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ABSTRACT

The objective of this research is to modify Fisher's sample linear

discriminant function through an appropriate alteration of the common sample

variance-covariance matrix. The alterations consists of adding nonnegative

values to the eigenvalues of the sample variance-covariance matrix. The

desired results of this modification is to increase the number of correct

classifications by the new linear discriminant function over Fisher's

function.

This study is limited to the two-group discriminant problem.

The present research has identified several feasible alterations om

the sample variance~covariance matrix which produce several different biased

linear discriminant functions. The performance of the biased discriminant

functions are compared through Monte Carlo experiments. Comparative perfor-

mance is based on the Conditional Probability of Misclassification (PMC).

Each biased discriminant function has been uvaluated over seventy-two (72)

different computer simulation design configurations which gave consideration

to:
1)
)
3)
(4)

Sample size,
near-gingularity in the variance-covariance matrix,
Mahalanobis distance, and

orientation of mean vectors.

Initially, it was believed that sufficient improvement in the conditional

PMC could be gained by defining a new discriminant function through the dele-

tion ol small eigenvalues (equating them to zero) in the sample variance-

covariance matrix. However, the difficulty of determining a "cut-off" value

led the researchers to consider several additional alternations on the sample

variance-covariance matrix.
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1 INTRODUCTION : |

In many situations it is necessary to assign (or classify) an object
into one or two groups under conditions of uncertainty. As an aid in thie
classification process, procedures have been developed whereby an object is
measured on p variables whose values are believed to be influenced by the
group to which the object belongs. These measurements are compared, in
some way, with corresponding measures for objects known to belong to each
of the two possible groups under comsideration. The object is then assigned
to the group to which it is most similar; similarity is based on some kind
of distance function. In this study, that distance function will be called

a discriminant function.

Two of the best known discriminant functions developed to handle classifi-

cation problems of this nature are Fisher's (1936) linear discriminant

function (LDF) and the W classification statistics discussed by Anderson
(1958). Fisher's LDF and Anderson's W give identical results when applied

to the same set of observations. In fact, one is a linear function cf the

other.
In any classification problem, it is desirable to get a measure of the
chance that an object will be misclassified by the discriminant functionm.

This measure of misclassification is commonly called the probability of

NIRRT TR I T T

misclassification (PMC). Using Fisher's LDF, one may compute the exast
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probability of misclassification if the probability distribution for the two

populations is multivariate normal with known equal covariance matrices and
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known mean vectors. However, in practice, the common covariance matrix and

mean vectors are unknown and are obtained by unbiased sample estimates. When

sample estimates replace the population parameters in the LDF (LDF becomes

the sample linear discriminant function, SLDF), the exact probability of
misclassification becomes difficult to compute because the distribution of
the SLDF is virtually intractable (Lachenbruch, 1975). However, if the
sample estimates in the SLDF are considered fixed, the SLDF has a conditional
univariate normal distribution, and the conditional probability of misclassi-

fication can be computed (under the given fixed conditions). Hills (1966)

shoved that the exact probability of misclassification obtained from the LDF
\i is always less than the conditional probability of misclassification computed
from the SLDF. This study is concerned with the problem of decreasing the

z conditional probability of misclassifying an observatior; when fixed estimates
of the population parcmeters are given.

Many statisticians have investigated the behavior of the SLDF. The
exact distribution of SLDF was studied by Wlad (1944), Anderson (1951), and *
Okamota (1963); estimation of error rates was studied by Dunn (1971), Hills
| ; (1966), and Lachenbruch and Mickey (1968); variable selection was studied by
Cochran (1964), McKay (1976), McCabe (1975), Habbema and Hermans (1977), and
Van Ness and Simpson (1976). Robustness to various departures from assump-
tions was studied by Gilbert (1968, 1969) and Krzanowski (1977). Rao and
Mitra (1971) used the singular multivariate normal distribution to conmstruct
a discriminant function between two alternative normal populations with
singular covariance matrices. Recently and more relevant to the present
work, DiPillo (1976, 1977) and Smidt and McDonarnd (1976) showed that estimat-
ing the population covariance matrix in the LDF with a certain biased
estimator results in a decrease of the conditional probability of misclassi- 1

fication. DiPillo (1976, 1977) used Monte Carlo sampling experiments; the

2
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results of his experiments suggest that if the population covariance matrix
is 1ll-conditioned (its determinant is near zero), the sample covariance
matrix can also be expected to be ill-conditioned. Therefore, the condition-
ing of the sample covariance matrix has an effect on the performance of the
SLDF. Prior to DiPillo, Bartless (1939) simply alluded to the unstableness
of variable coefficients in the SLDF but did not pursue the problem any
further.

Biased estimators have received a great deal of attention in relation
to regression analysis. For the general linear model, it is well known that
least squares methods provide sstimators with minimum variance within the
class of all unbiased estimators. However, within the last decade, much has
been written about the application of biased estimators to the linear model.
Hoerl and Kennard (1970) introduced a biased estimation procedure known as
Ridge Regression. Other biased regression procedures are Latent Root
Regression, introduced by Webster, Gunst, and Mason (1973) and independently
by Howkins (1973), and Principal Components Regression, discussed by Massy
(1965), Hocking (1976), Mansfield, Webster, and Gunst (1977), and Marquardt
(1970) . Relatively little has been done regarding the application of biased
estimators to the linear discriminant function. This study is an attempt
to apply principal component procedures in order to modify the SLDF to
include bias.




2 BASIC PROPERTIES OF THE LINEAR
DISCRIMINANT FUNCTION

2.1 The Population Discriminant Function

Let X! = (X, X, ..., xp) be a random vector from one of two popula-
tions ¥, or m,. Let R denote the domain of the p-dimensional vector. It
is desired to classify X into one of these populations. The objective in
devising a rule of classification is to partition R into R1 and nz by some
optimum method so that:

If X falls in Rl. assign the object to .

« If X falls in Rz. assign the object to L7

This classification process involves two kinds of errors, namely, that

(1) an object is assigned to population L vhen it really belongs to w, or

{2) an object may be assigned to L when it really belongs to . A good
classification rule should minimize the probability of these errors in
classification.

