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1. Introduction

The research reported on in this paper is a continuation of that consid-

ered in previous work (Lii et al. (1976). Helland et al. (1979)). Here the

.1 4 :mpt is to get a three-dimensional spectral view of grid-generated turbulence.

This is done by setting an x-wire probe at a fixed position. and setting two

single wire probes at a number of locations in the same plane perpendicular to

the mean flow in the wind tunnel. The locations of the single wire probes are

determined by pseudo-random numbers (Monte Carlo). Second-order

spectra and cross-spectra are estimated. The assumption of isotropy

relative to second-order spectra is examined. Third-order spectra are

also estimated corresponding to the positions specified. A Monte Carlo

Fourier transformation of the downstream bispectra corresponding to

integration across the plane perpendicular to the flow is carried out

assuming isotropy. Further integration is carried out over spherical

energy shells. The object is to get an estimate of the spectral transfer

function that indicates the rate of decay of energy.
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2. Basic theoretical background

2. 1 Energy transfer equations

Let v(n, t) _ (v 1 , v 2, v 3) be the velocity field as a function of loca-

tion z = (x I , x 2, x 3) and time t. In the model of homogeneous turbulence,

v(x, t) is regarded as a random solution of the Navier - Stokes equation

2
at	 P

and the continuity equation

0•v = 0

that is stationary in Z Here V is the gradient operator, p is the density,

p is the thermodynamic pressure, v is the kinematic viscosity, and O 
2

is the Laplacian. Given finiteness of second order moments, it follows that

v(x, t) has a Fourier representation

v(x, t) = f eik . x ctz (k. t) .

Here k = (k l , k 2 , k 3 ) is the wavenumber vector. Existence of appropriate

moments is assumed whenever required. The spectral matrix f(k, t) is

given by

f(k, t) 6 T  k, dk = E (dz(k, t) dz" (k', t))

(E f dza (k, t) dz^(k', t)} ; a, S = 1, 2, 3) .

where the asterick is used to denote the transpose conjugate. From now

on the time dependence will be implicit and the explicit appearance of t

will he suppressed. The third-order inomento

f^
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Qa	
P) di dk' = Im E { ka dza(k 	dzg (-k) dz,(k')} ; a.	 1, 2, 3.

The energy associated with wave number vector k is f ii(k) (repeated

indices are used to imply summation over i = 1. 2, 3).

The equation

Tt 2 fii (k)/ - 1 Q(k, k') dk' - v k ( 2 f i (k)i

relates second- and third-order spectra and describes the rate of change of

energy with time.

I 
CLa,s

is considered to be the net mean rate of energy transfer from dk' to dk.

The continuity equation implies that

r	 t2(k, k')

2.2 Symmetries

At times we shall refer to the three spatial locations as x I , x', z" .

At other times, using the homogeneity, we shall refer to the first point as

(0, 0, 0), the second point as x and the third point as x' . There are a

number of symmetries which hold under the assumption of isotropy

for third-order moments or third-order spectra. We shall first

derive these for third-order moments. In Fig. I the coordinate axes are

indicated as well as velocities at three spatial locations. At location z the

velocity is given in the x  and x 2 directions. At locations x' and x"

only velocity in the x  direction is given. The velocities indicated in Fig. 1

correspond to the experimentally measured velocity components. First

notice that the three-point correlation:
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C III (x' x'' V) - E (v I (x) v I W) vI(x")}

C111(xl -x
I . xi -x I ; x 1 -x2 , x2 - x2 11 x3 - x 3 , x3- x3 }

by stationarity in the spatial variables (homogeneity). Isotropy implies

that we can change the coordinate system (x I , x 2. x 3) by permuting any of the

coordinate axes. Interchanging the x  and x 2 axes we obtain

E { v , (x 2 ► x l . x 3 ) v 2(x2. xi. X3) v 2(x2. X1. X3) }

C222(x2-x2, x2-x 2 ; xi -x I . xi -x I ; x3-x 3 , x3-x 3 )

Thus

C111(xt-xI. xi- X I . x2 -X2, x2-X 2 ; X3- x3 . Y3 -X3)

C222(x2-x2. XZ- x 2; X i-X 1 . X 1 - x l ; X3-x 3, x3 -x3)

C	 (XI - X x it - X ; X I-X	 xM-X ; X , -X t 31: M- )333 3 3	 3 3	 2 2	 2 2	 1 1	 1 1

by interchanging x  and x3 axes. Also

C211(". x1. x")

= E { v 2 ( x I , x 2 , x 3 ) v I (xi. X2 ► X3) v l ( X^. X2. x3) }

C211(xI-xI. xi-x I ; x2-x 2. x2-x 2; X 3 - X 3 . x3-x3)

= C l22(x2-x 2. x Z - x 2 ; Xi- x l , xi-x I ; x3- x 3. x3- x3)

(by interchanging x  and x 2 axes)
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C	 (XI -X . XM-X ; XI -X.. XM-X ; XI -X t X# -x311 1 1 	1 1	 3	 3 3	 2 2	 2 2

(by interchanging x 2 and x3 axes)

C	 (xI-x, x"- I ; x I
-X , X M -X ; X I -X . X# -X )233 3 3	 3 3	 2 2	 2 2	 1 1	 1 1

(by interchanging x 1 and x3 axe s)

C133(X2-xt, Y'-x2 ; x3-x 3. X 3 - X 3 ; X I -X i , xi-xl)

(by the permutation (x l , x 29 x 3 ) to (x 3 , x i , x2))

C	 (X'-x, X M - X; X I -X IS X# -N ; X I -X . X M -x )322 3 3	 3 3	 1 1	 1 1	 2 2	 2 2

(by the permutation (x i , X 2 , x 3 ) to (X 2 , x 3 . X 1 )) .

