NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

FINAL TECHHICAL REPORT ON RESEARCH GRANT NSG-8065 (REPort \# AANJ-NSG-8065-03)
STATISTICAL CLASSIFICATION TECHNIOUES FOR EMGINEERIMG AND CLIMATIC DATA SAMPLES

INAL TECHNICAL REPORT
ON
NASA RESEARCH GRANT NSG-8065

STATISTICAL CLASSIFICATION TECHNIQUES for engineering and climatic data samples

By

Enoch C. Temple Principal Investigator Department of Mathematics Alabama AdM University Normal, AL 35762
and
Jerry R, Shipman Co-Principal Investigator Department of Mathematics Alabama A\&M University Normal, AL 35762

Prepared for NASA's George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

April 1981

ACRNOOWLEDGEMENTS

Alabama AcM Univarsity extends appreciation to the National Aeronautics and Space Administration, Marshall Space Flight Center, Alabama for sponsorship of this research. We are particularly grateful to Nr. O. E. Suith and Mr. Marion Rent for their support.

A special thanks is extended to Ms. Lois Rice for her tireless effort in typing this document.

Abstract

The objective of this research is to modify Fisher's eample inear discriminant function through an appropriate alteration of the common sample variance-covariance matrix. The alterations consists of adding nonnegative values to the eigenvaluee of the sample variance-covariance matrix. The desired results of this modification is to increase the number of correct classifications by the new ilnear discriminant function over Fisher's function. This study is ilmited to the two-group discriminant problem.

The present research has identified several feasible alterations on the sample variance-covariance matrix which produce several different biased IInear discriminant functions. The performance of the biased discriminant functions are compared through Monte Carlo experiments. Comparstive performance is based on the Conditional Probability of Misclassification (PMC). Each biased discriminant function has been evaluated ovar seventy-two (72) different computer simulation design configurations which gave consideration to: (1) Sample size, (2) near-singularity in the variance-covariance matrix, (3) Mahalanobis distance, and (4) orientation of mean vectors.

Initially, it was believed that sufficient improvement in the conditional PMC could be gained by defining a new discriminant function through the deletion of small eigenvalues (equating them to zero) in the sample variancecovariance matrix. However, the difficulty of determining a "cut-off" value led the researchers to consider several additional ajternations on the sample variance-covariance matrix.

TABLE OF CONTENTS

Page
ACKNOMLDDGEABAES 1
ABSTRACT 11

1. INTRODUCTIOR 1
2. basic properties of the liniar discriminant function 4
2.1 The pouplation Discriminant Function 4
2.2 The Sample Discriminant Punction 8
3. APPLICATION OF PRINCIPAL COMPOREATS 11
3.1 Population Principal Components 11
3.2 Sample Principal Components 12
3.3 Principal Components Regression Analysis 13
3.4 Relation of Ridge Estimators to Principal Components Estimators 15
4. PRINCIPAL COMPONENTS THEORY IN RELATION TO DISCRIMINANT ANALYSIS 17
4.1 Analogy of Discriminant Analysis with Regression 17
4.2 The Effect of the Position of $\underline{U}_{1}-\underline{U}_{2}$ on the Variance of the Discriminant Coefficients 18
4.3 Principal Component Discriminant Function and Its Relation to the Ridge Discriminant Function 20
4.4 The General Biased Discriminant Function 22
4.5 The Effect of Biasing in Relation to the Position of $\underline{\underline{v}}_{1}-\underline{\underline{U}}_{2}$ 29
5. SIMULATIONS, DISCUSSIUN AND CONCLUSION 33
5.1 Introduction 33
5.2 Construction 33
5.3 Sumary of Results 41
5.4 Discussion of Results 42
5.5 Conclusion 48

1 IEXRODUCTIOA

In many situations it is necossary to assign (or classify) an object into one or two groups under conditions of uncertainty. As an aid in thas classification process, procedures have been developed whereby an object is measured on p variables whose values are believed to be influenced by the group to which the object belongs. These measuremants are compared, in some way, with corresponding measures for objects known to belong to each of the two possible groups under consideration. The object is then assigned to the group to which it is most sinilar; similarity is based on some kind of distance function. In this study, that distance function will be called a discriminant function.

Two of the best known discriminant functions developed to handle classification problems of this nature are Fisher's (1936) Iinear discriminant function (LDF) and the W classification statistics discussed by Anderson (1958). Fisher's LDF and Anderson's W give identical resulte when applied to the same set of observations. In fact, one is a inear function $r f$ the other.

In any classification problem, it is desirable to get a measure of the chance that an object will be misclassified by the discriminant function. This measure of misclassification is commonly called the probability of misclassification (PMC). Using Fisher's LDP, one may compute the exast probability of misclassification if the probability distribution for the two populations is multivariate normal with known equal covariance matrices and
known mean vectore. However, in practice, the common covariance matrix and mean vectors are unknown and are obtained by unbiased sample estimates. When sample estimates replace the population parameters in the LDF (LDF becomes the sample linear discriminant function, SLDF), the exact probability of misclassification becomes difficult to compute because the distribution of the SLDF is virtually intractable (Lachenbruch, 1975). However, if the sample estimates in the SLDF are considered fixed, the SLDF has a conditional univariate normal distribution, and the conditional probability of misclassification can be computed (under the given fixed conditions). Hills (1966) showed that the exact probability of misclassification obtained from the LDF is always less than the conditional probability of misclassification computed from the SLDF. This study is concerned with the problem of decreasing the conditional probability of misclassifying an observation when fixed estimates of the population parcmeters are given.

Many statisticians have investigated the behavior of the SLDF. The exact distribution of SLDF was studied by Wlad (1944), Anderson (1951), and Okamota (1963); estimation of error rates was studied by Dunn (1971), Hills (1966), and Lachenbruch and Mickey (1968); variable selection was studied by Cochran (1964), McKay (1976), McCabe (1975), Habbema and Hermans (1977), and Van Ness and Simpson (1976). Robustness to various departures from assumptions was studied by Gilbert (1968, 1969) and Krzanowski (1977). Rao and Mitra (1971) used the singular multivariate normal distribution to construct a discriminant function between two alternative normal populations with singular covariance matrices. Recently and more relevant to the present work, DiPillo (1976, 1977) and Smidt and YcDonand (1976) showed that estimating the population covariance matrix in the LDF with a certain blased estimator results in a decrease of the conditional probability of misclassification. DiPillo $(1976,1977)$ used Monte Carlo sampling experiments; the
reculte of his experiments susseat that if the population covariance matrix Is 111-conditioned (its determinant is near zero), the ample covariance matrix can also be expected to be 111-conditioned. Therefore, the conditionIng of the ample covariance matrix has an effect on the parformance of the SLDF. Prior to DiPillo, Bartless (1939) simply alluded to the unstableness of variable coefficients in the SLDF but did not pursue the problem any fur ther.

Biased estimators have received a great deal of attention in relation to regression analysis. For the general linear model, it is well known that least squares methods provide sstimators with minimum variance within the class of all unbiased estimators. However, within the last decade, much has been written about the application of blased estimators to the linear model. Hoerl and Kennard (1970) introduced a biased estimation procedure known as Ridge Regression. Other blased regression procedures are Latent Root Regression, introduced by Webster, Gunst, and Mason (1973) and independently by Howkins (1973), and Principal Components Regression, discussed by Massy (1965), Hocking (1976), Mansfield, Webster, and Gunst (1977), and Marquardt (1970). Relatively little has been done regarding the application of biased estimators to the linear discriminant function. This study is an attempt to apply principal component procedures in order to modify the SLDF to include bias.

2 basic properties of the lingar DISCRIMMATT FUNCTION

2.1 The Population Discriminant Function

Let $\underline{X}^{l}=\left(X, X, \ldots, X_{p}\right)$ be a random vector from one of two populations π_{1} or π_{2}. Let R denote the domain of the p-dimensional vector. It is desired to classify X into one of these populations. The objective in devising a rule of classification is to partition R into R_{1} and R_{2} by some optimum method so that:

If X falls in R_{1}, assign the object to π_{1}.
If X falls in R_{2}, assign the object to π_{2}
This classification process involves two kinds of errors, namely, that (1) an object is assigned to population π_{1} when it really belongs to π_{2} or (2) an object may be assigned to π_{2} when it really belongs to π_{1}. A good classification rule should minimize the probability of these errors in classification.

In order to construct a more apecific characterization of the discriminant problem, the following symbols are defined:

$$
\begin{aligned}
f_{j}(X)= & \text { the foint probability density of elements of } X \text { for } \\
& \text { population } \pi_{j} ; f_{j} \text { is assumed to be continuous. } \\
q j= & \text { the prior probability of obtaining an observation from } \pi_{j} \\
P(i \mid j)= & \text { the probability of clasifying an observation into } \pi_{i} \text { when } \\
& \text { it is really from } \pi_{j}(1 \not f j) .
\end{aligned}
$$ TP = the total probability of misclassification.

Since R_{1} is the domain for classifying an object into π_{1}, a π_{1} observation will have misclausification probability

$$
\begin{equation*}
P(i \mid j)=\int_{R_{k}} f_{j}(X) d x(i \not f j) . \tag{2.1}
\end{equation*}
$$

From (2.1),

$$
\begin{equation*}
T P=P(2 \mid 1) q_{1}+P(1 \mid 2) q_{2} \tag{2.2}
\end{equation*}
$$

As indicated above, a good classification rule is devised when R_{1} and and R_{2} are chosen such that TP is minimized. The minimum value of TP will be denoted by OPT. Anderson (1958), using an approach introduced by Welch (1939), showed that

$$
\begin{equation*}
R_{1}=\left\{\underline{X} \mid f_{1}(\underline{X}) / f_{2}(\underline{X}) \geq q_{2} / q_{1}\right\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}=\left[\underline{X} \mid f_{1}(\underline{x}) / f_{2}(\underline{x})<q_{2} / q_{1}\right\} \tag{2.4}
\end{equation*}
$$

are the regions that minimize (2.2). Actually, $f_{1}(X) / f_{2}(X)$ is most appropriately called the likelihood ratio which minimizes the TP.

No matter what the distribution $f_{j}(X)$ is, statements (2.3) and (2.4) imply the following classification rules for an observation ${\underset{X}{0}}$:

$$
\begin{align*}
& \text { If } f_{1}\left(\underline{X}_{0}\right) / f_{2}\left(\underline{X}_{0}\right) \geq q_{2} / q_{1}, \text { classify } \underline{X}_{0} \text { into } \pi_{1} \tag{2.5}\\
& \text { If } f_{1}\left(\underline{X}_{0}\right) / f_{2}\left(\underline{X}_{0}\right)<q_{2} / q_{1}, \text { classify } \underline{X}_{0} \text { into } \pi_{2} \tag{2.6}
\end{align*}
$$

Now assume that the distribution $f_{f}(X)$ is multivariate normal. That is.

$$
\begin{equation*}
f_{j}(x)=\frac{1}{(2 \pi)^{p / 2}\left|k_{j}\right|^{1 / 2}} e^{-1 / 2\left(x-\underline{u}_{j}\right) \cdot \varepsilon_{j}^{-1}\left(x-u_{j}\right)} \tag{2.7}
\end{equation*}
$$

where $j=1,2, \underline{u}_{j}$ is the mean vector of X in π_{j}, and ε_{j} is the variancecovariance matrix of X in π_{j}. With this assumption, an equivalent form of (2.5) and (2.6) can be derived. Taking the natural logarithom of both aldes of $f_{1}(x) / f_{2}(x)=q_{2} / q_{1}$, one obtaine

$$
\begin{aligned}
\ln \left(f_{1}(X) / I_{2}(x)\right)= & (1 / 2) x^{\prime}\left(\Sigma_{2}^{-1}-\Sigma_{1}^{-1}\right) x+x^{\prime}\left(\Sigma_{1}^{-1} \underline{v}_{1}-\Sigma_{2}^{-1} \underline{\underline{v}}_{2}\right) \\
& +\ln \frac{\left|\Sigma_{2}\right|^{2}}{\left|\Sigma_{1}\right|^{\Sigma}}+\frac{\underline{\underline{L}}_{2}^{\prime} \Sigma^{-1} \underline{\underline{v}}_{2}-\underline{\underline{u}}_{1}^{\prime} \Sigma_{1}^{-1} \underline{\underline{U}}_{1}}{2}=\ln q_{2} / q_{1}
\end{aligned}
$$

The second expression in the equalities in (2.8) is called the quadratic discriminant function because it is quadratic in the componente of X. If π_{1} and π_{2} do not differ in their covariance matrices, that is, if $\Sigma_{1}=\Sigma_{2}=\Sigma$, (2.8) reduces to

$$
\begin{equation*}
\left[\underline{X}-(1 / 2)\left(\underline{U}_{1}+\underline{u}_{2}\right)\right]^{\prime} \Sigma^{-1}\left(\underline{\underline{U}}_{1}-\underline{\underline{u}}_{2}\right)=\ln q_{2} / q_{1} . \tag{2.9}
\end{equation*}
$$

where the left side of (2.9) is linear in the componente of X. Hence, the population linear discriminant function $D(X)$ is defined by

$$
\begin{align*}
D(X) & =\left[\underline{X}-(1 / 2)\left(\underline{u}_{1}+\underline{u}_{2}\right)\right]^{\prime} \Sigma^{-1}\left(\underline{u}_{1}-\underline{\underline{u}}_{2}\right) \\
& =\underline{x}^{\prime} \Sigma^{-1}\left(\underline{U}_{1}-\underline{u}_{2}\right)-(1 / 2)\left(\underline{u}_{1}+\underline{u}_{2}\right)^{\prime} \Sigma^{-1}\left(\underline{u}_{1}-\underline{u}_{2}\right) \tag{2.10}
\end{align*}
$$

The first term of the extrease right member of (2.10) is the theoretical equivalent of the linear diecriminant function proposed by Fisher (1936). The expression given by $D(\underline{X})$ in (2.10), which is a discriminant function used in this study, was denoted by Anderson (1958) as W.

If it is further assumed that $q_{1}=q_{2}=1 / 2$, rules (2.5) and (2.6) in terms of $D(X)$ become:

$$
\begin{align*}
& \text { If } D\left(X_{0}\right) \geq 0 \text {, assign } X_{0} \text { into } \pi_{1} \text {; } \tag{2.'11}\\
& \text { If } D\left(X_{0}\right)<0 \text {, assign } X_{0} \text { into } \pi_{2} \tag{2.12}
\end{align*}
$$

Note that the regions R_{1} and R_{2} are now defined by $R_{1}=\{x \mid D(X) \geq 0\}$ and $R_{2}=\{\underline{X} \mid \mathrm{O}(\mathrm{X})<0\}$. From (2.1), it can be seen that

$$
\begin{equation*}
P(1 \mid 2)=\int_{D(X) \geq 0}^{\int} f_{2}(X) d x \text { and } P(2 \mid 1)=\int_{D(X)<0}^{\int} f_{1}(X) d x . \tag{2.13}
\end{equation*}
$$

Also, $D(X)$ is univariate normal because it is a linear function of components of the multivariate normal vector X. If a transformation U - D(X), aloag with ($p-1$) other suitable transformations, is defined, one can see that the range of integration in (2.13) depende only on 0 . When the other ($p-1$) variables are integrated out, (2.13) reduces to

$$
\begin{equation*}
P(21)=\int_{-\infty}^{0} n_{1}(U) d U, P(1 \mid 2)=\int_{0}^{\infty} N_{2}(U) d U \tag{2.14}
\end{equation*}
$$

where N_{1} and N_{2} arc univariate normal probability distributions of v in π_{1} and π_{2}, respectively.
since $U=D(X)$, it is clear that

$$
P(2 \mid 1)=\operatorname{Pr}\left(0<0 \mid \underline{X} \in \pi_{1}\right)=\operatorname{Pr}\left(D(X)<0 \mid X \in \pi_{1}\right)
$$

and

$$
P(1 \mid 2)=\operatorname{Pr}\left(U>0 \mathbb{X} \in \pi_{2}\right)=\operatorname{Pr}\left(D(\underline{X}) \geq 0 \mathbb{X} \in \pi_{2}\right) \text {. }
$$

Furthermore, the means of $D(X)$ are,

$$
\begin{align*}
& E\left(D(\underline{x}) \mathbb{X} \in \pi_{1}\right)=(1 / 2)\left(\underline{U}_{1}-\underline{U}_{2}\right) \cdot \Sigma^{-1}\left(\underline{U}_{1}-\underline{U}_{2}\right)=\frac{D^{2}}{2} \cdot \tag{2.15}\\
& E\left(D(X)\left(X \in \pi_{2}\right)=(-1 / 2)\left(\underline{U}_{1}-\underline{U}_{2}\right)^{\prime} \Sigma^{-1}\left(\underline{U}_{1}-\underline{U}_{2}\right)=\frac{-D^{2}}{2} .\right. \tag{2.16}
\end{align*}
$$

and the variance is

$$
\begin{aligned}
& \operatorname{Var}\left(D(X)\left(X \in \pi_{1}\right)=\operatorname{Var}\left(D(X) \mid X \in \pi_{2}\right)\right. \\
& \quad=\left(\underline{D}_{2}-\underline{U}_{2}\right) \cdot \varepsilon^{-1}\left(\underline{U}_{2}-\underline{U}_{2}\right)=D^{2} .
\end{aligned}
$$

where $D^{2}=\left(\underline{U}_{1}-\underline{\underline{v}}_{2}\right)^{\prime} \Sigma^{-1}\left(\underline{\underline{v}}_{1}-\underline{\underline{U}}_{2}\right)$. In most current literature, $D=\sqrt{ }{ }^{2}$ is called the Khalanobis distance between vector n $\underline{\underline{v}}_{2}$ and $\underline{\underline{v}}_{2}$.

By making a transformation from \mathbf{D} to \boldsymbol{Y} - $[\mathrm{I} \cdot \mathrm{V}(\mathrm{U})] / \mathrm{D}$, the univariate standard normal distribution is obtained. Hence,

$$
\begin{aligned}
P(2 \mid 1) & =\operatorname{Pr}\left(U<O \mid X \in \pi_{1}\right) \\
& =\operatorname{Pr} \frac{D-E(U)}{D}<\frac{O-D^{2} / 2}{D} \\
& =\operatorname{Pr}(Y<-D / 2) \\
& =\operatorname{Pr}(Y<-D / 2) \\
& =P(-D / 2) \quad .
\end{aligned}
$$

where is the standard normal cumulative distribution. similarly.

$$
\begin{equation*}
P(1 \mid 2)=1-\oplus(D / 2)=\emptyset(-D / 2) \tag{2.19}
\end{equation*}
$$

Since (2.18) and (2.19) are consequences of (2.3) and (2.4), the optima probability of miaclassification is given by

$$
\begin{equation*}
\text { OPT }=(1 / 2)[\oplus(-D / 2)+\emptyset(-D / 2)]=\Phi(-D / 2) . \tag{2.20}
\end{equation*}
$$

where $q_{1}-q_{2}-1 / 2 \operatorname{in}(2.2)$

2.2. The Sample Discriminat Function

Note that all the results of section 2.1 were obtained under the assumetron that $\mathcal{L}_{\mathrm{V}} \underline{\underline{U}}_{1}$, and $\underline{\underline{U}}_{2}$ are fixed and known population parameters. In most applications, $\mathrm{I}_{1} \underline{\underline{U}}_{1}$, and $\underline{\underline{U}}_{2}$ are unknown and must te estimated from sample data. The classical approach in this case is to replace $\underline{U}_{1}, \underline{\underline{U}}_{2}$, and Σ in $D(X)$ with their sample counterparts \bar{X}_{1}, \bar{X}_{2}, and S, where \bar{X}_{y} is the sample estimate of $\underline{U}_{\mathrm{f}}$ and S is the pooled sample estimate of L . That is,

and

$$
\begin{equation*}
s=\frac{\sum_{1-1}^{n_{1}}\left(x_{11}-\bar{x}_{1}\right)\left(\underline{x}_{11}-\bar{x}_{1}\right)^{\prime}+\sum_{1}^{n_{2}^{2}}\left(x_{12}-\bar{x}_{2}\right)\left(x_{12}-\bar{x}_{2}\right)^{\prime}}{n_{1}+n_{2}-2} . \tag{2.21}
\end{equation*}
$$

where $X_{1 j}=1$ th random observation vector for population $j, n_{j}=$ size of random sample from populat' $, i=1,2, \ldots, n_{j}, j=1,2 ; \bar{X}_{j}$ and s are unbjased estimates for $\underline{\underline{U}}_{j}$ and Σ, respectively. Making these substitutions in (2.10), one obtains the sample analogue of $D(X)$ as

$$
\begin{equation*}
D_{s}(\underline{X})=\left[\underline{X}-(1 / 2)\left(\bar{X}_{1}+\underline{\underline{x}}_{2}\right)\right] \cdot s^{-1}\left(\bar{X}_{1}-\overline{\underline{x}}_{2}\right) . \tag{2.22}
\end{equation*}
$$

The rules of classification for a future observation ${\underset{\sim}{0}}^{0}$ are if $\mathrm{D}_{\mathbf{s}}\left(\mathrm{X}_{\mathbf{0}}\right)>0$, assign X_{0} to π_{1}; otherwise, assign it to π_{2}. This assumes that $q_{1}=q_{2}$.