In order to construct a more specific characterization of the dis-
criminant problem, the following symbols are defined:

fj(g) = the joint probability density of elements of X for
population uj; fj is assumed to be continuous.

qj = the prior probability of obtaining an observation from 'j'

P(1|]) = the probability of clsssifying an observation into L vhen

it is really from 'j (L ¢3).

TP = the total probability of misclassification.




Since Ri is the domain for classifying an object into e wj observation
.will have misclassification probability
P(1]3) = 7 £,Ddx  (149) . (2.1)
LY
From (2.1),

As indicated above, a good classification rule is devised when kl snd
and R, are chosen such ‘that TP is winimized. The minimum value of TP will
be denoted by OPT. Anderson (1958), using an approach introduced by Welch
(1939), showed that

and
R, = {216, @76, < ay/q) @)

are the regions that minimize (2.2). Actually, fl(g)lfz(_x_) is most
appropriately called the likelihood ratio which minimizes the TP.
No matter what the distribution f.‘l (X) is, statements (2.3) and (2.4)

imply the following classification rules for an observation §°:
1f fl(-!o)/fz(!o) > qzlql. classify X into ¥,. (2.5)
1f fl(_x_o)/fz(_go) < qzlql. classify _x_o into ¥,. (2.6)

Now assume that the distribution fj (X) is multivariate normal. That s,

S ¢
@,
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vhere j = 1,2, -“-3 is the mean vector of X in Ty and tj is the variance-
covariance matrix of X in tJ. With this assumption, an equivalent form of
(2.5) and (2.6) cen be derived. Taking the natural logarithm of doth sides

of ‘1@"2@ - qzlql. one obtains

(@14 (0) = A/DX(EG - DHE+ O, - DY)

|:;I*

virly, - s
Y -05hY
) tn qzlq1 .

+ tn +

8

) The second expression in the equalities in (2.8) is called the quadratic g

discriminant function because it is quadratic in the components of X. If f

L) %, and 7, do not differ in their covariance matrices, that is, if

| tl - 22 I, (2.8) reduces to ' i
| | x- Q/2)(, + gz)]ox-l(-ql - U,) = 10 q,/q, (2.9)

vhere the left side of (2.9) is linear in the components of X. Hence, the
- population linear discriminant function D(X) is defined by

n(-x) - [! - (1/2)(!1 + !2)]'z-1('q1 - !2) ;

~xtlE - ) - D@ +uTNE - . (2,10

The first term of the extreme right member of (2.10) is the theoretical
equivalent of the linear discriminant function proposed by Fisher (1936).
The expression given by D(X) in (2.10), which is a discriminant function
used in this study, was denoted by Anderson (1958) as W.

If it is further assumed that q =9, " 1/2, rules (2.5) and (2.6) in

terms of D(X) become:




¢ 4 D@o) > 0, assign !o into s (2.11)
If D(;o) < 0, assign X, into ¥, (2.12)

Note that the regions R, and R, are now defined by R, = {X|D(X) > O} and
R, = {X[2(X) < 0}. From (2.1), 1t can be seen that

P(1]2) = / £,(X)dX and P21) = ! £ (X)ex. (2.13)

t D(X)>0 D(X)«0

b Also, D(X) is univariate normal because it is a linear function of components
of the multivariate normal vector X. If a transformation U = D(X), along

P with (p-1) other suitable transformations, is defined, one can see that the

} range of integration in (2.13) depends only on U. When the other (p-1)

variables are integrated out, (2.13) reduces to
° (]
P(21) =/ N (0)dU, P(1 |2) = s N,(v)av , (2.14)
- )

where Nl and Nz arc univariate normal probability distributions of U in
) L1 and Ty respectively.

Since U = D(X), it is clear that
P(2l1) = Pr(U < O[X € 7)) = Pr(D(X) < O[X ¢ 7))
and
P(1[2) = Pr(u> 0K € v,) = Pr(D(X) > O[X € v,) .

Furthermore, the means of D(X) are,

2
; EO® [X ¢ 7,) = /2, - 5t g, - p) - B (2.15)

A 2
. EO@ K ¢ 7)) = (UDQ, - PN, -y, = - 218

and the variance is
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Var(®(@) (X ¢ 7,) = Var(d@| X ¢ v,)
-1 2
- Q@ "!g)': @, ~%) =D !
vhere D% = (g1 - !2)":-1‘!1 - _qz). In most cnrrent literature, D = Vb2
iy called the Mshalanobis distance between vectore _ql and U,
By making a tzansformation from U to Y = (U .- E(U)}/D, the univariate
standard normal distribution is obtained. Hence,

P(2|1) = Pr(u < OX ¢ v,)
- 2 :
- Pr !_"_D!.!!l < 0_-'?_& (2.18) .

= Pr(Y < =D/2)
= Pr(Y < =D/2)
= §(-D/2) ,

vhere ¢ is the standard normal cumulative distridbution. Similarly,
P(1{2) = 1 - ¢(D/2) = ¢(-D/2) {2.19)

Since (2.18) and (2.19) are consequences of (2.3) and (2.4), the optimunm

probability of minclassification is given by

OPT = (1/2)[¢(-D/2) + ¢(-D/2)] = &(-D/2) , (2.20)

vhere q; * 9; . 1/2 1n (2.2)

2.2. The Sample Discriminat Function
Note that all the results of section 2.1 were obtained under the assump-

tion that I, U,, and gz are fixed and known populaticn parameters. In most

applications, I, U,, and U, are unknown and must te estimated from sample

data. The classical approach in this case (s to replace gl. _llz. and I in

D(X) with their sample counterparts '_x:l. zz. and 8, vhere is the sample

X
-.j
estimate of gj and 8 is the pooled sample estimate of . That is,

P S
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= . .'j
%, = (/n)) 1213“ .

and
; n - _ n, - -
; X _-x-) X _5)1 + (x -£)<x -5)'
- | n, + 1, - 2

L e et

where gij = ith random observation vector for population j, nj = size of
= {7 random sample from populat’> ", i =1, 2, ..., my, § = 1,2; i% and S are
B t
S unbiased estimates for gj and I, respectively. Making these substitutions in
3
? { (2.10), one obtains the sample analogue of D(X) as
‘ _ 1= =
- - ' -
Y D (X) = [X - (1/2)(X) + X,)1'S "(X) - X,y (2.22)

The rules of classification for a future observation X, are if ns(go) > 0,
. assign l_to to T otherwise, assign it to Tye This assumes that q; = 9,
“ Recall that the distribution of D(X) is univariate normal. The
& ) unconditional distribution of ns(x) is not so easily handled. In fact the
‘ ) unconditional distribution of Ds(g) is virtually intractable because S, X, and
- Xj (j = 1,2) are all random variables. Hovever, one can determine the distri-

’ L bution of Dx(_g), provided (§ = 1,2) and S are considered fixed values.

