General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

A SINGLE-EXPRESSION FORMULA FOR INVERTING
STRAIN-LIFE AND STRESS-STRAIN RELATIONSHIPS

S.S. Manson
Professor, Mechanical and Aerospace Engineering
and
U. Muralidharan
Research Assistant

```
                                    N81-23491
A SINGLE-EXPRESSION
FORMULA FOR INVERIINONSSIPS CCASE Wester 20 CSCL G3/39 42355
STRESS-STEAIN RELATI \(31 \mathrm{pC} \mathrm{A03/aFA01} \mathrm{CSCL}\)
Reserve univ.)
```


Case Western Reserve University Cleveland, Ohio 44106

- For sale ty the National Technical information Service. Springlieid. Virginia 22161

ABSTPACT

Starting with the basic fatigue life formula

$$
\frac{\Delta \varepsilon}{\Delta \varepsilon}=\left(\frac{n_{f}}{N_{T}}\right)^{b}+\left(\frac{N_{f}}{N_{T}}\right)^{c}
$$

an inversion formula is derived in form

$$
\left.\frac{N_{f}}{N_{T}}=\left[\left\lvert\, \frac{\Delta \varepsilon}{\Delta \varepsilon}\right.\right)^{\frac{2}{b}}+\left(\frac{\Delta \varepsilon}{\Delta \varepsilon_{T}}\right)^{\frac{2}{c}}\right]^{\frac{1}{2}}
$$

where z is a function of strainrange and the ratio c / b.
The inversion formula is valid over the entire life range of enaineering interest for all materials examined. Conformity between the two equations is extremely close, suitable for all engineerine problems.

The approach used to invert the life relation is also suitabie for the inversion of other formulas involving the sum of two power-law terms.

INTRODUCTION

The availability of a formula expressing life directly in terms of strainrange and mean stress is a great convenience in cumulative damage analysis. Data for such an andysis usually appear as a sequence of loading each characterized by a strainrange and mean stress, and the analysis proceeds by establishing the life for each loading condition, and suitably summing cycle ratios based on the number of cycles actually applied at each loading divided by the life that would occur if that loading persisted until failure occurred. Unfortunately, however, the life relationship for each
loading condition is fomulated by an expression containing two terms with life raised to a fractional exponent. No exact closed-form relation for life can be obtained because the transcendental equation does not lend itself to exact solution.

A number of approximate methods have been ottained in the past for approximate, although accurate, inversion of the life relationship to obtain a direct expression for life N_{f}. These are discussed in Ref. 1. In one form the equation, defined in Ref. (l) as the Collocation method, is recast to an entirely different form, although numerically quite close to the actual life relation to be inverted. However, the numerical conformity can be achieved over only a few decades of fatigue life; therefore a "floating" relationship is required, changing the range for each application to insure that the life involved falls within it. While the procedure lends itself to easy computer programing, it would obviously be preferable to avoid the need for such a "floating" system.

A second approach, described in Ref. 1 as the spline point method, takes a step toward simplification by providing the inversion relationship in just two analytical expressions, one applicable below the transition strainrange (the strainrange where the elastic and plastic components are equal), the other above the transition strainrange. While quite accurate and simple to program, the inconvenience of having to account for a twopart analytical expression is still present in this method. The authors have therefore continued the search for a single-expression closed-form relationship suitable over the entire life range of interest in common engineering problems.

In this report we draw on the experience gained in Ref. 1 with the development of the two-part inversion expression to establish such a single expression. The report describes the basis of the method, and its applicability to a large number of materials commonly used in engineering design

METHOD

The Life Relation to be Inverted
The form of the basic life relci.onship was first proposed by Manson (Ref. 2). Later the same basic equation was expressed by Morrow (Ref. 3) with a new notation which is now comonly used

$$
\begin{equation*}
\frac{\Delta \varepsilon}{2}=\varepsilon_{f}^{\prime}\left(2 N_{f}\right)^{c}+\frac{o_{f}^{\prime}}{E}\left(2 N_{f}\right)^{b} \tag{1}
\end{equation*}
$$

Here $\Delta c=$ applied strainrange
$H_{f}=$ cycles to failure
ε_{f}^{\prime} and $\sigma_{f}^{\prime}=$ material constants designated as ductility coefficient and strength coefficient, respectively.
b and $\mathrm{c}=$ material constants designated as the elastic and plastic exponents, respectively.