Rechll that the distribution of $D(X)$ is univariate normal. The unconditional distribution of $D_{s}(X)$ is not so easily handled. In fact the unconditional distribution of $D_{s}(X)$ is virtually intractable because S, X, and $\underline{\bar{X}}_{\mathrm{j}}(\mathrm{j}=1,2)$ are all random variables. Hovever, one can determine the distribution of $D_{x}(\underline{X})$, provided $\underline{X}_{j}(j=1,2)$ and S are considered fixed values. When these values are fixed, $D_{s}(X)$ has a conditional univariate normal distribution and the conditional means and variance of $D_{s}(\underline{X})$ can be determined. That is,

$$
\begin{align*}
& E\left(D_{8}\left(\bar{x}_{\underline{X}}\right) \mid \underline{X}_{1}, \bar{x}_{2}, s, \underline{x} \varepsilon \pi_{1}\right)=\left(\underline{U}_{1}-(1 / 2)\left(\overline{\underline{X}}_{1}+\overline{\underline{x}}_{2}\right)\right) S^{-1}\left(\overline{\underline{X}}_{1}-\overline{\underline{x}}_{2}\right), \\
& E\left(D_{s}(\underline{X}) \mid \bar{X}_{1}, \bar{X}_{2}, S, \underline{\underline{X}} \varepsilon \pi\right)=\left(\underline{U}_{1}-(1 / 2)\left(\bar{X}_{1}+\bar{X}_{2}\right)\right)^{-1}\left(\underline{X}_{1}-\bar{X}_{2}\right), \tag{2.23}
\end{align*}
$$

and

$$
\operatorname{Var}\left(D_{s}(\underline{X}) \mid \overline{\bar{X}}_{1}, \overline{\underline{x}}_{2}, s\right)=\left(\underline{\bar{X}}_{1}-\overline{\underline{x}}_{2}\right) \cdot x^{-1}{ }^{-1}\left(\overline{\underline{x}}_{1}-\underline{\bar{x}}_{2}\right) .
$$

Since $D_{S}(X)$ ia univariate normal when given that \bar{X}_{1}, \bar{X}_{2}, and S are fixed, the probability of misclassification based on the fixed values is computed by

$$
\begin{equation*}
P M C=(1 / 2)\left(P_{8}(1 \mid 2)+P_{8}(2 \mid 1)\right) \tag{2.24}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{s}(1 \mid 2)=\operatorname{Pr}\left(Y \geq y_{2}\right), P_{8}(2 \mid 1)=\operatorname{Pr}\left(Y<y_{1}\right), \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{j}=\frac{-\left(\underline{\underline{U}}_{1}-(1 / 2)\left(\bar{x}_{1}+\overline{\underline{x}}_{2}\right)\right) \cdot s^{-1}\left(\bar{x}_{1}-\overline{\underline{x}}_{2}\right)}{\left.\left(\overline{\underline{x}}_{1}-\overline{\underline{x}}_{2}\right) \cdot s^{-1} \Sigma s^{-1}\left(\overline{\underline{x}}_{1}-\overline{\underline{x}}_{2}\right)\right)^{1 / 2}},(J=1,2) \tag{2.26}
\end{equation*}
$$

and Y has the standard normal distribution. The calculations leading to (2.26) are given in appendix A.

The reader should note that (2.24) is not of much use in computing the DMC in a practical situation because the y_{j} in (2.26) cannot be evaluated unless exact values of $\underline{\underline{v}}_{j}$ and Σ are known. However, (2.24) can be evaluated in sampling experiments where random observations are generated from known values of Σ and ${\underset{J}{J}}$. This approash will be used to compute the PMC in this study.

Lachenbruch (1975) and Hills (1966) called the PMC computed by (2.4) the actual error rate of $D_{s}(\overline{\bar{X}})$. Hills also showed that

$$
\begin{equation*}
\left.E\left[\Phi\left(-D_{8} / 2\right)\right]<(1 / 2)[P(1 \mid 2)+P(2 \mid 1)]<(1 / 2)\left[P_{s} 1 \mid 2\right)+P_{s}(2 \mid 1)\right], \tag{2.27}
\end{equation*}
$$

where $D_{s}=\left(\bar{X}_{1}-\underline{X}_{2}\right) \cdot s^{-1}\left(X_{1}-X_{s}\right)$ and $E\left[\oplus\left(-D_{s} / 2\right)\right]$ is the expected value of the estimate of $\Phi(-D / 2)$.

An objective of the present research is to show that $D_{8}(\underline{X})$ can be modified so that the right member of the inequality in (2.27) is closer to the middle member.

3 APPLICATION OF PRINCIPAL CONPONENTS

3.1. Population Principal Comprnents

The principal components technique originated with Karl Pearson (1901) as a means of fitting planes by orthogonal least squares and was further developed by Hotelling (1933) for the purpese of analyzing correlation structures in a multivariate system. However, principal components theory can be studied by putting the usual developments of eigenvalues and eigenvectors of positive semidefinite matrices in statistical terms. This treatment is given below.

Let \underline{X} be a p-componer:t random vector with mean $\underline{0}$ and covariance matrix Σ, where Σ is a real positive semidefinite matrix. Let $\psi_{1} \geq \psi_{2} \geq \cdots \geq \phi_{p} \geq 0$ be the eigenvalues of Σ. It is well known from matrix theory that there exists an orthogonal pxp matrix 2 such that

$$
\begin{equation*}
\Sigma Z^{\prime}=Z^{\prime} \psi \text { or } \Sigma=Z^{\prime} w Z, \tag{3.1}
\end{equation*}
$$

where $\psi=\left[\psi_{1}\right]_{i=1}^{p}$ is a diagonal matrix of eigenvalues of Σ and $z^{\prime} Z=I$. Note that for purposes of this study, a pxp diagonal matrix with elements d_{11} on the diagonal shal: be denoted by $\left[d_{i}\right]_{i=1}^{p}$. The 1 th column of z^{\prime}, or equivalently the ith row of 2 , is the eigenvector that corresponds to the ith eigenvalue ψ_{1}.

Let \underline{V} be a p-component vector such that

$$
\underline{v}=\underline{z x}=\left[\begin{array}{c}
\underline{z}_{2}^{\prime} x \tag{3.2}\\
\underline{z}_{2}^{\prime} x \\
\vdots \\
\underline{z^{\prime}} \bar{x}
\end{array}\right] \text {, }
$$

where $\underline{Z}_{i}^{\prime}$ is the ith r:w of Z. That $18, \underline{v}$ is an orthogonal transformation of X. The elements $V_{1}, V_{2}, \ldots \nabla_{p}$ of the vector \underline{V} are called the principal components of X .

From (3.1) and (3.2), it can be seen that the variance-covariance matrix of the elements of the vector \underline{v} is denoted by

$$
\begin{equation*}
\operatorname{Var}(V)=\operatorname{Var}(z \underline{X})=2 \Sigma z^{\prime}=\psi . \tag{3.3}
\end{equation*}
$$

Hence, the first population principal component is $\boldsymbol{V}_{1}=\underline{Z} \underset{\underline{I}}{\underline{X}}$ with variance ψ_{1} and the ith principal component is $V_{1}=\underline{Z}_{1} X$.

3.2. Sample Principal Components

Assume now that the p-component random vector \underline{X} has a multivariate normal distribution with mean \underline{U} and variance-covariance matrix Σ and that a random sample of size n is available from the population of this distribution. An estimate S of Σ may be computed from this sample, where S is at least positive semidefinite. Denote the eigenvalues of s by $\lambda_{1} \geq \lambda_{2} \geq \ldots$ $\geq \lambda_{p} \geq 0$. Just as in (3.1), there exists an orthogonal matrix T such that

$$
\begin{equation*}
S=T^{\prime} \Lambda T \tag{3.4}
\end{equation*}
$$

where $\Lambda=\left[\lambda_{1}\right]_{i=1}^{p}$ is a diagonal matrix and $T^{\prime} T=I$. The sample principal components vector is defined by $\underline{m}=T X$ for a vector of observations, X. The ith sample principal component is $m_{i}=\underline{t}_{1}^{\prime} x$, where t_{i}^{\prime} is the i th row of the matrix T and m_{i} is the 1 th linear compound of the p components of X.

Prom a statistical point of view, the basic idea of principal components analysis is to describe the variation of an array of n sample points in a p-dimensional space by as few linear compounds of the p-space variables as possible. For example, the sample variance of the ith principal component of S is $\underline{t}_{1}^{\prime} \operatorname{St}_{1}=\lambda_{1}$, where λ_{i} is the ith largest eigenvalue of S. If s
eigenvalues of S are zero, then trace $S=\sum_{i=1}^{p} s_{i i}=\sum_{i=1}^{P-R} \lambda_{i}$; hence, the study of p variables can be reduced to a study of the first ($p-s$) sample principal components because all the varia:ion in the data is accounted for by the first (p-s) sample principal components.

For a clear picture of situations where S may have s zero eigenvalues as opposed to having s eigenvalues that are near zero, consider the following situations. Suppose first that $n<p$. Then the rank of S is known to be less than p (i.e., at least ($p-n$) eigenvalues are zero) because $n(\leqslant p)$ points cannot possibly span a p-space. Alternatively, if $n>p$ and there are s eigenvalues of S that are near zero but not exactly zero. Multicollinearity exists whenever one or more of the eigenvalues are near zero. Much has been written about the application of principal components analysis in this situation; see, for example, Morrison (1976), Rao (1964), or Gnanadesikan (1977).

Until recently, the application of principal components analysis has been restricted to the analysis and dimension reduction for a multiple variable system. Some of the more recent applications of the principal component technique are provided in section 3.3.

3.3. Principal Components Regression Anaysis

Consider the standard multiple linear regression model

$$
\begin{equation*}
\underline{Y}=X \underline{\beta}+\underline{\varepsilon}, \tag{3.5}
\end{equation*}
$$

where
\underline{Y} is an (nxl) vector of observations on the response variable. X is an (nxp) matrix of n observations on p independent variables, B is a (pxl) vector of unknown parameters,
and
ε is an (nxl) vector of unobservable random-error variables,
such that $E(\underline{\varepsilon})=\underline{0}$ and $E\left(\mathbb{C} \varepsilon^{\prime}\right)=\sigma^{2} I_{\text {, where }} I$ is an (nxn) identity matrix, $\underline{0}$ and ($n^{x_{1}}$) vector of zeros, and σ^{2} is a nonnegative scalar. Frequently, the elements of Y and X are standardized; however, this restriction is not necessary for the present discussion.

The usual least squares estimator of $\underline{\beta}$ is given by

$$
\begin{equation*}
\hat{\underline{E}}=\left(x^{\prime} x\right)^{-1} x^{\prime} \underline{\underline{Y}} \tag{3.6}
\end{equation*}
$$

with $E(\hat{\beta})=\underline{\beta}$ and $\operatorname{Var}(\hat{\beta})=\left(X^{\prime} X\right)^{-1} \sigma^{2}$. The properties of this estimator are well known so the present review need not be extensive. For a more detailed treatment, the reader may consult, for example, Graybill (1976).

One of the well known properties of the estimator $\hat{\mathbf{R}}$ is that it is unbiased and the variance of its components is minimum within the class of all unbiased estimators of $\underline{\beta}$. However, difficulties arise with this estimator when X ' X is near-singular or, equivalently, when strong multicollinearities exist in the sample data. One of the primary difficulties is that multicollinearity causes the components of $\underline{\beta}$ to have large variances.

To correct for the difficulties that arise when X ' X is near-singular, Massy (1965), Marquardt (1970), and Hawkins (1973), among others, have recommended a technique called principal components regression. Another • approach for overcoming problems associated with data multicollinearity is ridge regression, proposed by Hoerl and Kennard (1970). Hoerl and Kennard's ridge estimator is defined by

$$
\hat{\mathbf{B}}_{R}=\left(X^{\prime} X+K\right)^{-1} X^{1}
$$

where K is a general diagonal matrix and the principal components estimator is defined by

$$
\hat{\beta}_{p c}=\left(X^{\prime} X\right)^{-} X^{\prime} Y
$$

where

$$
\left(x^{\prime} X\right)^{-}=T^{\prime} A_{8}^{-} T_{0}^{\prime}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ are the eigenvalues of $X^{\prime} X, g=p-s$, the last s smallest eigenvalues have been equated to zero and T is an orthogonal matrix of $X^{\prime} X$. The matrix $\left(X^{\prime} X\right)^{-}$is generally referred to as the generalized inverse of $T^{\prime} \hat{h}_{\mathbf{g}} T$. Although $\hat{\hat{\beta}}_{\mathrm{R}}$ and $\hat{\hat{\beta}}_{\mathrm{p}}$ are biased estimators of $\underline{\beta}$, it can be shown that they are more stable (their components have a smaller variance than the corresponding components of $\hat{\boldsymbol{\beta}}$) than the least squares estimator $\hat{\mathbf{e}}$.

3.4 Relation of Ridge Estimators to
 Principal Components Estimators

In discussing the relation of ridge to principal components estimators, it is convenient to employ a general form of a larger class of estimators presented by Gust and Mason (1977). Their general form is

$$
\begin{equation*}
\hat{\underline{B}}^{*}=\sum_{i=1} a_{i} c_{i} \underline{t}_{i} \tag{3.16}
\end{equation*}
$$

where a_{i} depends on the particular estimator, $c_{i}=\underline{t}_{i}^{\prime} X^{\prime} \underline{Y}$ is the same for all estimators, and t_{i} is the fth eigenvector of $X^{\prime} X$. Guns and Mason showed that least squares, principal components, ridge, and two other biased regression estimators may be obtained from this general form by assigning
the appropriate values to a_{1}. Jocking (1976) gave an alternate vereion of (3.16). The general form in (3.16) is equal to $\hat{\underline{B}}$ if $a_{i}=1 / \lambda_{i}$, to Hoerl and Kennard's ridge estimator, $\underline{\beta}_{R}$ if $a_{1}=1 /\left(\lambda_{1}+k\right)$, and to $\hat{\beta}_{P C}$ whan $a_{1}=1 / \lambda_{1}$ if $1 \leq p-s$ and $a_{i}=0$ if $p-s<1 \leq p$.

In sumary, principal components techniques are a fundamental process through which blased estimators for the general linear model have been developed. In every blased estimator of regression parameters, the eigenvalues and eigenvectors of $X^{\prime} X$ play an essential role in their development.

4 PRINCIPAL COMPOEENTS TERORY IT RELATION TO DISCRIMIMANT AMALTSIS

4.1 Analogy of Discriminant
 Analysis with Regression

A natural parallel exists between the two-group linear dsicriminant analysis problem, as developed in section 2, and multiple ilnear regression. Kshirsagar (1972), Lachenbruch (1975), and, of course, Fisher (1.936) showed that by using dumy independent variables, the regression model can be used to derive the sample linear discriminant function (2.22). In (2.22) recall that $D_{8}(X)$ was defined by
$D_{8}(X)=\left(X=\underline{X}_{2}\left(\bar{X}_{1}+\bar{X}_{2}\right)\right)^{\prime} s^{-1}\left(\bar{X}_{1}-\bar{X}_{2}\right)$ or, equivaientiy,

$$
\begin{equation*}
D_{8}(X)=\underline{X}^{\prime} s^{-1}\left(\bar{X}_{1}-\bar{X}_{2}\right)-\frac{2}{2}\left(\bar{X}_{1}+\bar{X}_{2}\right) s^{-1}\left(\bar{X}_{1}-\bar{X}_{2}\right) \tag{4.1}
\end{equation*}
$$

The first term on the right side of (4.1) is a linear combination of the components of X, where $S^{-j}\left(\bar{X}_{1}-\bar{X}_{2}\right)$ is the sample estimate of the population coefficients $\Sigma^{-1}\left(\underline{U}_{1}-\underline{U}_{2}\right)$, and the last term is a constant for fixed values of \bar{X}_{1}, \bar{X}_{2}, and S. Recall that one purpose for altering a near-singular matrix $X^{\prime} X$ in $\underline{\hat{B}}=\left(X^{\prime} X\right)^{-1} X^{\prime} \underline{Y}$ was to reduce the variance in the components of $\hat{8}$. Because of the natural connection between linear discriminant analysis and linear regression, it seems natural that more stable estimates of the discriminant coefficients $\Sigma^{-1}\left(\underline{U}_{1}-\underline{U}_{2}\right)$ would produce a discriminant function whose PMC is lower than the PHC of $D_{s}(X)$. In fact, DiPillo (1976) and Smidt and McDonald (1976) showed by Monte Carlo experiments that the application of the ridge technique to discriminant analysis improved the

FMC of the sample diacriminant function. They proposed an alteration on the commonly used sample function; the general form of their biased discriminant function is

$$
\begin{equation*}
D_{k}(X)=\left(X-\frac{z_{2}}{2}\left(\bar{X}_{1}+\bar{X}_{2}\right)\right)^{\prime}(s+k I)^{-1}\left(\bar{X}_{1}-\bar{X}_{2}\right) \text {. } \tag{4.2}
\end{equation*}
$$

where k is a nonnegative scalar and $s, \bar{X}_{j}(j=1,2)$ are as defined in section 2. DiPillo selected $k=1$ while Smidt and McDonald determined the constant k by

$$
\begin{equation*}
k=c \lambda p, \tag{4.3}
\end{equation*}
$$

where λ_{p} is the smallest eigenvalue of S and $c=(p+2) /(M-p-2)$, where p is the number of variables in X and N is the total sample size used to estimate S. Smidt and McDonald called $D_{k}(X)$ the ridge discriminant function. In this section, new biassd discriminant functions will be introduced.

4.2. The Effect of the Position of $\underline{U}_{1}-\underline{U}_{2}$
 on the Variances of the
 Discriminant Coefficients

The previous discussion stated that the two-population discriminant function can be derived through multiple linear regression techniques. Recall from (3.5) that $\underline{\beta}$ is the vector of regression parameters to be estimated, and the unbiased estimator is given in (3.6). For the innear discriminant problem, the population parameter $\Sigma^{-1}\left(\underline{U}_{1}-\underline{U}_{2}\right)$ of the first term in the last member of equality (2.10) is the vector of population discriminant coefficients. The ample estimate of these coefficients is obtained by replacing Σ and ${\underset{\mathrm{U}}{\mathrm{J}}}(\mathrm{j}=1,2)$ by their sample counterparts.

Just as small eigenvalues in X ' X inflate the variances of the components of \hat{B}, the variances of the components of $s^{-1}\left(\overline{\underline{X}}_{1}-\overline{\underline{X}}_{2}\right)$ may be large for similar reasons. Das Gupta (1968) showed that the variance-covariance matrix of $s^{-1}\left(\bar{X}_{1}-\bar{X}_{2}\right)$ is

$$
\begin{align*}
& \left.\operatorname{Var}\left[s^{-1} \overline{\underline{X}}_{1}-\overline{\underline{X}}_{2}\right)\right]= \\
& \ell_{1} I\left(\underline{u}_{2}-\underline{u}_{2}\right) \varepsilon^{-1}\left(\underline{u}_{1}-\underline{u}_{2}\right) I+\ell_{2} I+\varepsilon_{3} \Sigma^{-1}\left(\underline{u}_{1}-\underline{u}_{2}\right)\left(\underline{u}_{2}-\underline{u}_{2}\right)^{\prime} I \varepsilon^{-1} . \tag{4.4}
\end{align*}
$$

$$
\begin{gathered}
\ell_{1}=\frac{\left(n_{1}+n_{2}-2\right)^{2}}{\left(n_{1}+n_{2}-p-2\right)\left(n_{1}+n_{2}-3\right)\left(n_{1}+n_{2}-p-5\right)}, \\
\ell_{2}=\frac{\left(n_{1}+n_{2}-3\right)\left(n_{1}+n_{2}\right)}{n_{1} n_{2}}, \\
\ell_{3}=\frac{n_{1}+n_{2}-p-1}{n_{1}+n_{2}-p-3} .
\end{gathered}
$$

and
I Is the (pup) identity matrix.
 vector of Σ^{-1}, and $1 / \psi_{1}$ is the fth eigenvalue of Σ^{-1}. Then the expression given by (4.4) may be written as

$$
\begin{align*}
& \operatorname{var}\left[s^{-1}\left(\bar{x}_{1}-\bar{x}_{2}\right)\right]=\left\{\int_{i=1} \frac{\left(\left(\underline{d}^{\prime} d^{d}\right)^{1 / 2} \cos { }_{i}\right)^{2}}{\phi_{i}} I+\ell_{2} I\right. \\
& \left.\quad+\ell_{3}\left[\sum_{i=1}^{p} \frac{\left(\underline{d}^{\prime} d\right)^{1 / 2}\left(\cos \theta_{i}\right) \underline{z}_{1} \underline{d}^{\prime}}{\phi_{1}}\right]\right\}_{1} \sum_{i=1}^{p}\left(1 / \phi_{i}\right) \underline{z}_{1} z_{i}^{\prime} . \tag{4.5}
\end{align*}
$$

If at least one eigenvalue ψ_{i} in (4.5) is small, then at least one component of $s^{-1}\left(\overline{\underline{X}}_{1}-\bar{X}_{2}\right)$ has a large variance.

The expression in (4.5) allows an assessment of the effect of the position of d on the variance of the components of $s^{-1}\left(\overline{\underline{x}}_{1}-\overline{\underline{x}}_{2}\right)$. If ψ_{1} is small and \underline{d} is orthogonal to \underline{Z}_{1}, then the variability in certain
components is not an large as it would be if ψ_{1} were amall in combiantion with \underline{Z}_{1} being near parallel to d. Therefore, the poaition of d in the p-apace should have a definite effect on the discriminant function when multicollinearity existe.

