-ference in silica release fram bytownite. The dif-ference in silica release fram bytownite suggest that (1) chemical weathering of gabbroic rates in soon, catefic systems is generally dominated by the dissolution of aliving and fostpare, and 123 tiving systems in generality dominated by the dissolution of aliving and fostpare, and 123 tiving probably weathers at least an order of magnitude faster than feidepar.

V 129

THE PARTITIONING OF REE'S, Sc. Rb and Co BETWEEN A BILICIC MELT AND A CL FLUID

<u>A. Webster</u> A. Holloway (both at: Geology Department, Arisona State Univergity, Tompe, AZ (5201)

Arisona State University, Tempe, AZ 85281) The pertitioning of Sm, Eu, Tb. Yb, Lu, Sc, Rb. and Ca between a Si Tich melic (79 wt 3 SiOg) and an aqueous Ci fluid (3 m maila Ci) has been em-perimentally determined, Runs were conducted for 10 days at 4 kb and 1000°G in an internally heated argon media pressure vessel. Pt capsules were used. The starting materials were a syn-thetic Feres analogue of the Bishop Tuff and a ECL-MaCL-MgO solution. A vapor to melt ratio of ~ 411 was used (200 sg fluid to 50 mg fleer). Reversals were obtained by running duplicate capsules with the trace elements initially in sither the fluid or in the starting Alama, Takive Tö the original glass mans, approximate concentra-tions of 50 pm for the REF(s, 12 pm Sc, 100 pm Cs and 250 pp Rh were used. Trace elements concentrations in the starting Alama, final glass and vapor solute were determined by INAA. This Cl fluid does not caume any fractionation between the REF's but does fractionate alkali elements from the REF's Distribution values (D i) in mass units are shown below. Mans parti-tion coefficients as concentration in melt/con-centration in fluid (including H20) can be ob-tained by suitiping the D, valuen by 9.07 (1.15 for all elements but Sc and by 9.46 ± .46 for Sc. The uncertainty is chiefly due to in-complete solute recovery.

a taman ti	concentration in glass
a tamene	Concentration in solute
Sc	9.34 ž .45
Rb	,205 ± .042
Co	.248 ± .030
50	9.47 ± .51
Eu	7.60 ± .60
Tb	10.09 ± .70
Yb	10.74 ± .58
Lu	9.24 ± 1.75

V 130

THE COORDINATION CHEMISTRY OF SOME TRANSITION METAL IONS IN HYDROTHERMAL SOLUTIONS

Nicholas J. Susak (Department of Geological and Geophysical Sciences, Princeton University, Princeton, NJ 08544) David A. Grerar

(Sponsor: W. Jason Morgan)

(Spenser: W, Jason Morgan) The visible and near-infrared spectre of (So[1) and Ni(11) have been measured along the liquid-vapor curve of $0.5 \pm$ NaCl solutions up to 300 G. At low temperatures and low chloride concentra-tions (m_{-1}) these ions are octaindrally coor-dinated by water and chloride. The absorption peaks of the octahedrai (0_{-1}) complex undergo a red-shift with increasing temperature or m_{Cl} in response to increased thermal vibrations of the formation of higher chloride complexes. Above a comperature T, which is a function of the metal ion and m_{-1} the 0_{-1} complex gradually converts to a tetrahedral complexes (Ta) until a tempera-ture T, above which only the T, complex is present. The spectra of Feill and Culli up to 90°C show only a red-shifted 0_{-1} complex but ligand-field considerations suggest that these

This page may be freely copied

ions should also convoce to a Te couplan at

ions should also convert to a T_d component Algher temporature. A change to a T_d complex will increase the free energies of the complexed ion thereby changing the equilibrium constants for mineral solvation reactions. This results in hisher mineral solubilities. Such attractorestentiat transformations may occaunt for changes in mineral soling patterns and may be important so a depositional mechanism.

V 131

HYDROTHERWAL CLAY MINERAL FORMATION OF BASE FACIFIC RISE AND BAUER BASIN SEDIMENTS

Gery M. McMurtry Housen-wen Yah (both at: Hawaii Institute of Geophysics, Univ. of Navaii, Monelulu, MI 94822)

Samples of surface metailiferous sediment recovered from the great of the East Pacific Rise at 6.8 and 10°S intitude and from the adjacent Bauer Basin are characterized by authigenia-cally formed, iron-rich montmorillonite that dominates the non-carbonate mineralow of the clay fraction (c2 up). Although previous work has suggested that these iron-rich montmorillo-nites are formed by senfloor-temperature, dia-genetic processes, we have obtained saysen isotopic formation temperatures which indicate that the iron montmorillonites are created by low-temperature (30° to 30°C) hydrothermal processes. processes.

