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INTRODUCTION

Three-dimensional (3D) separated flow represents a domain of fluid
mechanics of great practical interest that is, as yet, beyond the reach
of definitive theoretical analysis or numerical computation. At present,
our understanding of 3D flow separation rests principally on observations
drawn from experimental studies utilizing flow visualization techniques.
Particularly useful in this regard has been the oil-streak technique for
making visible the patterns of skin-friction lines on the surfaces of
wind-tunnel models (Maltby 1962). It is a common observation among
students of these patterns that a necessary condition for the occurrence
of flow separaticn is the convergence of oil-streak lines onto a particu-
lar line. Whether this is also a sufficient condition is a matter of
current debate. The requirement to make sense of these patterns within

a governing hypothesis of sufficient precision to yield a convincing
description of 3D flow separation has inspired the efforts of a number of
investigators. Of the numerous attempts, however, few of the contending
arguments lend themselves to a precise mathematical formulation. Here,
we shall single out for special attention the hypothesis proposed by
Legendre (1956) as being one capable of providing a mathematical frame-
work of considerable depth.

Legendre (1956) proposed that a pattern of streamlines immediately adja-
cent to the surface (in his terminology, '"wall streamlines') be considered as
trajectories having properties comsistent with those of a continuous vector
field, the principal one being that through any regular (nonsingular) point
there must pass one and only one trajectory. On the basis of this postulate,

it follows thu. cne elementary singular points of the field can be categorized

"
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mathematically. Thus, the types of singular points, their number, and the
rules governing the relations between them can be said to characterize the
pattern. Flow separation in this view has been defined by the convergence of
wall streamlines onto a particular wall st:reamline that originates from a
singuluar point of particular type, the saddle point. We should note, however,
that this view of flow separation is not wuniversally accepted, and, indeed, .
situations exist where it appears that a more nuanced description of flow
separation may be required.

Lighthill (1963), addressing himself specifically to viscous flows,
clarified a n.nber of important issues by tying the postulate of a con-
tinuous vector field to the pattern of skin-friction lines rather than
to streamlines lying just above the surface. Parallel to Legendre's
definition, convergence of skin-friction lines onto a particular skin-
friction line originating from a saddle point was defined here as the
necessary condition for flow separation. More recently, Hunt et al (1978)
have shown that the notions of elementary singular points and the rules
that they obey can be easily extended to apply to the flow above the
surface on planes of symmetry, on projections of conical flows (Smith
1969), on crossflow planes, etc (see also Perry & Fairlie 1974). Further
applications and extensions can be feound in the various contributions
of Legendre (1965, 1972, 1977) and in the review articles by Tobak &

Peake (1979) and Peake & Tobak (1980).
As Legendre (1977) himself has noted, his hypothesis was but a

reinvention within a narrower framework of the extraordinarily fruitful

[PV N

line of research initiated by Poincaré (1928) under the title, "On the

Curves Defined by Differential Equations." Yet another branch of the

. N t‘,{
R T



B

EE;A

e

o
ey

¥ Ady?

same line has been the research begun by Andronov and his colleagues
(1971, 1973) on the qualitative theory of differential equations, within
which the useful notions of "topological structure" and "structural
stability" were introduced. Finally, from the same line stems the
rapidly expanding field known as "bifurcation theory" (cf. the comprehen-
sive review of Sattinger 1980). Applications to hydrodynamics are exem-
plified by the works of Joseph (1976) and Benjamin (1978). It has become
clear that our understanding of 3D separated flow may be deepened by
placing Legendre's hypothesis within a framework broad enough te include
the notions of topological structure, structural stability, and bifurca-
tion. Bearing in mind that we still await a convincing description of

3D flow separation, we may ask whether the broader framework will facili-
tate the emergence of such a description. In the following, we shall

try to answer this question, limiting our attention to 3D viscous flows

that are steady in the mean.
THEORY

We consider steady viscous flow over a smooth three-dimensional body.
The postulate that the skin-friction lines on the surface of the body
form a continuous vector field is translated mathematically as follows:
Let (£,n,{) be general curvilinear cocrdinates with (£,n) being orthogo-

nal axes in the surface and [ directed out of the surface normal to

(§,n). Let the length parameters be h,(£,n), h,(§,n). Except at singulir
points, it follows from the adherence condition that, very close to the sur-
face, the components of the velocity vector parallel to the surface (u,,u;)

must grow from zero linearly with 7. Hence, a particle on a streamline near
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the surface will have velocity components of the form

Ju
g{' - Chz (€,n) "'3";'1" (E,n,0) = 'chzmz (E,n) = LP(&,n)
€9
dn 302
T " hy(Esm) T (£,n,0) = zh w,(E:n) = ¢Q(E,n)

vhere (“1'“2) are the components of the surface vorticity vector. The
specification of a steady flow is reflected by (u,,u,;) being independent
of time. With [ treated as a parameter and P and Q functions only
of the coordinates, equations (1) are a pair of autonomous ordinary
differential equations. Their form places them in the same categorv as
the equations studied by Poincaré (1928) in his classical investigation
of the curves defined by differential equations. Letting

du,
Twl = ’5'{" (&nnﬁo)