X
_-j
When these values are fixed, DS(X) has a conditional univariate normal

distribution and the conditional means and variance of Ds(g) can be determined.

That is,

EQ, DX, X, 5, Xem) = @ - WAE +EN'STE, - Ky,
(2.23)

EQ, (X, X, 8, Xe v ) = @ - WDE + XN, - X)),
and

Var(d,(®|%;. X, 8 = & - Ext ME, -Kp .

i
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Since D_(X) is univariate normal when given that zl' 22’ and 8 are

fixed, the probability of misclassification based on the fixed values is

computed by
MG = (1/2)(2,(112) + P _(211)), (2.24)
vhere
P,(1]2) = Pr(¥ 2 y,) 4 B(2]1) = PrCY <y, e
and

- - -l = -
-(u, - (1/2)(X, + X,))'S - X))
YJ - = (-jl' 2 (él-_— 2 y J=1,2), (2.26)

(@ - 22)'3'123'1(21 - Xz))" 2

and Y has the standard normal distribution. The calculations leading to (2.26)
are given in appendix A.

The reader should note that (2.24) is not of much use in computing the
PMC in a practical situation because the y'1 in (2.26) cannot be evaluated
unless exact values of gj and I are known. However, (2.2%) can be evaluated
in sampling experiments where random observations are generated from known
values of I and !j This approach will be used to compute the PMC in this
study.

Lachenbruch (1975) and Hills (1966) called the PMC computed by (2.4)

the actual error rate of Ds(i). Hills also showed that
E[0(-D,/2)] < (1/2)[P(1|2) + P(2{1)] < (1/2)(P_1]2) + P _(2 1)}, (2.27)
where l)8 = (zl - zz)'s"l(xl - xs) and E[O(-DS/Z)] is the expected value of

the estimate of ¢(-D/2).
An objective of the present research is to show that Ds(p can be
modified so that the right member of the inequality in (2.27) is closer to

the middle member.

10
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3 APPLICATION OF PRINCIPAL COMPONENTS

3.1. Population Principal Components

The principal components technique originated with Karl Pearson (1901)
as a means of fitting planes by orthogonal least squares and was further
developed by Hotelling (1933) for the purpese of analyzing correlation
structures in a multivariate system. However, principal components theory
can be studied by putting the usual developments of eigenvalues and eigen-
vectors of positive semidefinite matrices in statistical terms. This

treatment is given below.

Let X be a p-componert random vector with mean 0 and covariance matrix
I, vhere I is a real positive semidefinite matrix. Let *1'1 wz 2 e 3_wp >0
be the eigenvalues of L. It is well known from matrix theory that there i

exists an orthogonal pxp matrix Z such that

I2' = 2'b or L = 2'y2 , (3.1)

L aag

vhere § = [*1]:-1 is a diagonal matrix of eigenvalues of I and 2'Z = I,

Note that for purposes of this study, a pxp diagonal matrix with elements d11

on the diagonal shal. be denoted by [d The ith column of Z', or

P
tlia
equivalently the ith row of Z, is the eigenvector that corresponds to the ith
eigenvalue wi.

Let V be a p-component vector such that

[2:x]

J
2

i<
8
>

’ (3.2)

2'X 4
aal

11
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where Q; is the ith x-w of Z. That is, V is an orthogonal transformation of
X. The elements vl. ."'2' ces vp of the vector V are called the principal
components of X.

From (3.1) and (3.2), it can be seen that the variance-covariance matrix

of the elements of the vector V is denoted by

Var(V) = Var(zZX) = 2I2' = ¢ . (3.3)
Hence, the first population principal component is Vl - _z_i; with variance
¥ and the ith principal component is v, - gi;.

3.2. Sample Principal Components

Assume now that the p-component random vector X has a multivariate
normal distribution with mean U and variance-covariance matrix I and that a
random sample of size n 1s available from the population of this distribu-
tion. An estimate S of I may be computed from this sample, where S is at

least positive semidefinite. Denote the eigenvalues of S by A, > A, > ...

1-"2
> Ap > 0. Just as in (3.1), there exists an orthogonal matrix T such that

S =T'AT , (3.4)

where A = [)1]‘;_1 is a diagonal matrix and T'T = I. The sample principal
components vector is defined by m = TX for a vector of observations, X. The
ith sample principal component is LA Eix, vhere ti is the ith row of the
matrix T and n, is the ith linear compound of the p components of X.

From a statistical point of view, the basic idea of principal components
analysis is to describe the variation of an array of n sample points in a
p-dimensional space by as few linear compounds of the p-space variables as

possible. For example, the sample variance of the ith principal component of

S is £;St, = 1, where )

15t is the ith largest eigenvalue of §. 1f s

i
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eigenvalues of § are zero, then trace S = { s X A, hence, the study
o1 1 =gl

of p variables can be reduced to a study of the first (p-s) sample principal
components because all the variation in the data is accounted for by the
first (p-s) sample principal components.

For a clear picture of situations where S may have s zero eigenwvalues
as opposed to having 8 eigenvalues that are near zero, consider the following
situations. Suppose first that n < p. Then the rank of § is known to be
less than p (i.e., at least (p-n) eigenvalues are zero) because n(<p) points
cannot possibly span a p-space. Alternatively, if n > p and there are s
eigenvalues of S that are near zero but not exactly zero. Multicollinearity
exists whenever one or more of the eigenvalues are near zero. Much has
been written about the application of principal components analysis in this
situation; see, for example, Morrison (1976), Rao (1964), or Gnanadesikan
(1977).