The class fraction was chemically treated to recove calcium carbonate and iron oxide phases. The class fraction was chemically treated to recove calcium carbonate and iron oxide phases. The class fraction was chemically treated to recove calcium carbonate and iron oxide phases. These treatments did not recove opaline silica phases are 1°0 enriched, anineum formation tem-peratures ranging from 2° to 32°C ware calculated for the montmorillence. Maximum formation tem-peratures ranging from 35° to 56°C ware calculated by employing published 60° values for blogenic cilica in meas-halance equation. These iron monteorillonites are possibly formed as a recult of the cooling and suitation of unsta-blake recently discovered on the creat of the East Parific Riss or as a reault of the perrola-tion of hydrothermally altered seavater solutions through underlying handle of the clay mineral is suggested to be caused by colloidal transport, possibly by the bottom current erasion af hydro-themel mounds, Hydrothermal iron monteorillonite-montionite formation may act as a direct and sign-rificant ocennic alink for Si and Fe released by the high-temperature alteration of basalt at ocean spreading centers.

Airborne Sampling of Eruption Clouds of Explosive Volcanoes Gold Rush B Friday AM R. D. Cadle, W. I. Rose, Jr. (Michigan Tech.), Presiding

V 132 INVITED PAPER

LONG TERN NONITORING OF SOL PLUX AT VOLCANOES Lawrence L. Malinconico

Alchard E. Stolber (both at: Dept. of Earth Sciences, Dartmouth College, Hanover, NH 03755)

Sciences, Derimouth College, Hanover, NH 03755) Monitoring SO; from saveral active vol-canoes has been carried out with a correlation spectrummter (COSPEC) irregularly for various time intervals over the last sight years. At Fuego and Pacaya, Guatemala and San Cristobal, Nicaraqua and to a less marked degree at othere we note a elow rism and fall in SO; flux owr periods of months or years resulting in a change of between one and two orders of magnitude. The maximum is often coincident with periods of in-creased eruptive activity, either lava or pyro-clastic, though not always a major eruption. Menn these occur, the flux increases to even greater levels. The nine year crisis at San Cristobal, now apparently over, began in 1971 with the first noticeable gas emission since the 17th Century. It culminated with very minor

ORIGINAL PAGE IS OF POOR QUALITY

ash cruptions in 1976, coincident with the high-ext SQ: flux of thousends of metric tons per day. In 1990 the rate has dropped to 70 tons per day. At Massay Volgano, Nicersqua, we have measured the beginning of a dramatic new trend. SQ: emission is almost an order of magnitude greater than it was in the 1970's. Similar events have coourred approximately 23, 50 and 73 years ago and lasted from 5 to 10 years. We are continuing to Study this event. These gradual changes in SQ: flux dontrast with short term increases in flux of hours or days duration which have proceeded ash erup-tions at Mt. Ethe, Sicily.

V 133 INVITED PNER)-

SHAFES AND CONCENTRATIONS OF VOLCANIC PLUMES HONITONED IN CENTRAL AMERICA AND MESTERN UNITED STATES

Ajchard E. Stojjer Lawrence L. Malinconico Bianloy W. Williams (all ats Dept, of Earth Sciunzes, Datmouth College, Hanover, NH 03755) W.E. Minner (Dept, of Biological Sciences, Stanford Univ., Stanford, CA 94305)

H.E. Minner (hept, of Biological Sciences, Stanford Univ., Stanford, CA 943051 The sorrelation spectrometer (COPPEC) and SO1 detector (Interstan) have been used both car-borne and atthouse to measure the rate of production and concentration of SO1 in voltanic plumes in Nicaragua, Gustemala, and Mashington State. A method of flying at successively lower elevations at a distance downwind from an act-ively degasing volcans has been developed to determine the plume thickness and lateral disen-sions. These data are the bases for construction of "ladder" - three-dimensional cross sections of Volcanic plumes at various distances from the volcano. Three reveal that the SOP plume have heen outlined at distances of greater than 80 ke from the volcano. We have previously used the COSPEC for determining the rate of SO2 selection from vol-cances. In addition, be now calculate complete concentration prolise throughout the plume. The Interscan which directly measures SO con-rentration has been used simultaneously with the COSPEC data. The results argue argue with the COSPEC data. The results argue argue with the COSPEC data. The results argue argue with the cospet, the data intergrated, and compared with the COSPEC data. The results argue argue with areas of 0.4 ppm as far downed in a discussion of the Hamys, Midragua volcanic plume directly over the vent of Santispitto Dome, Cuatemala SO; concentrations were 21.0 ppm.

