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ABSTRACT

The thermal degradaticn of the principal components of soiid propellants,
namely the binder and oxidizer, was investigated at moderate temparatures.
The binders tested were polyurethanes made from two hydroxy-terminated
polybutadienes, R-45 and Butarez HT, one hydroxy-terminated butadiene-
acrvlonitrile copolymer, Hycar 1300X 17, and a hydroxy-terminated prepolymer,
Esterdiol 560, made from the dimerized fatty acid Empol 1010. The isocyanates
used most extensively were isophorone diisocyanate (IPDI) and a polymeric
diisocyanate, DDI. Stress relaxation was the method used to examine the
chemical changes that took place in the binder when it was subjected to the
sterilization temperatures. The thermal stability of the oxidizer, ammonium
perchlorate (AP), was tested by thermogravimetry in the isothermal and non-
isothermal modes. The effect of particle size, recrystallization, moisture
content and doping on the heat stability of AP could be evaluated by this
method. The volatile degradation products, obtained when AP samples were
aged at 135°C for prolonged periods, were analyzed by mass spectroscopy. The
overall objective of these investigations was to acquire an insight into the
possible failure mechanisms of solid propellant components when the conditions

of thermal sterilization were imposed on them.
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SECTION I
INTRODUCTION

The purpese of this task was to acquire an insight into the pos-
sible failure mechanisms of sterilizable solid propellants, when sub-
Jected to sterilization temperatures. The investigation consisted in
studying the degradation of the principal components of the propellant,
namely the binder and the cxidizer (ammonium perchlorate) separately.
Tests were also carried out on the binder-oxidizer system, but these
were limited in nunber. The behavior of the whole propellant during and
after its subjection to the sterilization regimen was carried out in
another task.

The experimental approach included: a) chemical stress relaxation
measurements at elevated temperatures on different binders, b) extensive
thermogravimetric analysis (TGA) of ammonium perchlorate (AP) oxidizer
samples, a few binder-oxidizer systems, and ¢) mass spectral analysis of
volatile products formed from the oxidizer, one binder and several
binder-oxidizer systems, after prolonged aging at 135°C, which is the
prescribed temperature for thermal sterilization.

The binders evaluated were polyurethanes in all instances. They
differed from each other in the polyol and/or the isocyanate used in
their preparation. The polyols included: two hydroxy-terminated poly-
butadienes, R-45 (ARCO) and Rutarez HT (Phillips Petroleum); one
hydroxy-terminated butadiene-acrylonitrile copolymer, Hycar 1300 x 17
(B. F. Goodrich), and a hydroxy-terminating prepolymer, Esterdiol 560,
made at JPL from a dimerized fatty acid, Empol 1010 (Emery Industries)
and 1,5-pentanediol. The isocyanates most extensively used were iso-

phorone diisocyanate (IPDI) and a polymeric diisocyanate, DDI, made by
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General Mills. Trimethylol propane (TMP), a trifunctional alcohol, wat
used with the difunctional polyols Hycar 1300 x 17 and Esterdiol 560 to
control the crosslink density ve and yield rubbery products.

More than twenty samples of ammonium perchlorate, varying in the
methods of recrystallization, moisture and dopant content and particle
size, were subjected to thermogravimetric analysis (TGA). Many of these
were also analyzed by mass spectroscopy after aging for varying periods
of time.

Liners are commonly used for propellant motors. A widely used
liner material is ethylene-propylene terpolymer, EPDM. Samples of this
liner, which had undergone different cleaning procedures, were aged at
elevated temperatures and the volatile products were analyzed by mass
spectroscopy to outline any differences. The thermal stability of the

Tiner was also tested by TGA.
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SECTION 11
EXPERIMENTAL

A. PREPARATION OF BINDER VULCANIZATES

1, Polyurethanes From [sterdiol 560
Three batches of binder vulcanizates 1, 2 and 3 of increasing ve
value were prepared using 18, 25 and 40 equivalent percent of TMP per
total amount of polyol. The preparation and cure of the binder was car-
ried out as follows: the Esterdiol and the TP were weighed within %
0.01 g, heated to about 60°C to melt the T™P, and mixed by hand for 1 to
2 minutes. To this mixture the required amount of diisocyanate was
added, followed by mixing and degassing (< 2 mm Hg) until bubbling
ceased. The mixture was then poured into suitable molds and sheets 1.25
to 2,03 mn thick (0,05 to i:98") were prepared for stress relaxation
measurements. The isocyanate/hydroxyl greup ratio, NCO/OH, in all cases
was 1.10.
The cure was generally effected according to the following
schedule:
4 h at 90°C in air
16 h at 120°C in air

4 h at 145°C in an atmosphere of nitrogen.