(2)
du,

Twz = U _'a—c— (E)“so)

be components of the skin friction parallel to £ and n, respectively,
ve have for the equation governing the trajectories of the surface shear

stress vector, from equations (1),

hldr, h,dn

Tw T (3)

1 w

2
Alternatively, for the trajectories of the surface vorticity vector, which
are orthogonal to those of the surface shear stress vector, the governing

equation is

hldE h,dn

Wy wy

(4)
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Singular Points

Singular points in the pattern of skin-friction lines occur at isolated

points on the surface where the skin friction (rwl,th) in equation (3),

or alternatively the surface vorticity (w,,w,) in equation (4), becomes

identically zero. Singular points are classifiable into two main types:

. nodes and saddle points. Nodes may be further subdivided into two sub-
classes: nodal points and foci (of attachment or separation).

~
A nodal point (Figure la) is the point common to an infinite number -

of skin-friction lines. At the point, all of the skin-friction lines <:§i§;\i
except one {(labeled A-A in Figure la) are tangential to a single line

BB. At a nodal point of attachment, all of the skin-friction lines are

directed outward away from the node. .t a nodal point of separation, all

of the skin-friction lines are directed inward toward the node.

A focus (Figure 1b) differs from a nodal point on Figure la in that
it has no common tangent line. An infinite number of skin-friction lines
spiral around the singula. point, either away from it (a focus of attach-
ment) or into it (a focus of separation). Foci of attachment generally
occur in the presence of rotation, either of the flow or of the surface,
and will not figure in this study.

At a saddle point (Figure lc), there are only two particular lines,
CC and DD, that pass thrcugh the singular point. The directions on either
side of the singular point are inward on one particular line and outward

. on the other particular line. All of the other skin-friction lines miss

the singular point and take directions consistent with the directions of

.
et

the adjacent particular lines. The particular lines act as barriers in
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the field of skin-friction lines, making one set of skin-friction lines
inaccessible to an adjaceut set.

For each of the patterns in Figures la to lc, the surface vortex
lines form a system of lines orthogonal at every point to the system of
skin-friction lines. Thus, it is always possible in principle to describe
the flow in the vicinity of a singular point alternatively in terms of a
pattern of skin-friction lines or a pattern of surface vortex lines.

Davey (1961) and Lighthill (1963) have both noted that of all the
possible patterns of skin-friction lines on the surface of a body, only
those are admissible whose singular points obey a topological rule: the
number of nodes (nodal points or foci or both) must exceed the number of
saddle points by two. We shall demonstrate this rule and its recent

extensions to the external flow field in a number of examples.

Topography of Skin-Friction Lines

The singular points, acting either in isolaticn or in combination, ful-
fill certain characteristic functions that largely determine the distri-
bution of skin-friction lines on the surface. The nodal point of attach-
ment is typically a stagnation point on a forward-facing surface, such

as the nose of a body, where the external flow from far upstream attaches
itself to the surface. The nodal point of attachment thereby acts as a
source of skin-friction lines that emerge from the point and spread out
over the surface. Conversely, the nodal point of separation is typically
a point on a rearward-facing surface, and acts as a sink where the skin-

friction lines that have circumscribed the body surface may vanish.

a=
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The saddle point acts typically to separate the skin-friction lines
issuing from adjacent nodes; for example, adjacent nodal points of

attachment. An example of this function is illustrated in Figure 2

Fig. 2
(Lighthill 1963). Skin-friction lines emerging from the nodal points of ‘:::\‘\\\\\

attachment are prevented from crossing by the presence of a particular
skin-friction line emerging from the saddle point. Lighthill (1963) has

labeled the particular line a line of separation and has idencified the

existence of a saddle point from which the line emerges as the necessary
condition for flow separation. As Figure 2 indicates, skin-friction
lines from either side tend to converge on the line emerging from the
saddle point. Unfortunately, the convergence of skin-friction lines on
efither side of a particular line occurs in other situations as well. It
can happen, for example, that one skin-friction line out of the infinite
set of lines emanating from a nodal point of attachment may ultimately
become a line on which others of the set converge. All researchers agree
that the existence of a particular skin-friction line on which other
lines converge is a necessary condition for flow separation. The seeming
nonuniqueness of the condition identifying the particular line has
encouraged the appearance of alternative descriptions of flow separation
that, in contrast to Lighthill's, do not insist on the presence of a
saddle point as the origin of the liae. Wang (1976), in particular, has
argued that there arc two types of flow separation: '"open," in which

the skin-friction line on which other lines coanverge does not emanate
from a saddle point, and "closed," in which, as in Lighthill's definition,
it does (see also Wang 1974, Han & Patel 1979). In what follows, we

shall address the question of an appropriate description of flow separation

[ ¥ - N -
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by an appeal to the theory of structural stability and bifurcation. Like
Wang, we shall find it necessary to distinguish between types of separa-
tion, but we shall adopt a terminology that is suggested by the theoreti-
cal framework. We shall say that a skin-friction line emerging from a
saddle point is a global line of separation and leads to global flow
separation. 1n the contrary case, where the skin-friction line on which
other lines converge does not originate from a saddle point, we shall
identify the line as being a local line of separation, leading to local
flow separation. When no modifier is used, what is said will apply to
either case. Thus (in either case), an additional indicator of the line
of separation is the behavior of the surface vortex lines. In the vicin-
ity of a line of separation the surface vortex lines become distorted,
forming upstream-pointing loops with the peaks of the loops occurring on
the linc of separation.

