

NASA Technical Memorandum 83107

NASA-TM-83107 19810014058

In Situ Correlative Measurements for the Ultraviolet Differential Absorption Lidar and the High Spectral Resolution Lidar Air-Quality Remote Sensors: 1980 PEPE/NEROS Program

FOR REFERENCE

एटर ५० इन रक्षर मार्ग्स ने **प**र्यंत रक्षर !

Gerald L. Gregory, Sherwin M. Beck, and Joe J. Mathis, Jr.

APRIL 1981

177 PY CORY

APR 17 1981

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

SUMMARY

In situ correlative measurements made with a NASA aircraft in support of two NASA airborne remote sensors participating in the Environmental Protection Agency's 1980 Persistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study (NEROS) field program are presented. The purpose of the in situ measurements was to provide data for evaluation of the performance of the Ultraviolet Differential Absorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring mixing layer height and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was equipped to measure temperature. dewpoint temperature, ozone concentrations, and light scattering coefficient (B_{scat}). Results for 10 in situ correlative missions (July 24 through August 13, 1980) are presented. The report discusses the in situ data, describes the in situ aircraft flight plans, and presents each data set in graphical and tabular form. The report provides in situ data from which the respective remote sensors may be evaluated. Remote sensor aircraft flight plans and data are not included in the report.

INTRODUCTION

As part of the National Aeronautics and Space Administration's (NASA) continuing commitment to develop the necessary technology to utilize remote sensors and satellite platforms to monitor the Earth's environment, a number of air-quality remote sensors are under development and evaluation. As part of this remote-sensor technology development program, several NASA remote sensors were used in the Environmental Protection Agency's (EPA) 1980 Persistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study (NEROS) field program during July and August. The PEPE experiment focused on the formation and transport of visibility reducing aerosols while the NEROS experiment addressed regional-scale air mass and urban-plume characterizations with emphasis on collecting data for model validation. Reference 1 discusses the EPA programs.

NASA's participation in the programs was in several areas, including applications of both remote and in situ sampling. Two of NASA's participating remote sensors were the Langley Research Center (Langley) Ultraviolet Differential Absorption Lidar (UV-DIAL) and the High Spectral Resolution Lidar (HSRL). The UV-DIAL, an ozone concentration and mixing layer height sensor, and the HSRL, an aerosol sensor, flew onboard the Wallops Flight Center Electra aircraft making tropospheric measurements below 4 km altitude. The UV-DIAL is a Langley inhouse-developed sensor, while the HSRL is being developed under contract by the University of Wisconsin. The participation of these sensors in the PEPE/NEROS program occurred at an early stage in the development and field evaluation of each sensor; therefore, Langley provided its own in situ sampling aircraft to provide correlative measurements for evaluation of the remote sensors.

This report documents the NASA in situ correlative data to be used in the evaluation. Ten sets of in situ data are presented. The report discusses only the in situ data, describes in situ flight plans, locations, and instrumentation, and presents atmospheric profiles for temperature, dewpoint temperature, ozone concentrations and B_{SCat} . A brief description of each remote sensor is also presented.

N81-22591#

SYMBOLS AND ABBREVIATIONS

B_{scat} - light scattering coefficient, m⁻¹

e.d.t. - eastern daylight time

EPA - Environmental Protection Agency

HSRL - High Spectral Resolution Lidar

Langley - Langley Research Center

NASA - National Aeronautics and Space Administration

NBS - National Bureau of Standards

NEROS - Northeast Regional Oxidant Study

0₃ - 0₂one, ppb by volume

PEPE - Persistent Elevated Pollution Episode

T - temperature, °C

T_{dp} - dewpoint temperature, °C

UV or uv - ultraviolet

UV-DIAL - Ultraviolet Differential Absorption Lidar

SAMPLING AIRCRAFT AND SENSORS

Remote Sensor Aircraft and Sensors

The UV-DIAL and HSRL were flown onboard the NASA Wallops Flight Center Lockheed Electra aircraft. The Electra is a four-engine aircraft built for passenger service, but modified for research missions. It is equipped with numerous viewing ports for the sensors, special equipment racks for the large and heavy remote-sensor components, and a large electrical power generator. The aircraft is pressurized and equipped with various navigational avionics. Typical flights for the PEPE/NEROS missions were approximately 6 hours, at cruising speeds of 600 km/hr, and altitudes up to 4 km. The aircraft was based at and operated by the Wallops Flight Center during the field program.

The UV-DIAL is discussed in reference 2. Briefly, it is a laser system consisting of two frequency-doubled Nd:YAG lasers optically pumping two high-efficiency pulsed dye lasers which are in turn frequency doubled into the ultraviolet. The outputs of the pulsed dye lasers are tuned to a pair of strong/weak absorption lines of ozone for the ozone concentration measurement. Total backscatter from the atmospheric aerosols provides a measurement of mixing-layer height. The backscattered return signals are collected by

a telescope, directed onto photomultiplier tubes, digitized, and stored on highspeed magnetic tape. The data acquisition system provides real-time calculations of ozone concentrations below the aircraft and/or the mixing layer height.

The HSRL is an optically pumped oscillator-amplifier dye laser (ref. 3) which measures optical properties associated with atmospheric aerosols. Specifically, it measures the spatial distribution of the extinction coefficient by distinguishing the laser backscatter of aerosols from that of air molecules. Backscatter is analyzed by a high-resolution, two channel Fabry-Perot polyetalon spectrometer through a receiver telescope. One channel detects photons scattered by the aerosols and the other, spectrally broadened scatter from air molecules (based on Doppler shifts). Interferometers are used to meet the spectral resolution and flux handling requirements of the receiver. The data acquisition system consists of a minicomputer, digital magnetic tape, and a real-time graphic display screen.

In Situ Aircraft and Instrumentation

The in situ sensor aircraft (figure 1) is a light, twin-engine, fixed-wing Cessna 402 chartered and outfitted by Langley for air-quality measurements. The aircraft has been in operation since 1974, participating in numerous NASA air-quality programs (ref. 4, 5, and 6). The flight crew consisted of the pilot, a flight coordinator/principal investigator, and an instrument technician. During the PEPE/NEROS field programs, Cessna missions were based either at Columbus, Ohio, or Hampton, Virginia (Langley).

The primary measurements were 0_3 concentrations (chemiluminescent technique), B_{Scat} (integrating nephelometer), T (resistance probe), T_{dp} (cooled mirror), and flight parameters of altitude, heading, air speed, and time. References 4, 5, and 6 describe the instrumentation. The air sample for the nephelometer is heated in the inlet to vaporize liquid droplets. All instruments were calibrated using accepted EPA or NBS procedures. Table I presents the characteristics of the instruments as used in the study. The 0_3 and 0_3 and 0_3 instruments were audited by the PEPE/NEROS audit team and were within acceptable limits.

All data measured onboard the aircraft were recorded continuously on magnetic tape for later processing in the Langley computer facility. The tape was digitized (10 records/s) and the data are reported as 10-second averages. Strip-chart recorders provided backup recording for the primary measurements as well as the capability for quick-look or real-time analysis. Correlative data missions were flown at 200 km/hr, at ascent or descent rates of less than 150 m/min., and for as long as 3 hours. Based on these flight characteristics and the 10-second data averaging interval, individual data points represent a spatial distance of 0.5 km and an altitude vertical resolution of about 25 m.

IN SITU CORRELATIVE DATA EXPERIMENTS AND RESULTS

Since the purpose of the in situ aircraft was to provide correlative data in support of the airborne NASA remote sensors, flight locations and times were selected solely on remote-sensor requirements. Constraints affecting the in situ aircraft flight plan selection were (1) the PEPE/NEROS flight plan assigned to the Electra aircraft, (2) the range of the in situ aircraft, and (3) weather and flight safety considerations.

Typically, based on the Electra's PEPE/NEROS flight plan, one or more locations were selected for correlative measurements. The in situ aircraft take-off time and location were selected so that it could arrive on station a few minutes prior to the Electra overflight of the location in support of its PEPE/NEROS mission. Correlative locations were either fixed geographical points or short (20 to 60 km) flight legs beneath the assigned Electra flightpath. Generally, in situ data (0.3 to 2.5 km altitude) were obtained as the remote-sensor aircraft overflew the correlative area at about 3 km altitude. The in situ data flights required 20 to 60 minutes on station, while remote-sensor overflights took 1 to 5 minutes. Table II presents the flight locations and times of the in situ aircraft for its ten correlative missions. Locations are given in terms of latitude and longitude as well as in terms of aircraft navigational stations (ref. 7, 8, and 9).

Four basic flight plans were used to obtain the in situ data. Each was designed to obtain vertical profiles of 03 concentration, B_{SCat} , T, and T_{dp} in the correlative area as well as to provide some indication of the variation of these profiles with location and time. Figure 2 describes these flight plans. Plan I was used for those missions where the correlative data were required at a fixed geographical point; plans 2 through 4 were used for those missions in which a short flight leg was designated as the test area. Altitudes and flight-leg lengths shown in figure 2 are nominal values. Actual values were selected on a mission-to-mission basis, subject to many considerations.

July 24, 1980, Correlative Mission

Flight plan 1, figure 2a, was flown at correlative locations A and B (table II), approximately 100 km apart. Table III presents the flight sequence. Data (T, T_{dp} , 0_3 , and B_{scat}) from the repetitive spirals at each location were in good agreement (see figure 3, location A and figure 4, location B). Differences between the data profiles at either location and for any of the four measured parameters are considered insignificant, and within the instrument measurement and aircraft operational uncertainties. Figures 5 and 6 present envelopes of the 0_3 and B_{scat} data at A and B. Each envelope encompasses all the 10-second averaged data points measured at A and B. Table IV shows statistical results for these envelopes. These results were obtained by dividing the atmosphere into the indicated altitude increments and calculating the average and standard deviation of the parameter in each altitude range. Also shown in the table are the number of 10-second averaged data points included in each calculation.