2. Polyurethanes From Hycar 1300 x 17
The procedure was similar to the one described in II-A-1 above,
except that the mixture was degassed at a higher temperature, because

Hycar 1300 x 17 is much more viscous.

3. Polyurcthane From R-45

The method of preparation and curing (vulcanizing) were similar
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to the procedure described above, with the exception that in all formu~
lations using R-A5 an antioxidant was used, because prepolymer R-45 has
an unsaturated hydrocarbon backbone and is prone to oxidative degrada-

tion. No crosslinking agent was used in formulations based on R-45, ba-

cause it has a functionality of 2.4 to 2.8.

4. Polyurethanes From Blends

# number of binders were prepared from blends using Hycar 1300 x
17, Esterdiol 307, R-45 and Buta“ez HT. For example, blends of Ester-
diol and Hycar, R~45 and Hycar, R-45 and Esterdiol, and R-45 and Butarez
HT were prepared to impart certain desirable properties to the resulting
binder. The method of preparation and curing was similar to that used

for unblended materials.
R, STRESS RELAXATION MEASUREMENTS

1. Descriptior of the Relaxomater

The relaxometer used for the measurement of stress decay, shown in
Figure 1, consists of a low-ferce-range loadcell placed outside the oven,
with test specimens and grips housed in the cylindrical test chamber
mounted in the oven. The lower grip is immobile. The upper grip is
movable and attached to the loadcell, which measures the force. The
upper grip as well as the loadcell is attached to a lever-arm, which
provides the desired elongation to the specimen by moving 1t up or down

to fixable positions.

2. Measurements in Nitrogen and Air
For measurements in nitrogen the test chamber was flushed with

nitrogen for at least one hour before heating or stretching the
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specimen. Thereafter, a steady flow of the inert gas was maintained
during the entire course of the test. For measurements in air no pre-
cautions were made. For intermittent stress relaxation measurements the

elastomer sample was stretched for 6 minutes and relaxed for 54 minutes.

C. THERMOGRAVIMETRIC ANALYSIS

For thermal analysis of samples, the DuPont 900 Differential Ther-
mal and 950 Thermogravimetric analyzers were used. Experiments were
carried out under isothermal and non-isothermal conditiors, in air and

in nitrogen, most of the runs being made in njtrogen.

D. AGING EXPERIMENTS

For the thermal aging experiments, candidate materials were placed
in gvacuated and sealed ampoules. The procedure was as foljows: three
uf the kind of ampoules shown in Figure 2 were mounted on a stainless
steel flange, via Kovar seal. This assembly and the 30-mm-long, 3-mm
I.D. sample tubes were rinsed with deionized water, metharal, and then
dried at 110°C for 16 h in an air oven. About 50 mg of the test
materials was placed in the sample tubes. The assembly of three
ampoules was then connected through a filange to an ion-pump for
degassing at room temperature. For the construction of the assembly
only glass, stainless steel and copper were used, avoiding all materials
that would give off volatile products. A pressure of 10~7 torr could be
obtained in 2 to 4 h and 10-8 torr in 24 h of degassing. The ampoules
were sealed off at constriction B, Figure 2, when the i0-8 torr pressure
was attained. During the sealing, the ends of the ampoules were wrapped
with wet cloth to avoid heating of the samples. Using an assembly of

three ampoules reduced the evacuation time considerably. The sealed
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ampoules were then placed in an oven. After the aging (thermal sterili-
zation) period was over, the ampoules were connected to a mass spec-

trometer as shown in Figure 3,

E. MASS SPECTROSCOPIC ANALYSIS

The mass spectroscopic analyses were made on a Finnigan Model 3200
(EI) quadrupole mass spectrometer, using the Finnigan Model 6100 Data
System. The assembly shown in Figure 3 was attached to the high vacuum
inlet sysiem of the mass spectrometer and degassed at < 5 microns (0.005
torr) while heating with a heat-gun for about 20 minutes. The break
seal (Figure 2) was then broken, pressure measurements recorded and the
sample volatiles were let into the mass spectrometer at room tempera-
ture, through a Granville-Phillips variable leak valve. The analyzer
manifold pressure was maintained at < 10-% torr and the intensity of the
m/c 28 peak for all samples was adjusted to about the same magnitude on
the data system by fine adjustment of the variable leak valve. Back-
ground of the mass spectrometer and 50 scans (1-250 amu range) were ac-
cumulated. A representative scan was selected and background subtrac-

tion made.
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SECTION III
RESULTS AND DISCUSSION