An alternate form of the life relation has been expressed by Manson (Ref. 4)

$$
\begin{equation*}
R_{\varepsilon}=\frac{\Delta c}{\Delta \varepsilon_{T}}=\left|\frac{N_{f}}{N_{T}}\right|^{b}+\left|\frac{N_{f}^{\prime}}{N_{T}}\right\rangle^{c} \tag{2}
\end{equation*}
$$

where $R_{E}=\frac{\Delta c}{\Delta c_{T}}$
$\Delta \varepsilon=$ applied strainrange
$N_{f}=$ cycles to failure
where N_{T} and $\Delta \varepsilon_{T}$ are transition life and strainrange given by

$$
\begin{align*}
& \Delta \varepsilon_{T}=2\left(\varepsilon_{f}^{\prime}\right)^{b /(b-c)}\left(\frac{\sigma_{f}^{\prime}}{E}\right)^{f /(c-b)} \tag{3}\\
& N_{T}=\frac{1}{2}\left[E \varepsilon_{f}^{\prime} / \sigma_{f}^{\prime}\right] \tag{4}
\end{align*}
$$

Modification of the relation to account for mean stress is discussed in [5]. In Ref. [6] it is shown that, basically, the form of the relation is still given by Eq. (2), except that:

1. N_{T} is replaced by N_{T}^{\prime}, where

$$
\begin{equation*}
N_{T}^{\prime}=\frac{1}{2}\left[\left(2 N_{T}\right)^{-b}-\frac{2 \sigma_{0}}{E \Delta \varepsilon_{T}}\right]^{-1 / b} \tag{5}
\end{equation*}
$$

where $\sigma_{0}=$ mean stress
2. The transition strainrange $\Delta \varepsilon_{T}$ is the same as for completely reversed loading, but can be replaced by $k^{\prime} \Delta \varepsilon_{T}$ if experimental information is available to indicate that the cyclic stress-strain curve is affected by mean stress. In the absence of such explicit information k_{ε} is taken as unity.
3. The term σ_{0} in Eq. (5) may be replaced by $k_{m} \sigma_{0}$ if experimental evidence exists to provide a more accurate relation between cyclic life and mean stress [7] than that originally proposed by Morrow in [8] that mean stress can be accounted for by replacing σ_{f}^{\prime} in Eq. (1) by $\sigma_{f}^{\prime}-\sigma_{0}$.

Thus, whether mean stress is or is not present, the same basic equation of the form of Eq. (2) applies. We shall therefore focus our attention on the inversion of this relation, recognizing that N_{T} definitely depends on mean stress and $\Delta \varepsilon_{T}$ may be a weak function of mean stress.

Choice of the Form of the Inverted Relationship

An intuitive choice of form of the inverted equation is

$$
\begin{equation*}
\frac{N_{f}}{N_{T}}=R_{\varepsilon}^{\frac{1}{b}}+R_{c}^{\frac{1}{c}} \tag{6}
\end{equation*}
$$

iq. (6) has the same asymptotes as Eq. (2), so at it is a valid representation of Eq. (2) at extremes of life and strainrange, but unfortunately the two equations do not coincide for intermediate values in the vicinity of the transition point for the parameters associated with most materials. Fig. I shows, for example, the results for Ti-6Al-4V. The continuous curve is the proper life relation obtained by adding vertical strain ordinates at any value of $2 N_{f}$, while the dotted curve is determined from Eq. (6), which essentially adds horizontal abscisas at any value of strainrange. Of course the simplified inversion formula is correct at life extremes where the coordinate values on one line are negligible compare」 to those of the other; in the region of the transition point, where the coordinate values associated with both elastic and plastic lines are numerically significant relative to each other, a considerable difference exists between the results of Eq. (2) and those of Eq. (6).

The next logical step is to introduce the parameter z according to

$$
\begin{equation*}
\frac{N_{f}}{N_{T}}=\left[R_{\varepsilon}^{2 \prime b}+R_{\varepsilon}^{z / c}\right]^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

Again it is clear that the asymptotes of Eq. (7) are the same as those of Eq. (2), since they are

$$
\begin{equation*}
\frac{N_{f}}{N_{T}}=\left[R_{c} z / b\right]^{\frac{1}{2}}=R_{c}^{1 / b} \text { and } \frac{N_{f}}{N_{T}}=\left[R_{c} z / c\right]^{\frac{1}{2}}=R_{c}^{1 / c} \tag{8}
\end{equation*}
$$

However, we now have an adjustable parameter 2 which can be chosen to produce good fit over a large range about the transition point while retaining the desired asymptotes for all choices of z (except the trivial case of $z=0$). Distermination of the Parameter 2

The first approach was to determine whether \mathbf{z} could be taken as a single constant. In this case only a single point on the curve could be forcefitted exactly. Consider, for example, the choice for fit at point (2) in Fig. 2 immediately above the transition point. Here $R=2$ (since elastic and plastic strainranges are both equal to $\Delta \epsilon_{T}$), and $N_{f} / N_{T}=1$. For this point, Eq. (7) becomes

$$
\begin{equation*}
1=\left[2^{2 / b}+2^{z / c}\right]^{1 / 2} \tag{9}
\end{equation*}
$$