While the results at either A or B were repeatable at their respective locations, the results at A and B, 100 km apart, did not agree with each other. This is readily seen in figure 7, a comparison plot of a single spiral at A and B. Important points between the results at A and B are as follows:

- 1. Both locations show a temperature inversion at about 2.5 km altitude with very dry air above the inversion.
- 2. The temperature inversion noted at A and 1.2 km altitude is not as apparent at B, and may not exist at B.
 - 3. Ozone concentrations are approximately 65 ppb at B and 40 ppb at A.

4. B_{scat} profiles at A and B are significantly different in shape and absolute values, with values at B being higher at all altitudes.

In the discussion of subsequent data sets and when appropriate, the data envelope concept (figures 5 and 6) and the corresponding statistical presentation of the envelope data (table IV) will be used without additional explanation. In each case when used, the envelope or statistical treatment includes only spiral data at a location or along a flight leg. Constant altitude traverse data (see flight plans 2, 3, and 4) are not included. In addition, when repetitive data at a location (i.e., two consecutive spirals) or along a flight leg (i.e., spirals at the leg end-points) are judged to be repeatable and similar within measurement uncertainties, only one data set (i.e., spiral at one location) representative of that location or flight leg is presented.

July 25, 1980, Correlative Mission

Flight plan I was used for the mission at locations A and B, approximately 220 km apart. Table V presents the flight sequence. As was the case for the July 24 flight, results at each location were repeatable, indicating little atmospheric variation during the 30-minute sampling period. Figure 8 and 9 show the 03 and B_{Scat} envelope plots at A and B. Envelope statistical data are given in table VI. Figure 10 compares T, T_{dp} , 03, and B_{Scat} results at A and B. The first three are quite similar but the B_{Scat} results are considerably different.

July 31, 1980, Correlative Missions

Two remote-sensor flights and correlative missions were flown on July 31. Correlative flights were flown at approximately 1400 and 2200 e.d.t. using flight plan 2 for each location (table II). Table VII presents the mission flight sequences.

For the 1400 e.d.t. mission, the correlative data were measured along leg BC, 50 km in length. Point A, 26 km from location C on leg BC, was selected for spiral data. Figure 11 shows representative atmospheric profiles at A. Repetitive spirals at A gave similar results. Figure 12 and table VIII(A) show the data envelopes at A and the corresponding statistical data, respectively. Significant observations from figures 11 and 12 are (1) the temperature inversion at about 1.5 km altitude and the observed sharp decreases in 03 and B_{SCat} values above the inversion, (2) the narrow 03 and B_{SCat} data envelopes, and (3) the uniformity of 03 and B_{SCat} values with respect to altitude, below the inversion and extending to the surface.

The constant altitude (0.27 and 0.58 km) traverses of leg BC indicated that B_{SCat} was higher at B than at C. The variation appeared to be approximately linear with distance along BC. As observed from the 0.58 km altitude traverse, B_{SCat} at C was 2.5 x 10⁻¹ m⁻¹, and at B was 3.5 x 10⁻⁴ m⁻¹. The 0.27 km altitude traverse confirmed this variation and B_{SCat} averages and standard deviations (0.27 km traverse) were 3.4 ± 0.3 x 10⁻⁴ m⁻¹ for leg AB and 2.9 ± 0.2 x 10⁻⁴ m⁻¹ for leg AC. No 0_3 variations were observed during these constant altitude traverses as ozone averages and standard deviations for the constant altitude traverses were 94 and 95 ppb ± 2 or 3 ppb. Table VIII(B) gives the statistical envelope data for the spirals at A (figure 12) and the short spirals at the leg end-points B and C. Table VIII(B) shows data

only to 610 m altitude (extent of the short spirals at B and C); data beyond 610 m are the same as those in table VIII(A).

Figures 11 and 12 and table VIII(A) provide the correlative data for remote sensor comparison at A. If leg BC, as a whole, is selected for comparison, the proper data to use are those of table VIII(B), up to an altitude of 610 m and those of table VIII(A), above 610 m altitude.

For the later mission, the correlative data were measured along leg AB, 55 km in length. Point C, 28 km from A on leg AB, was selected for spiral data. Figure 13 shows representative data at point C. Data envelopes are given in figure 14. Observations from the data are (1) the temperature inversions at approximately 0.8, 1.8, and 2.3 km altitude and the resulting layering effects observed from the 03 and B_{scat} data, (2) the decrease in B_{scat} from about 0.8 km to the surface, and (3) the relatively narrow data envelopes at C. Table IX gives the envelope statistical data for the spirals at A, B, and C.

For the most part, little variation in 0_3 or B_{scat} values was observed during the 1-hour sampling period or spatially along leg AB, and, as such, the data at C are representative of the entire leg AB. A possible exception is 0_3 concentrations below the 0.8-km inversion. The data indicate that 0_3 concentrations below 0.8 km may be decreasing with time during the mission. Although the purpose of this report is not to present an analysis of atmospheric events, the observations supporting this conclusion are presented below.

- 1. The decrease in B_{Scat} and 03 (especially 03) from about 0.8 km to the surface (table IX) suggests the presence of a stable layer (0.8 km to the surface) with poor vertical mixing, possibly the familiar nocturnal layer.
- 2. The time of the mission (2200 e.d.t.) and expected radiational cooling of the surface during a summer night are conditions supporting the potential formation of a nocturnal layer.
- 3. Constant altitude traverses of leg AB indicated about a 12 ppb decrease in 0_3 over a 30-minute period. The 0.6 km constant altitude traverse AB at about 2100 e.d.t. showed the 0_3 average and standard deviation to be 137 ± 5 ppb; 30 minutes later, the AC traverse at 0.6 km altitude resulted in 125 ± 4 ppb.
- 4. The small standard deviations for these 0_3 averages (± 4 and 5 ppb), suggest that the 0_3 decrease with time is occurring throughout the entire leg AB.

August 2, 1980, Correlative Mission

Flight plan 2 was used for the mission, and the correlative data were measured along leg AB, 60 km in length. Point C, 33 km from location A on leg AB, was selected for spiral data. Table X presents the flight sequence. In situ 03 data were not obtained during the mission. Figure 15 shows spiral data at C; these data are representative of the entire leg AB. A temperature inversion at about 1-km altitude is noted as well as the low B_{Scat} values above the inversion. Figure 16 shows the B_{Scat} data envelope at C; statistical data for this envelope and the spirals at A and B are shown in table XI. Close examination of the data of figures 15 and 16 shows some dewpoint temperature and B_{Scat} variations in the altitude range between 0.8 and 1.2 km. Flight notes by the aircraft crew indicate local plume(s) in the

vicinity of location C at about 1-km altitude. The sources of these plumes are probably industrial activities in the city of Franklin, Virginia. Maile these plumes appear to have little effect on the reported B_{Scat} data, their existence and potential effects should be considered in any comparison of in situ and remote-sensor results. The local plume(s) was not detected during the constant altitude (0.28 and 0.6 km) traverses of the test leg in which the B_{Scat} average was 1.2 to 1.3 x 10^{-4} m $^{-1}$ with standard deviations of 0.06 x 10^{-4} m $^{-1}$.

August 5, 1980, Correlative Mission

Flight plan 2 was used for the mission, and measurements were made along leg AB, 43 km in length. Point C, 22 km from location A on leg AB was selected for spiral data. Table XII presents the flight sequence. Figure 17 shows spiral results at C and is representative of the results along the entire leg AB. Figure 18 shows the data envelopes at C; table XIII shows the statistical data for spirals at A, B, and C. 03 and B_{Scat} values along AB showed little variation with time or location as constant altitude (0.27 and 0.57 km) traverses resulted in standard deviations of less than 4 ppb (03) and 0.7 x 10^{-5} m⁻¹ (B_{Scat}). Important features of the data are (1) the temperature inversions at about 0.6 and 2.6 km altitude, (2) the 03 decrease to the surface below the 0.6 km inversion (probably a nocturnal layer, not yet dissipated by surface heating), (3) the uniform (with altitude) 03 and B_{Scat} values between about 1 and 2.6 km altitude, and (4) the relatively narrow data envelopes.

August 7, 1980, Correlative Mission

Flight plan 3 (with minor modifications) was used for the mission on test leg AB, 37 km in length. Table XIV shows the flight sequence. Flight plan 3 provides four separate measurements of atmospheric vertical structure along leg AB: (1) spiral at B; (2) constant rate of descent leg B to A; (3) spiral at A; and (4) constant rate of descent leg A to B. Figures 19 through 22 present the data from these flight sequences. Each data set shows (1) a temperature inversion at about 1.5 km altitude, with dry air above the inversion, (2) a sizeable decrease in 03 and B_{scat} above the inversion as compared to below, and (3) generally a decrease in B_{scat} from about 0.6 km to the surface. The $B_{\text{(scat)}}$ and 03 envelopes for these data are shown in figure 23. The B_{scat} envelope is wider than earlier envelopes, and a few data points have been omitted in the construction of the envelopes (shown on figure 23). These points are outside the general trend of the data base and, in the authors' opinion, do not warrant equal weight in the construction of the envelope. Table XV shows statistical data for figure 23 and includes the previously omitted data. The constant altitude (0.3 km) traverses of leg AB resulted in 03 and B_{SCat} averages and standard deviations of 99 ± 6 ppb and 1.8 ± 0.2 x 10-4 m-1 (A to B traverse) and 95 4 ppb and 1.9 ± 0.2 x 10-4 m-1 (B to A traverse).