A CHEMICAL STRESS RELAXATION MEASUREMENTS

There are few methods for obtaining fundamental data about the
chemical changes (aging) of elastomeric materials such as the binders
discussed in this report. A valuable method to obtain such data is
stress-relaxation as developed by Tobolsky and others (Ref. 1). Infor-
mation such as degradation rates, nature of degradation, i.e., bond
scission, crosslinking or both, the site of scission, whether at the
backbone chain or at the crosslink, can be obtained from chemical stress
relaxation measurements. Two types of chemical stress relaxation mea-
surements can be made: a) continuous, in which the sample is held at
constant strain (extension) throughout the experiment; and b) intermit-
tent, in which the sample is strained only at such times as the stress
is measured. According to network theory, the decrease in stress in a
continuoug1y stretched sample is a direct measure of the number of net-
work chains broken. It is assumed that new networks formed, while the
elastomeric binder is strained, will not contribute to the stress when
the sample is strained, as is the case in the intermittent type of
stress relaxation. The intermittent measurements show the stress due to
the residue of the original network plus the stress due to the new net-
work, and may differ considerably from the continuous measurements. If
only scission were occurring, the continuous and intermittent curves,
obtained by menitoring the stress relaxation, wculd be identical. If,
on the other hand, the stress at a given time in the intermittent exper-
iment is larger than that in the continuous experiments, the difference

would represent the contribution to the network of any crosslinks
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formed during aging (Ref. 2).

1. Stress Relaxation of Polyurethane Binders Based on Esterdiol 560

(E-1, E-2, E-3)

Three different batches of the polyurethane binder made from
Esterdiol 560, isophorone diisocyanate (IPDI) and trimethylol propane
(TMP) were prepared. The batches differed in crosslink density, which
was controlled by the amount of TMP used. Batch 1 had the lowest, and
batch 3 the highest crosslink density. The descriptions of these and
other binders are given in Table 1.

The effect of temperature on the stress relaxation of these bin-
ders is shown in Figures 4-6. Experiments were performed in an atmos-
phere of nitrogen. It can be seen that the higher the temperature, the
higher the rate of chemical stress relaxation (degradation). Comparison
of the stress relaxation of the three batches at 125°C (Figure 7) and at
135°C (Figure 8) shows that the rate of relaxation is inversely related
to the crosslink density, ve; i.e., the higher the vs, the Tower the
stress relaxation rate. It has been shown that random scission along
the polymer chain is indicated when the rate of relaxation is found to
be inversely related to the crosslink density, and scission in the
crosslink is indicated when the rate of relaxation is independent of the
crosslink density (Ref. 2). The slower stress relaxation rate, shown by
the higher crosslinked polyurethane binder suggests that degradation
occurs predominantly in the polymer chain, rather than at the crosslink.

The extent of crosslinking that may occur simultaneously with
scission during aging can be obtained by comparing the intermittent with

continuous stress relaxation results. Figure 9 shows that crosslinking
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as well as scissfon takes place when E-2 (see Table 1) ages at 135°C in
nitrogen. The number of additional crosslinks formed is considerable,
as deduced from the distance of the two curves from each other and the
results of computations made which are shown graphically in Figure 10
(curve 3). The following equations were used to calculate the addition-

al crosslinks:

i
Ve(t)/"e(o) x ( t - f?t;)/’f:(:; (1)
Ve(q) was calculated from
ve(o) = fo/ART(A = 1/2p) (2)

where fo = stress at time "zero", fy = stress at time t (the super-
scripts i and ¢ stand for intermittent and continuous); A = cross sec~-
tional area of the sample, A = extension ratio, and R and T have their

usual meanings. The terms ve(t and vg, . denote cross-link

) (o)

densities at time t and "zero."

The stress relaxation of Esterdiol based binders is faster in air
than in nitrogen, as shown for E-2 in Figure 11. The difference, how-
ever, is not as pronounced as it has been observed for hydrocarbon rub-
bers, such as SBR (Ref. 3) where degr. ation is dominated by an oxida-
tive mechanism. It can be concluded from Figure 11 that breakdown due
to oxidation plays a minor role in these binders as compared to break-
down caused by thermal effects.

The influence of the oxidizer on the stress relaxation of these
binders is illustrated in Figure 12, by E-3, stretched at 145°C in
nitrogen. The presence of AP accelerates the rate of stress decay. It

was also observed that AP extends the work 1ife and the cure time of the
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binder, i.e.; it slows down the isocyanate-hydroxyl reaction.

2. Stress Relaxation of Polyurethane Binders Based on Hycar 1300 x 17

Two batches, 1 and 2, of binder based on Hycar 1300 x 17 were made
using IPDI and TMP (Table 1). The batches differed in crosslink den-
sity. The pronounced influence of temperature on the rate of stress
decay on this binder is shown in Figure 13.