Now, let

Bad (k,k') dk dk' = E {dz OL(k-P) dzg (-k) dz8 (k') }

A simple heuristic argument implies

dza(k)	 1 3 e-ik • x a(z) dx

(2rr)

so that

Bad ^(k, k') = E e -i(k-") x va(z) dX f eik 3E' v9 (x I ) di'

- ik' • x"
e	 v^ (X M )dX M 	 C'

t

/•	 I1 feik • r - ik = CQ S g (r, r') dr dr'
TO

0
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where r =R'-3F.  V =V -R.

The symmetry relations among Ca $ 0 imply

B111(k' k 	 B111(kl' kl ' k2' k2^ ; k3' k3 )

B222(k2. k2 ; k l , k l ^; k3. k3)

B333(k3. k3 ; k 2. k2 ; k l . ki )

and

B211(kl, ki ; k 2 . k2 ; k 3 . k3) = B 122(k 2. k 1 ;	 k l . ki ; k3 , k3)

8311(k1' kl ; k3' k3 ; k2'
k2)

B133(k2' k2; k3' k3 ; kl' ki )

=B
233 (k30 k3 ; k2' k2 ; k1' ki )

B322 (k3• k3 ; k l , ki ; k 2 . k2 )
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3. Monte Carlo and Computational Methods

Velocities v 1 (0.0,0; t), v2(0.0.0; t), v 1 (0, x 2 , x 3; t) and v l (0, x2, x3; t)

were measured as functions of time t at the fixed locations (0, 0, 0), (0, x 2, x3),

and (0, x?, x3). The x l and x 2 axes represent downstream and perpendicular

directions, respectively. The velocities as functions of time t can be

inter preted as functions of spatial coordinate x  by using Taylor's

hypothesis x  = Ut, where U is the mean downstream velocity. This is

essentially a "frozen-flow" approximation where the velocity is measured

at a fixed location, and the turbulent velocity field is swept past at a

uniform speed U. The frequency spectrum of the fluctuating velocity can

be interpreted as the wave-number spectrum of the fluctuating velocity

component in the downstream direction (Batchelor, 1953). 	 The

choice of (x 2, x3 ) and (x2, x3) is determined by a Monte Carlo method

such that each coordinate x 2, x 3, xZ , x3 is uniformly distributed on

t 1. 0 inches. There are 100 such pairs ((x 2 , x 3), (x Z, x3 )). Later, this

was augmented with seven more pairs with each coordinate uniformly

distributed within t 0. 333 inches. The seven pairs were added to enhance

the resolution at small spatial separations.

Let

ba0 0
 (k k'

 k1 ; x2, x3; x Z , x3 )

1	
l	 li(kxl - 

k xl)

e	 E {v (0,0,0) v (x ,x ,x ) v (x',x',x')I dx dx' 	 i(2 
TT) 

2	 a	 P 1	 .	 3	 1	 1
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and

N-1

Fa (k, x) = I va (x l , x 2 , x 3; t) exp ( -itk 2tT/N)
t=0

F (k l ; x 2 . x 3) = Fa( Uk l ; x 2 . x3)

where U is the mean downstream velocity. Then

bad S(kl' W; x 2 , x 3 , x 2
. 
x3 )

'• Fa (k t -ki ; 0. 0) F^( - k l ; x 20 x3) F0(kl ; x2. x3 )

Suppose we have N pairs (A ) . x(P ). (x I(j) . x 10) ), j = I t ... , N obtained by3

Monte Carlo. Then

BaP0 (k, k') = E (dza ( k, -k') dz8 ( -k) dz6 (k') }

1 
76

	 CaO O (r, r') dr dr'
(2rr)

1 6 Aff exp (i (k2 r 2 + k 3 r 3 - k2 r2 - k3 r3))
(Ln)

	• ffeXp (i(k l r l - k l rl )) Cab ^ ( r l , ri	 , r 2, ri 	; r 3 . r') dr l dri

- dr 2 dr 3 dr2 dri

T 
(2rr)4 

IIIIeXp ri ( k 2 r2 +k 3 r 3 - k2r2 -k3r3) }

bad S ( k l , ki ; r 2, r 3 ; r2. r3) dr2 dr i dr2 dri
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10

Wee  stimate Ba p p (k, P) by

B	 (k. k') y ? t4 1	 b	 (ki t k'; x0) . x0) ; x(j) . x(j)i
np p	 C3! N(I) •

 El 
a80 1	 3

• exp (i ( k 2X O) + k 3 
x ĵ) - k2x?(j) - k3 x3(j))

+

16- (2/3)4 1	 ^, (j) (j)	 ,(j)	 *(j)
N(E)	 E E bap plk

1 . kl
,	

x2 , x ,3 ^`2 r x3 )

e x p {i (k 2x(j) + k 3x3j) - kix* M - k3x 1(j) ) }

for a = 1, 2 and 8 = 1 where N O ) = 11 = number of pairs

(x 2 . x 3 ; x 2I 3'(j), x 3 ) which lie in I2	 3 

- ^- I	 1]4
	I 	 3. 3

E = (-1, 1 J 4 - I , N(E) = 96 .

Because additional points were taken in I, different weights are applied here.

The, details of the Monte Carlo locations are given in Sec. 5,

If k = (kit k2 , k 3), P = (ki , k2, k3 ), then by the methods described

above, estimates are obtained of

B 11 1 (k ' k ^ ) R B 111 (k l^ k l' k 2' k2' k 3' k3)

and

B211(k. k') = B211(kl, ki: k 2. ki ; k 3 . k3 )

•



By the discussion in See. 2 it follows that

p 221 (k ' k^) 
S 

B111(k2` k2 k 1 . k? ; k3` k3 )

B333 ( k. k	 B111 ( k31 k3 ; kit ki ; k i t kip)

B122(k. k') 
2 B211(k2, k2; k i t k' ; k 3 . k3 )

B 31 t(k' k') r B211(kl, k' ; k 3' k3' k2' k2 )

B 133 ( . k^ ) ! B211(k2' k? ' k3' k;' kip kl )

B235 (Z. k ') B	 ( k3. k3 ; k 2. ki ; k l . k" )

B322 ( K, k') = 
B211 (kV k3 ; k l . k l' ; k2, k2 )

Now

a,A

can be determined from

Q^ ^(k, k') = k^ Im B d P(k' P)

Estimates of bias and variance of RQ	(k, k') are given in the appendix.