August 12, 1980, Correlative Mission

Flight plan 3 was the basis for the correlative mission, but inflight modifications were made. The test location, leg AB, was 37 km in length. Only one constant altitude traverse of leg AB was flown and the first leg of the flight was a constant rate of ascent traverse of leg C to A. Point C,

approximately 35 km from location B, was selected and located by the flight crew as the 68° radial, 59 km from the Coefield, North Carolina, VOR aircraft navigational station. Table XVI presents the flight sequence.

Figures 24 through 27 show data from the portion of the flight providing atmospheric vertical profile information. Temperature inversions are shown at approximately 2.1 and 3 km altitude, but not in all data sets. These inversions are relatively weak (a few tenths °C) which may account for their absence in some data sets. Ozone data of figures 24 through 27 show similar vertical structure, indicating little variation with time or location along legs AB and AC. Envelope plots of the 03 data are shown in figure 28. Figure 28(a) includes only leg AB data (spiral at A, spiral at B, and constant rate of descent leg B to A), while figure 28(b) includes these data and the constant rate of ascent C to A data.

The B_{Scat} profiles of figures 24 through 27 are similar with the exception of the C to A ascent leg (figure 24). In this profile, evidence of a temperature inversion at 2.1-km altitude is shown by the large decrease in B_{Scat} (not seen in the other profiles) above this altitude. In addition, a sizeable B_{Scat} peak is observed at about 3 km altitude (figure 24). This peak, when viewed on a time-resolved plot, suggests a well-defined plume or layer, high in aerosol concentrations, but having normal, ambient 03, T, and T_{dp} values. The location of the observed peak is only a few kilometers from location A, but yet, is not readily observed in the spiral A data (figure 25). Figure 29 is the B_{Scat} envelope for the data of figures 25, 26, and 27, and excludes the ascent C to A data. Table XVII is the B_{Scat} statistical data and includes the C to A ascent data. The single constant altitude (1.5 km) traverse of leg AB resulted in averages and standard deviations of 72 ± 4 ppb (03) and 1.7 ± 0.1 x 10⁻⁴ m⁻¹ (B_{Scat}).

August 13, 1980, Correlative Missions

Three remote sensor, Electra aircraft missions were flown on August 13. Two of the missions, at 1300 and 1700 e.d.t., were supported by in situ correlative data flights. Flight plan 4 was used for both missions, but at a different location for each mission. Table XVIII shows the flight sequences.

The correlative leg AB for the 1300 mission was 27 km in length. Atmospheric profiles at A and B were similar (see figure 30 for A only) indicating little variation in 0_3 , 0_{SCat} , T, or 0_{DCat} with time or location. Figure 30 is representative of the results for leg AB. Notable points concerning these data are (1) the temperature inversion at about 2-km altitude, (2) the relatively dry air above the inversion as compared to below, and (3) the sizeable 0_{SCat} peaks observed (both at A and B) at about 2-4-km altitude. This 0_{SCat} peak suggests an aerosol-rich layer in the correlative data area. The altitude extent of this layer is not well defined as data above 2-4 km are not available. However, the data do indicate that the aerosol layer is characteristic of the entire correlative leg AB. Figure 31 shows the envelope data (A and B spirals); table XIX shows the corresponding statistical data. The constant altitude (0.9 km) traverse of leg AB showed averages and standard deviations of 66 0_{SCat} 0 and 0_{SCat} 1 and 0_{SCat} 2 and 0_{SCat} 3 and 0_{SCat} 4 and 0_{SCat} 5.

The correlative leg AB for the 1700 mission was 37 km in length. Figures 32 and 33 show the spiral results at A and B. Data from both spirals at each location are shown. The data at A (figure 32) show that the θ_3 and θ_{Scat} results are not

repeatable. Both spirals indicate a temperature inversion at about 2-km allitude, but below the inversion, 03 and B_{scat} , results between the two spirals (only 10 to 15 minutes apart) are significantly different. The cause of this nonrepeatability at A is not defined and is unacceptable for providing correlation with 03 remote-sensor data and only marginal for B_{scat} data. The statistical results for the data envelopes at A are given in table XX(A). As indicated, standard deviations are large with some 03 standard deviations being 40 to 50 percent of the average values.

Figure 33 shows the results at B where repetitive spirals produced improved comparisons. The temperature inversion at B is at about 2.3-km altitude. Figure 34 shows data envelopes at B (narrow envelopes) and table XX(B) gives the statistical data. Standard deviations at B are small as compared to those at A. Table XX(C) shows the statistical results for leg AB (data at A and B). The influence of the data at A on the calculations is readily observed by the large standard deviations. Averages and standard deviations for the AB constant altitude (0.6 km) traverse were 77 ± 5 ppb (03) and 2.2 ± 0.2 x 10^{-4} m $^{-1}$ (Bscat). This traverse did not show sizeable variations in 03 or Bscat along leg AB, but was flown at an altitude below the observed variations at A.

For correlative data purposes, it is recommended that in situ and remote sensor data be compared only at point B as the data indicate little time variability in atmospheric vertical structure at B. The in situ data do not define the extent of the variability observed at A as it effects leg AB.

CONCLUDING REMARKS

In situ data from ten correlative data aircraft missions flown during the 1980 PEPE/NEROS program have been presented. The in situ data obtained in support of two NASA air-quality remote sensors, the UV-DIAL and HSRL, provide a data base to assess the performance of both sensors during the PEPE/NEROS program. Data sets, ozone concentration, light-scattering coefficient, temperature, and dewpoint temperature from each mission have been analyzed, condensed to a manageable quantity, and presented in both graphical and tabular formats to provide a description of atmospheric vertical structure in the correlative data test location. In addition, each data set is described in a manner that identifies those pertinent facts about the in situ data and the atmosphere that should be considered for evaluating each remote sensor. In most cases, each data set provides an adequate, accurate, and concise description of the measured atmospheric parameters.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 March 23, 1981

REFERENCES

- 1. Major Air Study to Track Plumes. J. of Air Pollution Control Association, vol. 30, no. 9, Sept. 1980, p. 1046.
- 2. Browell, E. V.: Lidar Remote Sensing of Tropospheric Pollutants and Trace Gases Programs of the NASA Langley Research Center. Proceedings of Fourth Joint Conference on Sensing of Environmental Pollutants, New Orleans, La., Nov. 6-11, 1977, pp. 395-402.
- 3. Shipley, S. T.; Eloranta, E. W.; and Tracy, D. H.: Measurement of the Optical Extinction Coefficient of Atmospheric Aerosols by Means of A High Spectral Resolution Lidar. Paper presented at 9th International Laser Radar Conference (Munich), July 2-5, 1979.
- 4. Wornom, D. E.; Woods, D. C.; Thomas, M. E.; and Tyson, R. W.: Instrumentation of Sampling Aircraft for Measurement of Launch Vehicle Effluents. NASA TM X-3500, July 1977.
- 5. Gregory, G. L.; Wornom, D. E.; Mathis, J. J., Jr.; and Sebacher, D. I.: Summary of Aircraft Results for 1978 Southeastern Virginia Urban Plume Measurement Study of Ozone, Nitrogen Oxides, and Methane. NASA TM-80146, Feb. 1980.
- 6. Gregory, G. L.; McDougal, D. S.; and Mathis, J. J., Jr.: In Situ Ozone Data for Evaluation of the Laser Absorption Spectrometer Remote Sensor: 1979 Southeastern Virginia Urban Plume Study Summer Field Program. NASA TM-81831, Sept. 1980.
- Washington Sectional Aeronautical Chart. 26th ed. NOAA, U.S. Dep. Commer., Sept. 6, 1979.
- 8. Cincinnati Sectional Aeronautical Chart. 23rd ed. NOAA, U.S. Dep. Commer., Jan. 24, 1980.
- 9. Detroit Sectional Aeronautical Chart. 19th ed. NOAA, U.S. Dep. Commer., Nov. 1, 1979.

TABLE I: CHARACTERISTICS OF IN SITU AIRCRAFT INSTRUMENTATION FLOWN IN THE 1980 PEPE/NEROS PROGRAM

Measured Parameter	Calibration Technique	Range	Absolute Accuracy ^a	Precision	Response Time ^d
temperature	liquid bath	-30 to +30° C	0.5° C	0.1° C	less than 1 s
dewpoint temperature	humidity chamber	-100 to +100° C	0.5° C	0.1° C	2 °C/s
ozone concentration	gas phase titration ^b	0 to 300 ppb	10 percent or 5 ppb ^C	2 percent or 3 ppb ^C	3 s
light scattering coefficient ^e (B _{scat})	filtered air and freon gas	0 to 1x10 ⁻³ m ⁻¹	10 percent or 2x10-6 m-1 c	2 percent or 2x10-6 m-1 c	0.2 s

a absolute accuracy based on calibration uncertainties gas phase titration (0_3 to NO) traceable to National Bureau of Standard NO source whichever is the largest

response time to 90 percent of signal, unless noted otherwise heated inlet to vaporize liquid droplets; instrument characteristicss based on laboratory results using filtered air and freon gas