The converse of the line of separation is the line of attachment.
Two lines of attachment are illustr=ted in Figure 2, emanating from each
of the nodal points of attachment. Skin-friction lines tend to diverge
from lines of attachment. Just as with the line of separation, a graphic
indicator of the presence of a line of attachment is the behavior of the
surface vortex lines. Surface vortex lines form downstream-pointing
loops in the vicinity of a line of attachment, with the peaks of the
loops occurring on the line of attachment.

Streamlines passing very close to the surface, that is, those defined

by equations (1%, are called limiting streamlines. In the vicinity of a

line of scparation, limiting streamlines must leave ti.e surface rapidly,

as a simple argument due to Lighthill (1963) explains. Referring to

R p——- T
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equation (3), let us align (£,n) with external streamline coordinates so

that =1 are the respective streamwise and crossflow skin-friction

vy,

components. If n is the distance between two adjacent limiting stream-

lines (see Figure 3) and h 1is the height of a rectangular streamtube <::::::;
Fig. 3

(being assu.ed small so that the ilocal resultant velocity vectors are
coplanar and form a linear profile), then the mass flux through the
streamtube is

& = phnu
where p is the density and u the mean velocity of the cross section.

But the resultant skin friction at the wall is the resultant of =

v,
and .
Tw, or
. u(_1'__)
w h/2
so that
Twh
a =g
Hence,
2
. h nt,
m = v " constant
yielding

o=

1/2
h = C(‘L) H vV =
nt

w
Thus, as the line of separation is approached, h, the lieight of the
limiting streamline above the surface, increases rapidly. There are two
reasons for this increase in h: first, whether the line of separation
is global or local, the distance n between adjacent limiting streamlines

falls rapidly as the limiting streamlines converge towards the line of
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separation; second, the resultant skin-friction <, drops toward a mini-
P w

mum as the line of separation 1s approached and, in the case of the

global line of separation, actually approaches zero as the saddle point

is approached.
Limiting streamlines rising on either side of the line of separation

are prevented from crossing by the presence of a stream~surface stemming
The existence of such a stream-surface

from the line of separation {tself.
" originates determines whether

is characteristic of flow separation; how
In the former case, the pres-

the separation is of global or local form.
ence of a saddle point as the origin of the global line of separation
provides a mechanism for the creation of a new stream-surface that orig-
Emanating from a saddle point and terminating at

inates at the wall.
nodal points of separation (either nodes or foci), the global line of

separation traces a smooth curve on the wall which forms the base of the
stream~surface, the streamlines of which have all entered the fluid
We shall call this new stream-surface a

through the saddle point.
The dividing surface extends the function of the global

dividing surface.
line of separation into the flow, acting as a barrier separating the set

of limiting streamlines that have risen from the surface on one side of

the global line of separation from the set arisen from the other side.

On its passage downstream, the dividing surface rolls up to form the
Because it has a

familiar coiled sheet around a central vortical core.

well-defined core, we shall invoke the popular terminclogy and call the
Now we

flow in the vicinity of the coiled-up dividing surface a vortex.
consider the origin of the stream-surface characteristic of local flow

We note that if a skin-friction line emanatirg from a nodal

separation,

©
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point of attachment ultimately becomes a local line of separation,
then there will be a point on the line beyond which each of the
orthogonal surface vortex lines crossing the line forms an upstream-
pointing loop, signifying that the skin friction along the line has
become locally minimum. A surface starting at this point and stecming
from the skin-friction line downstream of the point can be constructed
that will be the locus of a set of limiting streamlines originating
from far upstream; this surface may also roll up on its development
downstrean.

This section concludes with a discussion of the reaaining cype of
singular point, the focus (also called spiral node). The fccus invariably
appears on the surface in company with a saddle point. Together they
allow a particular form of global flow separation. One leg of the (global)
line of separation emanating from the saddle point winds into the focus
to form the continuous curve on the surface from which the dividing sur-
face stems. The focus on the wall extends into the fluid as a concen-
trated vortex filament, while the dividing surface rolls up with the same
sense of rotation as the vortex filament. When the dividing surface
extends downstream it quickly draws the vortex filament into its core.