Until recently, the application of principal components analysis has
been restricted to the analysis and dimension reduction for a multiple
variable system. Some of the more recent applications of the principal

component technique are provided in section 3.3.

3.3. Principal Components Regression Anaysis

Consider the standard multiple linear regression model

Y=Xg+¢ , : (3.5)
where
Y is an (nxl) vector of observations on the response variable.
X is an (nxp) matrix of n observations on p independent variables,
8 is a (pxl) vector of unknown parameters,
and

€ 18 an (nxl) vector of unobservable random-error variables,

13




such that E(¢) = 0 and E(c ') = 021, vhere I is an (nxn) identity matrix,

0 and (nxl) vector of zeros, and o2 is a nonnegative scalar. Frequently, the
elements of Y and X are standardized; however, this restriction is not
necessary for the present discussion.

The usual least squares estimator of § is given by
- xnlxy, (3.6)

with E(8) = 8 and Var(é) - (x'x)'loz. The properties of this estimator are
well known so the present review need not be extensive. For a more detailed
treatment, the reader may consult, for example, Graybill (1976).

One of the well known properties of the estimator ﬁ.ls that it is
unbiased and the variance of its components is minimum within the class of
all unbiased estimators of 8. However, difficulties arise with this
estimator when X'X is near-singular or, equivalently, when strong multi-
collinearities exist in the sample data. Omne of the primary difficulties is
that multicollinearity causes the components of § to have large variances.

To correct for the difficulties that arise when X'X is near-singular,
Massy (1965), Marquardt (1970), and Hawkins (1973), among others, have
recommended a technique called principal components regression. Another -
approach for overcoming problems associated with data multicollinearity is
ridge regression, proposed by Hoerl and Kennard (1970). Hoerl and Kennard's

ridge estimator is defined by

3—n - (X'X + x)'1 xly

where K is a general diagonal matrix and the principal components estimator

is defined by

14
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wvhere (X'!)- - T'A; -r.'

" "o

where Al’ Az. ey Ap are the eigenvalues of X'X, g = p-s, the last 8

smallest eigenvalues have been equated to zero and T is an orthogonal matrix

"of X'X. The matrix (X'X) 1is generally referred to as the generalized
inverse of T'AsT. Although én and Epc are biased estimators of 8, it can
be shown that they are more stable (their components have a smaller
variance than the corresponding components of é) than the least squares
estimator ﬁ.
3.4 Relation of Ridge Estimators to

“rincipal Components Estimators

In discussing the relation of ridge to principal components estimators,
it is convenient to employ a gemeral form of a larger class of estimators

presented by Gunst and Mason (1977). Their general form is

3*-Iﬂc

t (3.16)
1= i°i=1 °*

where a, depends on the particular estimator, cy = gix'!_is the same for all
estimators, and L is the ith eigenvector of X'X. Gunst and Mason showed
that least 3quares, principal components, ridge, and two other biased

regression estimators may be obtained from this general form by assigning

15
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the appropriate values to a. Jocking (1976) gave an alternate vercion of
(3.16). The general form in (3.16) is equal to i it a = 1/11. to Hoerl and

Kennard's ridge estmtor.gkif a = 1/01 + k), and to EPC vhen a, = 1/1‘ if

i
15p—aandni-01fp-o<1_<_p.

In summary, principal components techniques are a fundamental process
through which biased estimators for the general linear model have been
developed. In every biased estimator of regression parameters, the eigen-

values and eigenvectors of X'X play an essential role in their development.
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4 PRINCIPAL COMPONENTS THEORY IN RELATION
T0 DISCRIMINANT ANAL7SIS

4.1 Analogy of Discriminant
Analysis with Regression

A natural parallel exists between the two-group linear dsicriminant
analysis problem, as developed in section 2, and multiple linear regression.
Kshirsagar (1972), Lachenbruch (1975), ard, of course, Fisher (1936)
showed that by using dummy independent variables, the regression model can
be used to derive the sample linear discriminant function (2.22). In (2.22)
recall that Ds (X) was defined by
ns(g) = (X= 95(21 + zz))'s-l(_-il - zz) or, equivalently,

D, = x'sE - %) - ¥E, +X)'s7IE, - X)) (4.1)
The first term on the right side of (4.1) is a linear combination of the
components of X, where S;J‘(_fl - zz) is the sample estimate of the population
coefficients z‘l(gl - 22), and the last term is a constant for fixed values
of 21' zz. and S. Recall that one purpose for altering a near-singular
matrix X'X in § = (x'x)'lx'x was to reduce the variance in the components

~

of B. Because of the natural connection betweean linear discriminant
analysis and linear regression, it seems natural that more stable estimates
of the discriminant coefficients t-l(gl - y_z) would produce a discriminant
function whose PMC {s lower than the PMC of D.(!). In fact, DiPillo (1976)
and Smidt and McDonald (1976) showed by Monte Carlo experiments that the

application of the ridge technique to discriminant analysis improved the

17
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PMC of the sample discriminant function. They proposed an alteration on

the commonly used sample function; the general form of their biased discrimi-

nant function is

DX = (X - §F, + X)) (s + & -F) . @2

vhere k is a nonnegative scalar and S, 3‘3 (J = 1,2) are as defined in

gsection 2. DiPillo selected k = 1 while Smidt and McDonald determined the

constant k by

keecp , (4.3)

where Ap is the smallest eigenvalue of S and ¢ = (p+2)/(N-p-2), where p is
the number of variables in X and N is the total sample size used to estimate
S. Smidt and McDonald called Dk(;) the ridge discriminant function. In
this section, new biasad discriminant functions will be introduced.
4.2. The Effect of the Position of 5 -4

on the Variances of the

Discriminant Coefficients

The previous discussion stated that the two-population discriminant
function can be derived through multiple linear regression techniques.
Recall from (3.5) that § 1s the vector of regression parameters to be
estimated, and the unbiased estimator is given in (3.6). Por the linear
discriminant problem, the population parameter }:']'(g1 = U,) of the first
term in the last member of equality (2.10) is the vector of population
discriminant coefficients, The sample estimate of these coefficients is
obtained by replacing I and !j (3 = 1,2) by their sample counterparts.