TABLE II: FLIGHT LOCATIONS FOR IN SITU AIRCRAFT FOR CORRELATIVE MISSIONS

!			Flight Leg Lo	cations	
Date		Locati	on A	Location B	Flight Plan (fig. 2)
	(radial	/n.mi.) ^a	(latitude/longitude)	(radial/n.mi.)a (latitude/longitude)	
July 24	Newcome	VOR 0°/0	38° 10' N/ 82° 55' W	Henderson VOR 90°/ 2 38° 45' N/ 81° 59' W	1
July 25	Mansfield	VOR 101°/21	40° 48' N/ 82° 20' W	Henderson VOR 90°/ 2 38° 45' N/ 81° 59' W	1
July 31d	Kentonb	VOR 292°/ 8	39° 16' N/ 75° 41' W	Kenton VOR 270°/33 39° 9' N/ 76° 13' W	2c
July 31e	Harcum	VOR 103°/15	37° 25' N/ 76° 24' W	Harcum VOR 296°/15 37° 32' N/ 77° 0' W	2
Aug. 2	Franklin	VOR 260°/18	36° 38' N/ 77° 22' W	Franklin VOR 80°/14 36° 47' N/ 76° 44' W	2
Aug. 5	Franklin	VOR 197°/31	36° 13' N/ 77° 8' W	Franklin VOR 197°/8 36° 35' N/77° 3' W	2
Aug. 7	Snow Hill	VOR 170°/ 4	37° 59' N/ 75° 27' W	Snow Hill VOR 350°/16 38° 19' N/ 75° 34' W	3
Aug. 12	Cofield	VOR 232°/10	36° 16' N/ 77° 2' W	Cofield VOR 52°/10 36° 29' N/ 76° 43' W	3c
Aug. 13d	Rosewood	VOR 203°/ 4	40° 14' N/ 84° 4' W	Rosewood VOR 203°/20 39° 59' N/ 84° 9' W	4
Aug. 13e	Rosewood	VOR 137°/67	39° 28' N/ 83° 28' W	Rosewood VOR 137°/47 39° 43' N/ 83° 38' W	4

referenced to aeronautical charts (refs. 7, 8, and 9)
b for July 31 (first mission) coordinates shown are for location C minor modifications to flight plan were made

mission 1

mission 2

TABLE III: CESSNA FLIGHT SEQUENCE FOR JULY 24, 1980 CORRELATIVE MISSION

	Time .d.t.)	Altit (m		Flight Leg
1200	to 1204	1000 to	500	spiral at A
1204	to 1217	500 to	2400	spiral at A
1217	to 1226	2400 to	1400	spiral at A
1226	to 1307	1400		constant altitude A to B
1327	to 1336	900 to	300	spiral at B
1336	to 1350	300 to	2400	spiral at B
1353	to 1402	2400 to	1000	spiral at B

TABLE IV: ENVELOPE STATISTICAL DATA: JULY 24, 1980

A. Location A

Altitude Range	Altitude	Number of	Average Value ±	Standard Deviation
(m)	Average (m)	Data Points	03 (ppb)	B(scat) (m-1)
305 to 457	422	6	40 ± 2	8.1 ± 0.4 x 10 ⁻⁵
457 to 610	532	12	39 ± 3	7.3 ± 0.6 x 10 ⁻⁵
610 to 762	682	12	39 ± 2	$6.5 \pm 0.7 \times 10^{-5}$
762 to 914	843	12	39 ± 2	7.1 ± 0.5 x 10 ⁻⁵
914 to 1067	984	10	37 ± 4	7.1 ± 0.7 x 10-5
1067 to 1219	1143	5	39 ± 5	6.5 ± 2.3 x 10 ⁻⁵
1219 to 1372	1309	13	35 ± 5	3.5 ± 1.2 x 10 ⁻⁵
1372 to 1524	1457	11	38 ± 4	2.8 ± 1.1 x 10-5
1524 to 1679	1603	13	36 ± 3	1.8 ± 0.2 x 10 ⁻⁵
1679 to 1829	1760	15	35 ± 3	$1.7 \pm 0.3 \times 10^{-5}$
1829 to 1981	1909	13	36 ± 4	1.6 ± 0.2 x 10-5
1981 to 2134	2058	13	37 ± 3	$1.9 \pm 0.3 \times 10^{-5}$
2134 to 2286	2213	11	37 ± 2	1.3 ± 0.2 x 10 ⁻⁵
2286 to 2438	2344	11	43 ± 3	1.2 ± 0.2 x 10 ⁻⁵

TABLE IV: Concluded.

B. Location B

Altitude Range	Altitude	Number of	Average Value ± S	tandard Deviatio
(m)	Average (m)	Data Points	03 (ppb)	B(scat)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		(bbp)	<u> </u>
305 to 457	373	10	69 ± 2	$15.5 \pm 1.3 \times 10^{-5}$
457 to 610	535	12	67 ± 3	15.5 ± 1.9 x 10-5
610 to 762	696	14	61 ± 7	14.7 ± 1.1 × 10-5
762 to 914	858	35	67 ± 4	$14.1 \pm 0.7 \times 10^{-5}$
914 to 1067	1016	14	68 ≐ 3	13.5 ± 0.6 x 10 ⁻⁵
1067 to 1219	1138	12	66 ± 3	13.6 ± 0.5 x 10 ⁻⁵
1219 to 1372	1299	13	65 ± 2	12.9 ± 0.5 x 10 ⁻⁵
1372 to 1524	1452	11	66 ± 4	$11.6 \pm 1.3 \times 10^{-5}$
1524 to 1679	1594	11	64 ± 3	10.5 ± 0.7 x 10 ⁻⁵
1679 to 1829	1753	11	62 ± 2	8.4 ± 1.0 x 10 ⁻⁵
1829 to 1981	1913	11	61 ± 3	7.6 ± 1.4 x 10-5
1981 to 2134	2050	12	62 ± 3	$7.1 \pm 1.4 \times 10^{-5}$
2134 to 2286	2199	10	61 ± 3	5.6 ± 0.9 x 10 ⁻⁵
2286 to 2438	2359	11	58 ± 5	3.0 ± 1.0 × 10-5

TABLE V: CESSNA FLIGHT SEQUENCE FOR JULY 25, 1980 CORRELATIVE MISSION

Time (e.d.t.)	Altitude (m)	Flight Leg
1120 to 1124	1050 to 450	spiral at A
1124 to 1137	450 to 2450	spiral at A
1137 to 1144	2450 to 1350	spiral at A
1144 to 1240	1350	constant altitude A to B
1240 to 1248	1350 to 2450	spiral at B
1248 to 1302	2450 to 150	spiral at B
1302 to 1310	150 to 1350	spiral at B

TABLE VI: ÉNVELOPE STATISTICAL DATA: JULY 25, 1980

A. Location A

Altitude Range	Altitude	Number of		Standard Deviation
(m)	Average (Data Points	03 (ppb)	B(scat)
305 to 457	415	5	71 ± 2	$8.4 \pm 0.5 \times 10^{-5}$
457 to 610	530	10	72 ± 2	$7.7 \pm 0.2 \times 10^{-5}$
610 to 762	679	12	71 ±3	7.8 $\pm 0.3 \times 10^{-5}$
762 to 914	829	11	71 ± 5	$7.8 \pm 0.3 \times 10^{-5}$
914 to 1067	984	10	68 ±2	8.0 ±0.4 x 10 ⁻⁵
1067 to 1219	1157	6	70 ± 4	$8.9 \pm 0.1 \times 10^{-5}$
1219 to 1372	1317	10	72 ± 5	$8.5 \pm 0.9 \times 10^{-5}$
1372 to 1524	1446	11	73 <u>±</u> 5	$7.6 \pm 1.0 \times 10^{-5}$
1524 to 1679	1603	13	56 ± 9	2.8 ±2.5 x 10-5
1679 to 1829	1752	11	47 ±3	$0.4 \pm 0.5 \times 10^{-5}$
1829 to 1981	1902	11	49 ±2	$0.3 \pm 0.2 \times 10^{-5}$
1981 to 2134	2056	13	50 ± 4	$0.5 \pm 0.2 \times 10^{-5}$
2134 to 2286	2208	12	56 ± 3	$0.3 \pm 0.2 \times 10^{-5}$
2286 to 2438	2346	11	55 ±3	0.2 ±0.2 x 10-5

TABLE VI: Concluded.

B. Location B

Altit	ude Range	Altitude	Number of	Average Value ±	Standard Deviation
	(m)	Average (m)	Data Points	03 (ppb)	B(scat)
152	to 305	242	7	64 ± 1	20.8 ± 0.8 x 10 ⁻⁵
305	to 457	382	11	65 ± 2	20.1 ± 0.6 x 10 ⁻⁵
457	to 610	529	12	64 ± 2	20.1 ± 0.6 x 10-5
610	to 762	674	10	65 ± 2	19.6 ± 0.7 x 10 ⁻⁵
762	to 914	841	14	67 ± 1	19.5 ± 1.0 x 10 ⁻⁵
914	to 1067	990.	13	70 ± 3	19.4 ± 0.5 x 10 ⁻⁵
1067	to 1219	1140	12	73 ± 3	$19.5 \pm 0.6 \times 10^{-5}$
1219	to 1372	1307	18	75 ± 4	17.9 ± 2.0 x 10 ⁻⁵
1372	to 1524	1439	13	75 ± 2	14.3 ± 0.8 x 10 ⁻⁵
1524	to 1679	1603	12	68 ± 3	$9.4 \pm 2.4 \times 10^{-5}$
1679	to 1829	1751	10	62 ± 6	3.8 ± 2.2 x 10 ⁻⁵
1829	to 1981	1910	12	56 ± 4	$0.7 \pm 0.4 \times 10^{-5}$
1981	to 2134	2056	13	54 ± 5	$0.4 \pm 0.2 \times 10^{-5}$
2134	to 2286	2215	11	58 ± 2	$0.3 \pm 0.2 \times 10^{-5}$
2286	to 2438	2368	13	56 ± 2	$0.3 \pm 0.1 \times 10^{-5}$