This equation cannot be solved exactly, but a very good approximation can be obtained using the experience gained in Ref. 1. For example, by re-writing the equation in the form

$$
\begin{equation*}
1=\left[2^{\frac{z}{c} \cdot \frac{c}{b}}+2^{\frac{2}{c}}\right] \tag{9a}
\end{equation*}
$$

it becomes clear that since the only two parameters in this equation are z / c and c / b, that the equation is really a statement $z / c=f(c / b)$. Thus, choosing a series of values of c / b and solving numerically for z / c from Eq. (9a), we can plot the resulting values of $2 / \mathrm{c}$ vs. the chosen c / b. A linear relation results when the plot is on log-log coordinates, leading to

$$
\begin{equation*}
z_{2}=-1.117 c\left(\frac{c}{b}\right)^{-.632} \tag{10}
\end{equation*}
$$

Another logical point to consider for exact fit is point (1), where $R_{\varepsilon}=1$. The value of $\frac{N}{N_{T}}$ at this point has already been determined in [1] as e^{δ} where

$$
\begin{equation*}
\delta=\frac{-0.78}{c}\left(\frac{c}{b}\right) 0.36 \tag{11}
\end{equation*}
$$

Substituting these values into Eq. (7) and solving by the same technique as used for solving Eq. (9) results in

$$
\begin{equation*}
z_{1}=-0.889 c\left(\frac{c}{b}\right)^{-0.36} \tag{12}
\end{equation*}
$$

Finally, a third point (3) in Fig. 2 can be used for fit. For this point N_{f} is as much lower than N_{T} as it is higher than N_{T} at point (1). In other words. N_{T} is the geometric mean of the life values at (3) and (1). Thus, since $\frac{N_{f}}{N_{T}}=e^{-\delta}$ at this point, use of Eq. (2) results in $R_{\varepsilon}=e^{-b \delta}+e^{-c \delta}$. Again substituting these coordinates into Eq. (7) and solving numerically, results in

$$
\begin{equation*}
z_{3}=-1.237 c\left(\frac{c}{b}\right)^{-.832} \tag{13}
\end{equation*}
$$

Any one of the three values of z from Eas. (10), (12), or (13) would provide a first-approximation constant value of 2 that can be used in Eq. (7). Fig. 3 shows the types of fit that can be achieved by using successively points (1). (2), and (3) for the particular alloy Ti-6Al-4V. While all fits are quite good, they are not adequate for applications requiring high accuracy over the entire life range. By taking 2 as a second-degree polynomial in lnR_{c}, however, rather than a single constant, three adjustable constants become available, permitting fit at all three points (1), (2), and (3), and producing, therefore, an exceptionally good fit over the entire life range. The choice of location of the three points is exceptionally fortuitous, since it pemits the final result to be expressed literally

In general terms of all the narameters involved. Details of the orocedure are outlined in Appendix A, the final result being

$$
\begin{equation*}
z=\exp \left[P\left(\ln R_{c}\right)^{2}+O\left(\ln R_{c}\right)+S\right] \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& P=-.001277\left(\frac{c}{b}\right)^{2}+.03893\left(\frac{c}{b}\right)-.0927 \tag{15}\\
& Q=.004176\left(\frac{c}{b}\right)^{2}-0.135\left(\frac{c}{b}\right)+0.2309 \tag{16}\\
& S=\ln \left[-.889 c\left(\frac{c}{b}\right)^{-.36}\right] \tag{17}
\end{align*}
$$

Final Formulation. The basic procedure is, therefore, as follows:
Starting with the commonly used form of the life relation Eq. (1) calculate the transition point coordinates from Eqs. (3) and (4), casting the basic relation according to Eq. (2). The inverted relation is Eq. (7) where z is given by Eq. (14) with the values of P, Q, and S given in Eqs. (15)(17). If mean stress is present, use the same procedure, except use Eq. (5) to obtain the transition life. While in most cases the mean stress multiplier k_{m}, and transition life multiplier k_{c} can be taken as unity, actual values of these multipliers can be used if experimentally detemined. All the equations necessary for the inversion procedure are summarized in Table 11 . DISCUSSION

While the inversion procedure described in Ref. 1 is more compact than that described in this report, its drawback is that it requires two formulas, one valid above the transition strainrange, the other below. The inversion procedure described here is a single-expression
relation valid over the entire.life and strainrange of the material. Several somewhat lengthy formulas are involved in the procedure, but numerically there is littie difficulty involved since they can easily be progranmed, even with simple hand-held calculators. The degree of conformity between the basic life relation and the inverted relation is remarkably good, conforming to any reasonable engineering standard likely to be required.