The effect of crosslink density on stress relaxation is illustrat-
ed in Figure 14. The slower relaxation of the more highly crosslinked
material, H-2, suggests that scission is occurring randomly along the
polymer chain, rather than at the crosslinks.

A slightly faster relaxation rate in air, as compared to nitrogen,
is observed for this binder (Figure 15). The small difference proves,
however, that the primary decay mechanism is not oxidative, but is
induced by thermal breakdown of bonds on the polymer backbone.

The presence of oxidizer slowed down the hydroxyl~-isocyanate
reaction, as expected. The work 1ife and cure time were extended. The
stress relaxation was accelerated by the presence of AP as shown in

Figure 16.

3. Stress Relaxation of Binders Based on R-45
Only one crosslink density binder was made from this hydroxyl
terminated polybutadiene, using IPDI. No crosslinker such as TMP was
necessary, since the sample of R-45 used had a functionality of 2.40.
In the absence of any antioxidant, the polyurethane polymer ob-
tained from R-45 showed poor mechanical properties after thermal aging.
The presence of an antioxidant improved its aging properties consider-

ably.
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The stress relaxation of the binder made from R-45 containing 1.5%
antioxidant is shown in Figure 17. The effects of temperature and fil-
ler (oxidizer) were similar to those observed in the binders previously
discussed.

A comparison of the stress relaxation behavior of the binders dis-
cussed so far at 125°C in nitrogen is depicted in Figure 18. Included
in this figure is the stress relaxation curve for the polyurethane bin-
der obtained from Telagen S, a saturated polybutadiene reacted with TMP
and toluene diisocyanate. The manufacture of Telagen S has been

discontinued.

4. Stress Relaxation of Rinder Blends

Binders from blends of the hydroxyl terminated prepolymers, Ester-
diol 560, Hycar 1300 x 17, R-45 and Rutarez HT, were made with the ob-
ject of imparting certain desirable properties, such as lower viscosity,
to the mixture (so that a larger amount of oxidizer could be jncorpora-
ted), higher elongation to the cured bit Jer or longer work life.

a. R-45-Estardiol 560 Blend. A blend of 75 to 25 percent of

equivalent weights of R-45 and Esterdiol 560 was prepared using DRI and
1.5 antioxidant and curing the casting 72 h at 100°C in air and 20 h at
150°C in nitrogen.

The result of the stress relaxation measurement, made at
135°C, is shown in Figure 19. Included in this figure is the stress re-
laxation of t’e binder made from the 1:1 blend, reacted with the same
isocyanate and cured under the same conditions. Increasing the Ester-
diol 560 content made only a slight improvement in the stress relaxa-

tion.
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Figure 19,

TIME, h

Stress Relaxation of Binder Blends at 135°C in Nitrogen;
@ Re-1; @ RE-2 (Sce Table 1 For Description)
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b. R=4% - Hycar 1300 x 17 Blend. A 4:1 blend, by equivalent

weight, of R-45 and Hycar 1300 x 17, was reacted with IPDI. The pro-
duct, cast into a sheet, was cured 6 h at 135°C, 24 h at 145°C, and 2 h
at 155°C 1n nitrogen. The results of stress relaxation carried out at
125, 135, 145 and 155°C in nitrogen are shown in Figure 20. Figure 21
shows a comparison of the continuous and intermittent runs for this
blend at 135°C. The large divergence of the two curves shows that the
elastomeric binder is crosslinking continuously during the accelerated

aging.

c.  Esterdiol 560 - Hycar 1300 x 17 Blend. This blend was

extended and crosslinked with castor o0il. The isocyanate used was IPDI.
The stress relaxation behavior is shown in Figure 22, and a comparison

of the intermittent and continuous stress relaxation curves is shown in
Figure 23. Again, extensive crosslinking is indicated by aging at 135°C

in nitrogen.

d.  R-45 - Butarez HT Blends. Using a 3:1 blend of R-45 and

Butarez HT, two castings were rade using IPDI in one case and DDI in the
other. Cure of both castings was carried out simultaneously for 40 h at
150°C in nitrogen. An antioxidant was used (1.5% by weight).

The stress relaxation curves shown in Figure 24 indicate
that the DDI reacted blend has higher thermal stability.

Several attempts to carry out intermittent runs at 20 or 15%
extension with either compound failed. The samples broke, probably
because of embrittlement caused by excessive crosslinking.

The temperature dependence of reaction rates obtained from

stress relaxation measurements for most of the binders mentioned above
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are shown in Figure 25. Activation energies calculated from these data
are given in Table 2.