Just as small eigenvalues in X'X inflate the variances of the components
of 8, the variances of the components of s']'(z1 - zz) may be large for
sinilar reasons. Das Gupta (1965) showed that the variance-covariance
matrix of 8-1(21 - zz) is

18
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\-’arls'l(zl - 'x_'z)] -

-1 | -1 L (6.8)
8 1@ )T T # 4 + 2 TR 0,0 e,
vhere
. (n, ¢ n, - 2)2
1 (“1"'nz‘9'2s;ﬂ1*nz'3)(n1+nz-p-45; ’
by - (n, + 8, - 3(n, + v,)
. nlnz [
+a,-p-1
5.i+2 ’ .
ﬂl 02 - p - 3
and
I is the (pxp) fdentity macrix .
Let d ~ y - 22. 'i = angle between d and B vhere 7, is the ith cigoen- )

vector of t‘l. and llw1 is the ith eigenvalue of t-l. Then the expression

given by (4.4) may be written as

E ((g'g)"cose‘) 2

Varls-l(zl - zz)l - {

1421
{=1 N 2
(4.5)
.1 ¢ S anoz.z .
3 4 N 1 b 02

|

If at least one eigenvalue N in (4.5) is small, then at least one component
of s.l(i1 - zz) has a large variance.

The expression in (4.5) allows an assessment of the effect of the
position of d on the variance of the components of 8-1(21 - zz). If &1

is small 2ud d is orthogonal to gl. then the variability in certain
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components is not as large as it would be if 01 vere small in combination
vith Z, being near parallel to d. Therefore, the position of d in the
p-space should have a definite effect on the discriminant function when
multicollinearity exists.

4.3. Principal Components Discriminant

Function and Its Relation to
the Ridge Discrimninant Function

A new definition of the principal components discriminant function will

now be given. Let S§ be the usual pooled sample estimator of I as defined

1

in (2.20)., 1It will be useful in the sequel to think of 8 " or inverses of

matrices derived from 8 by adding at least one positive constant to the
diagonal of S or :» the eigenvalues of S as biased estimators of 2-1.. Let
the diagonal matrix A be the matrix of eigenvalues of S, and let T be the

matrix of eigenvectors, so that S = T'AT. As in the case of pr1n¢1911 

components regression, suppose that s of the smallest eigenvalues in A are’

deleted to give

X
A,
A" S . (4.6)
l'
0
_ o—
vhere g = p-s. Then, s‘ is defined by
-7 LR 4.
s' 'rsrmds. ‘r“r. (4.7)
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Where A; as the generalized inverse of A..

The principal components sample discriminant function is defined by
. '- . e - Y
DD - 1 !5(21 + X)) 8, &, - X)) (4.8)
Observe that in the ridge discriminant function given in (4.2), the
compounding matrix may alvays be expressed by
(8 + kD2 » (1'a7 + k1)?
' —y | ' -1,
e (T'AT + kT'T) " =« T'(A + k1) °T. (4.9)

Also notice that for any positive constant k, there exists a set of constants

{c:}:_l. so that

ch 1 |
r'[ri CterA 4Dl (4.10) 1
1oy | |
wvhere g ‘
c:Ill _
ev |P cglxz : 4
[——*—1 - . (6.11)
X : |
=] ° o ~ j
L e’ *p_ |

From (4.10), it is clear that czll‘ - ll(l1 + k); and this implies c: - 11/

“1 4+ k) < 1 vhenever k > 0. That is, the results obtained by adding some

constant k to each diagonal entry of S may also be obtained by multiplying

the 1th eigenvalue in T'A~’1 by the value cg =2 /0, +¥) <1. This

1

suggests that a more general biased estimator of I may be defines by

multiplying the ith eigenvalue in T'A"T by some c  where c, < 1 and ¢, is

i i
not necessarily 11/(11 + k). A good candidate for ¢ s c; = xil(a‘ + k’_).

BT B R
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vhere lt‘?_o and kiuyornynot be equal to k, for 4 ¥ J. It should be

3
pointed out that choosing c‘ = Ail(l’. + k) 1is equivalent to defining an
estimator of L™} by
™Wn+ (4.12)

wvhere K is a diagonal matrix. Note that fur a general diagonal matrix,

(4.12) i3 not the same as (8+K)-1. The reader may refer to appendix B to

see vhy these two matrices are different. The performance of discriminant

functions based on (4.12) will be investigated. Their specific definitions

will be given in section S.

4.4, The Ceneral Biased Discriminant Function
Let

DX = (X - ¥E, +X))'T'[c,/A )] 1X, _K,) ., (4.13)
where T and A ¢ ore defined above and H is any nonnegative constant less
than or equal to one, and c denotes a generic biased discriminant function.
1f ¢ " lfordi=1, 2, ..., g and ¢ - 0 for g < { < p, where g is defined
in (4.6), then (4.13) becomes DSQ). 1f ey = 31/01 + k), vhere k is given
in (4.2), (4.13) reduces to nk(;). Finally, if € " 1 foralli=], 2,

cees P Dc(_x_) is the standard sample linear discriminant function given in
section 2.

Under the condition that xl. Xz. and § are fixed, nc(y is normally
distributed. Calculations similar to those in (2.23) give

EID (X) [X,.X,.8.Xen,) = [U, - XX+ gz)l"r'(a:1 Jie 1“—1 X)) , (4.16)
ED (D) [, X, X, Xen,) = (U, = 5E 4,011 (c, /2,15 1K, -X,) o (4.1)

and, for any X,
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Var(D_(X) §§1.§2.sl - ‘21'32"""“1’*11'1’-1’“'[“1"11:-1"‘31'32" (4.16)

The conditional PMC components for D (X) are

P (2 1) = ¢(y$) and Pc(ll 2) =1 - 0(y%), (4.17)
vhere
-[u, - 3}, +X))'T' e,/ )P TR, - X
yh = i 1 2 i 14=1 71 2 (3=1,2).  (4.18)

(@ -5 T te, A} T Loy 05 1K)

The justification for biasing the S matrix in the sample linear
discriminant function is that under certgin condftions this biased discriminant
function has a lower PMC than the standard sample discriminant function. The
lower PMC is achieved through a reduction in the conditional variance of the
sample discriminant function. That is, it will be shown that there exists

p
a set {ci}i-l so that

Var[D_(X) El’ Xy, S) < Var[p_(X) [X;, X,, 8] . (4.19)
!:‘ It is clear that if c:l m¢c<]lfor(i=1, 2, ..., p), then
T e/A )8 T = es7! and

var[D_(%) X, ,X,,S] = c? Var(D_(X) 1X,.X,,8] < var[D (¥ |X,.X,,8].