In effect, then, the extension into the fluid of the focus on the wall
serves as the vortical core about which the dividing surface coils. This
flow behavior was first hypothesized by Legendre (1965), who also noted
(Legendre 1972) that an experimental confirmation existed in the results
of earlier experiments carried out by Werlé (1962). Figure 4a shows
Legendre's original sketch of the skin-friction lires; Figure 4b is a

photograph illustrating the experimental confirmation. The dividing

e e — c ——— e e B . -
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12
surface that coils around the extension of the focus (Figure 4c) will be
termed here a "horn-type dividing surface." On the other hand, it can
happen that the dividing surface to which the focus is connected does
not extend downstream. In this case the vortex filament emanating from
the focus remains distinct, and is seen as a separate entity on crossflow
planes downstream of its origin on the surface. In an interesting addi-
tional interpretation of the focus, we begin by considering the pattern
of lines orthog-nal to that of the skin-friction lines; that is, the
pattern of surface vortex lines. We see that what was a focus for the
pattern of skin-friction lines becomes another focus of separation for
the pattern of surface vortex lines, marking the apparent termination of
a set of surface vortex lines. If we imagine that each of these surface
vortex lines is the bound part of a horseshoe vortex, then the extension
into the fluid of the focus on the wall as a concentrated vortex filament
is seen to represent the combination into one filament of the horseshoe
vortex legs from all of the bound vortices that have ended at the focus.
One can envisage the possibility of incorporating this description of the

flow in the vicinity of a focus into an appropriate inviscid flow model.

Forms of Dividing Surfaces

We have seen how the combination of a focus and a saddle point in the
pattern of skin-friction lines allows a particular Iorm of global flow
separation characterized by a "horn-type dividing surface." The nodal
points of attachment and separation may also combine with saddle points
to allow additional forms of global flow separation, again ch-racterized

by their particular dividing surfaces. The characteristic dividing

~ gee— - - ——Y i 4
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surface formed from the combination of a nodal point of attachment and a

-—

saddle point is illustrated in Figure 5a. This form of dividing surface o
< Fig. 5
typically occurs in the flow before an obstacle (cf. Figure 34 in Peake
& Tobak 1980). In the example illustrated in Figure 5a it will be noted
that the dividing surface admits of a point in the external flow at which
the fluid velocity is identically zero. This is a 3D singular point,
which in Figure 5a acts as the origin of the streamline running through
the vortical core of the rolled up dividing surface.
The characteristic dividing surface formed from the combination of
a nodal point of separation and a4 saddle point is illustrated in Fig-
ure 5b. This form of dividing surface often occurs in nominally 2D
separated flows such as in the separated flow behind a backward-facing
step (cf. Figure 24 in Tobak & Peake 1979) ~nd the separated flow at a
cylinder-flare junction (both 2D and 3D, cf. Figures 47 and 48 in Peake
& Tobak 1980). We note in both Figures 5a and 5b that the streamlines on

the dividing surface have all entered the fluid through the saddle point

in the pattern of skin-friction lines.

Topography of Streamlines in Two-Dimensional Sections

of Three~Dimensional Flows

After an unaccountably long lapse of time, it has only recently become
clear that the mathematical basis for the behavier of elementary singular
points and the topological rules that they obey is general enough to
support a much wider regime of application than had originally been
realized. The results reported by Smith (1969, 1975), Perry & Fairlie

(1974), and Hunt et al (1978) have made it evident that the rules governing

(RSP R P YI
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skin-friction line behavior are easily adapted and extended to yield
similar rules governing behavior of the flow itself. In particular, Hunt
et al (1978) have noted that if v = [u(x,y,z), v(x,¥,2z,), w(x,y,2,)]

is the mean velocity whose u,v components are measured in a plane

z = z, = constant, above a surface situated at y = Y(x;z,) (see Figure 6), ,/,,//”
Fig. 6
then the mean streamlines in the plane are solutions of the equation C:\\*‘x\\\\ .
dx _dy
u v (5)

which is a direct counterpart of equation (3) for skin-friction lines on
the surface. Hunt et al (1978) cautioned that for a general 3D flow the
streamlines defined by equation (5) are no more than that — they are not
necessarily the projections of the 3D streamlines onto the plane z = z,,
nor are they necessarily particle paths even in a steady flow. Only for
special planes — for example, a streanwise plane of symmetry (where
w(x,y,z,) = 0) — are the streamlines defined by equation (5) identifiable
with particle path lines in the plane when the flow is steady, or with
instantaneous streamlines when the flow is unsteady. In any case, since
[u(x,y),v(x,y)] is a continuous vector field V(x,y), with only a finite
number of singular points in the interior of the flow at which V = 0,

it follows that nodes and saddles can be defined in the plane just as they
were for skin-friction lines on the surface. Nodes and saddles within
the flow, excluding the boundary y = Y(x;zo), are labeled N and 8,
respectively, and are shown in their typical form in Figure 6. The only
new feature of rhe analysis that is required is the treatment of singular
points on the boundary y = Y(x;zo). Since for a viscous {low, V is

zero everywhere on the boundary, the houndary is itself a singular line
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in the plane 2z = z,. Singular points on the line occur where the com-
ponent of the surface vorticity vector normal to the plane 2z = z, 1is
zero. Thus, for example, it 1s ensured that a singular point will occur
on the boundary wherever it passes through a singular point in the pattern
of skin-friction lines, since the surface vorticity is identically zero
there. As introduced by Hunt et al (1978), singular points on the bound-
ary are defined as half-nodes N' and half-saddles §' (Figure 6). With
this simple amendment to the types of singular points allowable, all of
the previous notions and descriptions relevant to the analysis of skin-
friction lines carry over to the analysis of the flow within the plane.