B. THERMOGRAVIMETRIC ANALYSIS

1. Isothermal Weight Loss Measurements on Ammonium Perchlorate

Samples

It was desirable to know the hehavior of the oxidizer when it alone
is exposed to the so-called Type Approval (TA) sterilization temperature
of 135°C. This temperature, however, was found to be too Tow to observe
any results in a reasonably short period of time. For example, no change
was observed after 280 h at 135°C. Thus, the thermal exposure temperature
for most of these experiments was raised to 150°C. All experiments, un-
less otherwise stated, were carried out in nitrogen.

The effect on the thermal stability of AP by factors such as recrys-
tallization, particle size, moisture content and dopant content was stud-
jed. A1l objectives were not met, however. The effort to prepare samples
with definite amounts of dopant was not completed in time. A bri¢f dis-
cussion of AP sample preparation is given in Reference 4. Thermal anal-
ysis has shown, nonetheless, that the presence of dopant increases the
thermal stability of the AP samples tested. Ammonium dihydrogen phos-
phate, NH4aHoPO4 was used exclusively, as the dopant. Chemical analyses
for NHgHoPO4 in AP were not reproducible, but indicated the amounts were
of the order of 0.02 to 0.08 wt.%. The stabilizing action of NHgH2PO4 was
observed previously (Ref. 5).

The designation and the description of the AP samples tested
thermally are given in Table 3.

The results of the isothermal weight Toss measurements by TGA are
shown in Figures 26-28.

It can be noticad that the weight loss curves first show an

3-29
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TABLE 2.

ACTIVATION ENERGIES OF BINDERS

(From Stress Relaxation Measurcments)

Binder ACHZS%‘I‘S?GKHWW %g:\éc gg)
E-1 106.0 1
£-2 107.0 2
E-3 124.0 3
£-3 + API (30%) 84.0 4
H-2 134.9 5
RH-1 115.3 6
EH-1 124.9 7
RB-1 80.8 8
RB-2 109.7 9
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TABLE 3. AMMONIUM PERCHLORATE (AP)

SAMPLE DESCRIPTION AND INDUCTION PERIODS

Induction
Particle Moisture Period,
Designation Description Size (n) Content % days

AP~ 1 AP Lot 5272, as received 6

(undoped)
AP- 2 AP Lot 5272, doped, recryst.

(unground) 200 16
AP- 3 AP Lot 5272, doped, recryst. 8 20
AP~ 4 AP Lot 5272, doped, recryst. 20 17
AP~ 5 AP Lot 5359, as received

(undoped) 200 7.4
AP~ 6 AP Lot 5359, doped, recryst.

(unground)
AP~ 7 AP Lot 5359, doped, recryst.

(ground) 12
AP- 8 AP Lot 5359, (undoped), recryst.

(unground) 7.2
AP~ 9 AP Lot 5359, doped, recryst. 20
AP-10 AP Lot 5359, doped, recryst. 490 0.031 6
AP-11 AP Lot 5359, doped, recryst. 0.014
AP-12 AP Lot 5359, doped, recryst. 0.044
AP-13 AP Lot 5359, doped, recryst. 480 0.012 7.5
AP-14 AP Lot 5359, doped, recryst. 275 0.020
AP-15 AP Lot 5359, doped, recryst. 255 0.016
AP-16 AP Lot 5359, doped, recryst. 0.040
ApP-17 AP Lot 5359, doped, recryst. 310 6.3
AP-18 AP Lot 5359, doped, recryst. 63 0.014 6.2
AP-19 AP Lot 5359, doped, recryst. 15 0.014 9
AP-20 AP Lot 5359, doped, recryst. 0.048 8.5
AP-21 AP Lot unknown (uncoated) 90
AP-22 AP Lo% unknown (coated with

PPQ 90
AP-23 AP Lot unknown (coated with

SPIZ) 90

1Po1ypheny1 quinoxaline

2$11icone-polyimide
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"induction" period, during which time very little, if any, weight loss
is registered. The end of the induction period is set to be the time
when weight loss exceeds 0.20%. The weighing accuracy of the instrument
is about * 0.10%. After this typical induction period an increase in
the rate of weight loss is observed which is characterized by a sudden
upward change in the slope of the weight loss curves.

Figure 26 depicts the isothermal weight loss curves obtained at
150°C in nitrogen for AP-1, -2, -3, and -4 from lot 5272. It is evident
that the doped samples, AP-2, -3 and -4 show higher stability as mani-
fested by the higher induction periods (see Table 4), and the slower
weight loss rates as shown by the Tower slopes. These curves also indi-
cate that stability increases by decreasing the particle size of the ox-
idizer. For example, AP-3 which has the smallest particle size, 8 p,
has the longest induction period, namely 20 d. The untreated, unground
AP-1 has particle size larger than 200 u, and shows an induction period
of 6 d only. Similarly, AP-4 with a larger particle size (20 p) than
AP-3, shows a steeper slope and a shorter induction period than the Tat-
ter. The effect of oxidizer particle size on the stability of AP and
propellants containing AP was observed at JPL before. It was found that
reducing the particle size increased propellant stability (Refs. 6,7).