However, this choice for the set {c:l}l;.1 is not suitable for reducing the
PMC because (4.18) is invariant with respect to multiplying s'l by a
constant.

e The following will show that there exists a set {c,}?_ so that (4.19)
5 is true. Recall that £ = Z'yZ, where Z'Z = I. If T is any orthogonal
matrix so that T'T = I, then TZ' = P' is also orthogonal and P'P = I. Let

P, be the vector representation of the jth columm of P' and Pij be the entry

-—j
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in the ith row of and the jth column of P'., Then clearly, Pij _iz
where 5& is the ith row of T and gd is the jth column of 2', and Pij i
algo the cosine of the angle between t, and _z_j. Let (X, - X)'T' = n' =
(nl. Bos ooy ub). The matrix TIT' in (4.16) is now represented by P'yP,
where P' = TZ' and T is specifically the matrix of eigenvectors of S.
Therefore, from (4.16),

Var(D X) |x1 X,5] = m'lc, /A P'¥Pc /2

P P
1’1-1 114a1®

. P
LY O E ViBsBilei Ay )i,

f vu'le, /2] 1-1-j—j[° lkil';_lg

:l'l
(e /2))P),T
‘°z”‘z?"zj ey Py, (e)A P,
1-1 : ...,(cillp)ypj
..( cPIxP) PP.LJ
. ij(gni(cilli)l’i ‘ . (4.20)
ga1 I\ga1 i
where, 1if c = 1(1=1, 2, ..., P), (4.20) becomes
i 2a)* .21
/ VarlD (x) |x ’ 20 s] g wj(igl Ai ) ( )

To complete the existence proof, it is sufficient to show that a set

P
{ci}inl may be found so that
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E % 121 (cqmg/AIPyy 2 < E ]

§=1 j=1

2
[C2V0) 20 I (4.21)
1§1 1'% 13)

Thus, 1if j is fixed at j', it is sufficient to consider the corresponding j}'
term on opposite sides of the inequality in (4.22). That is, it is

p .
sufficient to choose {ci} 1=1 such that
2

; 2
P
'L Cm Ofye ) vy Ll Py (4.23)

for each j'. If each pair of jth terms on opposite sides of the inequality
in (4.22) is related in this manner, a system of linear inequalities of the

form

(1=1,2, ..., p) (4.24)

- (c,m,/A,)P < (m,/ ,)P
‘121 1"17447% 45 '121 1/ 17%13

must be satisfied by a vector c'

= (cl, Cgs sees cp). It is known that
equality holds in (4.24) if ¢' =1, 1, ..., 1); and the given inequality
holds if ¢' = a(l, 1, ..., 1), where 0 < a < 1. As pointed out just after
(4.19), ¢' = a(1, 1, ..., 1) is not a suitable choice for reducing the
conditional PMC. Since equality holds in (4.23) if ¢' = (1, 1, ..., 1),
elements of ¢ or of {ci}l;..1 are selected by the following process. Let ¢ 1j
be the cariable <4 in the jth equation that is obtained by assuming equality
in (4.24), and let iy be the value of 43 where the jth equation in (4.26)

intersects axis ¢,. Now choose

1
c. = min (1 Iw |)_ (4.25)
i ’
4=1,2,...,p 1
25
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If c, = min 1, W,,|)=1forallt1=1, 2, ..., p, then any
i 1]
j-l,z,....P

combination of ¢,'s where e < lfori=1, 2, ..., p, satisfies (4.24).

i
The selection of ¢ 4 a8 outlined above insures that (4.24) is true for each
j=1, 2, ..., p vhich implies that (4.22) is true for the selected set

|4
{4:1}1_1

DiPillo (1976) showed that

var[pD, (X) |X,. X,, S] < Var[D (X &,» X,, SI (4.26)

for any k 0. However, it will be shown Lere that this result holds with

less generality than originally claimed. RHis claim is now investigated by

YN

using (4.20), where ¢, is replaced by Ai/(xi + k).

i
Thus let

h(k) = Var[nk(z !zl. 32, s] = E j ( f G4/ + k)P, )

j=1
Then
' - - 2
h'(k) 2 4 j( § (m /( + k))PiJ)(igl(“ini + k) )Pij) ). (4.27)
So,

h'(0)

-ngl ( ‘“‘1”1’"3)(} (m A )Pi,)

a E .\PPAm

2t N
-1¢ 2

= ~2m'A f P.RIA”

SRR

SR N O L Y

26




T TR IR RN e T R i

where A = [11]:_1 and A‘z = A", A"l Since h is continuous and differ-

entiable on the interval (-Xp. +=), where Ap > 0 is the smallest eigenvalue
of 8, h is differentiadble at k = 0. If (4.26) is true for any k > 0, then
h'(0) < 0. That is, h is at least decreasing on some open interval contain-

ITXT'A-Z is not necessarily positive definite. Hence, there-

ing zero. But A
fore, DiPillo's statement should be slightly revised to read, "There exists
ak > 0 such that (4.26) holds for all k - kl." Perhaps h'(0) is positive
only in extreme cases, such as for small samples; nevertheless, DiPillo's
claim is not generally true. In order to be certain that (4.26) is true for
any k > 0, something must be known about L. For example, if £ = I, then
(4.26) is true for any k > 0, which also means that (4.22) would be true for
any combination of ci's, where ey < 1 (1=1, 2, ..., pP).