4.3. Principal Componenta Discriminant Function and Ite Relation to the Ridge Discriminant Function

A new definition of the principal componente diecriminant function will now be given. Let S be the ubul pooled ample estimator of Σ as defined in (2.20). It will be useful in the sequel to think of 8^{-1} or inverses of matrices derived from 8 by adding at least one positive constant to the diagonal of S or i, the eigenvalues of S as biased catimators of Σ^{-1}. Let the diagonal matrix \AA be the matrix of cigenvalues of S, and let T be the matrix of eigenvectors, so that $8=T^{\prime} A T$. As in the case of principal components regression, suppose that of the smallest eigenvalues in A are deleted to give

$$
\lambda_{8}=\left[\begin{array}{llllll}
\lambda_{1} & & & & & \tag{4.6}\\
& \lambda_{2} & & & & \\
& & \ddots & & & \\
& & & \lambda_{8} & & \\
& & & & 0 & \\
& & & & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right]
$$

where $g=p-s$. Then, S_{g} is defined by

$$
\begin{equation*}
s_{f}=T^{\prime} g^{T} \text { and } s_{g}^{-}=T^{\prime} I^{-} \tag{4.7}
\end{equation*}
$$

Where A_{8}^{-}is the generalized inverse of A_{8}.
The principal componente acmple diecrininant function is defined by

$$
\begin{equation*}
D_{g}(X)=\left[x-\frac{1}{2}\left(\bar{X}_{1}+\bar{X}_{2}\right] \cdot s_{8}^{-}\left(\bar{X}_{1}-\bar{X}_{2}\right) .\right. \tag{4.8}
\end{equation*}
$$

Observe that in che ridge discriminant function given in (4.2), the compounding matrix may always be expreased by

$$
\begin{align*}
(S+k I)^{-1} & =\left(T^{\prime} A T+k I\right)^{-1} \\
& =\left(T^{\prime} A T+k T^{\prime} T\right)^{-1}=T^{\prime}(A+k I)^{-1} T \tag{4.9}
\end{align*}
$$

Aleo motice that for any positive constant k, there existe a set of constants

$$
\begin{equation*}
T \cdot\left[\frac{c_{i}^{1}}{\lambda_{i}}\right]_{I=1}^{-1} T=T^{\prime}(\Lambda+k I)^{-1} T . \tag{4.10}
\end{equation*}
$$

where

$$
\left[\frac{c_{i}^{*}}{\lambda_{i}}\right]_{1=1}^{p}=\left[\begin{array}{llll}
c_{1}^{* / \lambda_{1}} & & & \tag{4.11}\\
& c_{2}^{* / \lambda_{2}} & & \\
& & \ddots & \\
& & & \\
& & & c_{p}^{* / \lambda_{p}}
\end{array}\right]
$$

From (4.10), it is clear that $c_{1}^{*} / \lambda_{i}=1 /\left(\lambda_{1}+k\right)$; and this implies $c_{i}^{*}=\lambda_{i} /$ $\left(\lambda_{1}+k\right)<1$ whenever $k>0$. That is, the reaults obtained by adding some constant k to each diagonal entry of \mathbf{S} may also be obtained by muitiplyins the ith eigenvalue in $T^{\prime} A^{-1}$ by the value $c_{1}=\lambda_{i} /\left(\lambda_{i}+k\right)<1$. This suggests that a more general biased estimator of Σ^{-1} may be defined by multiplying the ith eigenvalue in $T^{\prime} A^{-1} T$ by some c_{i} where $c_{i}<1$ and c_{i} is not neceasarily $\lambda_{1} /\left(\lambda_{1}+k\right)$. A good candidate for c_{i} is $c_{i}=\lambda_{i} /\left(\lambda_{i}+k_{1}\right)$.
where $k_{1} \geq 0$ and k_{i} may or may not be equal to k_{j} for $1 \$ j$. It should be pointed out that choosing $C_{1}=\lambda_{1} /\left(\lambda_{1}+k\right)$ is equivalent to defining an estimator of ε^{-1} by

$$
\begin{equation*}
T^{\prime}(\Lambda+x)^{-1} T \tag{4.12}
\end{equation*}
$$

where K is a diagonal matrix. Note that fux a general diaponal matrix, (4.12) is not the same as $(8+K)^{-1}$. The reader may refer to appendix it to see why these two matrices are different. The performance of discriainant functions based on (4.12) will be investigated. Their apecific definitions will be given in section 5 ,

4.4. The General Biased Diacriminant Function

Let

$$
\begin{equation*}
D_{c}(\underline{X})=\left[\underline{X}-\lambda_{2}\left(\bar{X}_{1}+\overline{\underline{X}}_{2}\right)\right]^{\prime} T^{\prime}\left[c_{i} / \lambda_{1}\right]_{1=1}^{P} T\left(\bar{X}_{1}-\bar{X}_{2}\right) . \tag{4.13}
\end{equation*}
$$

where T and λ_{i} are defined above and c_{i} is any nonnegative constant less than or equal to one, and c denotes a generic biased diecriminant function. If $c_{1}=1$ for $i=1,2, \ldots, g$ and $c_{1}=0$ for $g<i \leq p$, where g is defined in (4.6), then (4.13) becomes $D_{g}(X)$. If $c_{i}=\lambda_{i} /\left(\lambda_{i}+k\right)$, where k is given in (4.2), (4.13) reduces to $D_{k}(X)$. Pinally, if $c_{i}=1$ for all $i=1,2$, \ldots... $p, D_{c}(X)$ is the standard sample linear discriminant function given in section 2.

Under the condition that \bar{X}_{1}, \bar{X}_{2}, and S are fixed, $D_{c}(\underline{X})$ is normally distributed. Calculations similar to those in (2.23) give

$$
\begin{aligned}
& E\left(D_{c}(X) \bar{X}_{1}, \bar{X}_{2}, X, \underline{X}_{\varepsilon} \pi_{2}\right]=\left[\underline{U}_{2}-\frac{z_{2}}{2}\left(\bar{X}_{1}+\bar{X}_{2}\right)\right]^{\prime} T^{\prime}\left(c_{1} / \lambda_{1}\right]_{i=1}^{p} T\left(\overline{\underline{X}}_{1}-\overline{\underline{X}}_{2}\right),(4.1)
\end{aligned}
$$

and, for any X,

$$
\begin{equation*}
\operatorname{Var}\left[D_{c}(\underline{x})\left[\bar{X}_{1}, \bar{X}_{2}, s\right]=\left(\bar{X}_{1}-\overline{\underline{X}}_{2}\right) T^{\prime}\left[c_{1} / \lambda_{1}\right]_{i=1}^{p} T E T^{\prime}\left[c_{1} / \lambda_{1}\right]_{1=1}^{p} T\left(\bar{X}_{1}-\overline{\underline{X}}_{2}\right) .\right. \tag{4.16}
\end{equation*}
$$

The conditional PMC components for $D_{c}(X)$ are

$$
\begin{equation*}
P_{c}(2 \mid 1)=\Phi\left(y_{1}^{*}\right) \text { and } P_{c}(1 \mid 2)=1-\Phi\left(y_{2}^{*}\right) \text {. } \tag{4.17}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{j}^{*}=\frac{-\left[\underline{U}_{1}-\frac{1}{2}\left(\bar{X}_{1}+\bar{X}_{2}\right)\right]^{\prime} T^{\prime}\left[c_{1} /{ }_{i}\right]_{i=1}^{p} T\left(\bar{X}_{1}-\overline{\underline{X}}_{2}\right.}{\left[\left(\bar{X}_{-}-\bar{X}_{2}\right)^{\prime} T^{\prime}\left[c_{i} / \lambda_{i}\right]_{i=1}^{P} T E T^{\prime}\left[c_{i} / \lambda_{i}\right]_{i=1}^{P} T\left(\bar{X}_{1}-\bar{X}_{2}\right]^{\frac{1}{2}}\right.} \quad(j=1,2) . \tag{4.18}
\end{equation*}
$$

The justification for biasing the S matrix in the sample linear discriminant function is that under certain condftions this biased discriminant function has a lower PMC than the standard sample discriminant function. The lower PMC is achieved through a reduction in the conditional variance of the sample discriminant function. That is, it will be shown that there exists a set $\left\{c_{i}\right\}_{i=1}^{P}$ so that

$$
\begin{equation*}
\operatorname{Var}\left[D_{c}(\underline{X}) \mathbb{X}_{1}, \underline{\bar{X}}_{2}, S\right]<\operatorname{Var}\left[D_{s}(\underline{X}) \mid \bar{X}_{1}, \bar{X}_{2}, S\right] . \tag{4.19}
\end{equation*}
$$

It is clear that if $c_{i}=c<1$ for $(i=1,2, \ldots, p)$, then $T^{\prime}\left[c / \lambda_{i}\right]_{i=1}^{P} T=c S^{-1}$ and

$$
\operatorname{Var}\left[D_{c}(\underline{x}) \mid \overline{\underline{x}}_{1}, \overline{\underline{X}}_{2}, S\right]=c^{2} \operatorname{Var}\left[D_{s}(\underline{x}) \mid \underline{\bar{x}}_{1}, \overline{\underline{X}}_{2}, s\right]<\operatorname{Var}\left[D_{x}(\underline{x}) \mid \underline{\underline{x}}_{1}, \overline{\underline{X}}_{2}, S\right]
$$

However, this choice for the set $\left\{c_{i}\right\}_{i=1}^{P}$ is not suitable for reducing the PMC because (4.18) is invariant with respect to multiplying s^{-1} by a constant.

The following will show that there exists a set $\left\{c_{1}\right\}_{i=1}^{p}$ so that (4.19) is true. Recall that $\Sigma=Z^{\prime} \psi Z$, where $Z^{\prime} Z=I$. If T is any orthogonal matrix so that $T^{\prime} T=I$, then $T Z^{\prime}=P^{\prime}$ is also orthogonal and $P^{\prime} P=I$. Let \underline{P}_{j} be the vector representation of the f th column of P^{\prime} and $P_{i j}$ be the entry

In the ith row of and the j th column of P^{\prime}. Then clearly, $P_{1 j}=t_{1}^{\prime} z_{j}$, where $\underline{t}_{i}^{\prime}$ is the 1 th row of T and Z_{j} is the j th column of Z^{\prime}, and $P_{i j}$ is also the cosine of the angle between $\underline{\underline{t}}_{1}$ and $\underline{\underline{z}}_{j}$. Let $\left(\overline{\underline{X}}_{1}-\overline{\underline{X}}_{2}\right)^{\prime} T^{\prime}=\underline{m}^{\prime}=$ ($m_{1}, m_{2}, \ldots, m_{p}$). The matrix $T K T T^{\prime}$ in (4.16) is now represented by $P^{\prime} \phi P^{\prime}$, where $P^{\prime}=T Z^{\prime}$ and T is specifically the matrix of eigenvectors of S. Therefore, from (4.16),

$$
\begin{align*}
& \operatorname{Var}\left[D_{c}(\underline{X})\left[\overline{\underline{x}}_{1}, \bar{x}_{2}, s\right]=\underline{m}^{\prime}\left[c_{i} / \lambda_{i}\right]_{i=1}^{p} P^{\prime} \notin P\left[c_{i} / \lambda_{i}\right]_{i=1}^{p}{ }^{m}\right. \\
& \text { - 䔯 }\left[c_{i} / \lambda_{i}\right]_{i=1}^{P} \int_{j=1}^{p} H_{j} \underline{P}_{j} \underline{P}_{j}^{\prime}\left[c_{i} / \lambda_{i}\right]_{i=1}^{p} \underline{m} \\
& =\int_{j=1}^{p} \psi_{j} \underline{m}^{\prime}\left[c_{i} / \lambda_{i}\right]_{i=1}^{p} \underline{P}_{j} \underline{P}_{j}^{\prime}\left[c_{i} / \lambda_{i}\right]_{i=1}^{p} \underline{m} \\
& =\sum_{j=1}^{p} \psi_{j} \underline{m}^{\prime}\left[\begin{array}{c}
\left(c_{1} / \lambda_{1}\right) P_{1 j} \\
\left(c_{2} / \lambda_{2}\right) P_{2 j} \\
\vdots \\
\left(c_{p} / \lambda_{p}\right) P_{p j}
\end{array}\right]\left[\begin{array}{c}
\left.\left(c_{1} / \lambda_{1}\right) P_{1 j},\left(c_{2} / \lambda_{2}\right) P_{2 j}{ }^{\prime}\right] \\
\ldots,\left(c_{1} / \lambda_{p}\right) p_{p j}
\end{array}\right] \text { - } \\
& =\sum_{j=1}^{p} \psi_{j}\left(\sum_{i=1}^{p} m_{i}\left(c_{i} / \lambda_{i}\right) P_{i j}\right)^{2} . \tag{4.20}
\end{align*}
$$

where, if $c_{i}=1(1=1,2, \ldots, p),(4.20)$ becomes

$$
\begin{equation*}
\operatorname{Var}\left[D_{s}(\underline{X})\left[\bar{X}_{1}, \overline{\underline{X}}_{2}, s\right]=\int_{j=1}^{p} \psi_{j}\left(\sum_{i=1}^{m_{i}} \frac{m_{i}}{\lambda_{i}}\right)^{2} .\right. \tag{4.21}
\end{equation*}
$$

To complete the existence proof, it is sufficient to show that a set $\left\{c_{1}\right\}_{i=1}^{P}$ may be found so that

$$
\begin{equation*}
\sum_{j=1}^{p} \psi_{j}\left(\sum_{i=1}^{p}\left(c_{i} m_{i} / \lambda_{i}\right) P_{i j}\right)^{2} \leqslant \sum_{j=1}^{p} \psi_{j}\left(\sum_{i=1}^{p}\left(m_{i} / \lambda_{i}\right) p_{i j}\right)^{2} \tag{4.21}
\end{equation*}
$$

Thus, if j is fixed at j^{\prime}, it is sufficient to consider the corresponding j^{\prime} term on opposite sides of the inequality in (4.22). That is, it is sufficient to choose $\left\{c_{i}\right\}_{i=1}^{p}$ such that

$$
\begin{equation*}
\psi_{j} \prime\left(\sum_{i=1}^{p}\left(c_{i} m_{i} \prime_{i}\right) P_{i j}\right)^{2}<\phi_{j} \cdot\left(\sum_{i=1}\left(m_{i} \prime_{i}\right) P_{i j} \prime\right)^{2} \tag{4.23}
\end{equation*}
$$

for each j^{\prime}. If each pair of jth terms on opposite sides of the inequality in (4.22) is related in this manner, a system of linear inequalities of the form

$$
\begin{equation*}
\left|\sum_{i=1}^{p}\left(c_{i} m_{i} / \lambda_{i}\right) P_{i j}\right|<\left|\sum_{i=1}\left(m_{i} /{ }_{i}\right) P_{i j}\right| \quad(j=1,2, \ldots, p) \tag{4.24}
\end{equation*}
$$

must be satisfied by a vector $\underline{c}^{\prime}=\left(c_{1}, c_{2}, \ldots, c_{p}\right)$. It is known that equality holds in (4.24) if $\underline{c}^{\prime}=1,1, \ldots, 1$); and the given inequality holds if $c^{\prime}-\alpha(1,1, \ldots, 1)$, where $0<\alpha<1$. As pointed out just after (4.19), $c^{\prime}=a(1,1, \ldots, 1)$ is not a suitable choice for reducing the conditional PMC. Since equality holds in (4.23) if $\underline{c}^{\prime}=(1,1, \ldots, 1)$, elements of c or of $\left\{c_{i}\right\}_{i=1}^{p}$ are selected by the following process. Let $c_{i j}$ be the cariable c_{i} in the j th equation that is obtained by assuming equality in (4.24), and let $w_{i j}$ be the value of $c_{i j}$ where the j th equation in (4.26) intersects axis c_{1}. Now choose

$$
\begin{equation*}
c_{i}=\min _{j=1,2, \ldots, p}\left(1,\left|w_{i j}\right|\right) . \tag{4.25}
\end{equation*}
$$

If $c_{i}=\min _{j=1,2, \ldots, p}\left(1,\left.\right|_{w_{i j}} \mid\right)=1$ for $a l l i=1,2, \ldots, p$, then any
combination of $c_{i}{ }^{\prime} s$ where $c_{i}<1$ for $i=1,2, \ldots, p$, satisfies (4.24). The selection of c_{i} as outlined above insures that (4.24) is true for each $j=1,2, \ldots, p$ which implies that (4.22) is true for the selected set $\left\{c_{i}\right\}_{i=1}^{p}$.

DiPillo (1976) showed that

$$
\begin{equation*}
\operatorname{Var}\left[D_{k}(\underline{X}) \mid \overline{\underline{X}}_{1}, \overline{\underline{x}}_{2}, s\right]<\operatorname{Var}\left[D_{s}(\underline{x})\left[\bar{X}_{1}, \overline{\underline{X}}_{2}, s\right]\right. \tag{4.26}
\end{equation*}
$$

for any k. However, it will be shown tere that this result holds with less generality than originally claimed. His claim is now investigated by using (4.20), where c_{i} is replaced by $\lambda_{i} /\left(\lambda_{i}+k\right)$.

Thus let

$$
h(k)=\operatorname{Var}\left[D_{k}\left(\bar{X}_{\underline{X}} \mid \bar{X}_{1}, \overline{\underline{X}}_{2}, s\right]=\sum_{j=1}^{p} \psi_{j}\left(\sum_{i=1}^{p}\left(j_{i} /\left(\lambda_{i}+k\right)\right) P_{i j}\right)^{2}\right.
$$

Then

$$
\begin{equation*}
\left.\left.h^{\prime}(k)=-2 \sum_{j=1}^{p} \psi_{j}\left(\sum_{i=1}^{p}\left(m_{i} /\left(l_{i}+k\right)\right) P_{i j}\right)\left(\sum_{i=1}^{p}\left(m_{i} / \lambda_{i}+k\right)^{2}\right) P_{i j}\right)\right) . \tag{4.27}
\end{equation*}
$$

So,

$$
\begin{aligned}
& h^{\prime}(0)=-2 \sum_{j=1}^{p} v_{j}\left(\sum_{i=1}^{p}\left(m_{i} / \lambda_{i}\right) r_{i j}\right)\left(\sum_{i=1}^{p}\left(m_{i} / \lambda_{i}^{2}\right) P_{i j}\right) \\
& =-2 \sum_{j=1}^{p} \psi_{j} \underline{m}^{\prime} A^{-1} P_{j} P_{j}^{\prime} A^{-2} \underline{m} \\
& =-2 m^{\prime} \Lambda^{-1} \sum_{j=1}^{p} \psi_{j} P_{j} p_{j}{ }^{\prime} \Lambda^{-2} \underline{m} \\
& =-2 \underline{m}^{\prime} A^{-1} \operatorname{TET}^{\prime} A^{-2} \text {. }
\end{aligned}
$$

where $\Lambda=\left[\lambda_{i}\right]_{i=1}^{p}$ and $\Lambda^{-2}=\Lambda^{-1}$. Λ^{-1}. Since h is continuous and differentiable on the interval $\left(-\lambda_{p},+\infty\right)$, where $\lambda_{p}>0$ is the smallest eigenvalue of S, h is differentiable at $k=0$. If (4.26) is true for any $k>0$, then $h^{\prime}(0)<0$. That $18, h$ is at least decreasing on some open interval containing zero. But Λ^{-1} TIT' $^{\prime} \Lambda^{-2}$ is not necessarily positive definite. Hence, therefore, DiPillo's statement should be slightly revised to read, "There exists a $k_{1}>0$ such that (4,26) holds for all $k=k_{1} \cdot "$ Perhaps $h^{\prime}(0)$ is positive only in extreme cases, such as for small samples; nevertheless, DiPillo's claim is not generally true. In order to be certain that (4.26) is true for any $k>0$, something must be known about \mathcal{L}. For example, if $\Sigma=1$, then (4.26) is true for any $k>0$, which also means that (4.22) would be true for any combination of $c_{i} \cdot s$, where $c_{i}<1(i=1,2, \ldots, p)$.