TABLE VII: CESSNA FLIGHT SEQUENCE FOR JULY 31, 1980 CORRELATIVE MISSIONS

A. First Mission

(Tim e.d.		A	ltit (m	2.	Flight Leg
1325	to	1338	2300	to	300	spiral at A
1338	to	1345		300	<u> </u>	constant altitude A to B
1345	to	1348	300	to	600	spiral at B
1348	to	1400		600) 	constant altitude B to C
1400	to	1401	600	to	300	spiral at C
1401	to	1408		300		constant altitude C to A
1408	to	1409	300	to	100	spiral at A
1409	to	1426	100	to	2700	spiral at A
1426	to	1430	2700	to	2300	spiral at A

B. Second Mission

Time (e.d.t.)	Altitude (m)	Flight Leg
2056 to 2109	600	constant altitude A to B
2109 to 2112	600 to 300	spiral at B
2112 to 2125	300	constant altitude B to A
2125 to 2128	300 to 600	spiral at A
2128 to 2134	600	constant altitude A to C
2137 to 2140	600 to 150	spiral at C
2140 to 2158	150 to 2700	spiral at C
2158 to 2212	2700 to 600	spiral at C

TABLE VIII: ENVELOPE STATISTICAL DATA: JULY 31, 1980 (FIRST MISSION)

A. Location A

Altitude	Range	Altitude	Number of		Standard Seviation
(m)		Average (m)	Data Points	03 (ppb)	B(scat)
152 to	305	262	5	95 ± 2	$33.0 \pm 2.1 \times 10^{-5}$
305 to	457	375	12	95 ± 2	30.1 ± 1.2 x 10 ⁻⁵
457 to	610	531	12	94 ± 4	31.4 ± 1.7 x 10 ⁻⁵
510 to	762	686	13	94 ± 4	$30.6 \pm 3.0 \times 10^{-5}$
762 to	914	845	12	94 ± 3	29.4 ± 1.5 x 10 ⁻⁵
914 to	1067	995	12	93 ± 2	28.6 ± 2.0 x 10 ⁻⁵
1067 to	1219	1138	11	91 ± 2	29.2 ± 2.0 x 10 ⁻⁵
1219 to	1372	1292	11	92 ± 4	29.8 ± 1.9 x 10 ⁻⁵
1372 to	1524	1447	13	82 ± 8	20.8 ± 6.7 x 10 ⁻⁵
1524 to	1679	1603	11	72 ± 2	13.9 ± 9.4 x 10 ⁻⁵
1679 to	1829	1755	12	60 ± 6	6.9 ± 4.9 x 10 ⁻⁵
1829 to	1981	1914	13	53 ± 3	2.6 ± 0.8 x 10 ⁻⁵
1981 to	2134	2070	12	52 ± 3	2.8 ± 0.5 x 10 ⁻⁵
2134 to	2286	2198	12	56 ± 3	$3.0 \pm 0.4 \times 10^{-5}$
2286 to	2438	2371	6	57 ± 3	$3.0 \pm 0.2 \times 10^{-5}$
2438 to	2591	2507	7 ,	58 ± 4	$3.4 \pm 0.6 \times 10^{-5}$
2591 to	2743	2657	5	64 ± 5	4.8 ± 0.4 x 10 ⁻⁵

B. Leg BC

Altitude Range	Altitude	Number of	Average Value ±	Standard Deviation
(m)	Average (m)	Data Points	03 (ppb)	B(scat)
0 to 152	119	4	94 ± 2	$32.5 \pm 0.6 \times 10^{-5}$
152 to 305	233	10	92 ± 6	$31.7 \pm 2.5 \times 10^{-5}$
305 to 457	390	25	98 ± 4	$30.9 \pm 3.0 \times 10^{-5}$
457 to 610	529	26	99 ± 6	$31.3 \pm 2.9 \times 10^{-5}$

TABLE IX: ENVELOPE STATISTICAL DATA FOR LEG AB: JULY 31, 1980 (SECOND MISSION)

Altitude Range	Altitude	Number of		Standard Deviation
(m)	Average (m)	Data Points	03 (ppb)	B(scat)
152 to 305	243	12	111 ± 7	44.3 ± 3.9 x 10-5
305 to 457	386	32	116 ± 8	49.2 ± 3.3 x 10 ⁻⁵
457 to 610	525	29	124 ± 7	51.5 ± 2.8 x 10 ⁻⁵
610 to 762	701	8	106 ± 14	51.9 ± 6.8 x 10-5
762 to 914	836	15	93 ± 5	$39.0 \pm 2.4 \times 10^{-5}$
914 to 1067	991	12	84 ± 4	$32.5 \pm 5.6 \times 10^{-5}$
1067 to 1219	1137	12	79 ± 5	13.9 ± 5.2 x 10-5
1219 to 1372	1297	13	72 ± 4	5.6 ± 1.3 x 10 ⁻⁵
1372 to 1524	1454	11	70 ± 4	$4.9 \pm 0.3 \times 10^{-5}$
1524 to 1679	1597	11	66 ± 4	5.6 ± 1.0 x 10-5
1679 to 1829	1752	14	64 ± 7	5.3 ± 1.1 x 10 ⁻⁵
1829 to 1981	1906	13	76 ± 11	$10.0 \pm 2.4 \times 10^{-5}$
1981 to 2134	2060	11	87 ± 4	12.2 ± 0.5 x 10-5
2134 to 2286	2216	12	87 ± 3	12.2 ± 0.9 x 10 ⁻⁵
2286 to 2438	2359	13	88 ± 3	8.9 ± 0.6 x 10 ⁻⁵
2438 to 2591	2510	12	85 ± 4	7.9 ± 0.2 x 10-5
2591 to 2743	2666	13	79 ± 3	7.6 ± 0.2 x 10 ⁻⁵

TABLE X: CESSNA FLIGHT SEQUENCE FOR AUGUST 2, 1980 CORRELATIVE MISSION

Time (e.d.t.)	Altitude (m)	Flight Leg
(e.u.t.)	\"''	
1214 to 1225	600	constant altitude B to A
1225 to 1227	600 to 300	spiral at A
1227 to 1243	300	constant altitude A to B
1243 to 1245	300 to 600	spiral at B
1245 to 1251	600	constant altitude B to C
1251 to 1254	600 to surf	spiral at C
1254 to 1312	surf to 2700	spiral at C
1312 to 1325	2700 to 600	spiral at C

TABLE XI: ENVELOPE STATISTICAL DATA FOR LEG AB, AUGUST 2, 1980

Altitude Range	Altitude	Number of	Average Value ± S	Standard Deviation
(m)	Average (m)	Data Points	03 (ppb)	B(scat)
n0 to 152	80	10	1	$13.7 \pm 0.5 \times 10^{-5}$
152 to 305	234	12		$12.9 \pm 0.6 \times 10^{-5}$
305 to 457	385	25		12.4 ± 0.5 x 10 ⁻⁵
457 to 610	539	24		$12.3 \pm 0.4 \times 10^{-5}$
610 to 762	679	12		12.0 ± 0.6 x 10-5
762 to 914	839	13		$11.7 \pm 0.8 \times 10^{-5}$
914 to 1067	994	9		12.5 ± 1.0 x 10-5
1067 to 1219	1150	11	·	10.5 ± 1.5 × 10 ⁻⁵
1219 to 1372	1297	11		7.6 ± 1.2 x 10 ⁻⁵
1372 to 1524	1450	11		$5.7 \pm 1.1 \times 10^{-5}$
1524 to 1679	1603	11		4.1 ± 1.6 x 10-5
1679 to 1829	1757	9		$3.9 \pm 0.7 \times 10^{-5}$
1829 to 1981	1906	11		$3.6 \pm 0.6 \times 10^{-5}$
1981 to 2134	2060	10		4.3 ± 0.2 x 10 ⁻⁵
2134 to 2286	2213	12		4.6 ± 0.4 x 10 ⁻⁵
2286 to 2438	2359	10		4.5 ± 0.4 x 10 ⁻⁵
2438 to 2591	2507	11		$3.9 \pm 0.7 \times 10^{-5}$
2591 to 2743	2671	12		$2.4 \pm 0.3 \times 10^{-5}$
2743 to 2895	2811	9		$2.0 \pm 0.1 \times 10^{-5}$

 $^{^{1}}$ no $\mathbf{0_{3}}$ data measured during the mission

TABLE XII: CESSNA FLIGHT SEQUENCE FOR AUGUST 5, 1980 CORRELATIVE MISSION

Time	Altitude	Flight Leg
(e.d.t.)	(m)	
0930 to 0946	600	constant altitude A to B
0946 to 0949	600 to 30	00 spiral at B
0949 to 1004	300	constant altitude A to B
1004 to 1009	300 to 60	00 spiral at A
1009 to 1017	600	constant altitude A to C
1017 to 1022	600 to sur	f spiral at C
1022 to 1047	surf to 340	00 spiral at C
1047 to 1109	3400 to 60	0 spiral at C