Table I has been prepared to determine the conformity for a large number of materials over the practical life range from 10 to 10^{6} cycles to failure. The results are not shown for lives lower than 10 cycles or greater than 10^{6} cycles, since agreement becomes even closer as the points invoived lie closer to the asymptotic elastic and plastic lines. Data for the table were obtained from Landgraf et al's compilation [9]. For each material the basic faligue parameters are listed in columns 2 to 6 , and the calculeted transition point coordinates are shown in columns 7 and 8 . The strainrange required to produce lives of 10 to 10^{6} cycles, in decade increments, were first calculated from the basic life equations of form as in either Eq. (1) or (2). These strainranges were then used in the inversion formula, Eq. (7) to obtain the lives that the formula would yield, as conpared to the "exact" values $10,10^{2}$, etc. These lives are shown in Columns 9 to 14. An entry of unity means that the inversion formula gives exact?y the same results as the basic equation. The degree of discrepancy between the "exact" equation and the inversion formula is indicated by the departure from unity of the number entered at each life level. In mest cases the error is only two or three percentage points in life, a degree of accuracy far exceeding the experimental scatter usuaily associated with the detemination of the basic life relation. Only one entry in the entire table involves a difference of more than 10% - material no. 1 at the 10 cycles life level. In
most cases the conformity is extremely close.
Figure 4 shows the life relations according to Eqs. (2) and (7) for the four materials for which the discrepancies were the greatest among those listed in Table l. Even for these materials the difference between the two curves can not be discerned on a reasonable graph scale, except for the very lowest lives. Still, the discrepancies are negligible for engineering purposes. It can reasonably be concluded that the inversions formula is sufficiently accurate for all materials for all engineering purposes.

The monotonic and cyclic stress-strain curves represent other examples of relations that can be inverted by similar procedures. Appendix B outlines the application to the cyclic stress-strain curve. Since stress is expressed directly in terms of strain. closed form analytical expressions can easily be obtained for stress in terms of strain for double amplitude stress strain curves, for both increasing and decreasing directions. With the proper rule for incorporating memory, it is possible to find the str ss response of a material for a given. complex strain history.

The basic inversion approach has utility for other app!ications, as well, whenever one variable is expressed as the sum of two negative power-law expressions of a second variable. The Smith-Watson-Topper [10] relationship for treating mean stress effects also involves such a formulation, and is therefore amenable to treatment by the method of this report. Appendix C presents the basic outline of the approach. Other potential applications are creep strain analysis, wherein a creep or creep-rupture curve is sometimes represented by the sum of two power-law relations. Numerous other applications can be envisioned.

CONCLUDING REMARKS
The method presented in this report for inverting the life relationship provides extremely accurate results for all materials examined over the entire range of fatigue lives of interest in common engineering applications. The formulas involved can easily be programmed on a computer or hand-held calculator. No trial-and-error calculations are involved. All the relations involved are summarized for convenience in Table II. The basic inversion method may also find utility in other applications such as inverting the stress-strain curve, analytical treatment of alternative methods of calculating mean-stress effects on fatigue life -- such as the Smith-Watson-Topper parameter, and inverting creep and creep-rupture relations involving two power-laws. The approach is even suggestive of how to treat relationships involving three or more power-law terms. although details would require further study.