Further inspection of Dk(g) along with c*, where c;

reveals that lim c} = lim Ail(Ai + k) = 0 for each {. This
koo k-t
implies that there exists some positive Nl such that for any € > 0,

is defined in (4.11)

kf/kl - c;/lpl < ¢ whenever k > Nl. Hence, when k is large and/or if the
eigenvalues {Ai}i-l are nearly equal, the eigenvalues of (S + kl)-‘1 ara
nearly equal. Increasing k beyond a point where the eigenvalues are almost
equal is the near equivalent of multiplying the numerator and denominator of
(4.18) by the same value. Therefore, when k is selected so that

1/()\1 +k) S 1/(xp + k), no additional improvement in the conditional PMC

of Dk(g) is expected from a larger k. This explains what Smidt and McDonald
(1976) observed as an "interesting phenomenon" when they evaluated the PMC
for nk(g) based on observations generated from a distribution where I = I.

In the present study, several such biased discriminant functions are

evaluated and compared as outlined in section 5. For a justification of the

27
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'i additional biasing methods presented here, further attention is given the
L2
§ variance in (4.20). Note that (4.20) may be expressed as
i .
i S - w ' 2
: ) V“(D,(Ql.’!l- zz' §] = E f "-xj_i Pu . (4.28)
e §=1 =1 M4
The expanded form of (4.28), for p=3 for example, is
i oy, P u foymaPyy /;Ih3p3l
{ X A Xz A
| 3
"2 ot 0\ YIRS i ) f; 1¥32\? (4.29)
| T TR
) -
s “’3 EN P fognyPy) 33
. *2 A3

- If S were, in fact, I or at least if T = Z, then P11 = ] and Pij = 0 wvhere
i ¢4 j. It is generally expected that the terms in (4.29) that involve the
factor /ﬂ/xi, where 1 > j, will contribute more to Var[Ds(_)g) lzl’ 22, S)
than those terms that have the factor /E;YA, vhere 1 > j§, because

JE;Yxi > /EIYAj whenever { > j. Recall from (2.26) of section 2 that the

primary purpose for biasing Ds(g) is to increase the absolute value of yj.
Hills (1966) showed that |yj| is smaller than its population counterpart.
Therefore, the present study proposes to bias Ds(g) so that biasing will
have its greatest effect on the wjmipijlli (1 = j) terms of (4.28). The

rationale is to add a different positive value k, to each eigenvalue Ai 80

i
e that /3;711 < 1. 1In practice, the value of 2 1s unknown; therefore, 1,

will be substituted for wj. The general form of k1 will be

k, = fl(.’:q A+ ) (4.30)
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Note that if £, = 1 and £, = 0, .IJQ/_(;A1 +k,) <1 for all 1 and j, since
A 22y e z_lp. Simulation experiments will show that when k1 1is

selected in this manner, for certain cases the magnitude of the reduction

. in the denominator of (2.26) is greater than the corresponding reduction

E 'f in the numerator. Specific values for f, and f, are given in section 5.
DiPillo (1976) and Smidt and McDonald (1976) restricted their biasing

alteration of na(g) to adding some constant k to the eigenvalues of S. An

alternative approach is to bias the eigenvalues of R, where R is the sample

i - correlation matrix. To see this, let the matrix E = [/;I;]:_l. where s

1s the ith diagonal entry os S; then e lsg™l < R. A biased estimate of

rl s

i1

w

(4.31)

Where Y :-72~1 “ee 3_yp are eigenvalues of R and F is the matrix of

1

eigenvectors of R, and ki 1s of the form given by (4.30). When S~ in

(2.22) 1is replaced by s;l » another biased linear discriminant function is

defined. Several biased functions defined in terms of sR are evaluated in

this study.

4.5. The Effect of Biagsing in Relation
to the Position of 91 - 92

In this section, the behavior of yj in (4.18) is investigated as

k, * +=. For convenience, assume that X, = U, (§ = 1,2) so that y§ = -3

3 =
Since ki + 4o for each { =1, 2, ..., p 18 equivilunt to letting ki = k > 4o

this investigation deals only with i, = k for all 1. Uander the above

i
assumption, it is sufficient to examine only lim yg. Note that
| 3 ol
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: .1 = 0and 6, = /2 for { ¥ J. Hence,

p |
Wy, - 9:""'! i‘L‘!m I T, |

lim y; s lim i=1 L
kote kote 1P : i
(U)-U)'T [a +u] TIT [). 1+k] "91'“2 3
i=1 i=l (4.32) ;
P -';
- ___‘;‘5& _— }
(gozg) ‘ A ;
vhere d = U, - U,, and
-1 d4'd °°°2°1 2 2
4't 4 = . D, d'td = E *151'! cos 8, ,
{el i i=]1

vwhere 91 is the angle between d and Z;i and Z; is the ith eigenvector of

L. Also,
d* g y(d'd)
'y it | :
4 Q (‘f 0 cos e) !
i

and
%
50 = Jy(d' L d)’ d'd) I'E (1/v, )cnszeiJ .
f=]

where 3D is the optimun value for Y as given in Section 2, where

Y = (0 - E[U])/D and U is given in (2.18). Consider two extreme cases:

Case I. d is parallel to _z_1 forany { =1, 2, ..., p. Then

b

4(d' d) ‘
lin y% = =35 ,
kot 2 (01);

30

—



i

A . l-*;"qv':.x- P

L, r——n PRI AE & B . G AT P v N BRI &

which is the optimum value of Y. Thus, if d is parallel to any g‘. the
optimum PMC may be achieved by assigning a very large value to k.
Case 1I. ei - Oj » 6 for all {,§ = 1, 2, ..., P. For this case,

(d' )"t

okt co.e(; ,.)'*
s} ¢

and

' Y
'SD"s(g'd) cos0 fllw) T e

From the definition of 6, cos® = 1/vp. It will now be shown that

1in y§ < iD , (4.33)
ket

when 0= e1 for all { =1, 2, ..., p. The above substitution for cos €

gives
lim y§ < 4D ,
vt
iff
'y
LY ; 1Y
1 < 5(‘(_‘_ _) - T »
E* /p \i=1
P\ie1 i
iff