TABLE XIII: ENVELOPE STATISTICAL DATA FOR LEG AB: AUGUST 5, 1980

Altitude Range	Altitude	Number of		Standard Deviation
(m)	Average (m)	Data Points	(ppb)	³ (scat) (m-1)
0 to 152	91	13	47 ± 2	14.7 ± 0.4 x 10 ⁻⁵
152 to 305	250	25	45 ± 6	14.4 ± 0.5 x 10 ⁻⁵
305 to 457	379	27	47 ± 4	14.6 ± 0.4 x 10-5
457 to 610	543	38	58 ± 5	12.8 ± 1.0 x 10 ⁻⁵
610 to 762	685	11	64 ± 2	$11.4 \pm 0.8 \times 10^{-5}$
762 to 914	840	13	64 ± 2	10.9 ± 0.5 x 10-5
914 to 1067	992.	12	69 ± 3	10.8 ± 2.1 x 10 ⁻⁵
1067 to 1219	1138	16	66 ± 3	10.4 ± 1.9 x 10 ⁻⁵
1219 to 1372	1293	14	65 ± 2	8.6 ± 0.8 x 10 ⁻⁵
1372 to 1524	1443	13	67 ± 5	8.8 ± 0.2 x 10 ⁻⁵
1524 to 1679	1595	13	65 ± 3	8.3 ± 0.2 x 10 ⁻⁵
1679 to 1829	1746	12	66 ± 2	8.3 ± 0.3 x 10 ⁻⁵
1829 to 1981	1902	13	65 ± 3	8.5 ± 0.2 x 10 ⁻⁵
1981 to 2134	2055	12	66 ± 3	$8.4 \pm 0.3 \times 10^{-5}$
2134 to 2286	2210	15	66 ± 4	$8.7 \pm 0.2 \times 10^{-5}$
2286 to 2438	2359	12	65 ± 3	$8.8 \pm 0.4 \times 10^{-5}$
2438 to 2591	2510	13	60 ± 3	$9.2 \pm 0.4 \times 10^{-5}$
2591 to 2743	2669	13	57 ± 2	8.0 ± 1.2 x 10 ⁻⁵
2743 to 2895	2817	12	56 ± 2	5.8 ± 0.3 x 10 ⁻⁵
2895 to 3048	2967	12	54 ± 3	$5.3 \pm 0.3 \times 10^{-5}$
3048 to 3200	3127	14	55 ± 4	5.1 ± 0.5 x 10 ⁻⁵
3200 to 3353	3279	12	54 ± 4	4.3 ± 1.2 x 10 ⁻⁵
3353 to 3505	3377	5	55 ± 4	$2.5 \pm 0.3 \times 10^{-5}$

TABLE XIV: CESSNA FLIGHT SEQUENCE FOR AUGUST 7, 1980 CORRELATIVE MISSION

(6	Time e.d.t.)	Altitude (m)	Flight Leg
1737	to 1746	450	constant altitude A to B
1746	to 1747	450 to 150	spiral at B
1747	to 1759	150 to 1800	spiral at B
1759	to 1808	1800(B) to 600(A)	constant rate of descent B to A
1808	to 1811	600 to 100	spiral at A
1811	to 1824	100 to 1800	spiral at A
1824	to 1836	1800(A) to surf(B)	constant rate of descent A to B
1836	to 1838	surf to 300	spiral at B
1838	to 1849	· 300	constant altitude B to A

TABLE XV: ENVELOPE STATISTICAL DATA FOR LEG AB, AUGUST 7, 1980

Altit	ude Ran	-)			Standard Deviation
	(m)	Averag	ge Data Points	s 03 (ppb)	B(scat)
0	to 15	2 106	22	94 [±] 3	16.8 [±] 1.1 x 10 ⁻⁵
152	to 30	5 225	36	97 [±] 4	17.7 ± 2.5 x 10-5
305	to 45	7 384	22	98 ± 3	21.1 ± 3.8 x 10 ⁻⁵
457	to 61	540	23	101 [±] 4	25.3 ± 3.4 x 10 ⁻⁵
610	to 76	2 682	24	102 ± 4	27.5 ± 2.3 x 10-5
762	to 91	832	27	101 [±] 3	26.9 ± 2.2 x 10 ⁻⁵
914	to 106	7 991	25	101 [±] 4	26.8 ± 3.4 x 10-5
1067	to 121	9 1143	25	98 ± 3	25.6 ± 3.7 x 10-5
1219	to 1372	2 1300	27	94 [±] 4	23.9 ± 3.9 x 10-5
1372	to 1524	1 1446	24	75 [±] 20	15.6 ± 8.0 x 10-5
1524	to 1679	1601	28	46 [±] 11	1.2 ± 1.0 x 10-5 .
1679	to 1829	9 1744	27	42 [±] 3	$0.7 \pm 0.2 \times 10^{-5}$

TABLE XVI: CESSNA FLIGHT SEQUENCE FOR AUGUST 12, 1980 CORRELATIVE MISSION

Time (e.d.t.)	Altitude (m)	Flight Leg
1108 to 1130	900(C) to 3000(B)	constant rate of ascent, C to A
1130 to 1142	3000 to 1500	spiral at A
1142 to 1151	1500	constant altitude A to B
1151 to 1203	1500 to 3000	spiral at B
1203 to 1215	3000(B)to 1500(A)	constant rate of descent, B to A

TABLE XVII: ENVELOPE STATISTICAL DATA FOR LEG AB: AUGUST 12, 1980

Altitude Range	Altitude	Number of		Standard Deviation
(m)	Average (m)	Data Points	03 (ppb)	B(scat)
914 to 1067	1050	2	71 ± 2	13.8 ± 0.0 x 10 ⁻⁵
1067 to 1219	1129	8	70 ± 3	$13.6 \pm 0.2 \times 10^{-5}$.
1219 to 1372	1299	8	67 ± 3	14.5 ± 0.9 x 10 ⁻⁵
1372 to 1524	1446	7	67 ± 3	17.0 ± 0.9 x 10 ⁻⁵
1524 to 1679	1597	31	68 ± 5	17.4 ± 1.6 x 10 ⁻⁵
1679 to 1829	1756	28	72 ± 6	17.8 ± 1.2 x 10 ⁻⁵
1829 to 1981	1903	31	72 ± 6	17.5 ± 1.7 x 10-5
1981 to 2134	2054	28	70 ± 3	17.2 ± 1.1 x 10 ⁻⁵
2134 to 2286	2206	28	67 ± 3	17.0 ± 1.0 x 10 ⁻⁵
2285 to 2438	2358	26	65 ± 5	15.7 ± 3.1 x 10 ⁻⁵
2438 to 2591	2516	28	63 ± 5	14.5 ± 3.6 x 10 ⁻⁵
2591 to 2743	2675	29	64 ± 4	14.3 ± 3.4 x 10 ⁻⁵
2743 to 2895	2811	29	62 ± 5	12.0 ± 3.6 x 10 ⁻⁵
2895 to 3048	2959	34	61 ± 3	10.1 ± 2.4 x 10 ⁻⁵
3048 to 3200	3075	32	58 ± 3	$10.3 \pm 7.9 \times 10^{-5}$

TABLE XVIII: CESSNA FLIGHT SEQUENCES FOR AUGUST 13, 1980 CORRELATIVE MISSIONS

A. First Mission

(Time e.d.t		<i>,</i>	Nitit (m		Flight Leg
1237	to	1247	900	to	2400	spiral at A
1249	to	1256	2400	to	900	spiral at A
1256	to	1306	 	900	·	constant altitude A to B
1306	to	1314	900	to	2400	spiral at B
1318	to	1329	2400	to	600	spiral at B

B. Second Mission

Time (e.d.t.)	Altitude (m)	Flight Leg
1619 to 1632	600 to 2400	spiral at A
1633 to 1646	2400 to 600	spiral at A
1646 to 1652	600	constant altitude, A to B
1652 to 1703	600 to 2400	spiral at B
1703 to 1717	2400 to 600	spiral at B

TABLE XIX: ENVELOPE STATISTICAL DATA FOR LEG AB: AUGUST 13, 1980 (FIRST MISSION)

Altitude Range	Altitude	Number of		Standard Deviation
(m)	Average (m)	Data Points	03 (ppb)	B(scat.)
610 to 762	730	5	65 ± 2	18.5 ± 0.3 x 10 ⁻⁵
762 to 914	868	10	66 ± 3	16.6 ± 1.3 x 10 ⁻⁵
914 to 1067	977	28	64 ± 4	14.6 ± 2.1 x 10-5
1067 to 1219	1140	20	66 ± 5	13.9 ± 1.7 x 10 ⁻⁵
1219 to 1372	1293	18	65 ± 3	$13.3 \pm 1.7 \times 10^{-5}$
1372 to 1524	1448	18	64 ± 4	12.5 ± 1.5 x 10-5
1524 to 1679	1596	18	63 ± 4	11.9 ± 2.8 x 10 ⁻⁵
1679 to 1829	1747	18	62 ± 3	$10.2 \pm 3.0 \times 10^{-5}$
1829 to 1981	1901	18	55 ± 6	$9.0 \pm 3.7 \times 10^{-5}$
1981 to 2134	2061	23	51 ± 7	6.2 ± 4.0 x 10 ⁻⁵
2134 to 2286	2215	21	42 ± 5	2.3 ± 1.4 x 10 ⁻⁵
2286 to 2438	2369	23	36 ± 2	7.8 ± 10.6 x 10 ⁻⁵

TABLE XX: ENVELOPE STATISTICAL DATA: AUGUST 13, 1980 (SECOND MISSION)