To simplify the final presentation and further reduce the variance

a Monte Carlo shell integration was carried )ut. 	 We compute

It



P(r, r') - P ( I k) ,	 k' I )

= I—	
f_Q(k, k') dk R

Iki =r Ik ^I
=r^

n_

i	 Q(kj^ k,j)
n

j=1

with ki , k ' j independent and uniformly distributed on spheres with

radii r and r'. respectively.

The net rate of spectral energy transfer at I kI = r is

P(171) = P(r) = f P(r, r') dr'

m

P(r, r .' 1
i=1 i

where the ro are given by an auxilliary Monte Carlo procedure. This isi

to simulate the uniform integration on the sphere.

iz



4. Numerical Implementation

The single wire sensor locations (0, x 2 , x 3) and (0, x2, x3) were

determined by a Monte Carlo technique. The IMSL subroutine GGUW for

generating uniformly distributed random numbers was used to generate

4 x 100 points in the square f 1 in. by t 1 in. and 4 x 7 points in a square

t 1/3 in, by t 1/3 in. Velocities were measured at locations ((0, 0, 0), (0,x32 , x3),

(0, x23 , x33 )) for j = 1.... , 107 and are shown in Fig. Z. Eleven of them have

all coordinates of length less than 1/3 inch. An x-wire located at (0, 0, 0)

was used to measure both downstream and perpendicular velocities v i , v2

and single wires located (0, x3, x3) and (0, x2 3 , x33 ) only downstream velocities

vi , vi3 were measured. Compute

b3	 (k , k'? ; x j , x j ; x /j , x " 3 ) = b3	 (k . k ^)all 13	 (l 11 1	 1

= Fa(k 1 -ki : 0; 0) F l (- k 1 ; x2, x3) Fl(kl ; xZ 3 ,x33 )	 a = 1, 2

where

N-1

Fa(k; x 2 , x 3 ) = 
t=0 

va(0, x 2 , x 3 ; t) exp { -itk 2rr/N }

with N = 4096 for

k l = 26, 76, ... , 976

ki = - 97 6, ... , - 26, 26, 7 6, ... , 97 6
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We obtained

k  +25	 k1+25

	

_ j (	 ^	 j
bcz 11 k l' k l ) = 50 x 50 m k -25 n k' - 25 ba 11(m• 

n)

	

I	 1

for a = 1, 2. j = 1..... 117 as our hasic computational data 1)atse.

Ini I3111(k, k ^)

107

LU Im b^ ( kV) - cos { k x +k x  - k'x ' j - k#x^j^
j=1

	

111 1 1	 2 2	 3 3	 2 2	 3 3

is computed where

((2	 1	 if	 j	 I
^^	 j ^ \3^	 N(I)
t.

	

(3)4)N1	 if j E E

in this computation only the imaginary part of 	 (k V) is considered.

The real part of 1'111 is zero by the isotropic assumption and this is

confirmed by the statistical re'solietion of the data. Similarly,

107

	

to. 110 U2 11 (k l . ki)	 sin (k 2 X 3 + k 3x3 - k` x 	 k3 k3J }
.1 =1	 ^

since lm i-)3 = 0 under the isotropic assumption. All other im R^ (k, k')

computations are carried out in a similar fashion using; the symmetry condi-

tions indicated in Sec. 3 giving

14



l,;

with

(5Q06k, k') = )CLIm Ea80(k, k')	 .

To do the spherical shell integration, we use the GGS1'li subroutine in the

International Mathematical and Statistical Library to generate uniform paints

0, k J , j = 1, ... , 2000 on spheres with radii r and r' .

Finally,

Q(r, r') = Q( I k I , I k' I )

10

1	 Q (r, r')
10 11 ^--^ 1	 m

where

100 Uzi
1

Q (r, r') =	 Q ( ki , k'i)
m	 200

j=100(m-1)+1

represents estimated net energy transfer from the spherical shell with

radius r' to spherical shell r . This format was chosen so as to permit

estimating; the variance of Q(r, r').



5. Experimental Methods

The experimental conditions were chosen to match the conditions used

previously at the University of California at San Diego by lielland et al. (1979).

These conditions are nearly identical to a number of studies carried out by the

authors and also by a number of other investigators. The experiment was

performed in the 76 cm by 76 cm by 9 m test section of the low-turbulence

wind tunnel in the Department of Applied Mechanics and Engineering Sciences.

A biplane grid of round, polished dural rods was located 2. 4 m from the end

of the contraction section. The grid had a mesh size M of 5. 08 cm with rods

0. 953 cm diameter. A DISA model 55P1 x-wire sensor measuring two com-

ponents of velocity (v I and v 2 ) was oriented with the plane of the x parallel to

the wind tunnel walls and was located at a downstream distance X/M = 48,

where \ is the longitudinal distance from the plane of the grid. Two single

hot-wire sensors DISA model 55P01 were mounted so that each sensor could

be moved with two degrees of freedom to any point in the transverse plane

intersecting the x-wire sensor.

The x-wire sensor was held fixed on the tunnel centerline by a sym-

metrical airfoil extending horizontally through a slot in the side wall of the

tunnel. The x-wire sensor was attached to a shaft passing through the center

of the airfoil. The shaft permitted rotating the x-wire in the vertical plane

thereby providing a method for calibrating the x-wire sensor over a range of

yaw angles. A large protractor mounted outside the tunnel was used to read

the yaw angle to about t 0. 1 degree of arc. one of the single wire sensors was

10



mounted on a second airfoil support mounted outside the tunnel. A vertical

slot in the wind tunnel wall permitted vertical motion of the airfoil, while the

horizontal positioning was obtained by moving the airfoil back and forth

through the tunnel wall on a set of bearings. The vertical slot was sealed

by a sliding plate system which prevented air flow out of the wind tunnel.