Further inspection of $D_{k}(\underline{x})$ along with c_{i}^{*}, where c_{i}^{*} is defined in (4.11) reveals that $\lim _{k \rightarrow+\infty} c_{i}=\lim _{k \rightarrow+\infty} \lambda_{i} /\left(\lambda_{i}+k\right)=0$ for each i. This implies that there exists some positive N_{1} such that for any $\varepsilon>0$, $\left|c_{1}^{*} / \lambda_{1}-c_{p}^{*} / \lambda_{p}\right|<\varepsilon$ whenever $k>N_{1}$. Hence, when k is large and/or if the eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{p}$ are nearly equal, the eigenvalues of ($\left.S+k I\right)^{-1}$ ars nearly equal. Increasing k beyond a point where the eigenvalues are almost equal is the near equivalent of multiplying the numerator and denominator of (4.18) by the same value. Therefore, when k is selected so that $1 /\left(\lambda_{1}+k\right) \approx 1 /\left(\lambda_{p}+k\right)$, no additional improvement in the conditional PMC of $D_{k}(\underline{X})$ is expected from a larger k. This explains what Smidt and McDonald (1976) observed as an "interesting phenomenon" when they evaluated the PMC for $D_{k}(\underline{X})$ based on observations generated from a distribution where $\Sigma=I$. In the present study, several such biased discriminant functions are evaluated and compared as outlined in section 5. For a justification of the
additional biasing methods presented here, further attention is given the variance in (4.20). Note that (4.20) may be expressed as

$$
\begin{equation*}
\operatorname{Var}\left[D_{s}(X) \mid \bar{X}_{1}, \bar{X}_{2}, S\right]=\sum_{j=1}^{\beta} \sum_{i=1}^{p} \frac{\sqrt{\psi_{j} m_{1}}}{\lambda_{i}} P_{i j} \quad 2 . \tag{4.28}
\end{equation*}
$$

The expanded form of (4.28), for $p=3$ for example, is

$$
\begin{align*}
& \left(\frac{\sqrt{\phi_{1} m_{1} P_{11}}}{\lambda_{1}}+\frac{\sqrt{\psi_{1} m_{2} P_{21}}}{\lambda_{2}}+\frac{\sqrt{\psi_{1} m_{3} P_{31}}}{\lambda_{3}}\right)^{2} \\
+ & \left(\frac{\sqrt{\Phi_{2} m_{1} P_{12}}}{\lambda_{1}}+\frac{\sqrt{\phi_{2} m_{2} P_{22}}}{\lambda_{2}}+\frac{\sqrt{\nu_{2} m_{3} P_{32}}}{\lambda_{3}}\right)^{2} \tag{4.29}\\
+ & \left(\frac{\sqrt{\psi_{3} m_{1} P_{13}}}{\lambda_{1}}+\frac{\sqrt{\psi_{2} m_{2} P_{23}}}{\lambda_{2}}+\frac{\sqrt{\psi_{3} m_{3} P_{33}}}{\lambda_{3}}\right)^{2}
\end{align*}
$$

If S were, in fact, Σ or at least if $T=Z$, then $P_{i i}=1$ and $P_{i j}=0$ where $i \neq j$. It is generally expected that the terms in (4.29) that involve the factor $\sqrt{\psi_{j}} / \lambda_{i}$, where $i>j$, will contribute more to $\operatorname{Var}\left[D_{8}(\underline{x}) \mid \underline{X}_{1}, \bar{x}_{2}, S\right]$ than those terms that have the factor $\sqrt{\psi_{j}} / \lambda$, where $i>j$, because $\sqrt{\psi_{j}} / \lambda_{i}>\sqrt{\psi_{i}} / \lambda_{j}$ whenever $i>j$. Recall from (2.26) of section 2 that the primary purpose for biasing $D_{s}(\underline{X})$ is to increase the absolute value of y_{j}. Hills (1966) showed that $\left|{ }_{j}\right|$ is smaller than its population counterpart. Therefore, the present study proposes to bias $D_{s}(\underline{X})$ so that biasing will have its greatest effect on the $\sqrt{\psi_{j}} m_{i} p_{i j} / \lambda_{i}(i=j)$ terms of (4.28). The rationale is to add a different positive value k_{i} to each eigenvalue $\lambda_{i} 80$ that $\sqrt{\psi_{j}} / \lambda_{i} \leq 1$. In practice, the value of ψ_{j} is unknown; therefore, λ_{j} will be substituted for ψ_{j}. The general form of k_{i} will be

$$
\begin{equation*}
k_{i}=f_{1}\left(\sqrt{\lambda_{1}}-\lambda_{i}+f_{2}\right) \tag{4.30}
\end{equation*}
$$

Note that if $f_{1}=1$ and $f_{2}=0, \sqrt{\lambda_{1}} /\left(\lambda_{1}+k_{1}\right) \leq 1$ for all 1 and g, aince $\lambda_{1} \geq \lambda_{2}-\cdots \geq \lambda_{p}$. Simulation experiments will show that when k_{1} is selected in thia manner, for certain cases the magnitude of the reduction in the denominator of (2.26) is greater than the corresponding reduction in the numarator. Specific values for f_{1} and f_{2} are given in section 5 . DiPillo (1976) and Smidt and McDonald (1976) restricted their biasing alteration of $D_{s}(X)$ to adding some constant k to the eigenvalues of S. An alternative approach is to blas the eigenvalues of R, where R is the sample correlation matrix. To see this, let the matrix $E=\left[\sqrt{s_{11}}\right]_{1-1}^{P}$, where $s_{1 i}$ is the ith diagonal entry os S ; then $\mathrm{E}^{-1} \mathrm{SE}^{-1}=\mathrm{R}$. A blased estimate of $\Sigma^{-1} 18$

$$
\begin{equation*}
S_{R}^{-1}=E^{-1} F^{\prime}{\frac{1}{\gamma_{i}+k_{i}}-P E_{i=1}^{-1}}_{-P} \tag{4.31}
\end{equation*}
$$

Where $\gamma_{1} \geq \gamma_{2} \geq \cdots \geq \gamma_{p}$ are eigenvalues of R and F is the matrix of eigenvectors of R, and k_{i} is of the form given by (4.30). When S^{-1} in (2.22) is replaced by S_{R}^{-1}, another biased linear discriminant function is defined. Several biased functions defined in terms of S_{R} are evaluated in this atudy.
4.5. The Effect of Biasing in Relation to the Position of $\underline{U}_{1}-\underline{U}_{2}$

In this section, the behavior of $y_{j}^{*} \operatorname{in}(4.18)$ is investigated as $k_{i}++\infty$. For convenience, assume that $\bar{X}_{j}=\underline{U}_{j}(j=1,2)$ so that $y_{i}^{*}=-y_{2}^{*}$. Since $k_{1}++\infty$ for each $1=1,2, \ldots, p$ is equivelent to letting $k_{1}=k \rightarrow+\infty$ this investigation deals only with $1_{1}=k$ for all 1 . Under the above assumption, it is sufficient to examine only $\underset{k \rightarrow+\infty}{\operatorname{lis}} y^{k}$. Note that

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} y_{2}^{A}=\lim _{k \rightarrow+\infty} \frac{\underline{1}_{1}\left(\underline{U}_{1}-\underline{U}_{2}\right)^{\prime} T \cdot\left[\frac{1}{\lambda_{1}+k}\right]_{i=1}^{P} T\left(\underline{U}_{1}-\underline{\underline{U}}_{2}\right)}{\left.\left(\underline{U}_{1}-\underline{U}_{2}\right)^{\prime} T^{\prime}\left[\frac{1}{\lambda_{1}+k}\right]_{1=1}^{P} T E T \cdot\left[\frac{1}{\lambda_{1}+k}\right]_{1=1}^{P} T\left(\underline{U}_{1}-\underline{U}_{2}\right)\right)^{T / K}} \\
& =\frac{\frac{12 d}{}{ }^{\prime} \underline{d}}{\left(\underline{d}^{\prime} \underline{d}\right)^{T^{2}}},
\end{aligned}
$$

where $\underline{d}=\underline{\underline{v}}_{1}-\underline{\underline{U}}_{2}$, and

$$
\underline{d}^{\prime} \Sigma^{-1} d=\sum_{i=1}^{p} \frac{d^{\prime} d \cos ^{2} \theta_{i}}{\psi_{i}}=D^{2}, \underline{d}^{\top} \Sigma d=\sum_{i=1}^{p} \psi_{i} \underline{d}^{\prime} \underline{d} \cos ^{2} \theta_{i} .
$$

where $\boldsymbol{\theta}_{i}$ is the angle between \underline{d} and $\underline{\underline{Z}}_{i}$; and ${\underset{\underline{Z}}{i}}^{\text {is the }}$ th eigenvector of ع. Also,

$$
\frac{\underline{k d}^{\prime} \underline{d}}{\left(\underline{d}^{\prime} \underline{d}\right)^{1 / 2}}=\frac{\frac{1}{2}\left(\underline{d}{ }^{\prime} d\right)^{\zeta}}{\left(\int_{i=1}^{\ell} \|_{i} \cos ^{2} \theta_{i}\right)^{1 / 2}}
$$

and

$$
!_{d} D=1_{2}\left(\underline{d}^{\prime} \varepsilon^{-1} \underline{d}\right)^{\frac{1}{2}}=!_{2}\left(d^{\prime} \mu^{1 / 2}\left[\sum_{i=1}^{p}\left(1 / \psi_{i}\right) \cos ^{2} \theta_{i}\right]^{\frac{1}{2}} .\right.
$$

where $£ \mathrm{D}$ is the optimum value for Y as given in Section 2, where $Y=(0-E[U]) / D$ and U is given in (2.18). Consider two extreme cases:

Case I. $\underset{d}{ }$ is parallel to $\underset{i}{Z}$ for any $1=1,2, \ldots, p$. Then $\theta_{i}=0$ and $\theta_{j}=\pi / 2$ for $1 \nmid j$. Hence,

$$
\lim _{k \rightarrow+\infty} y_{2}^{k}=\frac{\frac{1}{2}\left(d^{\prime} d\right)^{\frac{1}{2}}}{\left(\psi_{1}\right)^{\frac{1}{2}}}=\frac{1}{2} D .
$$

which is the optimum value of Y. Thus, if d is parallel to any \underline{Z}_{1}, the optimum PMC may be achieved by assigning a very large value to k.

Case II. $\theta_{1}=\theta_{j}=\theta$ for all $1, j=1,2, \ldots, p$. Por this case,

$$
\lim _{k \rightarrow+\infty} y_{2}^{\prime}=\frac{\frac{1}{2}\left(\underline{d}^{\prime} \underline{d}\right)^{1 / 2}}{\cos \theta\left(\sum_{i=1}^{p} \psi_{i}\right)^{\frac{1}{2}}}
$$

and

$$
4 D=1_{1}\left(d^{\prime} d\right)^{\frac{1}{2}} \cos \theta\left(\sum_{d=1}^{p} 1 / \psi_{1}\right)^{\frac{1}{2}} .
$$

From the definition of $\theta, \cos \theta=1 / \sqrt{p}$. It will now be shown that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} y_{2}^{*} \leq \frac{1}{2} D, \tag{4.33}
\end{equation*}
$$

when $\theta=e_{1}$ for all $1=1,2, \ldots, p$. The above substitution for $\cos e$ gives

$$
\lim _{k \rightarrow+\infty} y_{2}^{\frac{1}{2}} \leq \frac{3}{2} D \text {, }
$$

iff

$$
\frac{\frac{1}{2}\left(d^{\prime} d\right)^{1 / 2}}{\frac{1}{\sqrt{p}}\left(\sum_{i=1}^{p} \psi_{1}\right)^{L_{2}}} \leq \frac{1}{s\left(d^{\prime} d\right)^{\frac{1}{2}}} \frac{1}{\sqrt{p}}\left(\sum_{i=1}^{p} \frac{1}{\psi}\right)^{\frac{1}{p}} \text {. }
$$

iff

$$
\begin{align*}
p^{2} & :\left(\sum_{i=1}^{p} \psi_{1}\right)\left(\sum_{i=1}^{p} 1 / \dot{q}_{i}\right)=\sum_{j=1}^{p} \sum_{i=1}^{p} \psi_{i} / \psi_{j} \tag{4.34}\\
& =p+\sum \sum_{i \neq j} \psi_{i} / \psi_{j}=p+\sum_{i \neq j}\left(\psi_{i} / \psi_{j}+\psi_{j} / \psi_{i}\right)
\end{align*}
$$

The extreme right member of (4.34) contains $\boldsymbol{t}\left(p^{2}-p\right)$ terme of the form $\left(\psi_{i} / \psi_{j}+\psi_{j} / \psi_{1}\right)$, where ψ_{i} / ψ_{j} is the reciprocal of ψ_{j} / ψ_{i}. Any positive number plus its reciprocal is greater than or equal to 2 . Hence, (4,34) is varified by $p^{2}=p+2\left[\frac{z}{}\left(p^{2}-p\right)\right] \leq p+\sum_{1 / j}\left(\psi_{1} / \psi_{j}+\phi_{j} / \psi_{1}\right)$. Therefors, the relation in (4.33) is true. Note that if all ψ_{1} 's are equal, the equality part of (4.33) holds. Thus, if $\theta_{i}=\theta$ and $\psi_{j}=\psi_{i}$ or if any $\theta_{i}=0$, orie can expect to obtain a "near optium" classification model by biasing the sample discriminant function with a large k. However, if $\theta_{2}=\theta$ for $i=1$, 2, ..., p and if there is a mixture of large and small $\psi_{1}{ }^{\prime} s$ biasing with a large k may produce a function that is far from optimum.

5.1. Introduction

The objective of the computer simulation is to compare and evaluate the effectiveness of different blasing procedures on the conditional PMC when I is near-singular. The simulation is designed to control for the following factors:

1. The severity of the multicollinearity in Σ.
2. The orientation of $\underline{\underline{V}}_{1}-\underline{\underline{\underline{V}}}_{\mathbf{2}}$ to the eigenvectors defining the multicollinearity.
3. The Mahalanobis distance between π_{1} and π_{2}.
4. The sample size.

The simulations were conducted on a UNIVAC 1108 computer at the George C. Marshall Space Flight Center, Huntsville, Alabama, using a program written by the author which incorporated subroutines from MATH PACK and STAT PACR.

5.2. Construction

The coumon variance-covariance matrix \mathcal{I} is constructed so that varying degrees of singularity, or multicollinearity, are represented. Dipillo (1976) defined his Σ by

$$
\Sigma=\left[\begin{array}{l:l}
A & A^{\prime} \underline{a} \tag{5.1}\\
\hdashline \underline{a}^{\prime} A & a^{\prime} A \underline{a}+\alpha^{2}
\end{array}\right] \text {. }
$$

Where $a^{\prime}=(1 / p-1, \ldots, 1 / p-1)$ is a $1 \times(p-1)$ vector and where σ^{2} is some positive scalar and A is a $(p-1) \times(p-1)$ symetric matrix. The positive scalar σ^{2} is designed as a aingularity control. It is implicit that, when $[$ is defined by (5.1), all the variables are involved in the multicollinearity. To see this, let X be a rasdom vector so that $\operatorname{Var}(\underline{x})=A_{(p-1) x(p-1)}$ and A is positive definite. Suppose that a pth variable is defined by $X_{p}=\sum_{i=1}^{p-1} e_{i} X_{i}=\underline{e}^{\prime} \underline{X}$ such that $X^{\prime \prime}$ - $\left[X^{\prime} \mid X_{p}\right]$ is a new 1xp random vector where 1 is an arbitrary vector. Without any loss of generality, it is assumed that $E(\underline{X})=0$. Now.

$$
\operatorname{Cov}\left(x_{1}, x_{p}\right]=E\left[x_{1} x_{p}\right]=E\left[e_{i} x_{1}^{2}\right]+E\left[\int_{j} e_{i} x_{j} x_{1}\right]=e^{\prime} \underline{a}_{1}
$$

where \mathbb{a}_{1} is the ith column of A and E is the vector of coefficients defining X_{p}. Also, $\operatorname{Var}\left(X_{p}\right)=E\left[\underline{e}^{\prime} \underline{X}\right]^{2}=\underline{e}^{\prime}$ Ae. Hence,

$$
\operatorname{Var}\left(\underline{x}^{*}\right)=\left[\begin{array}{c:c}
A & A^{\prime} e \\
\hdashline \underline{e}^{\prime} A & \underline{e}^{\prime} A_{\underline{e}}
\end{array}\right] .
$$

Here, it is clear that $\sigma^{\mathbf{2}}=0$, and thus perfect multicollinearity exists and involves all the variables when $e_{i}=1 /(p-1)=a_{i}$ for $1=1,2, \ldots p-1$, where a_{i} is the ith component in vector \underline{A} of (5.1). If σ^{2} is increased, the degree of multicollinearity is decreased.

Following the approach of DiPillo, let

$$
\begin{equation*}
\underline{u}_{j}^{\prime}=\left(\underline{n}_{j}^{0} \mid \underline{a}^{\prime} \underline{n}_{j}\right) \text {. } \tag{5.2}
\end{equation*}
$$

where a is as defined in (5.1) and n_{j} is the $(p-1) \times 1 \mathrm{jth}(\mathrm{j}=1,2)$ population mean vector corresponding to the common variance matrix A. DiPillo stated that

$$
\begin{equation*}
\left(\underline{n}_{1}-\underline{\underline{n}}_{2}\right) \cdot A^{-1}\left(\underline{n}_{1}-\underline{\underline{n}}_{2}\right)=\left(\underline{\underline{u}}_{1}-\underline{\underline{u}}_{2}\right) \cdot \Sigma^{-1}\left(\underline{\underline{u}}_{1}-\underline{\underline{u}}_{2}\right) . \tag{5.3}
\end{equation*}
$$

where $A, \Sigma, \underline{n}_{j}$, and $\underline{u}_{j}(j=1,2)$ are as defined above. This equality is reestablished here using any vector a in place of a. That is, let $\underline{h}-\underline{g}_{1}-\underline{g}_{2}$ and \underline{e} be any nonzero $(p-1) \times 1$ vector and $\sigma^{2}>0$. Then,

Hence, the distance between the two populations in not affected by either $\sigma^{2}>0$ or the form of the vector e .

The relative position of $\underline{U}_{1}^{\prime}-\underline{\underline{U}}_{2}^{\prime}=\left[\underline{\underline{n}}_{1}^{\prime} \mid \underline{a}^{\prime} \underline{\underline{n}}_{1}\right]-\left[\underline{\underline{n}}_{2}^{\prime} \mid \underline{a}^{\prime} \underline{\underline{n}}_{2}\right]=$ $\left[\underline{n}_{1}^{\prime}-\underline{n}_{2}^{\prime} \mid \underline{a}^{\prime}\left(\underline{n}_{1}-\underline{n}_{2}\right)\right]$ to the $p t h$ elgenvector will now be examined where $\underline{U}_{j}(j=1,2)$ is as defined in (5.2). If perfect multicollinearity exists in $\Sigma, 1 . e .$, if $\sigma^{2}=0$ and Σ has only one zero eigenvalue, then the pth eigenvector of $\left[\right.$ is $\left[-e^{\prime} \mid 1\right]$ (or some scalar multiple of this vector) because when perfect multicollinearity exists, it is defined by the eigenvector corresponding to the smallest, eigenvalue, which is zero is $\sigma^{2}=0$. As σ^{2} gets larger, the p th eigenvector deviates from $\left\{-e^{\prime}\right.$ 11]. Now,

$$
\left[-\underline{e}^{\prime} \mid 1\right] \quad \frac{\underline{h}}{e^{\prime} h}--e^{\prime} \underline{h}+\underline{e}^{\prime} \underline{h}=0 .
$$

which implies that

$$
\underline{\underline{u}}_{1}-\underline{\underline{u}}_{2}=\left[\begin{array}{l}
\underline{h} \\
-\underline{\underline{e} h}
\end{array}\right] \text {. }
$$

as defined in (5.4), is orthogonal to the eigenvector defining the multicollinearity. This means that when $\sigma^{2}=0, \underline{\underline{U}}_{1}-\underline{\underline{U}}_{2}$ is confined to the space of the first ($p-1$) eigenvectors; and hence the pith eigenvector contributes nothing to the distance between the means. To see this, one needs only to inspect $D^{2}=\left(\underline{\underline{U}}_{1}-\underline{\underline{U}}_{2}\right)^{\prime} \Sigma^{-1}\left(\underline{U}_{1}-\underline{U}_{2}\right)$ by performing a principal components transformation. That $1 \mathrm{~s}, \mathrm{D}^{2}=\sum_{i=1} d_{1}^{2} / \psi_{1}$, where $d_{1}=\underline{2}_{1}^{\prime}\left(\underline{U}_{1}-\underline{\underline{U}}_{2}\right)$ and \underline{z}_{1} is the fth eigenvector of Σ. If $d_{1}=0$, then $\underline{\underline{v}}_{1}-\underline{\underline{v}}_{2}$ is orthogonal to \underline{Z}_{1}.

The construction for the matrix Σ as used in this study will now be defined along with the various orientations for the vector $\underline{\underline{U}}_{1}-\underline{\underline{U}}_{2}$. Let A be a $(p-2) \times(p-2)$ symmetric positive definite matrix. Let E_{1} be 3 $(p-2) \times 1$ vector, $e_{2} a(p-1) \times 1$ vector, and $\sigma_{1}^{2}, \sigma_{2}^{2}$ be positive scalars. Let

$$
\Sigma_{1}=\left[\begin{array}{l:l}
A & A^{\prime} e_{1} \\
\hdashline \underline{a}_{1}^{A} & e_{1}^{\prime} A c_{1}+o_{1}^{2}
\end{array}\right]
$$

and

The column vector \underline{Z}_{i} is the 1 th eigenvector of Σ and z_{i} is a constant to be defined below. Let

$$
\underline{y}_{2}=\underline{0} \text { and } \underline{y}_{1}^{*}=\sum_{i=1}^{f} a_{i-1} z_{1} .
$$

For this study, $a_{1}=\left[b_{1} \psi_{1} / p\right]^{\frac{1}{2}}$, where b_{i} controls the angle between \underline{z}_{1} and $\underline{U}_{1}-\underline{U}_{2}^{*}$, Note that if $b_{i}=1(1=1,2, \ldots, p)$, then $D=\left[\left(\underline{U}_{1}^{*}-\underline{U}_{2}^{*}\right) \cdot \Sigma^{-1}\left(\underline{U}_{1}^{*}-\underline{U}_{2}^{*}\right)\right]^{\frac{1}{2}}=1 ;$ and

$$
\frac{\left(\underline{U}_{1}^{*}-\underline{U}_{2}^{*}\right)^{\prime} \underline{Z}_{1}}{\left[\left(\underline{U}_{1}^{*}-\underline{u}_{2}^{*}\right)^{\prime}\left(\underline{U}_{1}^{*}-\underline{U}_{2}^{*}\right)\right]^{\frac{1}{2}}}=\frac{\psi_{i}}{\sum_{j=1}^{p} \psi_{j}}=\cos \theta_{i},
$$

where $\hat{\theta}_{i}$ is :ae angle between \underline{Z}_{1} and $\underline{U}_{1}^{*}-\underline{U}_{2}^{*}$. When $b_{i}=1(i=1,2, \ldots$, p), all principal components contribute equally to D. Also note that the Mahalanobis distance can be controlled by defining.

$$
\underline{U}_{1}=\underline{U}_{1}^{*} D=\sum_{i=1}^{p} a_{i} \underline{Z}_{1} D,
$$

where D is the distance between π_{1} and π_{2}. If $b_{i} \neq 1$ for all 1 , then

$$
\begin{equation*}
\left(\underline{U}_{1}^{*}-\underline{U}_{2}^{*}\right)^{\prime} \Sigma^{-1}\left(\underline{U}_{1}^{*}-\underline{U}_{2}^{*}\right)=(1 / p) \sum_{i=1}^{p} b_{i} . \tag{5.6}
\end{equation*}
$$

Therefore, b_{i} will be selected so that $\sum_{i=1}^{R} b_{i}=p$; and hence, (5.6) has a value of 1 for any set of b_{i} ' s. This sum of the b_{i} 's is easily controlled by using the properties of arithmetic sequences and series.

The b_{i} 's are defined here in the following three different ways:

$$
\begin{array}{ll}
\text { (1) } b_{1}=\frac{2(p-i)}{p-1} & i=1,2, \ldots, p, \\
\text { (2) } b_{i}=1 & i=1,2, \ldots, p, \\
\text { (3) } b_{i}=\frac{2(1-1)}{p-1} & 1=1,2, \ldots, p .
\end{array}
$$

The above definitions of the b_{i} 's are convenient for computer coding.