TABLE I
APPLICATION OF INVERSION FORMULA FOR FIFTY CHARACTERIZED MATERIALS OF ENGINEERIMG INTEREST

TABLE I - continued

1 murcalal	2	${ }^{2}$		5c		1Δx_{1}	$\begin{gathered} \mathrm{u}^{2} \\ \mathrm{n}_{\mathrm{T}} \\ \text { cyclee } \end{gathered}$	$10 \begin{array}{llllll}11 & 12 & 13\end{array}$					
	${ }_{\text {c }}^{8}$		-		${ }_{\text {Lei }}$			$\underline{120}$	8180^{2}	140^{3}	$1{ }^{6}$	n¢ ${ }^{5}$	810^{6}
015 2044142-450 max	290	. 40	-. 06	-.73	30000	. 0122	154	. 90	1.04	. 38	1.04	1.03	1.00
110 saste2-47s max	300	. 20	-. 002	-. 71	29000	. 0145	31	1.0\%	. $*$	1.02	1.0\%	1.00	1.00
017 Als1630-263 man	174	. 45	-. 095	-. 56	28000	4.53x10	7537	. 92	. 94	1.00	. 9	-3	. 98
018 al114340-405 mim	290	. 48	-.091	-. 60	29000	. 01	1005	. 92	1.00	1.60	. 8	. 98	. 99
019 sassico-430 mammen	200	. 40	-. 071	-. 57	28000	.0118	812	. 92	1.05	1.00	. 25	1.01	1.02
120 sasess-260 mim	251	. 255	-. 071	-.47	30000	5.47×10	26e	. 9	1.00	1.02	. $\%$. 24	. 94
021 2ass35-410	259	. 38	-. 057	-.65	29000	. 013	262	. 26	1.06	. 92	1.04	1.12	1.05
022 A131304-160 mimm	350	1.02	-. 15	0.71	27000	9.02719	571.3	. 94	. 93	. 98	- 3	. 50	.93
123 alsi310-145 mmm	240	. 60	-. 15	-. 57	28000	3.76210	12361	. 95	. 97	. 8	1.00	.98	. 98
026 mass mameales	406	. 33	-. 14	-. 04	21000	. 016	43.4	1.00	. 98	.99	. 20	. 99	1.00
025 Let mi-Moreging 460	310	. 00	-. 071	-. 78	27000	. 015	183	. 98	1.05	. 94	1.00	1.05	1.011
026102 mi-Morasing 400	325	. $*$	-. 07	-. 75	26000	. 017	146	. 24	1.04	. 53	1.00	1.06	1.01
130 2014-81-76	123	. 42	-. 106	-. 65	10000	. 0124	329	. 35	1.01	. 91	. 38	. 89	. 80
131 2014-al-T4	147	. 21	-. 11	-. 52	10200	. 01405	346	. 91	1.00	. 94	. 80	. 97	. $*$

TABLE I - continued

1 miteral.	$\stackrel{1}{i}_{0_{i}}^{2}$	3	4	5	6$k=1$	${ }_{\mathbf{L C}}^{\boldsymbol{c}}$	$\left\{\begin{array}{c} 8 \\ \mathrm{n}_{\mathrm{T}} \\ \text { cyelea } \end{array}\right.$	910		$\begin{aligned} & \text { ImyERTED Litte AT } \\ & 12 \quad 12 \end{aligned}$			14
								$\mathbf{1 0}$	210	110^{3}	810^{4}	H05	510 ${ }^{6}$
032 5456 aluatme	105	. 46	-. 11	-. 67	10000	9.998io	427	. 94	1.01	. 50	. 94	. 99	. 98
(13) 5aEl015-00 mam	120	. 95	-. 11	-. 64	30000	2,37810	15183	.97	. 93	. 58	1.00	.97	. 9
036 saresox-150 amm	91	. 35	-.075	-. 56	30000	2.02×10	13604	. 94	. 91	1.02	2.01	. 95	. 98
915 vame-225 mus	153	. 21	- 0.00	-. 53	28200	3.67810	1680	. 91	1.00	1.01	.96	. 98	. 99
336 macioo-29t mmm	167	. 0	-. 076	-. 61	29400	3.42xid	1582	.93	. 93	1.04	. 93	1.03	1.03
037 Eations-500 mmm	330	. 25	-. 04	-.60	30000	. 0143	91	1.02	1.00	. 56	2.03	1.02	. 985
030 arsiciso-250 mim	105	. 92	-. 083	-.63	32000	5.36xid	5290	. $\%$.33	1.04	. 24	.97	1.01
039 saral42-300 mam	265	. 45	-. 00	-. 75	30040	. 01103	171	. $\%$	1.05	. 95	1.0*	1.03	1.00
040 samalaz-450 man	305	. 60	-. 09	-. 76	29000	. 0122	209	. 95	1.04	. 8	1.02	1.01	. 936
041 sath 340-350 mim	240	. 73	-. 076	-. 62	28000	9,21xid	1767	.92	. 59	1.03	.95	1.00	1.02
062 arsis2100-510 mmm	373	. 10	-. 09	-. 56	30000	. 015	166	. 99	1,00	.*	. 24	. 99	. 58
063 5ace262-200 mim	177	. 41	-. 073	-. 60	28000	7.09x10	1372	.91	1.02	1.02	. 95	1.01	1.03
$144 \mathrm{H}-11600 \mathrm{~mm}$	460	. 08	-. 017	-. 76	30000	. 0253	6	. 58	1.00	1.05	1.02	1.00	1.00
063 AISI304-327 anm	310	. 89	-. 12	-. 69	25000	. 0109	808	. 93	. 99	. 99	.97	. 5	. 96