The other single wire sensor was mounted on a standard machinist's height

gauge which was modified to hold the hot-wire support and moved in the

vertical transverse direction. The height gauge was mounted on a Unislide

base which moved in the horizontal transverse direction.

The position of each single wire sensor was measured relative to the

location of the x-wire sensor location x = (0, 0, 0) by four dial indicators

which could be read to f0. 0001 inches. The dial indicators were adjusted

to be direct reading in the following manner: First the two single wires

were moved so they were in the same longitudinal plane perpendicular to the

wind tunnel floor passing through the plane of the x-wire sensor. This was

accomplished by observing the four wires through a Caertnor traveling

microscope. The two horizontal dial indicators were then set to read zero.

Next the vertical positions of the two single wire sensors viere measured

with the traveling microscope, and the two vertical dial indicators were set

to read the measured values. The single wire locations were measured

before and after each series of experiments. The repeatability was Food to

about t0. 001 inch. Tighter tolerances in positioning the hot-wires would

require a more rigid support system.
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A pitot tube pressure sensor operated by a MKS Baratron electronic

manometer was used to read the mean speed U. The 5 µm diameter by

1. 25 mm sensing length hot-wires were operated by four DISA 55M01

constant-temperature anemometers, and the anemometer outputs were

linearized by four DISA 55D10 linearizers. A Honeywell 7600 FM analog

tape recorder was operated at 3- 3/4 in. /sec for the hot-wire calibrations

and at 15 in. /sec for the turbulence data giving an effective bandwith of 5 kHz.

Calibrations were performed on the hot wire sensors before and

after each experiment with the grid removed from the wind tunnel. During

preliminary testing the x-wire probe was set to give symmetrical yaw

response about the wind tunnel centerline. Each hot-wire was linearized and

the sensitivities were adjusted to be nearly identical. This enhanced the

usual sum and difference decomposition approximation for x-wire calibration,

but this was not an essential step because the analog sum and difference

signals were not used to separate the anemometer voltage signals into the

longitudinal (v I ) and vertical (v Z ) velocity components. Instead the x-wire

sensor was calibrated by setting the mean wind speed using the pitot-Baratron

instrument to one of (6. 0, 6. 5, 7. 0, 7. 5, 8. 0, 8. 5, 9. 01 m/sec and then

rotating the x-wire sensor through angles ( 0, f 1, t 3, f 5, f7 ) degrees.

The wind tunnel speed was then changed, and the x-wire sensor repeatedly

yawed through the set of angles. Approximately 63 pairs of mean speeds

.,

18



and yaw angles were used to define the full two-dimensional calibration of

the x-wire. This calibration technique minimized the assumptions needed to

interpret the output of x-wire sensors and we were not required to assume

that the sensors were identical or mounted exactly at 90 degrees to each

other. The calibration data were analyzed by standard linear regression

techniques to obtain the constants (a, b, c's) for the calibration equations to

first-order in anemometer voltage

v 1 (0, 0, 0; t) = a + b e 1 (t) + c e2(t)

v 2(0, 0, 0; t) = a' + b' e 1 (t) - c' e2(t)

v 1 (0, x2 . x 3 ; t) = a „ + V e3(t)

v 1 (0, x2 , x3; t) = a' + V e 4 (t)

where e. is the linearized hot-wire voltage of hot-wire channel i.
i

Channels 1 and 2 correspond to the two x-wire voltages, and channels 3 and

4 corresponded to the two single wire voltages. The assumption of first-

order dependence in the calibration equations was tested by performing a

regression which included the second-order terms involving e,e and compar-

ing the results to the first-order analysis. An additional check was made by

comparing some of the bispectra calculated from an identical portion of the

data from a first-order calibration to one done using the second-order

calibrations. The differences were found to be negligible in both cases.

The sets of uniformly distributed points shown in Fig. 2 were grouped

in such a manner that the experiments could be performed efficiently. For

19



example, the coordinates were grouped so that the sensor locations falling

in the first quadrant were referred to as Case 1. and sensor locations fall-

ing in the first and second quadrants were referred to as Case 2, and so on.

Each pair of coordinates was assigned a number within each case such as

Case 1. 1, 1. 2, etc. A check was performed on the computer generated

coordinates which assured us that the distribution of points was uniform

within the standard deviation expected for the sample size.

The turbulence data for the 107 pairs of single sensor locations

were measured in a series of seven experiments. The data were taken at

night between 6 PM and 7 AM to ensure that the wind tunnel temperature

variation did not exceed t 0. 1 °C. Data were recorded on analog tape for

a ten minute interval at each pair of sensor locations. The entire series of

experiments was set up and performed during a 6 week period during the

Fall of 1978.

The hot-wire calibrations for all seven experiments were digitized

onto a single digital tape using an Interdata 7/16 minicomputer based data

acquisition system having 12-bit resolution. The turbulence data were

digitized at a sample rate of 4098 samples/sec, 4096 samples/channel/

record and 250 records per sensor location. Analog low-pass filtering at

a cut-off frequency of 2 kliz was used during the digital recording process

to minimize aliasing. A standard format was adopted putting two sensor

locations on each digital tape giving a total of 54 digital tapes required to

contain the turbulence data. The digital tapes were shipped to the

20



Lawrence Berkeley Laboratory CDC 7600 computer located in Berkeley.