In a parallel vein, Hunt et al (1978) have recognized that, just as
the singular points in the pattern of skin-friction lines on the surface
obey a topological rule, so must the singular points in any of the sec-
tional views of 3D flows obey topological rules. Although a very general
rule applying to multiply connected bodies can be derived (Hunt et al 1978)
we shall list here for convenience only those special rules that will be
useful in Lubsequent studies of the flow past wings, bodies, and obstacles.
In the five topological rules listed below, we assume that the body is
siwply connected and immersed in a flow that is uniform far upstrean.

1. Skin-friction lines on a three-dimensional body (Davey 1961;
Lighthill 1. .3):

Ly- Zg =2 (6)

2, Skin-friction lines on a three-dimensional bouy B connected
simply (without gaps) to a plane wall P that either extends to infinity

both upstrcam and downstream or is the surface of a torus:

- e o7 T A SH )
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(- Zs)osn = 0 )
) 3. Sc.reamlines on a two-dimensional plane cutting a three-dimensional
body:
1 1
(1) - (S5 1 Zg) - ®
4.

to infinity both upstream

(Zs

Streamlines on a vertical plane cutting a <urface that extends

and downstream:

Po] e

EN’) - (Zs *3 Zs') =9

(9)
5. Streamlines on the projection onto a spherical surface of a
conical flow past a three-dimensional body (Smith 1969):
1 1
(ZN t3 zn') - (Zs t7 Zs‘) =0 (10)

Topological Structure, Structural Stabilitv, and Bifurcation

The question of an adequate description of 3D separated flow rises with
particular sharpness when one asks how 3D separated flow patterns origi-
nate and how they succeed each other as the relevant parameters of the
problem (angle of attack, Reynolds number, Mach number, etc) are varied.

A satisfactory answer te the question may emerge out of the framework

that we shall try to create in this section.

We shall cast our formula-
tion in physical terms although our definitions ought to be compatible

with a more purely mathematical treatment based, for example, on whatever
system of partial differential equations is judged to govern the fluid
motion.

In particular, we shall hinge our definitions of topological

ii,iA

structure and structural stability directly to the properties of patterns

of skin-friction lines, since this will enable us to make maximum use of
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results from the principal source of experimental information on 3D sepa-
rated flow — flow-visualization experiments utilizing the oil-streak
technique.

Adopting the terminology of Andronov et al (1973), we shall say that
a pattern of skin-friction lines on the surface of a body constitutes

the phase portrait of the surface shear-stress vector. 7Two phase por-

traits have the same topological structure if a mapping from one phase

portrait to the other preserves the paths of the phase portrait. It is
useful to imagine having imprinted a phase portrait on a sheet of rubber
that nay be deformed in any way without folding or tearing. Every such

deformation is a path-preserving mapping. A topological property is any

characteristic of the phase portrait that remains invariant under all
path-preserving mappings. The number and types of singular points, the
existence of paths connecting the singular points, and the existence of
closed paths are examples of topological properties. The set of all
topological properties of the phase pcrtrait describes the topological
structure.

We shall define the structural stability of a phase portrait rela-

tive to a parameter X as follows (cf. Andronov et al 1971): A phase
portrait is structurally stable at a given value of the parameter ) if

the phase portrait resulting from an infinitesimal change in the param-

eter has the same topological structure as the initial one. The properties

of structurally stable phase portraits can be elucidated via mathematical

analysis (Andronov et al 1971) alchough they depend to some extent on

whether special conditions such as, for example, geometric symmetries, are

to be considered typical (i.c. "generic"; cf. Benjamin 1978) or untypical

——
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("nongeneric"). Here we shall wish to respect the conditions imposed by
geometric symmetries whenever they exist. In this case structurally
stable phase portraits of the surface shear-stress vector have two prin-
cipal properties in common: {a) the singular points of the phase por-
trait are all elementary singular points; and (b) there are no saddle-
point-to-saddle-point connections in the phase portrait. (We should note
that condition (b) is a property only of the phase portrait representing
the trajectories of the surface shear-stress vector. Saddle-point-to-
saddle-point connections often occur on 2D projections of the external
flow,*but these are artifacts of the particular projections and do not
represent connections between actual (3D) singular points of the fluid
velocity vector).

Stabilitv of the external tlow also can be defined in terms of its
topological stiucture. There is, however, a useful distinction that

should be made between local and global instability of the external fiow.

We shall say that if an instabilitv of the external flow occurs that does
not result in the appearance of a new (3D) singular point :f the fluid
velocity vector, then the topological structure of the external flow has
been unaltered and the instability is a local one. On the other hand,
the appearance of a new (3D) singular point means that the topological
structure of the external flow has been altered and the instability is a
global one. In contrast, we shall not make this distinction for the
surface shear~stress vector. We shall say that the surface shear-stress
vector experiences global instabilities only; those instabilities occur

when the topological structure of its phase portrait is altered.

