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STEADY (ROBUST) CONDITIONALLY EFFFCTIVE ESTIMATION
OF PARAMETERS

L. S. Gurin and K. A. Tsoy

Section 1. Formulation of the Problem /3%

This study is a direct continuation of the works [1, 2],
which Introduced the concept of a conditionally-effective estima-
tion and examined certain particular problems. Estimations which
are optimum for a given criterion in the case of given limitations
are called conditionally=-effective. This approach 1is necessary
because, among the desired properties of the estimation -- along
with properties which characterize their accuracy (independence,
nondisplacement, effectiveness) -- there are others, such as
difflculty of the estimation algorithms, thelr stability wilth
'respect to deviatlons of the laws for error distribution from the
proposed one, etc. (see, for example, (3]).

With respect to the stability of the estimation, several
studies have been devoted to thils, beginning with the well-known
study of Huber [4]. Of the more recent works, we would only like
to mention [(5]. These studies, however, do not consider the diffi-
culty of the algorithms. On the other hand, the studies [1, 2]
consider only the difficulty of the algorithms, but do not
consider the stability. Both limitations are considered in this
article for a rather simple problem of estimation. The cxamined _
method for obtaining the best estimation is sufficliently general
and can be applied to more complex problems, and the result ob-

tained for a specific problem has already been used in practice.

*)Numbers in the margin indicate papination of original foreign
text.




Previously, when considering this problem, we considered
the simplest case of the direct measurement, which 1is greatly
influenced by the action of the limitations upon the selection
of the conditionally-effective estimaticn.

Section 2. Study of the Case of the Direct Measurement /4

Let us assume there are N measured values.aq of the con-
stant C, containing independent measurement errors of §1
distributed according to the Laplace law, i.e.,

X; =c+&; 3 L=t2.,N. (1)

It is necessary to find the conditionally-effective estimation
of the quantity C, 1i.e.,

e -fx%); naN (2)

so that M(@):C . Gz(a).: min under t:-e conditton
that the computational time on a computer ist 51“,

Thus, we consider only the limitestion on the difficulty.

Ir t° is very large as compared with N, so that the limita-
tions on the difficulty are insignificant, then, as 1s known
[6), we must set n.-.-}v and as 8 we use the median of the sampl-
ing |3& , 1.e., we use the method of the least moduli. If the
limitation with respect to t0 is great, then it 1s lnadequate
to consider only the estimation methods, and we must turn to
specific algorithms. To determine the median, we may use several

algorithms, for example, the following.

Al. Let us formulate a shortened variational series, 1l.e., we
find the following (in increasing order) from a part of the
sampling with the volume ﬂéN

.x,::‘;': m&inx; y x;”?:‘zx;_ 3 ...;xd', H js[—?—]-ﬁi. (3)




Then ﬁ,xj (for odd n) or %

"<£<x,. (for even n).

Ay. We use the dichotomy method described in 61.

For comparison, let us examine the method of least squares,
reduced to the algorithm A3, l1.e., the determination of the
arithmetic mean part of the sampling with the volume n (as is
known, this corresponds to an effective estimation for a normal
law governing the error distribution).

Let us use q%ﬂn) to designate the computational time on a
computer for the algorithm Ai for the volume of the sampling n.
The function ftév depends cn the computer used, the language,
the translator, etc. Therefore, they may be ohcained by the
method of statistical tests. 1In several cases, we may reach
the conclusions analytically. Thus, let us compare the al-

gorithms A, and A . We use mi(n) to designate the mathematical

1
expectation of the number of comparison operations when using

the algorithm Ai'

We have m,(n)= 9_@2_‘.')_%([-%‘]- l)([%J‘Z,‘}

(4)
where mz(n) satisfles the recurrence relationship
—4 - p - e -"'
ma(n) = n-1+&my(n-1)+ -r-%m;([,]—i) o)
Let us prove that
, m,(n)
lim 24 (6)

n-poe

m, (”)
~—:a—'==q%9\) (7)
Then we have the following from [5]

e g4+ & Spoae e 2B (0)

We may prove by induction that (ﬂ;\)"‘f . From [R], we have

Let us set

/5



)< - % '*;%[4--,‘;-&-“ +-21=4-2 < 4.