TABLE I - continued

1 mateatal	$\begin{gathered} 2 \\ 0_{f}^{\prime} \\ \text { yol } \end{gathered}$	c	b	S	6 \mathbf{E} hal	${ }^{7}$	$\begin{gathered} \text { 日 } \\ \mathbf{m}_{T} \\ \text { cyclee } \end{gathered}$	inverted lifi at					
								110	$\underline{10} 0^{2}$	810^{3}	110^{4}	810^{3}	10^{6}
046 24350-4\%6 Evin	180	. 094	-. 102	-. 42	26000	. 0164	183	. 99	. 99	. 93	. 90	. 94	. $\%$
(4) 142 Whekel Marragim	260	. 3	-. 065	-. 62	27000	. 0118	204	. 91	1.07	. 94	1.00	1.07	1.03
140 2026-7351 alumiom	160	. 22	-. 126	-. 39	10600	. 0148	157	. 58	. 99	. 50	. 90	.97	. 97
049 7075-76 alcolina	191	. 19	-. 126	-. 32	10300	. 0176	184	. 99	1.00	.9	. 50	.97	. 6
1so samacos-mate	93	. 1	-. 109	-. 39	29000	1.69×10	103608	. 95	. 97	. 99	1.00	1.00	1.00

TABLE II

LIST OF FORMULAS USED IN INVERSION METHOD

For completely reversed cycling:

$$
\frac{\Delta \varepsilon}{2}=\frac{\sigma_{f}^{\prime}}{E}\left(2 N_{f}\right)^{b}+\varepsilon_{f}^{\prime}\left(2 N_{f}\right)^{c}
$$

Transition strain-range $\Delta \varepsilon_{T}=2\left(\varepsilon_{f}^{\prime}\right)^{\left(\frac{b}{b-c}\right)} \cdot\left(\frac{\sigma_{f}^{\prime}}{E}\right)^{c /(c-b)}$

Transition life $N_{T}=\frac{1}{2}\left(\frac{E \varepsilon_{f}^{\prime}}{\sigma_{f}^{\prime}}\right) \frac{1}{(b-c)}$

If the mean stress of σ_{0} is present, transition life

$$
\begin{aligned}
& N_{T}=\frac{1}{2}\left[\left(2 N_{T}\right)^{-b}-\frac{2 \sigma_{0}}{E \Delta \varepsilon_{T}}\right]^{-1 / b} \\
& R_{\varepsilon}=\frac{\Delta \varepsilon}{\Delta \varepsilon_{T}}=\left(\frac{N}{N_{T}}\right)^{b}+\left(\frac{N}{N_{T}}\right)^{c}
\end{aligned}
$$

Inverted relation:

$$
N_{f}=N_{T} \cdot\left[R_{\varepsilon}^{\frac{z}{b}}+R_{\varepsilon}^{\frac{z}{c}}\right]^{\frac{1}{2}}
$$

where

$$
\begin{aligned}
& Z=\exp \left[P \ln ^{2} R_{\varepsilon}+Q \ln n_{\varepsilon}+S\right] \\
& P=-.001277\left(\frac{c}{b}\right)^{2}+.03893\left(\frac{c}{b}\right)-.0927 \\
& Q=.004176\left(\frac{c}{b}\right)^{2}-.135\left(\frac{c}{b}\right)+.2309 \\
& S=\ln \left[-.889 c\left(\frac{c}{b}\right)^{-.36}\right]
\end{aligned}
$$

Fig. 1. Actual and Inverted Strain-life curves for Ti-6Al-4V by equations shown above.

Fig. 2. Selection of points on life curve which can be forced fit to determine 2 as a single constant.

Fig. 3. Exact and inverted life relations which are forced fit at locetions (1), (2) or (3) for $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}$ ($170^{\circ} \mathrm{F}$).

Eq. (2)
Eq. (7)
Fig. 4. Comparison of actual and inverted life relations for above four materials which show maximum discrepancy as shown in Table 1 .

- REFERENCES

1. S.S. Manson, "Inversion of the Strain-Life and Strain-Stress Relationships For Use in Metal Fatigue Analysis," Journal of Fatigue of Engineering Materials and Structures, Vol. 1 (1979) pp. 37-57.
2. S.S. Manson, "Thermal Stress in Design, Part 19, Cyclic Life of Ductile Materials," Machine Design (July 7, 1960) pp. 139-144.
3. J. Morrow, "Cyclic Plastic Strain Energy and Fatigue of Metals," ASTM STP 378 (1965) pp. 45-87.
4. S.S. Manson, "Predictive Analysis of Metal Fatigue in the High Scycle Life Range," Methods of Predicting Material Life in Fatigue, ASME (1979) pp. 145-183.
5. S.S. Manson and G.R. Halford, "Practical Implementation of the Double-Linear Damage Rule for Cumulative Fatigue Damage Analysis," International Journal of Fracture, Vol. 17, No. 2 (April 1981) (See also NASA TM-81517, 1980).
6. S.S. Manson and G.R. Halford, "Recent Developments in Practical Implementation of the Double Linear Damage Rule," International Journal of Fracture, Vol. 17, No. 3 (1981) (in press).
7. J. Walcher, D. Gray, and S.S. Manson, "Aspects of Cumulative Fatigi: Damage Analysis of Cold End Rotating Structures," AIAA/SAE/ASME 15th Joint Propulsion Conference, June 18-20, Las Vegas, Nevada, AIAA Paper 79-1190.
8. JoDean Morrow, "Fatigue Properties in Metals," Section 3.2, Fatigue Design Handbook, Advances in Engineering, Volume 4, J.A. Grahm, ed., Society of Automotive Engineers, Incorporated, Warrendale (1968) pp. 21-29.
9. R.W. Landgraf, M.R. Mitchell and N.R. LaPointe, "Monotonic and Cyclic Properties of Engineering Materials," Ford Motor Company (1972).
10. K.N. Smith, P. Watson, and T.H. Topper, "A Stress-Strain Function for the Fatigue of Metals," Journal of Materials, ASTM, Vol. 5, No. 4 (December 1970) pp. 767-778.