Let $N=n_{1}+n_{2}$, where n_{j} is the size of the sample from n_{j}. Recall that any general biased estimator of Σ was denoted by $S_{c}^{-1}=T^{\prime}\left[c_{i} / \lambda_{i}\right]_{i=1}^{p} T$, where $c_{i}=\lambda_{i} /\left(\lambda_{1}+k_{i}\right)$ and $k_{1} \geq 0$. Now, each procedure for computing k_{i} will correspond to a particular $\mathrm{S}_{\mathrm{c}}^{-1}$. The k_{1} used in the simulation study here and the corresponding symbol for S_{c}^{-1} are listed as (a) through (f) below and (8) through (i) later.
\qquad

1
Cor responding Symbol
(a) $k_{1}=\left\{\begin{array}{l}0 \text { if } i=1 \\ \lambda_{p} \text { if } \lambda_{1}>{\sqrt{\lambda_{1}}}_{1} \text { and } 1>1 \\ \sqrt{\lambda_{1}}-\lambda_{1}+\lambda_{p} \text { if } \lambda_{1} \leq \sqrt{\lambda_{1}}\end{array}\right.$

(b) $k_{i}=\left\{\begin{array}{l}0 \text { if } 1=1 \\ \frac{p+2}{N-p-2} \lambda_{p} \text { if } \lambda_{1}>\sqrt{\lambda_{1}} \text { and } i>1 \\ \frac{p+2}{N-p-2}\left(\sqrt{\lambda_{1}}-\lambda_{1}+\lambda_{p}\right) \text { if } \lambda_{1} \leq \sqrt{\lambda_{1}}\end{array}\right.$
(c) $k_{i}=\left\{\begin{array}{l}0 \text { if i=1 } \\ \frac{p+2}{N-p-2} \lambda_{p} \text { if } \lambda_{1}>\sqrt{\lambda_{1}} \text { and } 1>1 \\ \frac{p+2}{N-p-2}\left(\sum_{\beta=2}^{1} \frac{\sqrt{\lambda_{1}}-\lambda_{B}}{1-1}+\lambda_{p}\right) \text { if } \lambda_{1} \leq \sqrt{\lambda_{1}}\end{array}\right.$

$$
\text { for } s_{c}^{-1}
$$

$$
s_{A}^{-1}=s_{c}^{-1}
$$

$$
S_{P}^{-1}=s_{c}^{-1}
$$

$$
s_{G}^{-1}=s_{c}^{-1}
$$

\qquad

(d) $k_{1}=\{$

$$
\{k \text { for } 1=1,2, \ldots, p
$$ where

$\left\{\begin{array}{l}k \text { for } 1=1,2, \ldots, p\end{array}\right.$ for s_{c}^{-1}
$k=\frac{\sum_{i=1}^{p} k_{i}}{p}$ and k_{i} is as defined in
(c) above
(e) $k_{i}=1$ for $1=1,2, \ldots, p$
(f) $k_{i}=+\infty$ for $i=1,2, \ldots, p$.

$$
s_{X}^{-1}=s_{c}^{-1}
$$

The choice of k_{i} and the corresponding identity matrix in (f) are motivated by the behavior of the limit of $y_{\underline{2}}^{*}$ at $k=+\infty$, where this limit is evaluated in (4.32). Although it is clear that if $k_{i} \rightarrow+\infty$ for $i=1,2$, ..., p, the corresponding matrix s_{c}^{-1} in (f) converges to the zero matrix; but, the ratio in (4.32) converges to the expression given there. Since the function $D_{F}(\underline{X})=\left[\underline{X}-\frac{1}{2}\left(\overline{\underline{X}}_{1}+\overline{\underline{X}}_{2}\right)\right] ' I\left(\bar{X}_{1}-\underline{\underline{X}}_{2}\right)$ produces the identical ratio given in (4.32) when its expected value is divided by the square root of its variance provided $\underline{\bar{X}}_{j}=\underline{U}_{j}(j=1,2), D_{F}(\underline{X})$ is taken to be the biased discriminant function that corresponds to $k_{i}=+\infty$ for $1=1,2$, ..., p.

The following symbols represent the biased estimator S_{c} when the eigenvalues of the sample correlation matrix are biased. For this case, recall that $S_{c}^{-1}=E^{-1} F^{\prime}\left[1 /\left(\gamma_{1}+k_{i}\right)\right]_{i=1}^{p} F^{-1}$ as given by (4.31).

The reader should recall that the situation where a particular \mathbf{k}_{i} is $+\infty$ while all other k_{i} 's are zero is equivalent to an earlier definition of the principal component discriminant function where the 1^{\prime} th eigenvalue is equated to zero. Each biased discriminant function is defined by

$$
D_{(j)}(\underline{X})=\left[\underline{X}-\frac{1}{2}\left(\underline{\bar{X}}_{1}+\underline{X}_{2}\right)\right]^{\prime} s_{(j)}^{-1}\left(\overline{\underline{X}}_{1}-\underline{\bar{x}}_{2}\right),
$$

where $\mathrm{J}=\mathrm{A}, \mathrm{P}, \mathrm{G}, \mathrm{K}, \mathrm{O}, \mathrm{F}, \mathrm{R}, \mathrm{M}, \mathrm{D}$ and the unbiased discriminant function is denoted by $\mathrm{D}_{\mathrm{s}}(\underline{\mathrm{X}})$.

For the present simulation study, $p=10, e_{1}^{\prime}=(0,0,1 /(p-2)$, $1 /(p-2), 0, \ldots, 0)$, and $e_{2}^{\prime}=\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right)$, where p, e_{1}, and e_{2} are defined in (5.5). This means that when both σ_{1}^{2} and σ_{2}^{2} are small, multicollinearities exist between variables 3,4 , and 9 as controlled by e_{1} and variables 1,2 , and 10 which is controlled by \underline{e}_{2}. In order to achieve the purposes outlined in section 5.1 , the variables $n_{1}=n_{2}=n, \sigma_{1}^{2}, \sigma_{1}^{2}$, $a_{1}(i=1,2, \ldots, p)$, and D were assigned the following values:

$$
\begin{gathered}
o_{1}^{2}=.001,10.0 \\
\sigma_{2}^{2}=.001,1.0 \\
a_{1}=\left[\frac{2(P-1) \psi_{1}}{9 p}\right]_{i}^{1 /} \cdot\left[\frac{\psi_{1}}{p}\right]^{\frac{1}{2}},\left[\frac{2(1-1)}{9 p} \psi_{1}\right]^{1 / 2} \\
n \\
=10,25 \\
D=0.6,1.0,3.0 .
\end{gathered}
$$

This gives 72 different simulation design configurations to be evaluated on each of the nine different biasing procedures (a) through (i).

To evaluate the 72 configurations, a computer program was written to:

1. Generage an independent random sample of size n for each π_{j} ($j=1,2$) population.
2. Compute \bar{X}_{1}, \bar{X}_{2}, and S for the sample.
3. Compute the values for $\mathbf{k}_{\mathbf{i}}$ as defined above.
4. Compute the conditional PMC for $D_{s}(X)$ and for each blased discriminant function.
5. Replicate steps 1-4 30 times.
6. Calculate the means and variances of the conditional PMC's for the 30 replications.

5.3 Sumary of Results

The complete results of the sampling experiments are given in tables 8 through 79 in appendix D. The data contained in each column is described below:

Column 1. Name of the estimator.

Colvman 2. Average PMC for the 30 replications using $D_{(j)} X$, where $\mathrm{J}=\mathrm{S}, \mathrm{X}, \mathrm{G}, \mathrm{R}, \mathrm{D}, \mathrm{M}, \mathrm{A}, \mathrm{P}, \mathrm{O}, \mathrm{F}$.

Column 3. Variance of the PWC for the 30 replications
Colvm 4. Average PMC for a blased estimator minus average PMC for estimator S evaluated on the 30 replications.

Column 5. Number of times, out of 30, a biased PMC is lower than that of estimator S.

The actual population values for D along with the associated PMC, denoted by OPT, and the orientation of $\underline{\underline{U}}_{1}-\underline{\underline{U}}_{2}$ are given for each table. Note that in tables $8-31, d_{p}^{2} / \psi_{p}=0$ and $d_{i}^{2} / \psi_{i}>d_{i+1}^{2} / \psi_{i+1}$ for $i<p$; in tables 32-55, $d_{i}^{2} / \psi_{i}=d_{j}^{2} / \psi_{j}(1 \neq j)$; and in tables $56-79, d_{1}^{2} / \psi_{1}=0$ and $d_{i}^{2} / d_{i}<$ $\dot{d}_{i+1}^{2} / \psi_{i+1}$ for $1>1$, where ${ }_{i} \boldsymbol{L}_{1} d_{i}^{2} / \psi_{i}=\left(\underline{U}_{1}-\underline{U}_{2}\right)^{\prime} \Sigma^{-1}\left(\underline{U}_{1}-\underline{U}_{2}\right)$. 5.4. Discussion of Results

In order to compare the performance of the biased procedures to the standard unbiased one, it is necessary to examine the indicators of improved performance in tables 8-79. The indicators are columns 3-4.

The most striking feature of tables 8-79 is the dominant influence of the position of vector $\underline{U}_{1}-\underline{U}_{2}$ on the indicators of improved performance. In tables 8-31, $\underline{U}_{1}-\underline{U}_{2}$ is positioned so that $d_{i}^{2} / \Psi_{1}>d_{i+1}^{2} / \psi_{1+1}$. For this position, all biased procedures, except K, showed positive values for column 4; and the entry in column 4 for K is positive when $D \geq 1$. A comparison of the variances of the estimators in tables 8-31 shows that when $D<1.0$, the variance of each biased estimator is greater than the variance of the unbiased one; the opposite is true when $D>1.0$, except for biased estimators D and K. Indicators in colum 5 are generally good for all blased estimators except for K, but K was favorable when $D>1$. Tables 32-55 show that the performances of biasing procedures are mixed. Here
$\underline{U}_{1}-\underline{U}_{2}$ is positioned so that all eigenvectors contribute equally to D and the general trend is for all indicators to improve as D gets larger. Tables $56-79$ show that all blasing procedures performed poorly when $\underline{\mathrm{u}}_{1}-\underline{\mathrm{u}}_{2}$ is defined so that $\mathrm{d}_{1}^{2} / \psi_{1}<d_{i+1} / \psi_{i+1}$. Although most procedures tended to improve on indicators in column 4 and 5 as the value of D increased, the general performance of all biasing procedures was poor when $n=25$ and the orientation of $\underline{\underline{U}}_{1}-\underline{U}_{2}$ was such that the principal components associated with small eigenvalues contributed heavily to D. A noticeable exception is K. The amount of improvement in the mean PMC for K over the mean PMC for S is considerable when $n=10$ and $D>1$.
It appears that no firm statements on the effects of eigenvalue size or the degree of multicollinearity can be made, because the effects of eigenvalue size seem to depend on the position of the mean vector $\underline{U}_{1}-\underline{U}_{2}$. A comparison of results in tables 1 through 4 adds support to this claim. In tables 1 and $2, \underline{U}_{1}-\underline{U}_{2}=\sqrt{\psi_{1}} \underline{\underline{Z}}_{1}$ is parallel to \underline{Z}_{1}; and in tables 3 and 4, $\underline{U}_{1}-\underline{U}_{2}=\sqrt{\Psi_{p}} \underline{Z}_{p}$ is parallel to any \underline{Z}_{1}, then the optimum PMC can be achieved by letting $K \rightarrow+\infty$. This result was obtained under the assumption that $\underline{\underline{U}}_{j}=\underline{\underline{X}}_{j}$. Tables 1 and 2 show that when $\underline{\underline{U}}_{j}-\underline{\underline{U}}_{2}$ is parallel to \underline{Z}_{1}, the mean PMC of F is close to the optimum PMC and all biased procedures perform well even though $\sigma_{1}^{2}=\sigma_{2}^{2}=.001$, which is the worst multicollinearity case considered in this study. However, in tables 3 and 4, performance of F and all other biased procedures is poor, in spite of the fact that all configurations are the same as in tables 1 and 2, except $\underline{U}_{1}-\underline{U}_{2}$ is now parallel to \underline{Z}_{p}. The poor performance of biased procedures in tables 3 and 4 is due to the large variances in the components of $s^{-1}\left(\underline{\bar{X}}_{1}-\overline{\underline{X}}_{2}\right)$ as discussed in section 4.2 . It is also

Table 1

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0(0 P T=.3085), \underline{v}_{1}-\underline{v}_{2}=\left(\psi_{1}\right)^{1} \underline{\underline{2}}_{1}$:

Estimitor	Mean PMC	Vardance	Improvement Over Estimator S	Number of Times PHC is Lower than That of Estimator S (max $=30$)
5	. 4482785	. 0025357		
K	. 4177978	. 0279583	. 0384815	15
G	. 3956326	. 0020253	. 0526459	27
R	. 3705756	. 0020419	. 0777029	29
D	. 3998220	. 0923597	. 0492565	26
M	. 3657406	. 0022464	. 0825379	29
A	. 3854223	. 0016827	. 0628562	28
P	. 3805779	. 0018560	. 0677006	28
0	. 4082210	. 0025667	. 0400575	26
F	. 3510729	. 0034107	. 0972056	28

Table 2
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications,

Estimator	Nean PNC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max $=30$)
S	. 3978117	. 0011525		
K	. 3930133	. 0017926	. 0241985	20
C	. 389.5865	. 0010908	. 0082253	21
R	. 3721815	. 0008544	. 0257103	30
D	. 3914080	. 0611284	. 0064038	20
M	. 3382653	. 0002799	. 0595464	30
A	. 3744258	. 0008205	. 0233860	28
P	. 3835509	. 0009451	. 0142668	26
0	. 3813010	. 0009768	. 0165107	29
F	. 3238669	. 0000759	. 0739449	30

Table 3
Comparison of Probabilities of Misclassificetion for Several Discriminant Functions, 30 Replications,

$$
n=10
$$

$\left.\begin{array}{ccccc}\hline \text { Estimator } & \begin{array}{c}\text { Mean } \\ \text { PMC }\end{array} & \text { Variance } & \begin{array}{c}\text { Improvement Over } \\ \text { Estimator } S\end{array} & \begin{array}{c}\text { Number of Times } \\ \text { PMC is Lower } \\ \text { than That of } \\ \text { Estimator S }\end{array} \\ \text { (max = 30) }\end{array}\right]$

Table 4
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications,

Estimator	Mean PMC	Variance.	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator 5 (max $=30$)
S	. 3956383	. 0012857		
K	. 4226880	. 0030092	-. 0270577	2
C	. 4998305	. 0000000	-. 1042082	0
R	. 4999249	. 0000000	-. 1042946	0
D	. 4999747	. 0000000	-. 1043444	0
M	. 4999791	. 0000000	-. 1043487	0
A	. 4999810	. 0000000	-. 1043587	0
P	. 4999485	. 0000000	-. 1043182	0
0	. 4999029	. 0000000	-. 1042726	0
F	. 4999881	. 0000000	-. 1043577	0

worthwile to consider the variance of $\bar{X}_{1}-\bar{X}_{2}$ in combination with the magnitude of the components of $\bar{X}_{1}-\overline{\underline{X}}_{2}$. In tablee 1 through $4, \boldsymbol{X}_{1}-\bar{X}_{2}$ is an estimate of $\underline{\underline{u}}_{1}-\underline{\underline{\underline{u}}}_{2}$ and $\operatorname{Var}\left(\overline{\underline{X}}_{1}-\overline{\underline{X}}_{2}\right)-\Sigma /\left(n_{1}+n_{2}\right)$; but the magnitudes of the components of $J_{\psi_{1}} \underline{I}_{1}$ are larger than the magnitudes of the corresponding components of $\sqrt{\psi_{p-p}^{2}}$ whenever ψ_{1} is much larger than ψ_{p}. This means that $\overline{\underline{X}}_{1}-\overline{\underline{X}}_{2}$, when used to estimate $\underline{\underline{U}}_{1}-\underline{\underline{\underline{v}}}_{2}=\sqrt{\underline{W}_{p} \underline{Z}}$, has a greater chance of being the zero vector and some compenents could change aigns from sample to sample.

The above observations suggest that the performance of a blasing procedure seems to be related to the ratio

When this ratio is large, say greater than $1 / p$, as is the case in tables 8-31, then biasing with a large k_{i} tends to give good results. In tables 32-55, note that the ratio in (5.7) becomes $1 / P$ when $D=1$ and increases (decreases) as D increases (decreases). Since the simulations of this study did not focus on the ratio in (5.7) as a controlled condition, it is perhaps worth considering in a future study.

It is also worthwhile to note that when $d_{i}^{2} / \psi_{i}>d_{i+1}^{2} / \psi_{i+1}$, there is a tendency for the amount of improvement of the biased estimator over the unbised one to increase as the k_{i} 's get larger, as shown by column 4 of tables 8-31. Recall from section 5.2 that the blasing constants k_{1} in A and P differ only by the multiple $(p+2) /(N-p-2)$. When the sample size is $2 n=N=20$, the value of k_{1} in P is larger than the corresponding k_{1} in A. When the sample size is $2 \mathrm{n}=\mathrm{N}=50$, the reverse is true. This difference in A and P is also reflected in the relative change in the magnitudes
of column 4 as the sample aize n changes from 10 to 25 . This observation In addition to the behavior of F provides evidence that for certain poeitions of $\underline{\underline{y}}_{1}-\underline{\underline{u}}_{2}$, the amount of improvement of a biased eatimator increase as the k_{1} 's get larger.

The average PMC of a biased estimator may be compared to the average PMC of the unbiased one through the application of the two sample t-teat, $t=\sqrt{n}\left(\left(\bar{X}_{1}-\bar{X}_{2}\right) / \sqrt{S_{1}^{2}+S_{2}^{2}}\right)$. As a modification of the formula for a given population value for D, let s^{2} - maximum variance of the sample PMC; then $\sqrt{S_{1}+S_{2}} \leq \sqrt{2 S^{2}}$. Hence, $t_{\alpha / 2} \sqrt{2 S^{2}} / \sqrt{n}$ may serve as a conservative value to which $\bar{X}_{1}-\bar{X}_{2}$ may be compared. That is, column 4 lists the difference between estimator S and all other blased estimators. If any value in chis column that corresponds to a given biased estimator is larger chan $t_{\alpha / 2} \sqrt{2 S^{2}} / \sqrt{n}$, then the biased estimator gives results that are significantly different from that of S at level α. The critical values, $C . V$., for the three values of D and $a=.05$ are as follows: when $D=0.6, C . v .=.0156$; when $D=1.0, C .=.0226 ;$ when $D=3.0, C . v .=.0329$.
5.4 Conclusion

This study has extended and generalized recent published work in the area of biased estimation in. discriminant analysis. Several methods of biasing the sample linear discriminant function have been described and compared on the basis of Monte Carlo experiments. The reaulta of the experiments show that no one method is uniformly beat for all configuraLions considered, although D give a relatively poor performance in all situations studied. It is of special interest to note that M, A, and F did well whenever the ratio in (5.7) was greater than $1 / p$. These methods are particularly effective for the sample size $n=10$ in combination with (5.7) being larger than $1 / p$. The performance of K was erratic as can be seen by comparing its variance to the variance of other estimators. With some modification, K seems to have the potential to become a good biased procedure for cases where $d_{i}^{2} / \psi_{i}>d_{i+1}^{2}$. When $n=25$ and $d_{i}^{2} / \psi_{i}>d_{i+1} / \psi_{i+1}$, F showed the largest positive values for column 4. As mentioned earlier and restated here, F is equivalent to ignoring the sample variance and covariance between the components of \underline{x} by defining a discriminant function where the identity matrix replaces matrix S. In an applied situation, one can easily determine whether F is likely to outperform the standard unbiased function S by computing

$$
\begin{equation*}
\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right) \cdot\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\sum_{i=1}^{f} s_{11}} \tag{5.8}
\end{equation*}
$$

where S_{11} are the diagonal entries of matrix S. If this ratio is much larger than $1 / \mathrm{P}$, then F will probably do better than S .

Pinally, an examination of the aimulation reaults seems to support the following general conclusions:

1. The method of deleting the amalleat eigenvalues of the eample cortelation merix givee relatively poorer performance than the other blaced procedure.
2. Biased discriminant functions labeled by M, A, and F (see section 5.2 for a deacription) performed bitter than all othere when $\underline{\mathbf{U}}_{\mathbf{1}}-\underline{\underline{\mathbf{x}}}_{\mathbf{2}}$ is positioned so that the ith principal component contributee more to the Mahalanobis distance than the $(1+1)$ th principal component.
3. The effect of amell eigenvalues in S on blasing procedurea depends on the positiol. of the vector $\underline{\underline{U}}_{\mathbf{1}}-\underline{\mathbf{U}}_{2}$.
4. When the orientation of $\underline{u}_{1}-\underline{u}_{2}$ is auch that $d_{1}^{2} / \psi_{1}>d_{1+1}^{2} / \psi_{1+1}$, where D^{2} - $\sum_{i=1} d_{1}^{2} / \psi_{i}$ is the square of Mahalanobis distance, all blasing methods are particularly effective for amall samples.

In applying Hoerl and Kennard's ridge regreseion model to practical problems, a general difficulty lies in the selection of an appropriate value for k. Similar difticulties exist in choosing a set of k_{i} 's for the biased discriminant models proposet by this paper. fiowever, based on the simulation results of this study, an applications oricited user of discriminant analysis should use the results of an inspection of the following two items as an aid in deciding when a blased model should be used:

1. Eigenvalues of matrix R where R is the sample correlation matrix.
2. The ratio given by (5.8).

If one or more eigenvalues of R are amall, say less than. 7 . and if the ratio (5.8) is larger than $1 / p$. then it is worthwhile to proceed with the selection of a set of $k_{i}{ }^{\prime} s$. That is, items 1 and 2 provide evidence that biasing will improve the performance of the discriminant function. Given that an inspection of items 1 and 2 show that conditions are suitable for
blasing, the recomnendation here ia to construct the unbiased discriminant function along with several blased discriminant functions, say A, M, and F, where the k_{i} 's Cor these functions are defined in this section. The error rates for the unbiased as well as for the biased discriminant functions should be estimated by using one of the mothods descrithed in lachenbruch (1975). The discriminant function to use would be the one which gives the smallest crror rate.