: é Let us use qﬁ(n) to designate the following function:

E & -

§ ()= min @li) . (9)
i 1 ¢ [£]-1¢esn-t

F , n
3 Then we have

TOITERE e NI

(10)
24-+ +‘-'%-,[3n’-4n-3]¢p,(n). :

It P f(n) » then H(ae)2f(n) and ¢h(n) will be mono-

tonically nondecreasing. But the condition ‘f(h);so’(n) gives
(taking into acccunt [10])

4(-%)
) (n) h . (11)
.Wn < 4+ (4ne3)

Let us consider two possibilities: a) beginning with a certain
large n, the condition (11) is always satisfied; b) there is:
an arbitrarily large number of n, for which the condition (11)
is not satisfied.

In the first case, beginning with any n, r,(.) does not de-
crease monotonically, and consequently we have

{‘;’,’L ¢utm={, (12)

l.e., beginning with a certain %aN,, P{u);(-g for an arbitrarily
small §R0 . Using (8), for any Hy»W (for which 'f("q)é'ﬁ(ﬂ)s Cvc)

we obtain

O togecstbark frognnn B0,

(13)
Passing to the limit at £90, #»e@ , we obtain

{ﬁ‘*%c s €54, (14)

A
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However, we have ?(“)‘Q ; consecquently,

(=4 (15)

Thus, in this case (6) is proven.

Let us consider the second case. If the condition (11) is
not satisfied for any n, then for (*J." Lgn-{ we have

Pli)e --:L‘-—i-)aa- - %(h) ; S {(n)- (16)
m(‘lm» 1)

In addition {6‘),,1' at p-=y e

Thus, ,(n) elther lies below ((n and does not decrease
monotonically, or it lies above f(ﬂ) . Let us consider one of
the values of ny.

@ (n)z fim,) ; Qe < fi(ny). (17) n

If ”‘h.ﬂ);f(n‘.“) , Wwe may not be interested in this case.
Thus, in addition to (17), let us assume we have

m(ﬂrﬂ)é "("\"")' (18)

Then, beginning with the value of Il.,fl’ 4,(n) again increases.

Let us estimate the difference ?.(":)'ﬂ‘ﬂ.*ﬂzb(h)?O . It is
clear that f‘(n.)é‘l’(n‘-l) and () , if 1t does not equal
,‘("‘) , but equals ({(n‘) (according to the definition of the

function Y,('h)) Thus,
a(n) < Pl-0-¢n) 5 @ln-0-n)>0- (19)

However,

-

|
Yln-)- (f’{ﬂa)"-'—-:" - —Q’(n. ) A, +2(((”‘.¢) (n- z’&‘:"jz-. n'-:;O:.

We should note that, depending on the evenness of Ny the form of

[ =4
-
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(20) changes, but we make the estimation for the worst case.
Considering that the left part is positive, we may agaln discard
the negative terms and we obtain the estimate (we should recall

that ((n) & q4):

Qln-0- P < 72 +3(n-2) S 2 ),_]-1-8(01, 2 [Fa )<

“ .8 12
< '\."‘*nt < ﬂ.‘l

(21)

Thus, in every case

Si(n+0)> {(n.)-'%—f-.- (22)

We thus find that in this case (6) holds.

A comparison of (4) and (6) shows that for rather large n,
the algorithm A2 is best, even if the noncomputational operations
(which are basically connected with the organization of the cycles)

comprise a larger part in the algorithm A2 than in the algorithm
Al'

When comparing the algorithms A2 and A3, we must consider
that the algorithm A3 is best under the condition

fa(2m) < @e(n) (23)

(since the dispersions of the estimations are equal, if the
algorithm A3 uses a sampling volume which is twice as large [6]).