California. and processed remotely from San Diego using both remote

dial-up access and a remote batch terminal located in the NORPAX building

at the University of California, San Diego. Most of the computer output,

including graphical computer output, was written to standard 48X power

microfiche. The microfiche made it possible to process and store the

several thousand pages of printed and graphical computer output.
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One-dimensional Spectra
R,

Power spectra, probability densities, and third- and fourth-order

moments were computed for the 107 pairs of hot-wire positions in order

to check the quality of the data. Several positions have been selected

and sample results will be shown only for those locations. Table 1

specifies the selected locations, and Table 2 shows some typical

moments and characteristic length scales for the flow conditions

The power spectra are shown in Fig. 3 for the three locations. The

power spectra for channels 1, 3, 4, measuring the velocity in the

x direction, are almost indistinguishable from each other as ex-

petted. This is a result of the homogeneity of the flow field in the trans-

verse direction. There is no variation in the spectral shapes among the

three locations which represent very close, intermediate, and distant

probe locations. This result suggests that no probe interference is

apparent in the second-order spectral data. Channel 2 is the spectrum of

the velocity fluctuation in the x 2 direction and should not correspond to

the spectra in the x  direction even under the assumption of full isotropy.

Again there is no evidence for probe interference problems in the x2-

component spectra. Note that graphs and tables are expressed in frequency

while the initial derivations of the paper are in terms wavenwnber.

The probability density functions are shown for the selected three

locations in Fig. 4. The density functions have each been normalized by the

standard deviation for each channel. All density functions plotted in this

manner for each location are coincident and nearly Gaussian in shape.
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Note that again there is no apparent variation in the density curves across

the three probe locations. While the deviation from Caussianity appears

slight, it is important that there be some deviation so that energy transfer

among fluctuations of various scales may exist consistent with a three-

dimensional turbulent field.

An elaborate check on second-order isotropy was made using about

20jo of the hot - wire locations covering the range from I r I small to

rl large. From Batchelor ( 1953) it is easily shown that the cross-

spectra between the x -wire sensor and a sensor placed at r = (0, r 2 , r3)

can be computed from an estimate of the downstream and transverse correla-

tions f and g

2 f(r) = E v l (x) v l (x+ ru	 )

2 g(r) = E v 2(x) v 2 (x + rU	 )

where f and g are functions of r	 the separation between the t.;. .,

sensors and u = var(v). Then by isotropy we can write

R i^(r) = u 2 ( f 2g - r ir3 + g b id l
r	 /

and

9=f+2rf'	 f"= Of

Thus the cross spectrum between downstream velocity components

v 1 (0, 0, 0) and v1 (0, XV x 3 ) can be expressed in terms of f and g

L3



2	 , t ik r	 2 
w 

ik r
0	 (k .r ,r 

)= u 	 - 1 f re 1 ldr+^	 g 	 1 ldr
1.1 1	 Z r	 1	 2n	 1

_m	 _a

Similarly the cross spectrum between velocity components v 2(0.0.0) and

v 1 (0, x 20 x 3 ) is given by

2
U.

0 2, 1 (k l' r 2' r 3 ) = -TT f 
_m

ik r
ff —2g r I r 2 e 1 1 drl
r

The correlations f and g are shown in Fi t;. 5 for the Cases 4. 10

in both linear and st ,nilogarithmic coordinates. The agreement among the

correlations is excellent with Case 4. 10, and 4. 10 was used to perform

the isotropy checks which follow.

The directly estimated cross spectra are compared with the cross

spectra computed using the assumption of isotropy are shown in r. series

of figures for the three cases of small, intermediate, and wide separation.

The results are shown on linear scales in Figs. 6 to S to show the com-

parison at low frequency. The results are repeated on semi-logarithmic

scales in Figs. 9 to 11 where the cross spectra have been multiplied by the

frequency to show the comparison at high frequency. The agreement is

generally good, with some significant deviations occurring at the higher

frequencies. While the assumption of isotropy (and Taylor's hypothesis)

for these computations appears reasonably well satisfied, it is impossible

to know the significance of deviations on the integrity of the third-order
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F	 energy transfer computations where the assumption of full isotropy is

required.

The bispectra bIII and b211 for the three locations are shown

in Figs. 12 to 14. The bispectra do vary with probe locations now since

they involve three velocities. one from each point (0, 0, 0). (0, x 2 , x 3), and

(0, xi. x3 ). The magnitude of each bispeetral type does not change much

with position (all bispectra figures have the same scales), but the "width"

of the peak does change rapidly with increasing probe separation. The

larger the separation the smaller the extent of the main lobe of the bi-

spectral peaks. The variation with probe separation is more readily

observed in diagrams of the statistical resolution of the bispectra bIII

and b 211 shown in Tables 3 to S. In the resolution diagrams, the numbers

represent the rounded ratio of the bispectral estimate to the standard devia-

tion of the estimate. The sign is the sign of the bispectrum.

The results of the computations for Q (k, 0 are shown in

Tables 6 and 7 and in Figs. 15-19. Table 6 shows the magnitude Q and

the standard deviation of Q is shown in parentheses. The truncated ratio

of the magnitude of Q with its standard deviation is shown in Table 7.

Figures 15-19 show representative cross-section plots of the data in

Table 6. The curve i represent energy transfer from a frequency ma;ni-

tude, f" , to a selected frequency f. For f "<  f we expect most of the

energy transfer to be positive, that is a loss of energy from the low

frequencies to the higher frequencies; for V> f we expect most of the

^5



energy transfer to be negative. that is. a gain of energy in the hi@her fre-

quencies from the lower frequencies. The continuity equation requires

that Q = 0 when f = f' . This requirement is approximately satisfied in

Figs. 17 and 18. In Figs. 15, 16. and 19 the Q differs significantly from

zero when f = f' . This may be due to too broad a smoothing in the spectral

estimation. In Figs. 17 and 18, the two curves are consistent with the

expected direction for the energy t ransfer. These data are in qualitative

agreement with some calculations of Deissler (1977) who used an expansion

technique to estimate the shape of the net energy transfer between wave-

number shells. These computations are in the central spectral range where

one would expect to have greater reliability because isotropy would probably

be satisfied in this range (as contrasted with low wavenumber) and we have

resolvability (as contrasted with high wavenumber).

The physical significance of this ii.vestigation is associated with the

notion of energy transfer among the eddies or scales in the Fourier trans-

form domain. Such a transfer of energy in homogeneous turbulence is an

aspect of the nonlinearity in turbulence. There has been a concept of local

transfer of energy employed in a number of discussions of turbulence.