Figure 27 shows the weight loss curves for selected samples pre-~
pared from AP lot 5359. The description of these samples also is given
in Table 3. Except for the untreated, or as received AP Lot 5272, the
other samples originating from this lot showed higher thermal stability
than those originating from Lot 5359, as shown by the induction periods
given in Table 3. The effects, however, of doping, particle size and
probably moisture on stability as manifested by induction periods are the
same as observed with lot 5272. For example, the only difference be-
tween AP-18 and AP-19 is the particle size, 63 and 15 u, respectively.
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The induction periods are 6.2 and 9 days, respectively. AP-10 which has
particle size of 490 u, shows a short induction period of 6 d. The
effect of doping on thermal stability can be pointed out by comparing
AP-5, the untreated sample, with AP-7, a doped sample. The induction
periods are 8 and 12 d, and the relative values of the slopes (i.e., the
rate of degradation) 80 and 7, respectively, indicating a much higher
stability for the doped sample.

The effect of recrystallization may be shown by comparing AP-5
with AP-8. The latter is undoped 1ike AP-5 and has about the same
particle size, but unlike AP-5 it was recrystallized. It can be seen
from Figure 27 that there is no significant difference hetween the
induction periods of AP-5 and AP-8. However, AP-8 has a lower slope,
indicating a slower rate of decomposition. Thus recrystallization
seems to improve the thermal stability of AP.

Small quantities of an ammonium perchlorate sample (AP-21) were
coated with polyphenyl quinoxaline (AP-22) and a silicone-polyimide
resin (AP-23). Figure 28 shows that coating did not influence the ther-
mal stability of the AP. Coating was initially intended to improve the
compatibility of the oxidizer with the binder and the mechanical prop-

erties of the binder.

2. Kinetic Analysis of Weight Loss Data Obtained for AP19

It is assumed that weight loss in AP samples is a manifestation of
thermal degradation. To determine the temperature dependence of the
rates of degradation, weight loss was determined for one of the AP
samples, AP-19, at 150, 165, 175 and 185°C over an extended period of
time. The results are shown in Figure 29. The weight loss curves ex-
hibit an irduction period when losses are minimal. The rate of loss

then changes abruptly as indicated by the sharper rise in the slopes of
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the curves. The induction period was set to be the time it takes to at-
tain 0.20% weight loss. Increase in the reaction temperature decreased
the induction period and increased the decomposition rate, as expected.
From the reciprocal of the induction period, 1/t;, and the maximum value
of the slopes, Vm, activation energies for the decomposition of the AP
sample were obtained. Results are shown in Figure 30.

The values of the activation energies, Ea, obtained from the
induction periods and the maximum slopes of the curves were very close,
however: approximately 144.0 and 140.2 KJ, respectively. This suggests
that the same reaction mechanism is in control in the total degradation
scheme.

It was of interest to determine the full shape of the weight loss
curve. To accomplish this in a reasonably short period of time, the
aging of the AP sample was continued at 185°C for about 100 hours. The
curve in Figure 31 depicts the results. It shows a decrease of the rate
of decomposition, at long times, a behavior often observed with chemical

degradation reactions.

3. Weight lLoss Measurements On a Binder and Binder-Oxidizer Systems
Thermogravimetric analysis was made on a sample of E-2 (Tahle 1),
an Esterdiol 560 based binder. The result is shown both in Figure 32
and Table 4. It is observed that the binder shows more thermal stabil-
ity than either the oxidizer alone or the binder filled with 30% APl.
It should be noted that the AP used was the untreated oxidizer, as re-
ceived from the manufacturer and had shown less thermal stability in
other tests. Table 4 or Figure 32 shows that the decreasing order of

stability is E-2 > AP1 > E-2 plus APl (30%).
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Figure

31, Welight Toss Curve for AP-19 at 185°C in N,
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TABLE 4. PERCENT WEIGHT LOSSES (TGA% IN NITROGEN OF
AP-1, E-2 AND E-2 + AP-1 (30%)

Temp.
°C AP-1 E-2 E-2 + AP-1 (30%)
275 2.43 2.06 7.39
300 11.04 6.29 30.00
325 22.30 18.90 45,00

350 46.40 31.50 53.70




C. MASS SPECTROSCOPIC ANALYSIS

Mass spectral analyses were performed on the volatile decomposi-
tion products obtained from aged sampies of ammonium perchlorate, binder
and binder-oxidizer systems. The purpose was to obtain additional in-
formation on the degradation mechanisms by identifying the products of
decomposition.
1. Analysis of Ammonium Perchlorate Samples