Lastly, any user should keep in mind that in a practical situation, the efror rate of the population discriminant function is unknown and that the above nethod of choosing a discriminant function is simply an effort to cherse the best classification model possible from the avallable data. The U method, as given by Lachenluruch (1975), of estimating error rates seems to be an efficient procedure in terms of using available data. Hence, this author recomends its use in estimating error rates in applied situations where a choice is te be made between using one of the biased discriminant functions or the unblased one.

Results from this study raise the following questions that should merit further study:

1. For blasing methods using \mathbf{k}_{1}, there is an optinum set of $\mathbf{k}_{\mathbf{1}}$'s (perliaps not a unique set) for each problem, but no technique has been developed to compute them.
2. Additional study is needed to determine how well each biased procedure intruduced in this paper will perform in multiple group discrimio nation \ln studying this proble, some consideriation should be given the orientation of population mean vectors.
3. Further siady is needed to assess the performance of both the two-group and the wultiple-group quadratic discriminant procedures under biasing conditions introduced by this study.

APPENDIX 1

CALCULATIONS LEADING TO THE EQUALITY FOR Y_{j} IN SECTION 2.2

Let $W=\left(D_{s}(\underline{X}) \mid \bar{X}_{1}, \overline{\underline{X}}_{2}, s\right)=\left[\underline{X}-\frac{1}{2}\left(\overline{\underline{X}}_{1}+\underline{\underline{X}}_{2}\right)\right]^{\prime} s^{-1}\left(\overline{\underline{X}}_{1}-\overline{\underline{X}}_{2}\right)$, where \bar{X}_{1}, \bar{X}_{2}, and S are fixed. The conditional probability of misclassification using $D_{s}(\underline{X})$ is computed by

$$
P M C=1_{f}\left[P_{s}(1 \mid 2)+P_{s}(2 \mid 1)\right]
$$

where

$$
P_{s}(1 \mid 2)=\operatorname{Pr}[W \geq 0] \text { and } P_{s}(2 \mid 1)=\operatorname{Pr}[W<0] .
$$

Since W is a linear function of the components of the multivariate normal vector X, W is univariate normal with means and variance (2.15)-(2.17). Hence,

$$
\begin{aligned}
P_{s}(1 \mid 2) & =\operatorname{Pr}[W \geq 0]=\operatorname{Pr}\left[\frac{W-E(W)}{[\operatorname{Var}(W)]^{\frac{1}{2}}} \geq \frac{-E(W)}{[\operatorname{Var}(W)]^{\frac{1}{2}}}\right] \\
& =\operatorname{Pr}\left[Y \geq y_{1}\right] .
\end{aligned}
$$

where $Y=\frac{W-E(W)}{[\operatorname{Var}(W)]^{\frac{1}{2}}}$ is the univariate standard normal distribution, and

$$
y_{1}=\frac{-E(W)}{[\operatorname{Var}(W)]^{1 / 2}}=\frac{-\left(\underline{\underline{U}}_{1}-\frac{1}{2}\left(\bar{x}_{1}+\bar{x}_{2}\right)\right] \cdot s^{-1}\left(\bar{x}_{2}-\overline{\underline{x}}_{2}\right)}{\left.\left(\underline{\bar{x}}_{1}-\underline{\underline{x}}_{2}\right) \cdot s^{-1} \Sigma s^{-1}\left(\underline{\bar{x}}_{1}-\underline{\underline{x}}_{2}\right)\right]^{\frac{1}{2}}} .
$$

By a similar calculation,

$$
{ }^{P}(2 \mid 1)=\operatorname{Pr}\left[Y<y_{2}\right]
$$

where

$$
y_{2}=\frac{-\left(\underline{U}_{2}-1\left(\bar{x}_{1}+\bar{x}_{2}\right) 1 \cdot s^{-1}\left(\bar{x}_{1}-\frac{\bar{x}_{2}}{}\right)\right.}{\left(\left(\underline{x}_{1}-\underline{\bar{x}}_{2}\right) \cdot s^{-1} r s^{-1}\left(\underline{\bar{x}}_{1}-\bar{x}_{2}\right)\right)^{\frac{1}{2}}} .
$$

Therefore, in general

$$
P_{s}(1 \mid 2)=\operatorname{Pr}\left(Y \geq y_{1}\right) \text { and } P_{s}(2 \mid 1)=\operatorname{Pr}\left(Y<y_{2}\right) \text {. }
$$

where

$$
y_{j}=\frac{-\left[\underline{U}_{1}-\xi\left(\bar{x}_{1}+\underline{\bar{x}}_{2}\right)\right] \cdot s^{-1}\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\left\{\left(\underline{\underline{x}}_{1}-\underline{\underline{x}}_{2}\right) \cdot s^{-1} r s^{-1}\left(\underline{\bar{x}}_{1}-\underline{\underline{x}}_{2}\right)\right]^{1}}, 1=1.2 .
$$

aprendix a

Show that, in general, $(S+K) \neq T^{\prime}(\Lambda+K) T$, where T is the merix of elpenvectors of $S, T^{\prime} T$ - TT' $-I, A n\left|\lambda_{i}\right|_{i=1}^{P}$ is a diagonal matrix so that $1_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p}$ is the ret of eigenvalues of $S_{1} K-\left\{k_{1}\right\}_{i=1}^{p}$ is a genernl diagonsi matrix, and S is a pxp symetric matrix.

It is clear that $S+K=I^{\prime}(A+K) T$ if $k_{i}=k_{j}$ for $1 \neq j$, Let it be assumed that $k_{i} \not k_{j}$ whenever $1 \nmid j$. Then.

$$
S+K=T^{\prime}[\Lambda+K] T
$$

iff

$$
S+K=T^{\prime} A T+T^{\prime} K T
$$

1ff

$$
S+X=S+T^{\prime} K T
$$

1ff

$$
K=T^{\prime} K T
$$

iff

$$
\mathbf{T K}=\mathbf{K T}
$$

Thus, it 13 sufficient to show that K and T are not generally permutable. Theorem 3, page 223 of Gantmacher (1960) states that, "If two matrices A and B are permutable and one of them, say Λ, has quasi-diagonal form

where matrices A_{1} and A_{2} do not have characturistic values in common, then the other matrix B must have the same quasi-diagonal form . . ." Using chis cheorem. it is clear that since the general form of K requires that
its diagonal elements are generally pairwise different, a necessary condition for permutability between K and T is that T be a diagonal matrix. However, T is not generally diagonal; therefore, in general, TK $\neq K T$ and hence $(S+K) \neq T^{\prime}(\Lambda+K) T$ for the general diagonal matrix K.

APPENDIX C

MOMENCLATURE

D Mahalanobis distance between two populations.

D(X) Population discriminant function.
$D_{c}(X) \quad$ Generic represencation for any biased discriminant function $D_{\text {s }}(X)$ Unblased sample discriminant function.
$\left.\int_{d_{i}}\right]_{i=1}^{p} \quad$ A pxp diagonal matrix with $d_{i 1}$ on the diagonal.
$f_{j}(\underline{X}) \quad$ The probability deasity function for the f th population.

8 The number of nonzero eigenvalues in matrix $\mathrm{S}_{8}{ }_{8}$
$\gamma_{1} \quad$ The j th eigenvalue of matrix R.
$k_{j} \quad$ A nonnegative bias factor added to the f th eigenvalue of matrix S.
$\lambda_{1} \quad$ The j th eigenvalue of matrix S.
: $\quad n_{1}+n_{2}$.
$n_{j} \quad$ The size of sample from j th population.

OPT Total optimum probability of misclassification.

- Standard normal cumulative distribution.
"f The j th population
$P(1 \mid j) \quad$ The probability of classifying an observation into π_{1} when it is really from $\pi_{f}(1 \notin j)$.

PMC Probability of misclassification.

* The J th eigenvalue of matrix I .
$q_{j} \quad$ The prior probability of obtaining an observation from π_{j}.
\& Sample correlation matrix.
$R_{j} \quad$ The region for classifying X_{0} into π_{j}.
3 Sample estimate of matrix Σ.
$\mathrm{S}_{8}^{-1} \quad$ Generalized inverse of S_{8} (wten S_{8} is singular).
I Common covariance matrix.
$\varepsilon_{j} \quad$ The j th population covariance matrix.
$\sigma_{1}^{2}, \sigma_{2}^{2} \quad$ Positive values used to control multicollinearity in E.
$S_{j} \quad$ Sample estimate of matrix \mathcal{E}_{j}.
$0_{j} \quad$ Angle between j th eigenvector of Σ and vector $\underline{\underline{W}}_{\mathbf{1}}-\underline{\underline{\mathbf{W}}}_{\mathbf{2}}$.
TP Total probability of misclassification.

U The f th population mean.
$\bar{X}_{j} \quad$ Sample estimate of \underline{U}_{J}.
$\underline{X}_{0} \quad$ Observation vector co be classified.

APPENDIX D

CONTBOL FACTORS FOR SIMULATIONS

1. Sample Size: $:=10,25$.
2. Mahalanobis Distance: $D=\left[\left(\underline{\underline{U}}_{1}-\underline{\underline{U}}_{2}\right)^{\prime} \Sigma^{-1}\left(\underline{\underline{U}}_{1}-\underline{\underline{U}}_{2}\right)\right]^{\frac{1}{2}}$ $D=0.6,1.0,3.0$.
3. Severity of Multicollinearity:

Matrix 1: ${ }^{\circ} \sigma_{1}^{2}=.001, \sigma_{2}^{2}=.001$
Matrix 2: $\sigma_{1}^{2}=.001, \sigma_{2}^{2}=1.00$
Matrix 3: $\sigma_{1}^{2}=10.00, \sigma_{2}^{2}=.001$
Matrix 4: $\sigma_{1}^{2}=10.00, \sigma_{2}^{2}=1.00$
See tables 5 and 6 for eigenvalues of the correlation and covariance matrices for the four data matrices used.
4. Orientation of $\left(\underline{\underline{D}}_{1}-\underline{\underline{D}}_{2}\right)$ to eigenvectors of the four covariance matrices.

Orientation 1: $\underline{\underline{\underline{x}}}_{1}-\underline{\underline{\underline{E}}}_{2}=\sum_{j=1}^{10}\left[\frac{2 \psi_{1}(10-j)}{90}\right]^{\frac{l_{2}}{2}} \underline{Z Z}_{j}$
Orieatation 2: $\underline{\underline{v}}_{1}-\underline{\underline{q}}_{2}=\sum_{j=1}^{10}\left[\frac{\dot{\phi}_{1}}{10}\right]^{\frac{k_{2}}{D}}{ }_{-j}$
Orientation 3: $\underline{\underline{u}}_{1}-\underline{\underline{U}}_{2}=\sum_{j=1}^{10}\left[\frac{2 \psi_{j}(j-1)}{90}\right]^{\frac{1}{2}} \underline{Z Z}_{j}$
where ${\underset{J}{f}}^{f}$ = the j th eigenvector of matrix Σ,
\dagger_{j} - the j th eigenvalue of macrix Σ,
D = Mahalanobis distance between $1^{\text {and }} 2^{\circ}$

Table 5
Eigenvalues of Population Correlation Matrices Used

	Matrix	1	2		

Table 6
Eigenvalues of Population Covariance Matrices Used

Table 7
Orientations for $\underline{\mathrm{U}}_{1}-\underline{U}_{2}$ Expreased in Terms of $\cos \theta_{\mathrm{j}}$

> Comparison of Probabilities of Misclassification for Several Discriminanc Functions, 30 Replications, when D = .6 (OPT - .3821), Orientation 1,

> Matrix 1, n = 10

Estimator	$\begin{aligned} & \text { Meas } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator S	Number of Times PMC is Lover chan That of Eatimetor S (axa - 30)
s	. 4721895	. 0007165	*	*
K	. 5004223	. 0182717	-. 0282328	11
G	. 4614415	. 0009447	. 0107480	22
8	. 4579530	. 0008195	. 0162365	20
D	. 4652601	. 0011444	. 0069294	18
M	. 4577994	. 0008638	. 0143960	20
A	. 4577805	. 0007817	. 0144090	22
p	. 4563847	. 0007113	. 0158047	20
0	. 4661020	. 0012684	. 0060875	22
F	. 4522470	. 0008839	. 0199425	23

Table 9
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replicacions, whea D = .6 (OPT = .3821), Orientation 1.

Katrix 1, n $=25$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Oves Estimator S	Nuber of Times FHC is Lower than That of Estimator S (nax - 30)
s	. 4621413	. 0005747	*	*
K	. 4665843	. 0012835	-. 0044430	15
6	. 4594191	. 0007630	. 0027222	19
8	. 4550403	. 0007587	. 0071010	23
D	. 4597875	. 0007535	. 0023538	17
M	. 4467804	. 0007187	. 0153609	26
A	. 4553200	. 0008518	. 0068213	20
P	. 4578666	. 0007875	. 0042747	18
0	. 4570331	. 0007556	. 0051082	21
F	.4394331	. 0006497	. 0226882	28

Table 10
Comparison of Probabilitiea of Misclasalfication for Several Discrifi cat Functions, 30 Replications, when D - . 6 (OPT - .3821), Orientation 1.

Matrix 2, n - 10

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator $\$$	Nuber of Times PMC is Lower than That of Esetrator S (max - 30)
8	. 4731673	.0006971	*	*
K	. 5059592	. 0162971	-. 0327919	11
6	. 4616265	. 0008701	. 0115407	22
8	. 4576283	. 0006411	. 0155389	23
D	. 4700283	. 0013315	. 0031390	16
M	. 4575804	. 0006680	. 0155869	21
A	. 4574815	. 0007038	. 0156858	23
P	. 4558591	. 0006424	. 0173082	22
0	. 4655391	. 0010692	. 0076281	21
F	. 4535410	. 0009435	. 0196263	23

Table 11
Comparissa of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6($ OPT = .3821), Orientation 1 . Matrix 2, $n=25$

Estemator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator S	Number of Ifies FHC is Lower then that of Estimators ($\max =30$)
S	. 4619189	. 0006033	*	*
\boldsymbol{x}	. 4613094	. 0007568	. 0006095	17
6	. 4591505	. 0007032	. 0027684	20
8	.4553493	. 0007457	. 0065696	22
D	.4597061	. 0007579	. 0022128	17
M	. 4486507	. 0006848	. 0132681	23
A	. 4558683	. 0009036	. 0060505	20
P	. 4578710	. 0008033	. 0040479	21
0	. 4570830	. 0007464	. 0048358	22
1	. 4412313	. 0006982	. 0206876	27

Table 12

Comparison of Probsbilitice of Misclasstfication for Several Discriminat Functions, 30 Replications, when D - 1.0 (OPT - .3085), Orieneation 1. Matrix 1, $a=10$

Estinter	$\begin{aligned} & \text { Mean } \\ & \text { Exic } \end{aligned}$	Variance	Improvemant Over Extimator 5	Mreber of Itime THC IS Lower then that of Eatimator 8 (2ax - 30)
8	. 4352555	. 0019316	*	*
5	. 4102568	. 00259528	. 0249987	17
6	. 4036046	. 0018006	. 0316509	24
2	. 4026084	. 0016065	. 0326471	22
D	. 4136102	. 0022986	. 0216454	19
8	. 4021 ¢68	. 0016737	. 0330987	22
4	. 3978281	. 0014702	. 0374275	25
5	. 3963853	. 0013612	. 0388703	25
0	. 4146123	.0024739	. 0206432	22
1	. 3885997	. 0026683	. 0466558	24

Table 13
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replicaticus. when D = 1.0 (OPT - .3085), Orientation 1. Matrix 1, $\mathrm{n}=25$

Estimator	$\begin{aligned} & \text { Meas } \\ & \text { EMC } \end{aligned}$	Varlance	Improvement Over Estinator S	Nuber of Tises PHC is Lower than That of Esetmator 5 (2ax - 30)
8	. 4021451	. 0013089	*	*
\mathbf{K}	. 3973249	. 0019124	. 0048202	19
G	. 3946661	. 0013566	. 0074790	25
R	. 3846051	. 0011317	. 0175400	27
D	. 3962315	. 0013599	. 0059136	21
\boldsymbol{H}	. 3723917	. 0007196	. 0297534	25
A	. 3830196	. 0012260	. 0191255	25
7	. 3897421	. 0012888	. 0124030	25
0	. 3892117	. 0012410	. 0129334	26
T	. 3619399	. 0004518	. 0402052	28

Table 14
Comparison of Probabillties of Misclassification for Several Diseriminant Functions, 30 Replications, whea D = 1.0 (OPT - .3085), Orientation 1.

Matzix 2, $\mathrm{a}=10$

Estimator	$\begin{aligned} & \text { Yean } \\ & \text { PYC } \end{aligned}$	Var1ance	Inprovencat Over Eatimator S	number of times PMC is Lovar than that of Estinator 8 (2ax = 30)
3	. 4357742	. 0018595	*	*
\boldsymbol{z}	. 4207499	. 0226456	. 0150244	15
6	. 4027121	. 0016542	. 0330621	26
1	. 3996047	. 0012180	. 0361695	22
D	. 4187074	. 0026853	. 0170668	18
M	. 3988943	. 0012721	. 0368880	23
A	. 3961644	. 0013449	. 0396099	27
P	. 3943118	. 0012238	. 0424625	25
0	. 4135403	. 0021135	. 0222340	24
F	. 3892598	. 0015826	. 0465145	23

Table 15
Compartsen of Probabilities of Misclassifleation for Several Discriminant Functions, 30 Replications, when D - 1.0 (OPT = .3085), Orientation 1. Matrix 2, m = 10

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Vartance	Improveeent Oves Estimator S	Muber of Tisas THC is Lover chan That of Eatieator 5 (aax - 30)
8	. 4012635	. 0013480	-	*
8	. 3955002	. 0015308	. 0057632	21
6	. 3944540	. 0012847	. 0068095	22
2	. 3842272	. 0010717	. 0170362	26
D	. 3955788	. 0013032	. 0056846	19
M	. 3743676	. 0007243	. 0268959	25
A	. 3839135	. $00125 \div 6$. 0173500	24
8	. 3895939	. 00126 5n	. 0116697	25
0	. 3892706	. 0012074	. 0119929	26
F	. 3642246	. 0005054	. 0370389	26

Table 16
Comparison of Probabilities of Misclassificatica for
Several Discriminant Functions, 30 Replications,
when $D=3.0$ (OPT = .0668), Orientation 1 , Matrix 2, $\mathrm{n}=10$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S
(max = 30)				

Table 17
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=3.0$ (OPT $=.0668$), Orientation 1 , Matrix 2, $n=25$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max $=30$)
S	. 1339836	. 0019074	*	*
$\underline{1}$. 1106339	. 0013456	. 0233497	29
6	. 1156332	. 0013953	. 0153504	27
R	. 1026748	. 0006175	. 0313068	28
D	. 1225503	. 0015961	. 0114333	23
M	. 0982620	. 0002503	. 0357216	26
A	. 0981882	. 0005615	. 0357954	29
P	. 1082184	. 0008354	. 0257652	28
0	. 1099456	. 0008859	. 0240381	28
F	.0985553	. 0001367	. 0354283	26

Table 18
Comparison of Probsbilities of Misclasaification for Several Discriminant Functions, 30 Replications, when $D=3.0$ (OPT $=.0668$), Orientation 1 , Matrix 2, $u=10$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max = 30)
S	. 2565326	. 0080737	*	*
K	. 1228519	. 0102818	. 1336807	27
G	. 1344490	. 0015525	. 1220836	30
R	. 1285779	. 0007489	. 1279547	29
D	. 1761069	. 0032892	. 0804257	25
M	. 1285241	. 0007831	. 1280085	28
A	. 1210284	. 0010253	. 1355042	30
P	. 1180248	. 0008606	. 1385078	30
0	. 1618516	. 0024774	. 0946810	30
F	. 1697688	. 0003251	. 1467638	30

Table 19

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=3.0(0 P T=.0668)$, Orientation 1. Matrix 2, $n=25$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC 1s Lower than That of Estimator S
(max = 30)				

Table 20
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT $=.3821$), orientation 1. Matrix 3, $n=10$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower Ehan That of Estimator S
(max $=30$)				

Table 21
Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT $=.3821$), Orientation 1, Matrix 3, $n=25$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S
(max = 30)				

Table 22
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT = .3821), Orientation 1. Matrix 3, $\mathrm{n}=10$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Mumber of Times PMC is Lower than That of Estimator S
(max = 30)				

Table 23
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT = .3821), Orientation 1, Matrix 3, $n=25$
$\left.\begin{array}{lcccc}\text { Estimator } & \begin{array}{c}\text { Mean } \\ \text { PMC }\end{array} & \text { Variance } & \begin{array}{c}\text { Improvement } \\ \text { Estimator }\end{array} & \begin{array}{c}\text { Over }\end{array} \\ \hline \text { Sumber of Times } \\ \text { PMC is Lower } \\ \text { than That of } \\ \text { Estimator S } \\ \text { (max = 30) }\end{array}\right]$

Table 24
Comparison of Probabilities of Misclassification for
Several Discriminanc Functions, 30 Replications, when $D=1.0($ OPT = .3085), Orientation 1, Matrix 3, $n=10$
$\left.\begin{array}{lcccc}\hline \text { Estimator } & \begin{array}{c}\text { Mean } \\ \text { PMC }\end{array} & \text { Varience } & \begin{array}{c}\text { Improvement Over } \\ \text { Estimator } S\end{array} & \begin{array}{c}\text { Number of Times } \\ \text { PMC Is Lower } \\ \text { than That of } \\ \text { Estimator S }\end{array} \\ \text { (max = 30) }\end{array}\right]$

Table 25
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0$ (OPT = .3085), Orientation 1, Matrix 3, $n=10$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S
(max = 30)				

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0$ (OPT .3085), Orientation 1 , Matrix 4, $\mathfrak{n}=10$

Estimator	Maan PMC	Variance	Improvement Estimator Over	Number of Times PMC Is Lower than That of Estimator S
(max = 30)				