Though the notion has usually not been formalized, it appears to be a claim

that appreciable transfer takes place only to neighboring wave numbers.

Since there art three wave number vectors (with sum equal to zero) involved

in the equation for dissipation and transfer of energy, this means thht two

of the wave number vectors are close to each other and the third is close

2 i,



to zero. The usual assumption has been that the transfer of energy is one-

sided, from lower wave numbers to higher wave numbers (in terms of

wave number vector magnitude). This does not seem to be literally con-

firmed by the results one has that appear to have resolution and that seem

to be consistent with the usual symmetry Q() k' , (k 1 j) = - Q(, k l + , (kl ),

results obtained in an intermediate wave number range. It is true that

one appears to have low variance in the low wave number range but there

are fears of nontrivial bias here. In the high wave number range one has

to De resigned to high relative variance. From the results it seems as if

there is nontrivial interaction between wave number magnitudes differing

by a factor of three.

There are a variety of questions that arise if one were to consider

carrying out an experiment like this again. It would seem to be more

appropriate to use two x-wires and one single wire rather than one x-wire

and two single wires in the experiment. This would make the experiment

a bit more difficult. However, this would allow one to estimate a 2, 2, 1

bispectrum as well as the 1, 1, 2 bispectrum. These two bispectra are

related theoretically under the assumption of isotropy. However, our

estimates of the 1, 1, 2 bispectrum generally had little resolution while it

is clear in terms of previous experimental results that we would have good

resolution for the 2, 2, 1 bispectral estimate (Helland et al. (1979)), at

least for separations close to zero. We could have one fixed x-wire and

let the x-wire and single wire probe float in the fixed perpendicular plane.

1
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If one could get adequate analytic representations of the 1. 1. 1 and 2. 2. 1

bispectra as they depend on spatial separation, suggested by the estimates.

the Q function would be obtained by a direct Fourier transform.

The Taylor hypothesis has been used to translate time separation

into the spatial x  separation. Tests of the Taylor hypothesis with

separation in the x  direction have been carried out (Favre et al. (1955),

Stegen and Van Atta (1970)). In our application we do have separation in

the perpendicular direction.

Should the Monte Carlo locations be laid out uniformly over a fixed

range or set out in a stratified manner? If we have some knowledge about

the general :shape of the function to be integrated, we can use the importance_

sampling scheme to choose: a convenient probability distribution which

approximates a normalized positive integrand. If we lay out the Monte

Carlo locations according to such a distribution we can get a substantial

variance reduction (Klcijnen (1974), Niederreiter (1978)). Also we could

take advantage of the assumed isotropy and concentrate all locations in a

subregion using antithetic variates to reduce variance (Kleijnen (1974)).

Quasi-random points could be used instead of the pseudo-random numbers

to improve the overall convergent rate in the Fourier transform if the total

variation of the integrand is not too large (Niederreiter (1978)).

One of the basic questions is that of butter resolution. There is

no difficulty in appreciably larger number of records (a factor of 10). A

real difficulty is that of the increased computational cost. With the use of

i»odern tdtrahigh s1wed array processes anti signal display devices

_s



operated by modest laboratory computers. ;he computing cost can be fixed

and the computing speed is reasonable.



Ex

Appendix: Bias and Variance

In this section the bias and the variance using a Monte Carlo layout

of the expe: invent is compared with a deterministic layout. Let

i(k Lx,+k ix 3 - k'x1 - k3x^)

• bU^S(k1, kl; x 2 , x 3 ; x1, x3) dxZdx3dx"dx

	

where	 K = ( k 1 . k . k 3 ) . 	 (k'. V. k3)

ba ^? (k 1 I k1' x^' 
x 3 , x,, x')

1	 i(k1it k' W)
e	 E {v (0,0,0) v (u ,x^,x ) v. (u ,x,x')}du du'

(^'rt)2	 (x	 ^	 1	 3	 a	 1	 3	 1	 1

which is a one dimensional bispectrum. An estimate of baby 
is given by

CO	 00	 00

_ ( z n)`^
b(kl. kl' 

x ` , x 3 , x y , x 3)
N	 s1=-00 s ` =- 00 s3=-^

Ltt(k l -s l )	 2rt(k1-5,)	 Zrr(k3-s3)	
(N)	

?.rrs1 2Trs ` 	 2rrs3\

	

v'N	 N	 N	 N	 ) l UH	 N	 N	 N J

where the $. I s are such that
i

s = 0
i~ 1 1

and

3

1(N)1
it ..1 ,.i (t1 1 .u y , cr Z 1 =	 11	 (N) (n )

1	 i	 (•-'n)-N j-
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( )	 N- 1	 -iajt
with	 da ( CL _	 xa,W e

a	 t=o

33'

such that 1 , C1 _ 0 (mod 2rr). Here
j=1

1 (Ul u2 u3
w N (u l , u Z . u 3) = h 2 w h . h , h 1

w is a symmetric weight function such that

3

w(a , a , a ) b	 ^^, l du du du = 11 2 3	 i^	 1 2 3
i-1

It is known that (13rillinger and Rosenblatt (1967)) the bias

bN E baPp(kip kl) - baB0(kip kl)

2	 2

1i`[-5clkIU

	

	 (k . k ^) fu 2 w(u , u ) du du a ^B 1 1 	 1	 1 2	 1 2

JZ+ 2 Jk l Ok' UOL ^ ( I . kI)jii l u 2 w(u 1 . u L ) duldu2

2

2 b
a (k1 , k1 f u2	w(u1, u Z ) du1c1u2

1

+ o(h2)

if 
bcl^^ is twice continuously differentiable and appropriate conditions are

imposed on the weight function w. Under suitable conditions the variance

jl



( k l , k i)) = 12— fa (k 1 ) fg(kl) f^(k 1 +k 1 ) fw'-(u 1 .uZ)dulduVar(ba p 3

	

	2
h N

+ OChN/

where fa is the power s

To approximate

[ -a. a] 4 , say m4 points,

natural approximation of

pectrum of component a.