Nine samples of ammonium perchlorate (AP) with various histories
of preparation and treatment were aged for 76 d at 135°C in an initial
vacuum of 10-8 torr. After the aging period was over, the volatile pro-
ducts formed were analyzed by mass spectroscopy as described in the Ex-
perimental Section. The results are shown in Table 5. The description
of the samples are given in Table 3. All peaks obtained for AP samples
were normalized to mass 28 (Np or CO). No weight losses were given for
AP-2 and AP-6. Weighing was invalidated because some crystals from the
sample tubes had fallen into the ampoules. The most abundant peaks in
the AP samples were the Np*, 0p™ and COp*. The exception was AP-4 which
showed a very Tow CO2* (or NoOt) peak. A Took at the ratios of the Npt
to 0p* peaks shows that occluded air cannot be the source of these two
jons. Taking into consideration the higher sensitivity of N2+, the high
0p* content of the samples Jead us to conclude that the AP is, probably,
the principal source of No* and 0p*. This contention is supported by
the fact that very little and in some cases no argon, a constituent of
air, was detected in these samples. The concentration of NH3*, an ex-
pected decomposition product of AF, ranged from less than 1 ‘to 40% of
the No* peak. Examination of Table 5, allows the following conclusions
with regard to NH3* concentration:

a) It increases with increase in particle size of AP (compare
AP-2 with AP-3).
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b) It increases when dopant is present (compare AP-1 with AP-2).

c) It is highest when both NHgq Hp PO4 is present and particle
size is larger, i.e. sample is unground (compare AP-6 with all others).
The following observations can be made by examining some of the other
results:

a. Behavior of Untreated Samples. The "as received" or untreated

samples from two different batches, i.e., AP-1 and AP-5 showed: 1) the
highest capsule pressures, 6 and >2 torr, respectively; 2) the highest
percent weight loss, 6.9 and 12.5; 3) the highest 0o%, HC1* and C1p*
peaks. These results suygest the presence of occluded volatile impuri-
ties which are released on heating, and/or volatile decomposition pro-
ducts on thermal aging.

b. Effect of Recrystallization. The concentration of the follow-

ing charged molecules was noticeably diminished: Ho0%, HC1* and Clp*,

but the concentration of the following species increased on recrystal-

lization, 0%, 0p* and NO*. (Compare the results for AP-5, which is not
recrystallized and AP-8 which is recrystallized. Both samples were un-
doped and had comparable particle sizes.)

c. Effect of Doping. Doping reduced the amount of decomposition

products formed, particularly the concentration of the following ions:
0*, 0o%, HC1* and C1p*. (Compare, for example, AP-1 with AP-2, and AP-5
with AP-G or AP-9.) There is an apparent increase in the concentration
of Ho0% on doping. (Compare AP-2 with AP-1 and AP5 with AP-6 or AP-9.)
Whether this is caused by the partial decomposition of the dopant,
NH4HoPOq, under the test conditions, or moisture left during recrystal-
lization, has not been determined. It should also be stated that the
mass spectroscopic analysis of H20 poses problems. Water, particularly

at room temperature, will adhere to the walls of the orifice and not
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enter into the inlet of the mass spectrograph, as readily as other
gases. Thus, a low reading of Ho0% will not reflect the actual content
of this species in the mixture. The error will be minimized if the Hy0

content is . ow.

d. Effect of Particle Size. Reducing the particle size seems

to reduce the amount of Hp0%. (Compare AP-2 with AP-3 and AP-4, and
and with AP-8 and AP-9.)

e. Conclusions from the Mass Spectral Analysis.

Recrystallization and doping enhance the thermal stability of AP
oxidizers, as shown by the low capsule pressures obtained, the decreased
weight Tosses and the nature of the volatile decomposition products
registered by the mass spectrograph. The information obtained so far is
not enough, however, to suggest any satisfactory mechanism for the

degradation of AP.