Appendix A

DETERMINATIOH OF THE Z-PARAMETER.

To fit 2 through three known points represented by Eqs. (10), (12), and (13), we start by noting that the values of $2 / \mathrm{c}$ for each of these equations is a function of only ($\frac{c}{b}$). Furthermore, the values of R_{E} at points (1) and (2) are constants, while at point (3) it also depends on only c / b (since $\delta=\frac{-0.78}{[c}\left(\frac{c}{b}\right)^{0.36}$ from Ref. [1], $\left.e^{-b \delta}=\operatorname{exD}^{[0.78}\left(\frac{c}{b}\right)^{-0.64}\right]$ and $e^{-c \delta}=\exp \left[0.78\left(\frac{c}{b}\right)^{0.36}\right]$, thus both terms are functions of only $\left.c / b\right)$. As a result, if we formulate the relation

$$
\begin{equation*}
\ln \frac{z}{c}=P\left(\ln R_{c}\right)^{2}+Q\left(\ln R_{\varepsilon}\right)+S^{\prime} \tag{A-1}
\end{equation*}
$$

it is clear that satisfying the three equations at point (1). (2) and (3) of Fig. 2 will produce relations for P, Q and S that will be functions of only c/b. However, since these functions are rather complicated because of the exponentials involved, we proceeded in more simplified fashion. Choosing specific values of $c, c / b$ for actual materials, we applied the coordinates expressed in Eqs. (10), (12) and (13), to substitute into Eq. ($A-1$) and solved for P, Q, and S^{\prime}. The value of S^{\prime} could easily be determined in closed form, since at $R_{\varepsilon}=1, \ln R_{c}=0$, so S depends only on c / b, resulting in

$$
\begin{equation*}
s^{\prime}=\ln \left[-.889 c\left(\frac{c}{b}\right)^{-0.36}\right] \tag{A-2}
\end{equation*}
$$

However, for determination of P and Q the graphs shown in Fig. A-1 were used. Calculations for P and Q are shown for various materials, and are plotted against (c/b). As expected, a single curve results. Passing a
second degree polynomial through each of these two curves, using least-squares analysis resulted in the relations shown in Eqs. (15) and (16). By combining *he in $\frac{1}{c}$ term of Eq. ($A-1$) with the S^{\prime} term of Eq. (A-2), the resulting value of S shown in Eq. (17) was obtained, leading to the equation for z in Eq. (14) as a direct consequence of Eq. (A-1).

Although the above method was adopted for final use, other approaches were investigated during the study. Among them was one in which expressions for 2 similar to Eqs. (10), (12) and (13) were writtien for a number of additional points along the curve. Least squares analysis was then applied to obtain a fit of an equation similar to Eq. (14) through the redundancy of points. The resulting equations were less accurate than the method finally adopted. Other approaches were more complicated but not more accurate. The method adopted provides a high degree of accuracy with a relative simplicity of underlying basis and ease of final application, as discussed in the report.

Fig. A-1. Determination of Constants P and Q in Eq. ($A-1$) for various materials shown.