A 	 suppose a deterministic uniform grid on

x i, j. k, ! - ( x i , x.; xk, x^ ), are given. Then a

Aa0A is given by

 _	 4 m
A *
	

( '9' K 1 ) _ (2a)
a 88	 m^ i. j, k. ! = 1

exp {i(k 2xi +k3xj - k l xk - V xf') }

A

b a^A (k l' k 1 ; x i , x '	xk , xf )J

m
EA aR ^(K. K') = n'.1 i. . k. f = 1 exp {i(k 2xi +k 3xj - k2xk - k3xf )}

J

	

• { ta0B ( k l , V: x	
2i , x.. xk, 0 + O(h )}

J

a8s(h,	 ) + O(h2A	 1;'	 ) + O	
12/m

if one can assume baOP twice continuously differentiable. Now

we assume the independence of measurements at different locations.

This is reasonable since the measurements at different locations are taken

at different times. Then
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8 m

	

Var(A^'(N.'K*) = —
	

I
,j,k.l--1 Var(b
	 (k .k 1 .x..x; x'.x'))

00	
(m)
	 a BS 1 1 i j k t
i 

S	
ni

La	 2tr 
f (k ) f (k ) f (k +V) f w 2(u . it ? )  du du +O(TI

1. j.k.t - I ^h N

2a	 ( 
`TT

z

	

f (k) f (k') £ (k + k') J	 )du du
h

	

2
N
	a 1	 1	 1	 1	 w (u 

1 
,u 2	 1 2^ 

+0 

\ a2/+0(hN/
 ni -

Now suppose: a uniform random sample of M points from (-a, a] 4 are

taken, say, x( _ (x^ j . x 3j ; x 	 x ' ), j = 1..... M. Then a Monte Carlo
V

approxin-ia;ion of Aapq 
(F%, T 1 ) is given by

4 T\t

B = F3	 (Fi, Fi)	 (2a)	 -	 ex
a ^E^	

, _ 
lei	 P {i(k 2x Z ^ +k 3x

3j 
- kZx2j - k3x3j ) }

j-1

bat^E (ki. k 1 . xj)

a
EB = E f E(B x )}

4 kt

Ex (fit)	
eXp {i(k yx 2( +k 3x

3j
 - k'	 - k3x3) )} ba q ^(k l . ki; xj ) + 0(h2)

., I	 J - I
Aa PO (K. F 1 ) + 0(1)

Var(1;, ► = V, { var(H 	 0 + Var (K(B	 X } j

	

J	 j
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Now

M

E[Var(B *" IiFA = (2a^ 
^ _ 2 f (k) f (k") f (k l +k1)

3	 1 M	 j=1 h N of l
	 p l

• fw 2(u u ) du du + O1 

	

2 1 2	
NN)11

 I

(2a) 4 2n
2	

ff CL
0, 0) f ^(ki; x 2 , x 3 ) f^(k l +ki; xZ,	 x3) dx2dx3dx"dx

I`•1 h N

•
fw 2 (u l , u,,) du l du ` + O (&' )+0( 1

)  TS

and
4 1\i

Var { 1:(Ii I x.)} = Var () 	 I b a ^^(k l , k;; i.)
A1t	

I	 j	 1

• exp {i(k x +k x - k l x; - k3x3) + O(h2)'
2 2	 3 3	 2	 1

^ 4 2	 2
_ (a)	 b 2 (k l , ki; x,, x 3 ; xL, x 3 )dx 2dx 3dx dx' + O(h )

NI

Therefore it appears that when 1 /m is substantially less than h then the bias of

deterministic layout is better than the bias of Monte Carlo layout, whereas the

variances are comparable if the number of sample points are the same. When h

is substantially less than 1 /m then the bias of a Monte Carlo is better than that of

a deterministic layout and the variances might be comparable. This depends on the

choice of other parameters. Now the details of the variance will be computed to the

first order. However, it must be kept in mind that each choice of a set of locations

corres -ponds to a complete set of experimental measurements at these locations.

Furth:•r the greater the number of locations, the greater the length and cost of com-

putations. So even thotugh it is easy to speak of 1/m small, this amounts to m 4

locations and tht.- experimental anti computational cost become ent)rmous. 'This is

the great advantage of the Monte Carlo procedure so as to keep experimental and
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Now

	Var[Im b	 (kk' • L (7)	 () cos 0)111	 x	 k•x)^

= E[ Var (
Im IIIl (kipkl' 

LM) cos ( Lkj)x ) x2 , x 3 , x2 x3 )

+ Var[E(Im b"
III (k l' k l ' 

Lx))) cos (0 )	 ,	 ,)k•x ) x2' x3 • x2 0 x3

= E I Q 2	 cos 2(L M)
k•x())

L'x

+ Var 1 f ( . ) (k l , kl) - cos(LO))
111, L ^	 k•x

x

where

2	 (	 (kit	 LO)))oL(j) = Var Im bl 11 1 k 
1
' •
' x

x

f	 (^)(kl# kl) = E[Im b l 11 (k l' k l : LO))^111, L
x

a
24

= Q (k • kl)	 cos 2(L (j) ) 1	 dx dx dx' dx

	

I	 'k-x (2a)	 2 '3 2	 3
-a

 
4 a

+ 12a^	 f 2
	

(^) (k l . V) . c os(LkI) ) dx 2dx 3 dx' dx'_a	 x
x

111, L	 2 3

	_((1 8'
	 a	

2
12	 1	 f	 (^)(k1. 0 cos(LO)x ) dx 2 dx 3 dx' dx" 1

	

_a	 111, L	 2	
3x 
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Here a 2(k 1 , V) is the variance of Im f 	 (j)(kl, k") for all j's. This vari-
111, LM

ante is independent of the location because the variance is proportional to the

product of the power spectra. The previous expression equals

A f 13 - C

where A, B, C correspond to the 3 terms in the preceding equation.