2. Analysis of Filled and Unfilled Binders

The results of the mass spectroscopic analysis of one unfilled
binder prepared from R-45 and several oxidizer filled binders, and a
control sample are given in Table 6. Again, the relative amounts of
No¥, 02t and C0p* in the filled and unfilled binders shows that occluded
air cannot be the sole source of these ions. The fact that the unfilled
binder, R, shows less No* than the filled binder and practically no 0Op%,
supports the contention that these two ions are originated, largely,
from the AP. The major peak for the unfilled and the filled binders is
COp*. This suggests that the principal origin of this ion is the or-

ganic binder.
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3. Analysis of Ethylene-Propylene (EPDM) Liner Samples

It was of interest in this task to determine the effects of
various treatments that the liner is subjected to before usage as a
liner. Samples were therefore aged at the TA sterilization temperature
of 135°C, and the volatile products formed were analyzed by mass
spectroscopy. The results are given in Table 7. The samples are
described as follows: EPDM-1, untreated; EPDM-2, acetone rinsed and
oven drijed at 71°C; EPDM-3, acetone rinsed, oven dried at 71°C and
toluene diisocyanate (TDI) rinsed and oven dried at 71°C. Thin strips
from these three samples were cut and aged 4,8 and 16 weeks in evacuated
capsules at the sterilization temperature. The volatile products from
the aged specimens were analyzed in the same manner as the AP samples.
The results permit the following conclusions:

a. There is no significant difference between the behavinr of

EPDM-1 and EPDM-2. EPDM-3, however, acts differently.

b. As the aging period increases, all three samples show an

increase in the concentration of 0%, Np* and CCp%.

c. In the case of EPDM-3, the concentrations of S*, C0S*, ¢Syt
and CSZ*+ decrease, whereas no notable change in the concentration of

these ions is seen in the case of EPDM-1 and 2 as aging proceeds.

d. EPDM-3 shows higher concentrations of C*, No* and COp. It
is our contention that practically all the chemical species with the in-
dicated masses in Table 7 originate from the curatives and additives
used for the vulcanization of EPDM. Since no significant difference has
been noticed between the mass spectra of EPDM-1 and 2, we conclude that

washing with acetone does not alter the chemical character of EPDM.
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However, treatment with TDI influences the spectra of the rubber. Siz-
able reductions - the concentrations of S* (mass 32) and CSp* (mass 76)
are noticed in the mass spectra of EPDM-3. These ions could originate
from the organic sulfur compounds used as cure promoters or from the
free sulfur used in the formula, The TI could react with the parent
compounds from which these species originate and tie them down as non-
volatile compounds. Mass 78 is assigned to CSo* which has one $34 iso-
tope in the molecule. The higher concentrations of the ions C*, Np* and
C02* in EPDM-3 may have their origin in TI.

The curves obtained from the non-isothermal thermogravimet-
ric analysis of the three samples of EPDM were identical as shown in
Figure 33. This indicates that the treatments with acetone or I did

not cause significant chemical changes in the polymer itself.
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SECTION TV
SUMMARY

Polyurethanes prepared from hydroxy-terminated polybutadiene,
polybutadiene -acrylonitrile and dimerized and end-group modified fatty
acids were evaluated as binder candidates for heat sterilizable propel-
lants. The principal method of evaluation was chemical stress relax-
ation, which furnished information about the nature of polymer network
breakdown, whether scission, crosslinking or both; the site of the
breakdown, whether at the backbone or at the crosslinks; the relative
rates of degradatinn, and the activation energy required to start degra-
dation. 0Of the three isocyanates used to prepare the polyurethane
binders, i.e., TDI, IPDI and DDI, the polymeric DDI gave thermally the
most stable binders, as judged by the chemical stress relaxation re-
sults. The hydroxy-terminated polybutadiene, R-45 yielded unstable pro-
ducts in the absence of antijoxidant. With an antioxidant and parti-
cularly when blended with other prepolymers, such as Butarez HT, R-45
gave binders of satisfactory thermal stability. The best stress relax-
ation behavior was shown by the polyurethanes prepared from Esterdiol
560, essentially a difunctional prepolymer developed at JPL.

Samples of ammonium perchlorate were analyzed thermogravi-
metrically to study the effects of doping, recrystallization, L. ticle
size and other factors on the thermal stability of the oxidizer. Re-
sults indicated that doping with ammonium dihydrogen phosphate defi-
nitely improved its heat stability. Smaller particle size and recrys-
tallization also enhanced the thermal behavior, as shown by the longer
induction periods and Tower slopes of the weight loss curves obtained.

Similar conclusions could be reached from the extensive mass spectral
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analysis of volatiles produced by aging the oxidizer samples at 135°C,
the prescribed sterilization temperature.

From the induction periods and the slopes of the weight Toss
curves activation energies could be obtained, which suggested that the
degradation mechanism was the same during the initial or induction
period, as the period which was characterized by a steeper slope or
higher rate of degradation.

Samples of propellant liner made of EPDM, which had been subjected
to different cleaning treatments were aged and the volatile products
obtained were analyzed by mass spectroscopy. Although a definite dif-
ference in the spectra of the TDI treated samples was observed, the TGA
did not show any changes in the EPDM jtself. The differences in the
spectra of the TDI treated samples were ascribed to the interaction uf

the TOI with the vulcanizing agents used in curing the EPDM.
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