APPENDIX 8

INVERSION OF THE CYCLIC STRESS-STRAIN CURVE

The cyclic stress-strain curve can be expressed by the following:

$$
\begin{align*}
& \Delta 0=\Delta \varepsilon_{e} E \tag{B-1}\\
& \Delta \varepsilon_{e}=\left(\frac{N_{f}}{N_{T}}\right)^{b} \cdot \Delta \varepsilon_{T} \tag{B-2}\\
& \Delta 0=E \Delta \varepsilon_{T}\left(\frac{N_{f}}{N_{T}}\right)^{b} \tag{B-3}
\end{align*}
$$

$\left(\frac{N_{f}}{N_{T}}\right)$ can be expressed in terms of R_{c} by Eq. (7). Here Eq. (B-3) becomes,

$$
\begin{equation*}
\left.\Delta 0=E \Delta E_{T}\left[R_{E}^{\frac{z}{b}}+R_{E}\right]^{\frac{z}{c}}\right]^{\frac{b}{2}} \tag{B-4}
\end{equation*}
$$

where 2 is computed by Eus. (14) to (17).
Fig. (B-1) shows the basic cyclic stress-strain curve for Ti-6Al-4V, and the inverted relation by Eq . ($B-4$), which are essentially identicai. Hence stress is known directly in terms of applied strain-range.

Fig. B-1. Comparison of basic cyclic stress-strain curve and inverted relation for $\mathrm{Ti}-6 \mathrm{Al}-4 \mathrm{~V}\left(170^{\circ} \mathrm{F}\right)$.

APPENDIX C

INVERSION OF SMITH-WATSON-TOPPER RELATIONSHIP

Life associated with a given hysteresis loop with mean stress can be computed by the knowledge of maximum stress and strain range by the SWT procedure [7]. According to this method a universalized curve results when we plot ($\frac{E \Delta_{e}}{2} \cdot \sigma_{\max }$) vs. N_{f} for all combinations of $\Delta \varepsilon$ and mean stress. Thus if we start with case for completely reversed loading,

$$
\sigma_{\max }=\frac{\sigma_{f}^{\prime}}{E}-\left(2 N_{f}\right)^{b}
$$

Using Eq. (1), we get

$$
\begin{equation*}
\left(\frac{\Delta \varepsilon}{2} \cdot E \sigma_{\max }\right)=\sigma_{f}^{\prime 2}\left(2 N_{f}\right)^{2 b}+\varepsilon_{f}^{\prime} \sigma_{f}^{\prime} E\left(2 N_{f}\right)^{c+b} \tag{c-1}
\end{equation*}
$$

Expressing Eq. (C-1) in the form of Eq. (2),

$$
\begin{equation*}
\left.\left.\frac{\left(\frac{\Delta \varepsilon}{2}\right.}{} E \sigma_{\max }\right) \left\lvert\,\left(\frac{N_{f}}{\frac{\Delta \varepsilon}{2}} \quad E \quad \sigma_{\max }\right)_{T}\right.\right)=\left(\frac{N_{f}}{N_{T}}\right)^{(c+b)} \tag{C-2}
\end{equation*}
$$

where N_{T} is given by Eq. (4)

$$
\begin{equation*}
\text { and }\left(\frac{\Delta \varepsilon E \sigma_{\max }}{2}\right)_{f}=\sigma_{f}{ }^{2}\left[\frac{E_{\varepsilon_{f}^{\prime}}}{\sigma_{f}^{\prime}}\right]^{\frac{2 b}{(b-c)}} \tag{C-3}
\end{equation*}
$$

Eq. (C-2) can be easily inverted by using the procedure described for inverting strain-life relationship

Let $R=\frac{\left(\frac{\Delta \varepsilon E \sigma_{\max }}{2}\right)}{\left(\frac{\Delta \varepsilon E \sigma_{\max }}{2}\right)_{T}}$

Then

$$
\begin{align*}
& \frac{N_{f}}{N_{T}}=\left[R^{\frac{2}{2 b}}+R^{\frac{2}{c+b}}\right]^{\frac{1}{2}} \tag{c-4}\\
& Z=\exp \left[P \ln ^{2} R+Q \ln R+S\right] \\
& P=-.001277\left[\frac{c+b}{2 b}\right]^{2}+.03893\left[\frac{c+b}{2 b}\right]-.0927 \\
& Q=.004176\left[\frac{c+b}{2 b}\right]^{2}-.135\left[\frac{c+b}{2 b}\right]+.2309 \\
& S=\ln \left[-.889(c+b)\left(\frac{c+b}{2 b}\right)^{-.36}\right]
\end{align*}
$$

Actual ($\frac{\Delta E}{2} E \sigma_{\text {max }}$) vs. N_{f} curve and inverted curve for $T i-6 A 1-4 V$ as shown in Fig. Cl are essentially indistinguishable. For a given material $\left(\frac{\Delta E E \sigma_{\text {max }}}{2}\right)_{T} ; N_{T}, P, Q, S$ can be easily calculated. Then for any given hysteresis loop, if $\sigma_{\max }$ and $\frac{\Delta \epsilon}{2}$ are known, N_{f} can be determined by Eq. (C-4).

Fig. C-1. Comparison of actual and inverted curve used in Smith-Watson-Topper method for estimating life under mean stress and strainrange.