To evaluate A, drop the subscript j. Then

a
Icos 2(k 2x 2 + k 3 x 3 - k.'x2 - k3 x3) dx 2 dx 3 dx' dx'
-a

a

J ; (cos 2(k x + k x - k'x' - k' x') + 1) dx dx dx' dx'
-a

2 2	 3 3	 2 2	 3 3	 2	 3 2	 3

a
L (2a) 4 + I ' cos(2k x + 2k x - 2k x' - 2k' x') dx dx dx' dx'2 2	 3 3	 2 2	 3 3	 2 3 2 3

-a

a

Now ' cos(a + a - y - 5 ) da d 8 dy dS
a

a
= 1 [cos(a + R) cos(y + b) + sin(a + ^) sin( y + 5)] da d 8 dy d5

-a

a

J [ (cos a cos R - sin a sin P )(cos y cos 5 - sin y sin 5 )
-a

+ (sin a cos E + cos a sin R)(sin y cos 5 + cos y sin 5 )] da d A dy d5

a
(cos a cos P cos y cos 5) da d8 dy &

-a

a

since 1 sin wx dx = 0 for J! j 0. We obtain
-a
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4	 a
A=Q 2(k,k')Uaj • 1(2a)4+l I cos2kx coo 2kx cooZk'k'1 1 	 2	 2 -a	 2	 3 3	 2 2

• cos Zk 3 x3d x 2 dx 3 dx2 dx3

	

2 44 (2a)4	 1	 1
(k 1 k l ) 12a )	 2	 + 2 k 2k 3k2 k3 sin Zak sin Zak sin Zak' sin Zak

sin Zak	 sin Zak	 sin Zak'	 sin Zak'
i2 R (k l . k l ) 1+ 2ak 

2	
Zak 

3
* Zak' 2	 Zak' 

3

	

2	 3	 2	 3

a
since I cos Zuux dx =	 sin Zaw

-a

The values of B and C cannot be determined theoretically since we don't

know theoretical values of f 	 W(kl k 2 ) though we have estimated values.
111, L	 ,

x

Now B and C may be estimated by using the estimates of f 	 (k k ).
111, L(^) 1^ 2

x

Note that B and C are independent of LM (theoretically).x

In Summary:

N

Var(Im BIII K K')) = 1 2 ^ [A + B - C) = N (A r B - C)
N=1

where
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1 2 sin Zak2 sin Zak3 sin Zak' sin 	 Zak'^,^^,= 2 Q (k l . k 1 ) 1 + 2ak2	 Zak3	 Zak' - 2ak3 —

B -
 

(_

2L)4 J a f 12 (k .k'; x .x ,x'.x' ) coo 2(k x +k x-a	 11 t l	 2 3 2 3	 2 2	 3 3

- k ' xl - k' x3)  dx 2 dx 3 dx' dx3

(1 8	 a

C - 12a	 / f 11 1 (k i , ki ; x 2' x 3^ x`. x3) cos(k2x2 + k3x3
-a	 2

- k?xi- k3 x3) dx 2 dx 3 dx2 dx3

with

a (k I , V) = variance of Im 
b l III 	 kl ; LM

fIII ( k l . ki ; x 2 @ x 3 , x2 o x3)	 f	 (k k' )
111. L (j)	 1 ^  1

x

E[Im 
b lll (k l^ k'; x2'x3'X1 x .A .

We now consider

Var[Im 
B 211 (K, h,)]

N

Var 1	 Re b	 (k , k': x (j) , xM. x ' (j) , x' ()) ) sin(k xU) + k x 0)N	 211 1 1	 2	 3	 2	 3	 2 2	 3 3j-1

- k' x' (j) - k' x'(j))2 2	 3 3

where this time the imaginary part of b 211 is zero main by the

assumption of isotropy.
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This equals

N

N

Var[ Re .^ 	 b2l1 ( kl' kl ; Lx )) - sin(Lk ) x )
l	 1

where we use the same notation as before and ignore possible correlations

among b211(ki p ki ; L0) ) for different j's. Carrying out the same kind of

argument we have;

Var(Im B211 (K. K')) = N [A' 	 + B' - C'

where

sin Zak 2 sin Zak

3

sin Zak'	 sin Zak'2	 3A'	
2 CYb211 (

k1. kI 1 -	 Zak Zak Zak'	 Zak'

4 a
B' = 'Re I Re f2 (k , k' ; L (j) ) sin 2(L(I) ) dx dx dx ' dx '

211 1 1	 x	 k•x	 2 3 2	 3
-a

28	 a

C' = f 1 ,	 Re f	 (k ,k'; LM ) sin(L (j) ) dx dx dx' dx'2a	 J	 211 1 1	 x	 k•x	 2 3 2	 3
-a

with

C7 b	 (k1. ki) = Var(Re b21:(kl, ki ; LXI)))
211

Re f211 (k1'V = E[Re b211
(kl,V)

Again A' can be computed from the estimated power spectra which are

fairly reliable. B' , C' can only be estimated empirically.
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Table 1.	 Coordinates of four	 selected velocity sensor locations.

R' ,	 inches z' ,	 inches

Case x
L

x3 xZ x3

c..	 10 -0.080 -0.100 -0.083 -0.100

5.2 +0.081 -0.92b +0.529 -0.301

8.4 -1.00 -0.980 -0.897 -0.962

4.10 +0.874 -0.818 +0.795 +0.419

E'	 .1 1



N ;m/sec)

M (cm)

d (cm)

R 

x/M

E[u2 1/2 /U

E[v2^1/2/U

E[u211/2/E[v211/2

meters for grid - generated turbulent flc

7.77 E[u3]/E[u21312

0.002 E[v3]/E[v213/2

5.08 E [u4J/E [u212

0.953 E[v4]/E[v212

25 300 R x

48 c (cm L/sec 3)

0.0163 T1 (cm)

0.0142 V  (cm/sec)

1. 15 x k = U/2nT1k
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HOT-WIRE PROBE LOCATIONS
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