*By external flow we mean the entire flow exterior to the surface.
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The introduction of distinctions between local and global events
helps to explain why we were led earlier to distinguish between local and
global lines of separation in the pattern of skin-friction lines. If an
instability of the external flew (either local or global) does not alter
the topological structure of the phase portrait representing the surface
shear~-stress vector, then the convergence of skin-friction lines onto one
or several particular lines can only be a local event so far as the phase
portrait is concerned; accordingly, we label the particular lines local
lines of separation. On the other hand, if an instability of the external
flow changes the topological structure of the phase portrait, resulting
in the emergence of a saddle point in the pattern of skin-friction lines,
then this is a global event so far as the phase portrait is concerned;
accordingly, we label the skin-friction line emanating from the saddle
point a global line of separation.

Instability of the cxterrnal flow leads to the notions of bifurcation,

syimmetry-breaking, and dissipative structures (Sattinger 1980; Nicolis &

Prigogine 1977). Suppose that the fluid motions evolve according to
time-dependent equations of the general form

u, = G(u,))
where X again is a parameter. Soluticns of G{u,)) = 0 represent
steady mean flows of the kind ' 2 have been considering. A mean flow u,
is an asymptotically stable flow if small perturbations from it decay to
zero as t + . When the parameter A 1is varied, one mean flow may
persist [in the mathematical sense that it remains a valid solution of
G(u,)) = 0] but become unstable to small perturbations as ) crosses a

critical value. At such a transition point, a new mean flow may bifurcate
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from the known flow. The behavior just described is conveniently por-
trayed on a bifurcation diagram, typical examples of which are illustrated
in Figure 7. Flows that bifurcate from the known flow are represented by —
the ordinate 1, which may be any quantity that characterizes the bifur- <:::EE§;~Z\
cation flow alone. Stable flows are indicated by solid lines, unstable
flows by dashed lines. Thus, over the range of ) where the known flow
is stable, ¢ 1is zero, and the stable known flow is represented along the
abscissa by a solid line. The known flow becomes unstable for all values
of A larger than 1., as the dashed line along the abscissa indicates.
New mean flows bifurcate from X = Ao either supercritically or
subcritically.

At a supercritical bifurcation (Figure 7a), as the parameter 21

is increased just beyond the critical point 2 the bifurcation flow

C’

that replaces the unstable known flow can differ only infinitesimally

from it. The bifurcation flow breaks the symmetry of the known flow,

adopting a form of lesser symmetry in which dissipative structures arise

to absorb just the amount of excess available cncrgy that the more svm-

metrical known flow no longer was able to absorb. Because the bifurca-

tion flow initiallv departs only iufinitesimally from the unstable known
flow, the global stability of the surface shear stress initially is

unaffected. However, as \ continues to increase bevond the

c
bifurcation flow departs significantly from the unstable known flow and
begins to affect the global stability of the surface shear stress.
Ultimately a value of \ 1is reacted at which the surface shear stress

becomes globally unstable, evidenced either by one of th elementary

singular points of [t phase portrait beconing a singular point of (odd)

R
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multiple order or by the appearance of a new singular point of (even)
multiple order. In either case, it is useful to consider the singular
point of multiple order as being the coalescence of a number of elemuntary
singular points, with the number divided among nodal and saddle points
such as to continue to satisfy the first topological rule, equation (6).
An acdditional infinitesimal increase in the parameter )\ results in the
splitting of the singular point of multiple order into an equal number of
elementary singular points. Thus there emerges a new structurally stable
phase portrait of the surface shear-stress vector and a new external {low
from which additional flows ultimately will bifurcate with further
increases of the parameter.

At a subcritical bifurcation (Figure 7b), when the parameter is
increased just beyond the critical point 1., there are no adjacent
bifurcation flows that differ only infinitesimally from the unstable known
flow. Here, there must be a finite jump to a new branch of flows that may
represent a radical change in the topological structure of the external
flow and perhaps in the phase portrait of the surface shear-stress vector
as well. Further, with ¢ on the new branch, when A 1is decreased just
below 1 the flow does not return to the original stable known flow.

c
Only when )\ is decreased far enough below i, to pass ), (Figure 7b)
is the stable known flow recovered. Thus, subcritical bifurcation alwavs
implies that the bifurcation flows will exhibit hysteresis effects.

This completes a framework of terms and notions that should suffice
to describe how the structural forms of 3D separated flows originate and
succeed each other. The following section will be devoted to illustra-

tions of the use of this framework in two examples involving supcrcritical

and subcritical bifurcations.
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EXAMPLES

Round-llose Body of Revolution at Angle of Attack

Let us first consider how a separated flow may originate on a slender

round-nose body of revolution as one of the main parameters of the prob-
lem, angle of attack, is increased from zero in increments. Focusing on
the flow in the nose region alone, we adopt this example to illustrate a

sequence of events in which supercritical bifurcation is the agent lead-

ing to the formation of large~scale dissipative structu.es.