Table 27
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications,
when $D=1.0(O P T=.3085)$, Orientation 1 ,
Matrix 4, $n=25$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC Is Lower than That of Estimator S
(max = 30)				

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=3.0$ (ORT = .0668), orientation 1. Matrix 3, $\mathrm{n}=10$

Estimator	Mean PMC	Vasiance	Improvement Estimator Over	Number of Times PMC Is Lower than That of Estimator S
(max = 30)				

Table 29
Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when $D=3.0(O P T=.0668)$, Orientation 1 ,
Matrix 3, $n=25$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max $=30$)
s	. 1333216	. 0017915	*	*
R	. 1192148	. 0013915	. 0141068	28
G	. 1198772	. 0012919	. 0134444	29
R	. 0998444	. 0004592	. 0334772	30
D	. 1223266	. 0014919	. 0109950	25
M	. 0922712	. 0001474	. 0410504	28
A	. 0968348	. 0004249	. 0364867	28
P	. 1081441	. 0007065	. 0251775	29
0	. 1102384	. 0007987	. 0230832	28
F	. 0944551	. 0001096	. 0388664	25

Table 30

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=3.0$ (OPT - .0668), Orientation 1 , Matrix 4, a $=10$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC Is Lower than That of Estimator S
(max = 30)				

Table 31
Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications, when $D=3.0$ (OPT = .0668), Orientation 1 , Matrix 4, $n=25$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max = 30)
s	. 1328329	. 0015465	*	*
K	. 1205019	. 0011633	. 0123709	30
C	. 1196864	. 0009976	. 0131464	30
R	. 0983347	. 0002869	. 0344982	29
D	. 1208810	. 0010090	. 0119519	21
M	. 0907088	. 0000900	. 0421240	29
A	. 0954688	. 0002912	. 0373640	29
P	. 1072921	. 0005331	. 0255408	30
0	. 11113893	. 0006753	. 0214436	30
F	. 0951386	. 0001210	. 0376943	25

Table 32
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT = .3821), Orientation 2. Matrix 1, a $=10$

Estimator	Mean PMC	Varlance	Improvement Over Estimator S	Number of Times PMC is Lower chan That of Estimator S (max $=30$)
S	. 4748426	. 0009860	*	*
K	. 5155888	. 0148181	-. 0407462	8
G	. 4696251	. 0007778	. 0052174	18
1	. 4675198	. 0006312	. 0073228	17
D	. 4732984	. 0008981	. 0015442	17
M	. 4677484	. 0006629	. 0070941	17
A	. 4672965	. 0006134	. 0075461	14.
8	. 4664045	. 0005490	. 0084381	15
0	. 4731800	. 0010791	. 0016625	18
F	. 4654012	. 0006399	. 0094413	20

Table 33
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT = .3821), Orientation 2,

Matrix 1, $n=25$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max $=30$)
S	. 4627196	. 0006670	*	*
K	. 4719242	. 0014018	-. 0092046	10
C	. 4694026	. 0009036	-. 0066830	6
R	. 4668919	. 0009133	-. 0041723	14
D	. 4695432	. 0008943	-. 0068236	6
M	. 4616642	. 0008998	. 0010555	18
A	. 4676708	. 0010138	-. 0049511	12
P	. 4687074	. 0009316	-. 0059878	9
0	. 4679746	. 0009010	-. 0052550	10
F	. 4581825	. 0008614	. 0045371	17

Table 34
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replicationa, when $D=.6$ (OPT $=.3821$), Orientation 2, Matrix 2, $n=10$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Varlance	Improvement Over Eseimator S	Number of Times PHC is Lower than That of Estimator S ($\mathrm{max}=30$)
s	. 4748407	. 0009862	*	*
K	. 5124921	. 0142417	-. 0376514	9
G	. 4689430	. 0007691	. 0058977	17
2	. 4666333	. 0004998	. 0082074	18
D	.4777118	. 0020373	-. 0028711	15
M	. 4670981	. 0005090	. 0077425	17
A	. 4665159	. 0005723	. 0083248	14
8	. 4635785	. 0005018	. 0092622	15
0	. 4713298	. 0010116	. 0033109	19
F	. 4658244	. 0006795	. 0090163	17

Table 35
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT = .3821), Orientacion 2, Matrix 2, $2=25$

Estsmator	$\begin{gathered} \text { Mean } \\ \text { PMC } \end{gathered}$	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max - 30)
s	. 4627164	. 0006672	*	*
π	. 4644286	. 0007672	-. 0017121	12
c	. 4660719	. 0007766	-. 0033555	,
8	. 4654612	. 0008201	-. 0027447	13
D	. 4692930	. 0008660	-. 0065766	6
M	. 4625991	. 0007796	. 0001173	13
A	. 4668268	. 0009913	-. 0041104	11
p	. 4669938	. 0008796	-. 0042774	11
0	. 3657500	. 0008180	-. 00030336	12
\boldsymbol{F}	. 4591060	. 0008321	. 0036.104	17

Table 36
Comparison of Probabilities of Misclassification for Sevaral Discriminant Functions, 30 Replications, when $D=1.0$ (OPT - .3085), Orientation 2. Matrix 1, n $=10$

Eatimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator S	Sumber of Times PMC is Lower than That of Eetimator S (anx = 30)
5	. 4353746	. 0015345	*	*
$\underline{6}$. 4330599	. 0203526	. 0023147	14
${ }_{8}^{6}$. 4219073	. 0014967	. 0134672	18
D	. 4226489	. 0013245	. 0127256	18
${ }_{\mathbf{M}}$. 4308677	. 0018493	. 0045069	16
$\underset{\sim}{\text { a }}$. 4230547	. 0013879	. 0123198	18
P	. 4179050	. 0011787	. 0174696	17
0	. 4171228	. 0010810	. 0182518	21
F	. 4311192	. 0021821	. 0042554	18
	. 4151206	. 0012979	. 0202540	22

Table 37
Comperison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0$ (OPT - . 3085), Orientation 2,

Matrix $1, n=25$

Estimator	Mean PHC	Variance	Inprovement Over Estimator S	Number of Times PYC Is Lower than That of Estimator S
(max = 30)				

Table 38

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, whea D = 1.0 (ORT - .3085), Orientation 2. Matrix 2, $\mathrm{a}=10$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PYC } \end{aligned}$	Variance	Improvemant Over Eseimator S	Number of Times PMC is Lover than That of Eatimator S (2ax - 30)
S	. 4353760	. 0015353	*	*
\boldsymbol{K}	. 4288924	. 0192817	. 0064836	15
6	. 4197841	. 0014778	. 0155919	19
R	. 4194766	. 0010147	. 0158995	19
D	. 4386382	. 0021675	-. 0032621	13
M	. 4196677	. 0010474	. 0157083	19
A	. 4154792	. 0011159	. 0198969	18
P	. 4145854	. 0009961	. 0207906	20
0	. 4278291	. 0020048	. 0275470	18
F	. 4149475	. 0013041	. 0204286	22

Tasle 39
Comparison of Probabilities of Misclassification for Several Discrininant Functions, 30 Replications, when $D=1.0$ (OPT $=.3085$). Orientation 2. Matrix 2, $a=25$

Estimator	Mean FMC	Variance	Improvement Over Estimator S	Number of Times FHC Is Lower Chan That of Estimator S
(max = 30)				

Table 40

Comparison of Probabilitios of Misclasalfication for Several Discriminanc Functions, 30 Replications, whea D = 3.0 (OPT - .0668), Orieatation 2. Mactix 1, a - 10

Estrater	$\begin{aligned} & \text { Mean } \\ & \text { PIXC } \end{aligned}$	Verlance	Improvenant Over Eatinator 5	Nubber of Timea BHC Ls Lover than That of Eatimater 8 (anx = 30)
8	. 2695078	. 0060483	*	*
8	. 1123621	. 0066941	. 1371457	29
6	. 1692414	. 0020379	. 0802664	27
8	. 1709730	. 0015075	. 0785348	26
D	. 2105048	. 0029529	. 0390030	20
\pm	. 1707156	. 0015022	. 0787921	27
A	. 1577452	. 0014461	. 0917625	26
P	. 1566116	. 0013031	. 0928962	26
0	. 1952627	. 0031542	. 0542450	25
F	. 2514887	. 0007328	. 0980191	27

Table 41
Comparison of Probabilities of Misclasgification for saveral Discriminant Functions, 30 Replications. when $D=3.0$ (OPT = .0668), oriencation 2. Kateix 1, n - 25

Estmator	$\begin{aligned} & \text { Mean } \\ & \text { BMC } \end{aligned}$	Variance	Improvenent Over Estimator S	Number of Ifmet PES la Lover then That of Eatiastor S (axx - 30)
8	. 1331733	.0699557	*	*
R	. 1144944	. 0012634	. 0186789	22
6	. 1477542	. 0016095	-. 0145809	7
8	. 1316691	. 0007811	.0015042	13
D	. 1522981	. 0018516	-. 0191248	6
\boldsymbol{H}	. 1279512	. 0004250	. 0052221	13
${ }^{\text {a }}$. 1255118	. 0006575	. 0076615	13
8	. 1364622	. 0009679	-..0032889	13
0	. 1390306	.0010629	-. 0058573	12
F	. 13303412	. 0002908	. 0028321	12

Table 42
Comparison of Probabilities of Misclasalfication for Several Discriminant Functions, 30 Replicatioas, when $D=3.0$ (OPT - .0668), Oriencation 2_{i} Matrix 2, $n=10$

Estimator	$\begin{gathered} \text { Mean } \\ \text { PMC } \end{gathered}$	Varlance	Improvement Over Estimator S	Number of Times PMC 1s Lower than That of Entimator S (eax - 30;
S	. 2495055	. 0060521	*	*
\boldsymbol{R}	. 1078930	. 0062406	. 1416125	29
G	. 1632755	. 0019554	. 0862300	27
2	. 1633573	. 0011703	. 0861482	27
D	. 2102215	. 0030642	. 0392840	19
H	. 1644306	. 0012311	. 0850749	27
4	. 1523755	. 0013742	. 0971300	27
?	. 1512669	. 0011787	. 0982386	27
0	. 1874490	. 0028035	. 0620565	27
F	. 1493255	. 0008663	. 1001900	27

Table 43
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications,
when $D=3.0$ (OPT = .0668), Orieatation 2.
Matrix 2, $\mathrm{n}=25$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement OVer Estimator S	Numbe: of Times PRC is Lower than firat of Estimator S ($\max =30$)
s				
x	. 1331843	. 0019554	*	*
6	. 1195333	. 0016524	. 0136510	25
8	. 1364841	. 0016179	-. 0032998	12
D	. 1232534	. 0005884	. 0099309	25
M	. 1508638	. 0016469	-. 0176795	6
A	. 1247775	. 0003938	. 0084068	15
?	. 1222640	.00048:2	. 0109203	16
0	. 1291367	.0307964	. 00404046	15
F	$.1297228$. 0009705	. 0034615	16
	. 1297631	. 0002820	. 0032212	13

Table 44
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT = .3821), Orientation 2, Matrix 3, $a=10$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower chan That of Estimator S (max $=30$)
S	. 4748412	. 0009861	*	*
K	. 5065296	. 0128271	-. 0316884	8
G	. 4673149	. 0007657	. 0075263	16
R	. 4629258	. 0007699	. 0119154	19
D	. 4712337	. 0010013	. 0036075	17
M	. 4634376	. 0008083	. 0114036	21
A	. 4645034	. 0006641	. 0103378	16
P	. 4637172	. 0006158	. 0111240	17
0	. 4711998	. 0009542	. 0036414	17
F	. 4638498	. 0007231	. 0109914	22

Table 45
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT = .3821), Orientation 2, Matrix 3, $n=25$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max $=30$)
S	. 4627221	. 0006673	*	*
π	. 4711118	. 0014803	-. 008385 ?	8
c	. $46591 . ? 7$. 0008821	-. 0031907	9
R	. 4020172	. 0009123	. 0007048	16
D	. 4667498	. 0008699	-. 0040277	8
M	. 4548056	. 0009987	.0079165	20
A	. 4622694	. 0009641	. 0004527	16
P	84644339	. 0009030	-. 0017118	13
0	. 4642720	. 0008835	-. 0015499	13
F	.4540535	. 0008569	. 0086636	18

Table 46

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT = .3821), Orientation 2, Matrix 4, $\mathrm{n}=10$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { RMC } \end{aligned}$	Variance	Improvement Over Estimator S	Number of Tiaes PMC Is Lover chan That of Estimator S (max = 30)
S	.4748412	. 0009861	*	*
\boldsymbol{X}	. 5056651	. 0125282	-. 0308240	9
G	. 4662255	. 0006887	. 0086157	18
R	. 4616149	. 0006204	. 0132263	20
D	. 4720771	. 0010743	. 0027641	17
M	. 4614755	. 0006246	. 0133657	20
4	. 4635341	. 0006006	. 0113071	18
P	. 4627018	. 0005589	. 0121394	18
0	. 4695581	. 0008809	. 0052831	18
F	. 4641099	. 0007820	. 0107313	20

Table 47
Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications, when $D=.6(O P T=.3821)$, Orientation 2, Matrix 4, $a=25$

Estimator	$\begin{gathered} \text { Mean } \\ \text { PNC } \end{gathered}$	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max = 30)
S	. 4627165	. 0006672	*	*
R	. 4640364	. 000867 ?	-. 0013198	13
G	. 4630044	. 0007643	-. 0002878	15
R	. 4599910	. 0008376	. 0027255	17
D	. 4668319	. 0008721	-. 0041153	9
M	. 4538565	. 0008490	. 0088601	19
A	. 4613622	. 0009365	. 0013543	14
P	. 4629706	. 0008562	-. 0002540	16
0	. 4624097	. 0007953	. 0003069	16
F	. 4550720	. 0008097	. 0076445	19

Table 48
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0$ (OPT = .3085), Orientation 2, Matrix 3, $\mathrm{n}=10$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times BMC Is Lower
than That of				
Estimator S				

Table 49
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0(O P T=.3085)$, Orientation 2 , Matrix 3, $n=25$

Estimator	- Mean	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max $=30$)
S	. 4032712	. 0014404	*	*
K	. 4074098	. 0021665	-. 0041386	14
G	. 4083671	. 0016222	-. 0050959	9
R	. 3976231	. 0013577	. 0056481	18
D	. 4112139	. 0016231	-. 00079427	8
M	. 3844087	. 0009758	. 0138625	20
A	. 3962300	. 0013994	. 0070412	18
P	. 4034277	. 0015071	-. 0001565	13
0	. 4038810	. 0014969	-. 0006098	15
F	. .3829356	. 0007398	. 0203356	20

Table 50
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0$ (OPT = .3085), Orientation 2, Matrix 4, $n=10$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max = 30)
S	. 4353760	. 0015352	*	*
K	. 4296659	. 0160573	. 0057101	15
G	. 4149252	. 0013206	. 0204508	23
R	. 4092804	. 0012022	. 0260956	21
D	. 4271838	. 0023609	. 0081922	15
M	. 4087731	. 0012207	. 0266029	21
A	. 4099878	. 0011568	. 0253882	21.
P	. 4086955	. 0010835	. 0266805	21
0	. 4242760	. 0016659	. 0111000	19
E	. 4105393	. 0015412	. 0248367	22

Table 51
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0$ (OPT = .3085), Orientation 2, Matrix 4, $n=25$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max $=30$)
S	. 4032658	. 0014404	*	. *
K	. 4001522	. 0016495	. 0031135	23
G	. 4017023	. 0013862	. 0015634	16
R	. 3936941	. 0011592	. 0095717	19
D	. 4109952	. 0016423	-. 0077294	11
M	. 3823102	. 0007632	. 0209556	20
A	. 3948253	. 0013578	. 0084404	15
P	. 3999439	. 0013950	. 0033219	15
0	. 3996254	. 0013405	. 0036404	17
F	. 3848586	. 0007157	. 0134072	21

Table 52

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=3.0$ (OPT $=.0668$), Orientation 2, Matrix 3, $n=10$

Estimate	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max $=30$)
S	. 2495356	. 0060531	*	*
\boldsymbol{R}	. 1154327	. 0070086	. 1341029	29
G	. 1572698	. 0022482	. 0922657	30
R	. 1462953	. 0010922	. 1032402	27
D	. 1921527	. 0029914	. 0573829	21
M	. 1457720	. 0010216	. 1037635	27
A	. 1444945	. 0014105	. 1050411	28
P	. 1430998	. 0012523	. 1064358	27
0	. 1831795	. 0035418	. 0663560	30
E	. 1366920	. 0006592	. 1128435	28

Table 53
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=3.0$ (OPT $=.0668$), Orientation 2, Matrix 3, $n=25$
$\left.\begin{array}{lcccc}\hline \text { Estimate } & \begin{array}{c}\text { Mean } \\ \text { PMC }\end{array} & \text { Variance } & \begin{array}{c}\text { Improvement Over } \\ \text { Estimator S }\end{array} & \begin{array}{c}\text { Number of Times } \\ \text { PMC Is Lower } \\ \text { than That of } \\ \text { Estimator S }\end{array} \\ \text { (max - 30) }\end{array}\right]$

Table 54

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=3.0$ (OPT - .0668), Orientation 2, Matrix 4, a - 10

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { BYC } \end{aligned}$	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max = 30)
s	. 2495033	. 0060513	*	*
K	. 1080565	. 0063426	. 1414469	29
6	. 1494012	. 0019507	. 1001021	30
R	. 1444231	. 0008757	. 1050802	28
D	. 1854059	. 0030886	. 0640974	24
M	. 1454299	. 0008298	. 1040735	28
A	. 1384619	. 0013410	. 1110414	29
P	. 1371177	. 0011693	. 1123856	28
0	. 1760073	. 0032529	. 0734961	30
F	. 1349167	. 0008031	. 1145866	28

Table 55
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications,
when $D=3.0$ (OPT = .0668), Orientation 2 , Matrix 4, $n=25$

Estimate	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S
(max = 30)				

Table 56
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=. C$ (OPT - . 3821), orientation 3, Matrix 1, $n=10$

Estimator	Mean PMC	Varlance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max = 30)
s	. 4715319	. 0011503	*	*
1	. 5323469	. 0096985	-. 0608149	9
6	. 4768534	. 0006249	-. 0053214	13
R	. 4778623	. 0004963	-. 0063303	11
D	. 4800106	. 0005833	-. 0084787	12
M	. 4788593	. 0005130	-. 00073274	11
A	. 4770617	. 0005008	-. 0055297	12
P	. 4771987	. 0004606	-. 00056668	12
0	. 4785215	. 0008829	-. 0069895	12
F	. 4803006	. 0003943	-. 0087686	10

Table 57
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT $=.3821$), Orientation 3, Matrix 1, $n=25$

Estimator	Mean PMC	Variance	Improvement OVer Estimator S	Number of Times PMC is Lower chan That of Estimator S (max - 30)
S	. 4644161	. 0008756	*	*
R	.47:5874	. 0017452	-. 0132713	9
G	. 4800509	. 0011086	-. 0156348	4
R	. 4794635	. 0011293	-. 0150474	7
D	. 4800156	. 0011013	-. 0155995	5
M	. 4778069	. 0010842	-. 0133908	11
A	. 4806339	. 0012203	-. 0162178	7
P	. 4801776	. 0011342	-. 0157615	5
0	. 4796249	. 0011068	-. 0152088	6
F	. 4784315	. 0009580	-. 0140154	9

Table 58
.Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT = .3821), Orientation 3,

Matrix 2, $n=10$

Estimator	Mean PMC	Variance	Improvement Estimator S	Over

Table 59
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=.6$ (OPT $=.3821$), Orientation 3, Matrix 2, $n=25$
$\left.\begin{array}{ccccc}\hline \text { Estimator } & \begin{array}{c}\text { Mean } \\ \text { FMC }\end{array} & \text { Variance } & \begin{array}{c}\text { Improvement Over } \\ \text { Estimator S }\end{array} & \begin{array}{c}\text { Sumber of Times } \\ \text { PMC is Lover } \\ \text { than That of } \\ \text { Estimator S }\end{array} \\ \text { (max = 30) }\end{array}\right]$

Table 60
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0$ (OPT $=.3085$), Orientation 3, Matrix 1, $\mathrm{n}=10$
$\left.\begin{array}{ccccc}\hline \text { Estimate } & \begin{array}{c}\text { Kean } \\ \text { PMC }\end{array} & \text { Variance } & \begin{array}{c}\text { Imp rovement Over } \\ \text { Estimator S }\end{array} & \begin{array}{c}\text { Number of Times } \\ \text { PMC Is Lower } \\ \text { Ehan That of } \\ \text { Estimator S }\end{array} \\ \text { (max = 30) }\end{array}\right]$

Table 61
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0$ (OPT $=.3085$), Urientation 3, Matrix 1, $\mathrm{n}=25$

Estimator	Mean PMC	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator 5 (max =. 30)
S	. 4049063	. 0015699	*	*
K	. 4135915	. 0031345	-. 0086851	12
C	. 4385528	. 0024528	-. 0336465	3
R	. 4356605	. 0023311	-. 0307541	7
D	. 4394411	. 0024522	-. 0345348	3
M	. 4325702	. 0020114	-. 0276639	9
A	. 4358236	. 0024450	-. 0309173	8
P	. 4370903	. 0024253	-. 0321839	6
0	. 4367075	. 0023890	-. 0318012	5
F	. 4336094	. 0018005	-. 02887031	R

Table 62

Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replicetions, when $D=1.0$ (OPT = .3085), Orientation 3.
 Matrix 2, $n=10$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator 3	Number of Times FMC is Lower than That of Estimator S (max = 30)
S	. 4334909	. 0017418	*	*
\boldsymbol{K}	. 4246007	. 0204109	. 0088902	15
G	. 4383295	. 0014730	-. 0048386	13
R	. 4422662	. 0008799	-. 0087753	14
D	. 4558897	. 0016159	-. 0223988	9
M	. 4445498	. 0008670	-. 0110589	14
A	. 4380882	. 0010576	-. 0045973	12
P	. 4389660	. 0009383	-. 0054751	13
0	. 4418492	. 0021301	-. 0083583	12
F	. 4470639	. 0009323	-. 0135730	10

Table 63
Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when $D=1.0$ (OPT = .3085), Orientation 3,
Matrix 2, $n=25$
$\left.\begin{array}{ccccc}\hline \text { Estimator } & \begin{array}{c}\text { Mean } \\ \text { PMC }\end{array} & \text { Variance } & \begin{array}{c}\text { Improvement Over } \\ \text { Estimator S }\end{array} & \begin{array}{c}\text { Number of Times } \\ \text { EMC is Lower } \\ \text { than That of } \\ \text { Estimator S }\end{array} \\ \text { (max = 30) }\end{array}\right]$

Table 64

Comparison of Probabilities of Misclassification for
Sevaral Discriminant Functions, 30 Replications, whea $D=3.0$ (OPT = .0668), Orientation 3.