A. Locaton A

Altitude Ran		Number of		
(m)	Average (m)	Data Points	03 (ppb)	B(scat)
457 to 61	0 602	5	77 ± 7	24.1 ± 4.3 x 10-5
610 to 76	2 671	19	75 ± 6	21.9 ± 3.4 x 10 ⁻⁵
762 to 91	4 834	13	72 ± 7	23.1 ± 3.1 x 10 ⁻⁵
914 to 106	7 989	14	64 ± 11	23.7 ± 2.1 x 10 ⁻⁵
1067 to 121	9 1143	13 .	54 ± 20	24.3 ± 1.7 x 10 ⁻⁵
1219 to 137	2 1304	13	50 ± 25	$23.8 \pm 1.0 \times 10^{-5}$
1372 to 152	4 1444	11	52 ± 26	24.7 ± 1.0 x 10-5
1524 to 167	9 1592	12	76 ± 3	23.4 ± 1.7 x 10 ⁻⁵
1679 to 182	9 1766	13	70 ± 3	19.8 ± 1.3 × 10 ⁻⁵
1829 to 198	1 1905	8	73 ± 4	16.1 ± 1.4 x 10-5
1981 to 213	2045	11	70 ± 10	14.9 ± 1.3 x 10 ⁻⁵
2134 to 228	6 2209	11	60 ± 3	12.1 ± 1.1 x 10 ⁻⁵
2286 to 243	8 2362	12	48 ± 9	6.1 ± 2.9 x 10 ⁻⁵
2438 to 259	1 2461	5	50 ± 6	$1.3 \pm 0.5 \times 10^{-5}$

TABLE XX: Continued

B. Location B

Altitude Range		Altitude	Number of	Average Value ± Standard Deviation	
	(m)	Average (m)	Data Points	03 (ppb)	B(scat)
		ļ.			
457	to 610	596	4	86 ± 1	$26.4 \pm 0.7 \times 10^{-5}$
610	to 762	700	11	88 ± 2	25.7 ± 0.7 x 10-5
762	to 914	839	15	87 ± 2	$25.9 \pm 0.5 \times 10^{-5}$
914	to 1067	997	12	87 ± 3	$25.5 \pm 0.6 \times 10^{-5}$
1067	to 1219	1154	12	87 ± 2	$24.9 \pm 0.7 \times 10^{-5}$
1219	to 1372	1298	12	87 ± 4	24.4 ± 0.8 x 10 ⁻⁵
1372	to 1524	1452	13	85 ± 5	$23.5 \pm 1.7 \times 10^{-5}$
1524	to 1679	1604	11	79 ± 4	20.0 ± 1.3 x 10 ⁻⁵
1679	to 1829	1740	11	73 ± 3	17.9 ± 1.0 x 10 ⁻⁵
1829	to 1981	1914	12	74 ± 4	$14.8 \pm 1.0 \times 10^{-5}$
1981	to 2134	2053	10	66 ± 10	11.4 ± 4.2 x 10 ⁻⁵
2134	to 2286	2211	11	50 ± 12	$4.4 \pm 2.4 \times 10^{-5}$
2286	to 2438	2361	11	40 ± 8	$2.2 \pm 0.5 \times 10^{-5}$
2438	to 2591	2456	5	35 ± 3	$1.7 \pm 0.2 \times 10^{-5}$

TABLE XX: Concluded

C. Leg AB (Spiral A and B data)

Altitude Range		Altitude	Number of	Average Value ± Standard Deviation		
	(m)	Average (m)	Data Points	03 (ppb)	B(scat)	
457	to 610	600	9	81 ± 7	25.1 ± 3.3 x 10 ⁻⁵	
610	to 762	682	30	80 ± 8	23.3 ± 3.3 x 10-5	
762	to 914	837	28	80 ± 9	24.6 ± 2.6 x 10 ⁻⁵	
914	to 1067	993-	26	74 ± 14	24.5 ± 1.8 x 10 ⁻⁵	
1067	to 1219	1148	25	70 ± 22	24.6 ± 1.3 x 10-5	
1219	to 1372	1301	25	68 ± 26	24.1 ± 1.0 × 10-5	
1372	to 1524	1448	24	70 ± 24	24.0 ± 1.5 x 10 ⁻¹	
1524	to 1679	1598	23	78 ± 4	21.8 ± 2.3 x 10-5	
1679	to 1829	1754	24	71 ± 3	18.9 ± 1.5 x 10-5	
1829	to 1981	1910	20	74 ± 4	$15.3 \pm 1.3 \times 10^{-5}$	
1981	to 2134	2049	21	68 ± 10	13.3 ± 3.4 x 10 ⁻⁵	
2134	to 2286	2210	22 .	55 ± 10	8.2 ± 4.3 x 10 ⁻⁵	
2286	to 2438	2361	23	44 ± 9	4.2 ± 2.9 x 10 ⁻⁵	
2438	to 2591	2458	10	43 ± 9	1.5 ± 0.4 x 10-5	

Flight Plan 4

Figure 2. - In situ flight plans.

Flight Plan 3

1200 to 1204 e.d.t.

Figure 3. - Spiral data at A, July 24, 1980.

Flight Locations

---- 1327 to 1336 e.d.t. 1336 to 1350 e.d.t. 1353 to 1402 e.d.t.

Figure 4. - Spiral data at B, July 24, 1980.

Figure 5. - Data envelopes at A, July 24, 1980.

Figure 6. - Data envelopes at B, July 24, 1980.

Figure 7. - Comparison of results at A and B, July 24, 1980.

Figure 8. - Data envelopes at A, July 25, 1980.

Figure 9. - Data envelopes at B, July 25, 1980.

Figure 10. - Comparison of results at A and B, July 25, 1980.

Figure 11. - Spiral data at A, first mission, July 31, 1980.

Figure 12. - Data envelopes at A, first mission, July 31, 1980.

0.8

Figure 13. - Spiral data at C, second mission, July 31, 1980.

Figure 14. - Data envelopes at C, second mission, July 31, 1980.

Figure 15. - Spiral data at C, August 2, 1980.

Figure 16. - B_{scat} data envelope at C, August 2, 1980.

Flight Locations

Figure 17. - Spiral data at C, August 5, 1980.

Figure 18. - Data envelopes at C, August 5, 1980.

Figure 19. - Spiral data at B, August 7, 1980.

Figure 20. - Descent leg B to A data, August 7, 1980.

Figure 21. - Spiral data at A, August 7, 1980.

 \mathcal{F}_{λ}

Figure 22. - Descent leg A to B data, August 7, 1980.

x Data points omitted from envelope plots

Figure 23. - Data envelopes, leg AB, August 7, 1980.

Figure 24. - Ascent leg C to A data, August 12, 1980.

Figure 25. - Spiral data at A, August 12, 1980.

Figure 26. - Spiral data at B, August 12, 1980.

Figure 27. - Descent leg B to A, August 12, 1980.

(b) Leg AB, including C to A leg

Figure 28. - 03 data envelopes, August 12, 1980.

Figure 29. - B_{scat} data envelope, leg AB, August 12, 1980.

Figure 30. - Spiral data at A, 1400 e.d.t., August 13, 1980.

Figure 31. - Data envelopes, leg AB, 1400 e.d.t., August 13, 1980.

Figure 32. - Spiral data at A, 1700 e.d.t., August 13, 1980.

---- 1652 to 1703 e.d.t. ---- 1703 to 1717 e.d.t.

Figure 33. - Spiral data at B, 1700 e.d.t., August 13, 1980.

Figure 34. - Data envelopes at B, 1700 e.d.t., August 13, 1980.