The algorithm A3 for the sampling volume 2n includes 2n-1
additions and one division, and A2 includes Un comparisons ror
the sampling volume n. Considering the 1dentical order of these
quantities and the dependence of the computational time on several
factors which are not considered, we may see that the final conclu-
sion may be reached only on the basis of a numerical experiment
with a computer. This experiment was done on the BESM-6 computer,
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and for the corresponding sampling volumes, gave the ratio of
the computational time of 2.8, in favor of the algorithm A3.
Thus, although the method of least moduli gives an effective
estimation, a conditionally-effective estimation 1s obtained

with the use of an algorithm employing the method of least
squares.

However, 1f we consider the stability of the estimation,
then the picture greatly changes. It 1s known that the median
is much less sensitive to "lost" points than the arithmetic mean
(see, for example, [5]). ILf we pass from the simplest problem
to a more complex one, even to problems of linear regression
analysis, then the picture is greatly complicated. However, the
statements made in this section show that to obtain stable, condi-
tionally-effective estimations, we must use combined algorithms
which use both the method of least squares and the method of
least moduli. Let us consider the corresponding problem.

Section 3. Study of the Problem of Linear Regression

We shall use the model
Yi=a+bx;+§, i=142,.N (24)

where yy are the measurement results, Q¢ -- the values of the
independent variable, and the measurement errors fh are inde-
pendent and have a distribution which 1s similar to the normal
distribution, more precisely, the density of the distribution
probability & has the form:

f‘=)= &ﬁ(*)ﬂl-d»lex) , Ofw<{

(25)
In formula (25)
{ L -E
2(:-‘)’4;;9 y (26)
= ~afXsa ;
{,(x): ia
(o] jxXiraQa.




R

A I S e

At a = 0, we obtain the normal law for the error distribution.
The following algorithms are considered (estimations).

Al' The customary algorithm for the method of least squares
(MLS).

A2‘ The algorithm for the method of the least squares with
preliminary grouping. Thus, N values of the independent variable
x (we assume that the measurements are performed for equal
values of x) form n groups with respect to m = N/n points. We
have

Z =il Bl ) 5 ik OhgottIn) o)

It is clear that, instead of (24), we obtain the problem

”"f‘l‘d +?§ ' 4 3‘1 ro 1Y, (28)

and the estimations 3,3 , obtalned by the regular MLS, may be
used as the estimation for a and g , 1.e.,

; &=

Below, we shall use a&, ?; to designate the estimations of a

and ‘ obtained usinrg the algorithm A)" For greater determinacy, /10
we introduce the second index m for estimations with grouping.

This index designates the number of points in the group, for ex-

ample, we shall designate definite estimations as follows

” ~ P
Qm=C ; bLiwm=4. (29)

A3, Combined algorithm with preliminary grouping. In this
case, in contrast to A,, in (27) # is replaced by the median
of the corresponding group of values Yy and we shall designate
it by" Then, instead of (28), we obtain

7,, - C*,'i;'f/‘j » d *Y2s-, (30)

and, consequently,

e
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A A
ai)M‘:e ' ?"lms{/ (31)
-~ ~
where @ and f -- estimations of e and f from (30), obtained
by the regular MLS.

Thus, we have the following set of estimations:

A 8 A
a,?.,a.,..,ﬁ.,a,,..,g, (the second index assumes several
values). ’

To compave the estimations, the method of statistical model-
ing was used. We set @80, 629f1in the model of (24). In addi-
tion, the case of a= 0; 0.05; 0.25 was considered in (25). 1In
formula (26), we have a = 30. In addition, at N = 15, we assume
m=3; 5and at N = U5 m= 5, 5, 15, For each estimation, using
the results of M = 100 realizatlons, we obtaln the average com-
putational time on the computer £ (in seconds per 100 realiza-
tions), the average displacement A, and the average dispersion
Ea. The results of the experiment are given in Table 1-2.

Section 4. Conclusions and Problems of Further Research

1. At o = 0, grouping is not advantageous, as would be ex-
pected from theoretical considerations.

2. For the linear model, the individual algorithms differ
very little based on the computatioral time.

3. For deviations of the normal distribution (a > 0), the
algorithm A3 i1s more advantageous than A2, since it leads to in-
creased accuracy. Thus, for large values of a, it is better to
use algorithms with large values of m (for great deviations from
normal distribution, the estimation in the form of the median 1s
more effective than large groups).