V 134 INVITED PAPER

GAS ANALYSES OF AIRBORNE SAMPLES FROM ST. HELENS ERUPTION PLUME

D.R. Cronn (Air Pollution Research Section. Washington State University, Pullman, WA 99164)

Mashington state University, Pullman, HA 99164) Whole air gas samples have been collected in the numerows valcante eruption plures of Mt. St. Helens State of fast steam and ash explo-sion of Marub 22. Editoria stanples have been collected using 20.0 aircraft in collaboration with the University of Mashington; tos Alamos Scientific Labs and the Department of Energy, and IPA Las vegas. The samples have been analyzed for a variety of trace gases with emphasis on components such as COS, CS2 and CO2 which occur in valcanic emissions. After correction for sample transfer losses, COS levels ranged from 0.3 ppb to 25, 550 (CS from 0.005 to 0.7 ppb. The trace gas levels will be related to concurrent measurements such as SO2, 105 and/or SO3, as well as other flight parameters obtained by the various collaborators.

V 135 INVITED PAPER

COMPARISONS BETWEEN AIRBORNE NEASUREMENTS OF THE VOLCANIC EMISSIONS FROM NT. ST. AUGUSTINE 1976 AND MT. ST. NELENS 1900

P. V. Hobbs L. F. Radke D. A. Hegg M. W. Elsgroth J. F. Tuell (all at Cloud and Aerosol Research Group, Dept. of Atros, Sci. AC.40, University of Washington, Scattle, WA 96195

Entensive airborne measurements have been obtained of the particles and gases emitted during

the explicitive eruptions of Mt. St. Augustine, Alasta, in 1976 and Mt. St. Helens, Mashington, in 1980. These two peologically similar volcanoes both produced gas-rich tephra representing a range of source materials from andesite to dacite. The Mt. St. Augustine eruption consisted of there periods of explosive vulcanism, each progressively weaker (Januery, February and April, 1978). Our measurements of the Pt. St. Noten's eruption have covered the entire eruption sequence to date, including pre-eruptive, eruptive and intra-eruptive, and include several of the five major cruptions. The size distributions of particles measured during the eruptions of both volcanoes are consist withly of supermiteron sized particles (unth a small water soluble component). Stongly actile emissions, with a major sub-micron component, were characteristic of the intra-eruptions, include several after the turbers of the volcanoes. The subing dates from Mt. St. Augustine emained largely Sullar, but volcanoes. The sulfur dates from Mt. St. Augustine intra-eruptions, here than a year after the intial eruptions, has revalued a signifi-cant component of the sulfur thand a signifi-cant tomponent of the sulfur than a system to volcanoes were generally similar. Unite Mt. St. Augustine, the Kog emissions from Mt. St. Helens have been uccastonally signi-ticant (-Akg 3'). When large auunts of strace gases were present, depletion of ozone was noted in the intra-eruptive plumes.

V 136 INVITED PAPER

NASAYA WELCANO, NICARAGUAI A NAJOR BOURCE OF TRUGGENEERIC SO; DURING 1980 AND ITS INFACT ON THE ADJACENT ENVIRONMENT

Stanley N. Williams¹ Nichard E. Stoiber' N.M. Johnson¹ W.E. Winner¹ W.A. Parnell, Jr.¹ M.A. Parnell, Jr.¹

The greatest natural contribution of BO; gas and aerosol to the troposophere in 1980 is believed to be the >0.5 \pm 10° at emitted from has and seroed to the troposcyhere in 1980 is bultoved to be the 3D.5 s 10° mt emitted from santing Crater of Maseya Volcane, Nicaragua, In 1973 it was about 12% of this amount, 80; ilux and the ratio of 507/01 gas indicate an NCI contribution of 30.6 s 10° mt for 1980. The large continuous 80; emission which issue 12% in 1979 is similar to events 37 about 25, 30, and 75 years ago, math of which lasted 5 to 10 years. Ground level 50; concentrations up to 4.5 rpm preur at 15 km downwind. Visual damage for cloud forest correlates with highest gas lavols, yet perennial understory species appear hualthy despite large amounts of 50 diffueed through stomata. "Acid tain" beneath the plume has a range of DM from 2.6 to 3.9. It is targe-ly neuralized by contact with herhardous under-story vegetation. Stream and springwater in the atem presently show no acidification effects. In the soils, which are developed in Quaturnary ashfall deposits, two spid neuralization pro-cusses sproar to occur. The more effective pro-coss involves base leaching from esthange sites in tass-rich soils (Nollic Virrandepts) which preduces relatively high soil pha (6.24 - 7.20). A loss effective process involves the dissolu-tion of amorphous, aluminous phases (aliophane) in the more poorly buffered soils (Typic Dur-andepts), which produces much lower soil pha In the more poorly buffered sails (Typic Dur-andents), which produces much lower soil jHs [4.51 = 5.58], "Dept. of Karth Sciences, Dartmouth College, Hanover, NH 02755 "Dept. of Biological Sciences, Stanford Univ., Stanford, CA 94305 "Dept. of Chemistry, Colorado College, Colorado Spitings, CO 80903