At zero angle of attack (Figure 8a) the flow is everywhere at:a.hed.
All skin-friction lines originate at the nodal point of attachment at
the nose and, for a sufficiently smooth slender body, dissppear into a
nodal point of separation at the tail. The relevant topological rule,

equation (6), is satisfied in the simplest possible way (N = 2, § = 0).

At a very small angle of attack (Figure 8b) the topological structure
of the pattern of skin-friction lines remains unaltered. All skin-friction

lines again originate at a ncdal point of attachment and disappear into a

nodal point of separation. However, the favorable circumferential pres-
sure gradient drives the skin-friction lines leeward where they tend to
converge on the skin~friction line running along the leeward ray.
Emanating from a node rather than a saddle point and being a line onto
which other skin-friction lines converge, this particular line qualifies

as a local line of separation according to our definition. The flow

in the vicinity of the local line of separation provides a rather innoccuous

form of local flow scparation, typical of the flows leaving surfaces near

the symmetry planes of wakes.

Fig.
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As the angle of attack is increased further, a critical angle o
is reached just beyond which the external flow becomes locally unstable.
Coming into play here is the well-known susceptibility of inflexional
boundary-layer velocity profiles to instability (Gregory et al '955,
Stuart 1963, Tobak 1973). The inflexional profiles develop on crossflow
planes that are slightly inclined from the plane normal to the enternal
inviscid flow direction. Called a crossflow instability, the event is often
a precursor of boundary-layer transition, typically occurring at Keynolds
numbers just entering the transitional range (McDevitt & Melier 1969,
Adams 1971). Referring to the bifurcation diagrams of Figure 7
identifying the parameter XA with angle of attack, we have that the

instability occurs at the critical point «a,, where a supercritical

bifurcation (Figure 7a) leads to a new stable mean flow. Within the

local space influenced by the instability, the new mean flow contains an
array of dissipative structures. The structures, il'ustrated schemati-
cally on Figure 8c, are initially of very small scale with spacing ol

the order of the boundary-layer thickness. Resembling an array of stream-
wise vortices having axes slightly skewed from the direction of the
external flow, the structures will be called vortical structures. Although
the representation of the structures on a crossflow plane in Figure 8¢

is intended to be merely schematic, nevertheless, the sketch satisfies

the topological rule for streamlines in a crossflow plane, equation (8).
As illustrated in the side view of Figure 8c, the array of vortical
structures is reflected in the pattern of skin-friction lines by the
appearance of a corresponding array of alternating lines of attachment

and (local) separation. The bifurcation being supercritical, however,
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the vortical structures initially are of infinitesimal strength and
cannot affect the topological structure of the pattern of skin-friction
lines. Therefore, once again, thess are local lines of separation, each
of whichk leads to a locally separated flow that is initially of very
small scale.

Although the vortical structures are initially all very small, they
are not of equal strength, being immersed in a2 nonuniform crossflow.
Viewed in a crossflow plane, the strength of the structures incre:r 28
from zero starting from the windward ray, reaches a maximum near halfway
around, and diminishes toward zero on the leeward ray. «cecalling that
the paramcter vy in Figure 7 was supposed to characterize the bifu-ca-
tion flows, we shall find it convenient to let ¢ designate the maximunm
crossflow velocity induced by the largest of the vortical structures.
Thus, with further increase in angle of attack, § increases accordingly,
as Figure 7a indicates. Physically, ¢ 1increases because the dominant
vortical structure captures the greater part of the oncoming flow feeding
the structurcs, thereby growing while the rearby structures diminish and
are drawn into the orbit of the dominant structure. Thus, as the angle
of attack increcases, the number of vortical structures near the dominant
structure diminishes while the dominant structure grows rapidlv. Mean-
while, with the increase in angle of attack, the flow in a regim closer
to the nose becomes subject to the crossflow instability and develops an
array of small vortical structures similar to those that had developed
further downstream at a lower angle of attack. The situation is illustrated
on Figure 8d. We believe that this description is a irue representation

of the type of flow that Wang (1974, 1976) has characterized as an "open
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separatior." We note that although the dominant vortical structure now
appears to represent a full-fledged case of flow separation, nevertheless
the surface shear-stress vector has remained globally stable so that, in
our terms, this is still a case of a local flow separation.

With further increase in the angle of attack, the crossflow insta-
bility in the region upstream of the dominant vortical structure prepares
the way for the forward movement of the structure and its associated
local line of separation. Eventually an angle of attack is reached at
which cthe infl ¢nce of the vortical structures is great enough to alter
the global stability of the surface shear-stress vector in the immediate
vicinity of the nose. A new (unstable) singular point of second order
appears at the origin of each of the lccal lines of separation. With a
slight further increase in angle of attack, the unstable singular point
splits into a pair of elementary singular points — a focus of separation
and a saddle point. This combination produces the hern-type dividing
surface described earlier (Figure 4) and illustrated again in Figure 8e
(cf. also Figures l1 and 12 in Werlé 1979). We now have a global form
of flow separation. A new stable mean flow has emerged from which addi-
tional flows ultimately will bifurcate with further increase of the angle

of attack.