Considering that in real problems we may expect smalier values
of a, on the basis of the conclusions given above, we may recommend

the algorithm A3 with the value Mzﬂ'%

13
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TABLE 1
QUALITY INDICES OF ESTIMATIONS AT N = 15

:'. rithm 4
| (estimation) Az : As
& 0 } 0,051 0,25 | o J o,asl 0,25
) | .
: 7,1 |
mey | B0 |0,0987 +=0,0773|0,7307
(4) 26 |0,0942.{ 0,II03|-0,0030
I
&e) | 0,2335! 4,9961|22,2970
&) | 0,0087| 0,0789| 0,3558
€ 7,52 7,89
| _
da |0,0892/-0,1080{ 0,0367| 0,1598|-0,0357| 0,9I33
m= ‘
' B € | 0,0857| 0,II47| 0,008I{ 0,0887| 0,1033 {=0,0067
| 8*(a) | 042423 4,7742|24,8740| 0,3082| 0,822I| 9,670
o) | o,oaaz;: C,078I| 0,408I| 0,0049{ 0,0088| 0,I454
t | 7,21 7,59
} | |
[y s e dFLAQE] |
| m:§ A& ! 0,083¢ -0,0758 | 0,7058| 0,0874] 0,043 | G,50¢4
B¢ |o,0089] o,1088| 0,0005| 0,0850| 0,0855 | 0,025 |
) - | .
| @() | ©.2520 5,855 26,5240] 0,4287| 0,4754 | 7,5002 |
L 6 c,oo«:o! 0,08C0| 0,4520| ©0,0063| 0,C07I | 0,I410 |

10



TABLE 2

QUALITY INDICES OF ESTIMATIONS AT N = &5

(|

As

63

W s

0.05 . 0,25

i
4
\

0 . 645! 045

e

709 |

0,850
0,0973

0, 0072 =0,0805
0,1°06/ 0,3087

(e | 0,0798| 1,858¢| 7,8098 .

6 (6) | ¢,0001 0,0022| 0,01I0 Frey

3 | 2,39 | 6,59 |
26 | 0,089I-0,0026(-0,08L4 | 0,0722] -0,0085] C,1%43
meg| 58 | 01010 0,10¢2/0,087 | 0,0960] C,1008 0,0955
G'(a) | 0,0808' I,7028| 7.355¢ | 0.I2%6 0,1926! 2,58GI
| 6@ | ¢,co0z ©0,00z:) 0,013 | 0,0002]-0,0008 0,0082

atl ¥

|
|

7,22 |

7,98 |

Fa | 0,082|=0,0I56 |-0,I107 | 0,I2I7) 0,005 2,015
me9| & | 0,078 0,ICI6| 0,1050 | 0,0962) 0,IC:% G,0967
64a) | oyucze 1,7037| 7,$738 i JIS3T} 0,223, 1,4372]
i ! | |
| 66 | o,0001 c 002! o,a18 | 0,0008 09,0008 0,0023 |
z 7,06 | ! G |
Ze | 0,079 0.0399lc.7210 | 0,0273! 0.nrer’ 502
me1§; 5¢ | 0,0e200 0,007 ' 7 2080 | 0,0098] 0,032 0,I007]
@ | 0,ce54! I,8437'2,6231 | 0,2890] 0,2692; C.5035]
- ' i
48 | o,coc1 0,007 0,0%25 | 0,004 0,0004] 0,001
i ! i i

ORIGINAL PAGE I3
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T.ie conclusions obtained may be refined and expanded as
the result of future research, which 1s presently being carried
out in the following directions:

1. Estimations of nonlinear models are considered. 1In
this case, there must be a greater difference between individual

algorithms in terms of difficulty.

2. For the problem considered of linear regression, al-

% gorithms are additionally studied which are based on excluding
! the lost points [T, 8].
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