V 137 INVITED PAVER

GAS CHRONATUGRAPHIC DETERMINATION OF SOME CONSTITUENTS OF VOLCANIC GASES

P.<u>D. Cadle</u> (National Center for Atmospheric Revearcif: Noulder, Colorado 80307) L.C. Holdt (National Center for Atmospheric Romeurch, Boulder, Colorado 80307)

Gas chromatographic analyses have been made of the gasex emitted with r as fuse or eruption clouds from Pataya, used, and Santiaguito volcance in Gustemala; the Kithuses "Sulphur Munk" and Mauna Los in Huvali; and Ht. Si Heikna, during the early arrays of its 1980 aruptive cycle, when the eruptions were largely or entirely phrestic.

This page may be freely copied

Among the conclusions reached are that Mt. St. Helens exupted various magna gases even during the phreatic stages of the eruptions, that the methane often observed is volcanic gases is almost certainly of magna erigin, and that volcances are only a minor source of carbonyl sulfide in the atmosphere.

The National Center for Atmospheric Research is sponsored by the National Science Poundation.

V 138

CONTARISON OF ACHOSOLS FROM ERUPTIONS OF SANTIACUITO, QUATEMALA AND ST. HELENS

H. L. Chuen (Brunswick Corporation, Costa Mosa, CA, 92626) D. C. Woods (NASA Langley Research Conter, Hampton, VA 23665)

Hampton, VA 23465) The results of direct sirberne seresol sampling of eruption cloude from Eantisguite in February, 1986, are compared with those in February, 1987. The multimidal (mostly tri-moval) nature of the acround late direta-bution appears to be generally the same, but the amount of sulfuric acid burden on the molid particles appears much less in 1980 them in 1978. There is no discernible (either by EM isaging or electron-electorobing) mantic of acid on particles larger than about 5 μ m in the 1980 eruption samples, while those from 1978 were interprised to reduce a nearly momendation of 5t. Helens in April, 1970, were found to produce a nearly momendal aerupol, with large (> 15 μ m) plagisclase particles free of any acid. Even the wary enail number of sub-micron particles (consti-tuting < 11 of the total seroes) are 5t. Helens in August, 1980 (just preceding the August 7 subricon) was tri-model, and the sub-micron mode particles were covered with sulfuric acid.

V 139

CHARACTERIZATION OF STRATOSPHERIC ASBOBOLE IN EROPTION PLONES FROM MT. ST. INLEMS

D. C. Under (NASA Langley Research Center, Himpton, VA, 23665) R. L. Chuan (Brunswich Corperation, Costa Nose, CA, 92626) (Spunsor: P. S. Russell)

Ch. voide; (Spunsori F. 8. Russell) Data on seroupl size distribution, concentration, murphology and composition have been obtained in the stratuspheric clouds formed by effluents from the eruptions of Ht. St. Helens. A multitage instributions of Ht. St. Helens. A multitage interval is seased on the size interval by sease of piezoelectric microbalances, vas flown through the eruption cloud on the MSA have U-2 research aircraft along with other mampling instruments. Heasurements were made on Nay 22, 1980, 6 days after the Hay 18 eruption, on May 27, 2 days after the May 25 uruption and in an aged plume, on June 17. The size distributions in the fresh plumes (May 22 and May 27) were lound to be wonnowed and very marrow in size band with most of the mass impacting in stages 7 and 6 of the cancel impactor corres-ponding to geometric wan particle dismeters of 0,23 µm and 0.50 µm. These are quits different from the distributions which and in the mild eruption plumes measured near the wents of 5t, Melens in April and August 1960 and from Santiaguito and fuego in 1978 which were multimodal and covered a much brouder size range. On the other hand, the size distribution in the aged stratuspheric plume. Lyune 17 meruption which distributions the May 18 eruption was multimodal with packs at about 0,07-um, 0,1-µm and 1.3-um diameter. Energy dis-portive varay analysis show the particles in larger the finge >1.0 µm and 1.3-um diameter. Energy dis-portive varay analysis to consist almost entirply of sulturis acid droplets.

V 140 INVITED PWPER

BALLOON-BORNE AEROSOL MEASUREMENTS POLLOWING THE ERUPTION OF HT. ST. NELENS

D.J.Hofmann J. M. ROWH (both at: Department of Physics and Astronomy, University of Myosing, Laranie, 67 82021)