ASA TM-83107 1. Title and Substiff, Situ Correlative Measurements for the Ultra- isolet Differential Absorption Lidar and the High Spectral esolution Lidar Air-Quality Remote Sensors:1980 PEPE/NEROS 1. Performing Organization Code) 1. Gerald L. Gregory, Sherwin M. Beck, and Joe J. Mathis, Jr 2. Deriving Organization Name and Address NASA Langley Research Center Hampton, Virginia 23665 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3. Supplementary Notes 1. Sponsoring Agency Name and Address In situ correlative measurements made with a NASA aircraft in support of two NASA ribborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NEROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring in large repetion. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (Bscgt). In situ measurements for ten correlative missions (July 24 hrough August 13, 1980) are presented. The report discusses the in situ data, escribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. 18. Distribution Statement Unclassified - Unlimited Subject Category 45 Name Statement Unclassified - Unlimited Subject Category 45 Name Statement Unclassified - Unlimited Subject Category 45 Name Statement Unclassified - Unlimited Subject Category 45		·			
4. Title and Subtright Situ Correlative Measurements for the Ultra- folet Differential Absorption Lidar and the High Spectral seolution Lidar Air-Quality Remote Sensors:1980 PEPE/NEROS rogram 7. Authorly 7. Authorly 8. Gerald L. Gregory, Sherwin M. Beck, and Joe J. Mathis, Jr 9. Performing Organization Rame and Address NASA Langley Research Center Hampton, Virginia 23665 13. Type of Report and Period Covered Washington, D.C. 20546 14. Sponsoring Agency Name and Address NAtional Aeronautics and Space Administration Washington, D.C. 20546 15. Supplementary Notes 16. Abstract 17. In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NRROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring he 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations in the troposphere during he 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations and light-scattering coefficient (B _{SCRI}). In situ measurements for ten correlative missions (July 24 hrough August 13, 1980) are presented. The report discusses the in situ data, escribes the in situ aircraft flight plans, and presents each data set in graphical mid tabular format. 18. Distribution Statement Unclassified - Unlimited Subject Category 45 Subject Category 45 Subject Category 45 Subject Category 45	1. Report No.	2. Government Acces	sion No.	3)	Recipient's Catalog No.
iolet Differential Absorption Lidar and the High Spectral esolution Lidar Air-Quality Remote Sensors:1980 PEPE/NEROS rogram 7. Author(1) Gerald L. Gregory, Sherwin M. Beck, and Joe J. Mathis, Jr 8. Performing Organization Name and Address NASA Langley Research Center Hampton, Virginia 23665 8. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 9. Supplementary Notes 10. Work Unit No. 11. Contract or Grant No. 11. Sponsoring Agency Code 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 13. Type of Report and Period Covered Technical Memorandum 14. Sponsoring Agency Code 15. Abstract In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidat Study NEROS) field program are presented. The purpose of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring ixing layer height, and ozone and aerosol concentrations in the troposphere during he 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, accomplication and the troposphere during height, and ozone and aerosol concentrations, and light-scattering coefficient (Bscat). In situ measurements for ten correlative missions (July 24 herough August 13, 1980) are presented. The report discusses the in situ data, escribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. 18. Distribution Statement Unclassified - Unlimited Subject Category 45 19. Security Classif. (of this report) 19. Security Classif. (of this report) 20. No. of Pages 22. Pice*					
esolution Lidar Air-Quality Remote Sensors:1980 PEPE/NEROS rogram 7. Authorisi Gerald L. Gregory, Sherwin M. Beck, and Joe J. Mathis, Jr. 8. Performing Organization Report No. 9. Perfor ming Organization Name and Address MASA Langley Research Center Hampton, Virginia 23665 2. Spompering Agency Name and Address National Aeronautics and Space Administration National Protection Agency Code 6. Abstract In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NRROS) field program are presented. The purpose of the In situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential Sorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring inking layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, devoloint temperature, ozone concentrations, and light-scattering coefficient (Bscat). In situ measurements for ten correlative missions (July 24 hrough August 13, 1980) are presented. The report discusses the in situ data, escribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. 18. Distribution Statement 19. Distribution Statement 29. Price Total Memorandum 20. Distribution Statement 20. Security Classif. (of this page) 20. No. of Pages 20. Price Total Memorandum 21. No. of Pages 21. No. of Pages 22. Price Total Statement 23. Price Total Statement 2	4. Title and Subtitle n Situ Correlative Measurements for the U			Ultra- 5.	
7. Authoristic Gerald L. Gregory, Sherwin M. Beck, and Joe J. Mathis, Jr Gerald L. Gregory, Sherwin M. Beck, and Joe J. Mathis, Jr 10. Work Unit No. 10. Work Unit No. 10. Work Unit No. 11. Contract or Grant No. 11. Contract or	Resolution Lidar Air-Quali			Performing Organization Code	
Gerald L. Gregory, Sherwin M. Beck, and Joe J. Mathis, Jr D. Performing Organization Name and Address NASA Langley Research Center Hampton, Virginia 23665 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3. Supplementary Notes 11. Contract or Grant No. 12. Type of Report and Period Covered Technical Memorandum Technical		······			Performing Organization Report No.
MSA Langley Research Center Hampton, Virginia 23665 2. Spomoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3. Supplementary Notes 3. Abstract In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NEROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bisorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring ixing layer height, and ozone and aerosol concentrations in the troposphere during he 1980 PEPE/MEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (Bscgt). In situ measurements for ten correlative missions (July 24 horough August 13, 1980) are presented. The report discusses the in situ data, lescribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. 18. Distribution Statement Unclassified – Unlimited Subject Category 45 New Words (Suggested by Authoris) Ozone Aerosols Remote Sensor Air Quality Airborne Sampling 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*		win M. Beck, and J	oe J. Mat		Terroriting Organization Report (vo.
NASA Langley Research Center Hampton, Virginia 23665 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546 3. Abstract In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NRROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bisorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring ixing layer height, and ozone and aerosol concentrations in the troposphere during he 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (Bscat). In situ measurements for ten correlative missions (July 24 hrough August 13, 1980) are presented. The report discusses the in situ data, lescribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. 18. Distribution Statement Unclassified – Unlimited Subject Category 45 Airborne Sampling 19. Security Classif. (of this report) 20. Security Classif. (of this report) 21. No. of Pages 22. Price*	9. Perfor ning Organization Name and Addr	ress	<u></u>	10.	Work Unit No.
Technical Memorandum	NASA Langley Research C			11.	Contract or Grant No.
Technical Memorandum				12	Turn of Based and Basid Co.
National Aeronautics and Space Administration Washington, D.C. 20546 3. Supplementary Notes 3. Abstract In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NEROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring lixing layer height, and ozone and aerosol concentrations in the troposphere during he 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (Bscat). In situ measurements for ten correlative missions (July 24 hrough August 13, 1980) are presented. The report discusses the in situ data, lescribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. 18. Distribution Statement Unclassified - Unlimited Subject Category 45 No. of Pages 22. Price*	12 Sponsoring Agency Name and Address			13.	•
Mashington, D.C. 20546 5. Supplementary Notes 5. Abstract In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 revisitent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NEROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring lixing layer height, and ozone and aerosol concentrations in the troposphere during he 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (Bscat). In situ measurements for ten correlative missions (July 24 hrough August 13, 1980) are presented. The report discusses the in situ data, escribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. 18. Distribution Statement Unclassified - Unlimited Subject Category 45 Airborne Sampling 20. Security Classif. (of this page) 21. No. of Pages 22. Price*		d C Nd	4.5		Technical Memorandum
In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NEROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring lixing layer height, and ozone and aerosol concentrations in the troposphere during he 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (Bscat). In situ measurements for ten correlative missions (July 24 hrough August 13, 1980) are presented. The report discusses the in situ data, escribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. Key Words (Suggested by Author(s))		a Space Administra	tion	14.	Sponsoring Agency Code
In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NEROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring lixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (B _{SCat}). In situ measurements for ten correlative missions (July 24 through August 13, 1980) are presented. The report discusses the in situ data, lescribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. Key Words (Suggested by Author(s))	15. Supplementary Notes			· · · · · · · · · · · · · · · · · · ·	
In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NEROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring lixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (B _{SCat}). In situ measurements for ten correlative missions (July 24 through August 13, 1980) are presented. The report discusses the in situ data, lescribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. Key Words (Suggested by Author(s))		•			
In situ correlative measurements made with a NASA aircraft in support of two NASA irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NEROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring lixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (B _{SCat}). In situ measurements for ten correlative missions (July 24 through August 13, 1980) are presented. The report discusses the in situ data, lescribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. Key Words (Suggested by Author(s))	10. Al-a			····	
irborne remote sensors participating in the Environmental Protection Agency's 1980 ersistent Elevated Pollution Episode (PEPE) and Northeast Regional Oxidant Study NEROS) field program are presented. The purpose of the in situ measurement effort as to provide data for evaluation of the performance of the Ultraviolet Differential bsorption Lidar and the High Spectral Resolution Lidar remote sensors for measuring lixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure emperature, dewpoint temperature, ozone concentrations, and light-scattering coefficient (Bscat). In situ measurements for ten correlative missions (July 24 hhrough August 13, 1980) are presented. The report discusses the in situ data, escribes the in situ aircraft flight plans, and presents each data set in graphical and tabular format. Key Words (Suggested by Author(s))	16. Abstract				
Ozone Aerosols Remote Sensor Air Quality Airborne Sampling O. Security Classif. (of this report) Ozone Unclassified - Unlimited Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	Persistent Elevated Pollut (NEROS) field program are was to provide data for evaluation Lidar and the H mixing layer height, and on the 1980 PEPE/NEROS program temperature, dewpoint temperocefficient (Bscat). In sthrough August 13, 1980) as	ion Episode (PEPE) presented. The pu aluation of the pe igh Spectral Resol zone and aerosol c m. The in situ ai erature, ozone con itu measurements f re presented. The	and Nort rpose of rformance ution Lid oncentrat rcraft wa centratic or ten co	the in situle of the Ulter remote serious in the instrument one, and light or inscusses the inscusse	onal Oxidant Study i measurement effort craviolet Differential sensors for measuring troposphere during ited to measure jht-scattering iissions (July 24
Ozone Aerosols Remote Sensor Air Quality Airborne Sampling O. Security Classif. (of this report) Ozone Unclassified - Unlimited Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					
Ozone Aerosols Remote Sensor Air Quality Airborne Sampling O. Security Classif. (of this report) Ozone Unclassified - Unlimited Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					
Ozone Aerosols Remote Sensor Air Quality Airborne Sampling O. Security Classif. (of this report) Ozone Unclassified - Unlimited Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					
Ozone Aerosols Remote Sensor Air Quality Airborne Sampling O. Security Classif. (of this report) Ozone Unclassified - Unlimited Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					
Ozone Aerosols Remote Sensor Air Quality Airborne Sampling O. Security Classif. (of this report) Ozone Unclassified - Unlimited Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					
Ozone Aerosols Remote Sensor Air Quality Airborne Sampling O. Security Classif. (of this report) Ozone Unclassified - Unlimited Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*		·			
Ozone Aerosols Remote Sensor Air Quality Airborne Sampling O. Security Classif. (of this report) Ozone Unclassified - Unlimited Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					
Ozone Aerosols Remote Sensor Air Quality Airborne Sampling O. Security Classif. (of this report) Ozone Unclassified - Unlimited Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*					•
Aerosols Remote Sensor Air Quality Airborne Sampling D. Security Classif. (of this report) Subject Category 45 Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*	17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Remote Sensor Air Quality Airborne Sampling Security Classif. (of this report) Security Classif. (of this page) Security Classif. (of this page) Subject Category 45 20. Security Classif. (of this page) 21. No. of Pages 22. Price*			lincles	sified - Ur	nlimited
Air Quality Airborne Sampling 20. Security Classif. (of this page) Subject Category 45 21. No. of Pages 22. Price*	_		Unctas	5111EG - 01	ii iiii ced
Airborne Sampling 20. Security Classif. (of this page) 21. No. of Pages 22. Price*				Sub	iect Category 45
				Jub	jees outegory 45
	19. Security Classif, (of this report)	20. Security Classif, (of this	page)	21. No. of Page	s 22, Price*
	Unclassified	Unclassified			ì

End of Document