Matrix 1, $n=10$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Varlance	Improvemeat Over Estimitor S	Number of times BMC is Lover than That of Estimator S (max $=30$)
S	. 2333699	. 0047396	*	*
\boldsymbol{R}	. 1291883	. 0092560	. 1041816	28
6	. 2123422	. 0019660	. 0210277	16
R	. 2232617	. 0022461	. 0101082	13
D	. 2628658	. 0035742	-. 0294959	12
M	. 2252484	. 0021650	. 0081215	14
A	. 2059766	. 0018948	. 0273933	18
p	. 2073982	. 0019220	. 0259717	18
0	. 2322150	. 0025430	. 0011549	11
F	. 2126169	. 0020385	. 0207530	18

Table 65
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=3.0$ ($O P T=.0668$), Orientation 3, Matrix 1, a $=25$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator 5 (max - 30)
s	. 1315218	. 0018469	*	*
E	. 1219341	. 0014079	. 0095876	19
G	. 1817822	. 0015730	-. 0502604	1
R	. 1673601	. 0006437	-. 0358384	3
D	. 1869159	. 0018902	-. 0553941	1
\boldsymbol{M}	. 1621310	. 0003605	-. 0306092	3
A	. 1597117	. 0004277	-. 0281900	3
P	. 1709309	. 0008129	-. 0394091	3
0	. 1740671	. 0010193	-. 0425453	3
F	. 1620265	. 0004422	-. 0305047	6

Table 66
Comparison of Prebabilities of Misclassification for Several Discriminant Functions, 30 Replicatione, when D = 3.0 (OPT - "0668), Orientation 3.

Matrix 2, $a=10$

Eatimator	Mean PHC	Variance	Improvement Over Estimator S	Tumber of Times PMC Ls Lower than That of Estinator S (asx - 30)
8	. 2243574	. 0036016	*	*
I	. 1037136	. 0030641	. 1206438	30
6	. 1986870	. 0020313	. 0256704	21
8	. 2187200	. 0018344	. 0056374	16
D	. 2570681	. 0046414	-. 0327107	11
4	. 2216029	. 0018980	. 0027544	16
A	. 1950727	. 0018596	. 0292847	21
P	. 1976837	. 0016971	. 0266737	20
0	. 2131977	. 0025543	. 0111597	16
F	. 2052253	. 0022348	. 0191321	20

Table 67
Comparison of Probabilities of M1sclasaification for Several Discriminant Functions, 30 Replications, . when D $=3.0$ (OPT - .0668), Oriencation 3,

Katrix 2, $a=25$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Varlance	Improvement Over Estimator S	Iumber of Timea IMC is Lower than That of Estimator S (2ax = 30)
s	. 1319591	. 0021237	*	*
\boldsymbol{K}	. 1194863	. 0018197	. 0124728	22
6	. 1545014	. 0017565	-. 0223423	2
1	. 1493955	. 0006182	-. 0174364	6
D	. 1871879	. 0015492	-. 0552288	2
M	. 1579318	.000¢546	-. 025972 ?	5
A	. 1515277	. 00003614	-. 0195686	6
P	. 1536625	. 0007857	-. 0217034	4
0	. 1516813	. 0010668	-. 0197222	4
F	. 1585516	. 0004067	-. 0265925	6

Comparison of Probabilities of Misclessificatice for Several Discriminant Puactions, 30 Replications, when D = .6 (OPT - .3821), Orientation 3. Matrix 3, $n=10$

Estrater	$\begin{aligned} & \text { Yean } \\ & \text { PMC } \end{aligned}$	Variance	Inprovement OVES Estinator 8	Nuber of Times BiC is Lover than That of Eetimator S (ass - 30)
8	. 4717440	. 0011812	*	*
R	. 5126235	. 0091900	-. 0408795	9
6	. 4714682	.0007407	. 0002758	11
2	. 4720959	. 0007014	-. 0003519	13
D	. 4769108	. 0008939	-. 0051668	12
H	. 4736923	. 0007007	-. 0019483	13
A	. 4716619	. 0006418	. 0000821	13
P	. 4724154	. 0006048	-. 00006714	13
0	. 4727913	. 0009229	-. 00010473	16
I	. 4763422	. 0005204	-. 0045982	14

Table 69
Comparison of Probabilities of Misciassification for
Several Discriminant Funceicas, 30 Repiscatioas, when D = . 6 (OPT = .3821), Orientation 3. Matrix 3, $\mathrm{n}=25$

Eseimator	$\begin{aligned} & \text { Mean } \\ & \text { PYC } \end{aligned}$	Vartance	Improvement Over Estimator S	nuber of Tises FIMC is lover than that of Estimator S (2ax - 30)
s	. 4653408	. 0009935	*	*
\boldsymbol{R}	. 4761015	. 0019887	-. 0108607	5
6	.4726285	. 0012053	-. 0073877	8
2	. 4708577	. 0012061	-.0056170	13
D	. 4729653	. 0011982	-.0077246	8
M	. 4685765	. 0011787	-. 0033357	14
A	. 4713554	. 0012452	-. 00061146	12
$?$. 4719655	. 0012121	-. 0067248	11
0	. 4718916	. 0011963	-. 0006658	11
F	. 4708172	. 0010039	-.0055765	12

Table 70

Comparison of Probabilities of Misclassiflcation for Several Discriminane Funceioas, 30 Replications, when D = . 6 (OPT = .3821), Oriencation 3. Matrix 4, a - 10

Escimator	$\begin{aligned} & \text { Meca } \\ & \text { PMC } \end{aligned}$	Vazlases	Iaprovencat Over Estimator 8	Number of Times FMC is Lowar then that of Estimator S (anx - 30)
8	. 4720831	. 0012788	*	*
E	. 5031372	. 0127667	-. 0310541	9
6	. 4700337	. 0007420	. 0020494	16
I	. 4694506	. 0005764	. 0026324	16
D	. 4772137	. 0009871	-. 0051306	11
M	. 4705986	. 0005446	. 0014845	15
4	. 4701204	. 0006098	. 0019627	14
8	. 4707832	. 0005577	. 0012999	14
0	. 4708626	. 0010057	. 0012205	17
F	. 4752869	. 0005162	-. 0032038	13

Table 71
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when D = .6 (OPT a . 3821), Or1entation 3, Matrix 4, $\mathrm{n}=25$

Estimator	$\begin{aligned} & \text { Bean } \\ & \text { PMC } \end{aligned}$	Variance	Improveaent Over Estimator 3	Number of Times BHC is Lover than that of Esefmater 5 (eax = 30)
8	. 4651296	. 0009873	*	*
\mathbf{x}	. 6671420	. 0012007	. . 0020124	9
6	. 4673454	. 0010232	-. 0022158	9
1	. 4674717	. 0010639	-. 0023421	13
0	. 4728941	. 0011811	-. 0.0077645	9
\boldsymbol{M}	. 4674353	. 0010331	-. 0023057	12
1	. 4697105	. 0011609	-. 0045809	13
?	. 4691317	.0010917	-. 0040021	9
0	. 4679627	. 0010369	-. 0028331	11
F	. 4710952	. 0008720	-. 0059656	12

Comparison of Probabilities of Misclassification for Several Discriminant Functicns, 30 Replications, when D $=1.0$ (OTT = .3085), Oriencacion 3.

Matrix 3, a $=10$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator S	Bumber of Times FMC is Lover than That of Estimator S (eax = 30)
S	.4353038	. 0021210	*	*
K	. 4361354	. 0139366	-. 0008317	15
6	. 4290625	. 0014621	. 0062413	16
R	. 4304059	. 0025238	. 0048978	16
D	. 4418043	. 0016709	-. 0065006	13
M	. 4331626	. 0015629	. 0021412	15
A	. 4286235	. 0013581	. 0066803	15
P	. 4301593	. 0013361	. 0051445	15
0	. 4338156	. 0018453	. 0014882	16
F	.4384861	. 0011986	-. 0031823	13

Table 73
Comparison of Probabilities of Misclassification for Several Discriminant Functions, 30 Replications, when $D=1.0(0 P T=.3085)$, Orientation 3, Matrix 3, $\mathrm{a}=25$

Estimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator S	Number of Times PMC is Lower than That of Estimator S (max $=30$)
S	. 4055966	. 0018138	*	*
\%	. 4148539	. 0031281	-. 0092573	9
6	. 4220622	. 0024874	-. 0164655	7
8	. 4156192	. 0021668	-. 0100226	10
D	. 4241355	. 0024947	-. 0185389	6
M	. 4110012	. 0017447	-. 0054046	14
A	. 4144310	. 0021750	-. 0088343	10
P	. 4187178	. 0023542	-. 0131212	9
0	. 4193926	. 0023535	-. 0137960	9
I	. 4145477	. 0015400	-. 0089510	11

Table 74
. Comparison of Probabilities of Maclanalfication for Several Discriminant Functions, 30 Replications, man D = 1.0 (ORT - .3053), Orientation 3.

Matrix 4, $n=10$

Eetimator	$\begin{aligned} & \text { Mana } \\ & \text { PMC } \end{aligned}$	Varianca	Improvenant Over Estimator S	tumber of Timea PMC is Lower then That of Eatimator 8 (max - 30)
8	.4342608	. 0019456	*	*
k	. 4233397	. 0179305	. 0109212	15
6	.4245597	. 0013671	. 0097011	16
R	. 4270403	.0012926	. 0072205	15
D	. 4426120	. 0021714	-. 0083512	11
4	. 4290106	. 0012626	. 0052502	15
A	. 4245191	. 0012159	. 0097417	17
?	. 4260354	. 0011725	. 0082254	15
0	. 4277009	. 0017663	. 0065600	17
F	. 4361893	.0011949	-. 0019285	15

Table 75
Comparison of Probabilities of Misclasalfication for Several Dicicriminant Functions, 30 Replications, when D = 1.0 (OPT - . 3085), Orientation 3. Matrix 4, $n=25$

Sectmator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Varlance	Improvament Over Estimator S	Number of Times PMC is Lover chan That of Estimator S (axa - 30)
3	. 4054626	. 0018726	*	*
\boldsymbol{K}	. 4031859	. 0021245	. 0022766	22
6	. 4085762	. 0018364	-. 00031136	11
2	. 4078334	. 0017050	-. 0023709	12
D	. 4238338	. 0024232	-.0183715	7
M	. 4078858	. 0014149	-. 0024232	12
A	. 4109159	. 0019538	-. 00054533	11
P	. 4114915	. 0019335	-. 00060289	11
0	. 4093732	. 0018212	-. 00039107	11
F	. 4149809	. 0013582	-. 0095183	11

Table 76
Compartson of Probabillties of, Misclasaification for Sevaral Diserininat Functions, 30 Replicaticas, when $D=3.0$ (OPT -.0668), Ortentatica 3. Matrix 3. $a=10$

Eatimator	$\begin{aligned} & \text { Mean } \\ & \text { PMC } \end{aligned}$	Variance	Iaprovement Over Satimator S	Nuber of Times Pice is lower than That of Estimater 8 (anx - 30)
S	. 2293197	. 0037984	*	*
K	. 1122443	. 0044695	. 1170754	30
6	. 1767313 '	. 0018591	. 0525884	27
R	. 1777807	. 0018805	. 0515390	23
D	. 2333672	. 0037738	-. 0040475	16
M	. 1784349	. 0018331	. 0508848	23
A	. 1693173	. 0017083	. 0600024	25
P	. 1702761	. 0018428	. 0590436	24
0	. 1975339	. 0024048	. 0317658	26
F	. 1735133	. 0018499	. 0558064	23

Table 77
Comparison of Probabilities of Misclassification for Several Discrimimat Functions, 30 Replications, when $D=3.0$ (OPT = .0568), Orientation 3, Matrix 3, $a=25$

Estimator	Mean PMC	Variance	Improvement Over Escimator S	Number of Tines PMC is Lowar than That of Estimator S (玉ax - 30)
s	. 1304627	. 0017817	*	*
\boldsymbol{R}	. 1213906	. 0017554	. 0090721	14
6	. 1496848	. 0015936	-. 0192221	2
R	. 1308800	. 0005221	-. 0004173	11
D	. 1541308	. 00219616	-. 0236681	2
8	. 1251524	. 0003101	. 0053103	12
A	. 1243820	. 0002787	. 0060807	13
P	. 1367060	. 0006853	-. 0062433	8
0	. 1409471	. 0009458	-. 0104844	5
F	. 1250879	. 0002812	. 0053748	14

Comparison of Probabilities of Misclasalfication for Savaral Discriminant Functions, 30 Replleatione, whea D - 3.0 (OFT - .0668), Ortentation 3. Matrix 4, a $=10$

Eectmator	$\begin{aligned} & \text { Pyasas } \\ & \text { EXXC } \end{aligned}$	Variance	Improvement Over Estimator 8	Straber of times PMC ia Lower chan That of Eetinator s ($-3 x$ - 30)
8	. 2330262	. 0048248	*	*
Σ	. 0975499	. 0027006	. 1354763	30
6	. 1639241	. 0016791	. 0691020	29
2	. 1730693	. 0017608	. 0599568	24
D	. 2249789	. 0035917	.0080473	17
H	. 1760017	. 0017952	. 0570244	25
4	. 1585676	. 0016115	. 0744585	25
8	. 2598563	. 0016097	. 0731699	24
0	. 1808607	. 0025917	. 0521654	28
5	. 1669733	. 0020316	. 0660529	23

Table 79
Comparison of Probabilities of Kisclassification for
Several Discriminant Functions, 30 Replications. when D - 3.0 (OFT - .0668), Orientation 3,

Matrix 4, $n=10$

Estimator	$\begin{aligned} & \text { Maan } \\ & \text { PMC } \end{aligned}$	Variance	Improvement Over Estimator S	Number of Ifines FMC is Lower than That of Eatimator S (max - 30)
s	. 1302982	. 0021113	*	*
\boldsymbol{K}	. 1147942	. 0017454	. 0153040	29
6	. 1259162	. 0013530	. 0043820	15
\boldsymbol{R}	. 1261704	. 0003746	. 0141278	18
D	. 1509116	. 0014984	-. 0206134	4
M	. 1197156	. 0002586	. 0105826	13
1	. 1176184	. 0002667	. 0126798	16
8	. 1225194	. 0006490	. 0077788	15
0	. 1225293	. 0009248	. 0077689	15
7	. . 2223729	. 0002662	. 0079253	14

Anderson, T. W. (1951), "Claasification by Multivariate Anaiyais," Paychometrika, 16, 31-50.

- (1958), An Introduction to Xuleivariate Statistical Amalyis. New York: John Wiley and Sons, Inc.

Bartlett, M. S. (1939), "Yhe Standard Errors of Discriminant Function Coeffictents," Journal of the Roval Statistical Society. SuppleEant 6, 269-173.

CaCoullos, T., editor (1973), Discriminant Anelysis and Applications, Kew York, Academic Press.

Cochran, W. G. (1964), "On the Performance of the Linear Discriminant \therefore : . Function," Technometrics, 6, 179-190.

Des Gupta, S. (1968), "Some Aepects of Discrimination Function Coefficients," Sankhyz, A, 30, 387-400.

Dempsterina. P., Schatzoff, M., and Wermuth, \&. (1977), "A Simulation Study of Alternatives to Ordinary Least Squares," Journal of the American Statistical Association, 72, 77-91.

DiPillo, P. J. (1976), "The Application of Bias to Discriminant Analysia," Communcations in Stacistics, AS, 843-854.
(1977). "Further Application of Bias to Diserimianat Analysis," Commications in Statistics, A6, 933-943.

Duna, O. J. (1971), "Some Expected Values for Probabillties of Correct Classification in Discriminant Analysis," Technometrics, 13. 345-353.

Finch, W. A., Jr. (1973), Earth Resources Technology Satellite-I, Symposium Proceedings, NASA, Greenbelt, Maryland: Goddard Space Flight Center.

Fisher, R. A. (1936), "The Use of Muleiple Measurements in Taxonomic Problems," Annals of Eugenics, 7, 179-188.

Gantmacher, F. R. (1960), Matrix Theory, New York: Chelsea Publishing Company.

Gilbert, E. (1968), "On Discrimination Using Qualitative Variables," Journal of the American Statistical Association. 63, 1399-1412.
\longrightarrow (1969), "The Effect of Unequal Variance-Covariance Matrices on Fisher's Linear Discriminant Function," Blometrics, 25, S05-515.

Gnamadesikan, R. (1977). Methods for Statistical Data Analvels of Multivariate Observations, New York: John Wiley and Sons, Inc.

Grayb111, F. A. (1976), Theory and Application of the Linear Model. Massachusetts: Duxbury Press.

Gunst, R. F.. and Mason, R. L. (1977), "Blased Estimation In Regression: An Evaluation Using Mean Squared Error," Joumal of the American Stactatical Association, 72, 616-628.

Rabbema, J. D. F., and Hermans, J. (1977), "Selection of Variables in Discriminant Analysis by F-statistic and Error Rate," Technomertics, 19, 487-493.

Bavkins, D. M. (1973), "On the Iavestigation of Alternative Regressions by Principal Component Analysis," Applied Statistics, 22, 275-286.

Hemmerle, W. J. (1975), "An Expllcit Solution for Generalized Ridge Regrassion," Technometrics, 17, 309-314.

E111s, M. (1966), "Allocation Rules and Their Error Races," Jouraal of the Roval Statistical Society, Series B, 1-31.

Rocking, R. R. (1976), "The Analysis and Selection of Variabley in Linear Regression," Biomecrics, 32, 1-47.

Boerl, A. E., and Kennard, R. W. (1970), "Rdge Regression: Biased Estimation for Non-orthogonal Problem," Technometrics, 12, 55-68.
——" , and Kennard, R. W. (1976), "Ridge Regression, Iteracive Estimation of the Blasing Parameter." Comunications in Statistics, AS, 77-88.

Hotelling, H. (1933), "Analysis of a Complex of Statistical Variables into Principal Components," Journal of Educstional Psychology. 24. 417-441, 498-520.

Krzanowski, W. J. (1977). "The Performance of Fisher's Linear Discriminant Funceion Under Non-optimal Conditions." Techncmetrics. 19. 191-200.

Rahirsagar, A. M. (1972), Multivariate Analvsis, New York: Marcel Dekker, Inc.

Lechenbruch, P. A., and Mickey, M. R. (1968), "Estimation of Error Rates in Discriminant Anslysis," Technometrics, 10, 1-11.

Lachenbruch, P. A. (1973), Discriminant Analysis, Naw York: Mafaer Press.

Mansfield, E. R., Webster, J. T., and Gumst, R. F. (1977), "An Asalytic Variable Selection Technique for Principal Compoment Regreselon" The Journal of the Royal Statiatical Society, Series C, 26 , 34-40.

Marquardt, D. W. (1970), "Generalized Inverses, Ridge Ragreasion, Blased IInear Estimation, and Nonlincar Estimation," Technometrica, 12, 591-612.

Massy, W. F. (1965), "Principal Components Regression in Exploratory Statistical Research," Journal of the American Statistical dssociation, 60, 234-257.

MeCabe, G. P. (1975), "Computations for Variable Selection in Discriminant Aalysis," Technometries, 17. 103-109.

MeKay, R. J. (1976), "Simultaneous Procedures in Discriminant Analysis Involving Two Groups," Technometrics, 18, 47-53.

Morrison, D. F. (1976), Multivariate Statistical Methods, New York: KeGraw-lilll Book Company.

Odell, P. L., and Newman, I. G. (1971), The Generation of Random Jariates, New York: Hafner Publishing Company.

Okamoto, M. (1963), "An Asymptotic Expansion for the Distribution of the Iinear Discriminant Functions," Annals of Mathematicsl Statistics, 34, 1286-1301.

Pearson, K. (1901), "On Lines and Planes of Closest Fit to Systems of Points in Space," Philosnphical Magazine, 2, 559-572.

Rao, C. R. (1964), "The Use and Interpretation of Principal Components Analysis in Applied Research," Sankhya, A, 26, 329-358.
\qquad , and Mitra, S. K. (1971), Generalized Inverse of Matrices and Its Applications, New York: John Wiley and Sons, Inc.

Schever, E. M., and Stoller, D. S. (1962), "On the Generation of Normal Radom Vectors," Technometrics, 4, 278-281.

Saidt, R. K., and McDonaid, L. L. (1976), "Ridge Diseriminant Analysis," Faculty Research Paper No. 108, Department of Statistics, Uaiversity of Wyoming.

Van Ness, J. W., and Simpson, C. (1976), "On the Effects of Dimensions in Discriminant Analysis." Technometrica. 18, 175-187.

Mall. A. (1944), "On a Stacistical Problen Arieing in the Clasesficatica of an Individual Into One of Two Groups," Annis of Matheatient Statistics, 15, 143-162.

Nebster, J. T., Cunst, R. R., and Mason, R. L. (1973), "Recent DevelopEnts in Steporise Regression Procedure," Procesdint of the Intversity of Rantucky Confernese on Rerresion Mith a Larese Duaber of Predictor Variabler, 24-53.

Welch, B. L. (1939), "Hote on DLsertmiant Functions," Biometrika, 31, 218-220.