Asymmetric Vortex Breakdown on Slender Wing

In ccitrast to supercritical bifurcations, which are normally benign
evén: ;. eginning as they must with the appearance ¢f only intinitesimal
T3] sative st.iuctures, subcritical bifurcations may be drastic events,

in. (. ing sudden and dramatic changes . flow structure. Although we are

Sot e ol



T SO VY

26
only beginning to appreciate the role of bifurcations in the study of
separated flows, we can anticipate that sudden large-scale events, such
as those involved in air.raft buffet and stall, will be describable in
terms of subcritical bifurcations. Here we shall cite one 2=xample where
it is already evident that a fluid dynamicul phenomenon involving a sub-
critical bifurcation can significantly influence the aircraft's dynamical
behavior. This is the case of asymmetric vortex breakdown which occurs
with slender swept wings at high angles of attack.

We leave aside the vexing question of the mechanisms underlying
vortex breakdown itself (cf. Hall 1972), as well as its topological
structure, to focus on events subsequent to the breakdown of the wing's
primary vortices. Lowson (1964) noted that when a slender delta wing was
slowly pitched to a sufficiently large angle of attack with sideslip

angle held fixed at zero, the breakdown of the pair of leading-edge vor-

tices, which at lower angles had occurred symmetrically (i.e. side by side),

became asymmetric, with the position of one vortex breakdown moving closer

to the wing apax than the other. Which of the two possible asymmetric
patterns was observed after any single pitchup was probabilistic, but
once establisiied, the relative positions of the two vortex breakdowns
would persist over the wing even as the angle of attack was reduced to
values at which the breakdowns had occurred initially downstream of the
wing trailing edge. After ideuntifying terms, we shall see that these
observations are perfectly compatible with our previous description of a
subcritical bifurcation (Figure 7b).

Let us denote by Ac the difference between the chordwise positions

of the left-hand and right-hand vortex breakdowns and let A4c be positive
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when the left-hand breakdown position is the closer of the two to the
wing apex. Referring now to the subcritical bifurcation diagram in
Figure 7b, we identify the bifurcation parameter ¢ with Ac and the
parameter ) with angle of attack. We see that, in accordance with
observations, there is a range of a, a < a,, in which the vortex break-
down positions can coexist side by side, a stable state represented by
|Ac| = 0. At the critical angle of attack a., the breakdowns can no
longer sustain themselves side by side, so that for a > a, lac] = 0
is no longer a stable state. There being no adjacent bifurcation flows
just beyond a = a, |ac] must jump to a distant branch of stabie flows,
which represents thc sudden shift forward of one of the vortex breakdown
positions. Further, with lAc] on the new branch, as the angle of
attack is reduced IAcl does not return to zero at o, but only after
a has pcssed a smaller value a,. All of this is in accordance with
observations (Lowson 1964). At any angle of attack where lac] can be
nonzero under symmetric boundary conditions, the variation of Ac with
sideslip or roll angle must necessarily be hysteretic. This also has
been demonstrated experimentally (Elle 1961). Further, since Ac must
be directly proportional to the rolling moment, the consequent hysteretic
behavior of the rolling moment with sideslip or rcll angle makes the
aircraft susceptible to the dynamical phenomenon of wing-rock (Schiff

et al 1980).
SUMMARY

Holding strictly to the notion that patterns of skin-friction lines and

[RpRRp

external streamlines reflect the properties of continuous vector fields
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enables us to characterize the patterns on the surface and on particular
projections of the flow (the crossflow plane, for example) by a restricted
nunber of singuiar points (nodes, saddle points, and foci). It is useful
to consider the restricted number of singular points and the topological
rules that they obey as components of an organizing principle: a flow
grammar whose finite number of elements can be combined in myriad ways to
describe, understand, and connect together the properties common to all
steady three-dimensional viscous flows. Introducing a distinction between
local and global properties of the flow resolves an ambiguity in the
proper dafinition of a 3D separated flow. Adopting the notions of topo-
logical structure, structural stability, and bifurcation gives us a
framework in which to describe how 3D separated flows originate and how
they succeed each other as the relevant parameters of the problem are

varied.
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FIGURE CAPTIONS

Figure 1 Singular points: (a) node; (b) focus; (c) saddle.
Figure 2 Adjacent nodes and saddle point (Lighthill 196.).
Figure 3 Limiting streamlines near 3D separation line.

Figure 4 Focus of separation: (a) original sketch of skin-friction lines
by Legendre (1965); (b) experiment of Werlé (1962) in water tunnel;

(c) extension of focus, Legendre (1965).

Figure 5 Dividing surfaces formed from combinations of: (a) nodal point
of attachment and saddle point; (b, nodal point of separation and saddle

point.
Figure 6 Singular points in cross section of flow (Hunt et al 1978).

Figure 7 Examples of (a) supercritical bifurcation; (b) suberitical

bifurcation.

Figure 8 Scquence of flows leading to global 3D flow separation on

round-nose body of revolution at angle of attack.
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