2 '( 5)(15 :/«-) e tg "

ep+ Jlu e =p+ {(v/o +9./v) .
AL 1'% T 93l

(4.34)

k) §




The extreme right member of (4.34) contains i(p2 - p) terms of the form
“’1“’5 + tj/vl), where *i“’j is the reciprocal of "j"’i’ Any positive
nunber plus its reciprocal is greater than or equal to 2. Hence, (4.34) is
verified by pz -p+ 2“(',2 -pl<p+ g (wiloj + "j“'i)‘ Therefore, the
relation in (4.33) is true. Note that :fjall vi'. are equal, the equality
part of (4.33) holds. Thus, if 01 = 0and "j = *1 or if any 01 = 0, one
can expect to obtain a "near optiumn" classification model by biasing thu
sample discriminant function with a large k. However, if e1 s for i =],
2, ...y P and 1if there is a mixture of large and small 01'3 biasing with a

large k may produce a function that is far from optimum.
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3 SIMULATIONS, DISCUSSION AND CONCLUSION

S.1. Introduction

The objective of the computer simulation is to compare and evaluate
the effectiveness of different biasing procedures on the conditional PMC
vhen I is near-singular. The simulation is designed to control for the
following factors:

1. The severity of the multicollinearity in E.

2. The orientation °f'!1 - 92 to the eigenvectors defining the

] multicollinearity.

and =n,.

3. The Mahalanobis distance between L1 2

4. The sample size.
The simulations were conducted on a UNIVAC 1108 computer at the George C.

Marshall Space Flight Center, Huntsville, Alabama, using a program written .

by the author which incorporated subroutines from MATH PACK and STAT PACK.

5.2. Construction
The common variance-covariance matrix I is constructed so that varying
degrees of singularity, or multicollinearity, are represented. DiPillo

(1976) defined his I by

>
>
I®

- | . (5.1)

3
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Where a' = (1/p-1, ..., 1/p-1) is a 1 x (p-1) vector and where 02 is some
positive scalar wnd A is a (p~1) x (p-1) symmetric matrix. The positive
scalar oz is designed as a singularity control. It is implicit that,
when I is defined by (5.1), all the variables are involved in the multi-
collinearity. To see this, let X be a random vector so that

Var(x) = p-l)!(P-l) and A 1: positive definite. Suppose that a pth
variable is defined by X, z e X, = ¢'X such that X*' = [f\xp] is a new
1xp random vector where 3.1: :n arbitrary vector. Without any loss of

generality, it is assumed that E(X) = 0. Now,

_1 ’

Covix,, X ) = EIX,X ] = E[eixil + B[ ; X X,] =o'

where a, is the ith column of A and e 1s the vector of coefficients

defining xp. Also, Var(xp) - 3[3'5]2 = ¢'Ae. Hence,

Var (X*) .[ A % Ae ||

[&'a | e'he

Here, it is clear that oz = 0, and thus perfect multicollinearity exists and
involves all the variables when e, - 1/(p-1) = a, fori=1, 2, ..., p-1,
where a, is the ith component in vector a of (5.1). 1If az is increased, the
degree of multicollinearity is decreased.

Following the approach of DiPillo, let

Uy = (m |a'n, ) (5.2)
wvhere a is as defined in (5.1) and n, is the (p-1) x 1 jth (§j = 1, 2)

3

population mean vector corresponding to the common variance matrix A.

DiPillo stated that

(o, - nz)'A (n - n,) = (y, - Uz)'t (_1 - 1), (5.3)
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vhere A, £, n_ , and (J = 1,2) are as defined above. This equality is

: 1]
& > | =3
reestablished here using any vector ¢ in place of a. That is, let

i hen -9 and ¢ be any nonzero (p-1) x 1 vector and az > 0. Then,

(5.4)

’ . Hence, the distance between the two populations iz not affected dby either
02 > 0 or the form of the vector e.
The relative position of _qi - _11.",_ = [;_\i ! a'my] - [0y "5'52] -
(n; - L i a'(n; = n,)] to the pth eigenvector will now be examined where
9—4 (3 = 1,2) is as defined in (5.2). If perfect multicollinearity exists
- inZ, {.e., if 02 = 0 and I has only one zero eigenvalue, then the pth
eigenvector of I is [—g_'l 1] (or some scalar multiple of this vector)
because vhen perfect multicollinearity exists, it is defined by the eigen-
( vector corresponding to the smalles® eigenvalue, which is zero is 02 = 0.
As 02 gets larger, the pth eigenvector devistes from [-e' ! 1}, Now,
h

[-' {1 — --eh+en=o0,

which implies that



h
- = et = Y ’
5 -4
e'h

as defined in (5.4), 1is orthogonal to the eigenvector defining the multi-

collinearity. This means that when o2 =0, U, ~ y_z is confined to the

1
space of the first (p-l) eigenvectors; and hence the pth eigenvector

contributes nothing to the distance Letween the means. To see this, one

needs only to inspect l)2 - (_U_l - p_z)':'l(gl - _l_!_z) by performing a principal
components transformation. That is, Dz - L di/*i' vhere dt - _Z_i.(y_1 - 22)
and Z, is the ith eigenvector of Z. 1f 4, = 0, then U, - U, 1is orthoyanal

to 3‘
The construction for the matrix [ as used in this study will now be

defined along with the various orientations for the vector U, - U,. Let

2

A be a (p=2) x (p-2) symmetric positive definite matrix. Let LN be a
(p~2) x 1 vector, e, 8 (p~1) x 1 vector, and oi.og be positive scalars.
Let

A lA'e

-1
L*-
L] *
g)h 184 * o)

and

tl E I 22

) (5.5)

The column vector Z, is the ith eigenvector of I and 2; is 2 constant to be
defined below. Let

veo syt § g
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For this study, a = [bivilp]i. vhere b1 controls the angle between 51

and gi - 23. Note that 1if bi =1 (i1=1, 2, ..., p), then

D= [(uf - gp':‘l@i - 33)1i = 1; and

3
Uk - UR)'2Z L
(:i_i-d j = 1 = Cco8 ef’
(U -up '@ -p)
e

where 6 is -.ne angle between Z, and U* - U%*. When b

1 .-1 1 2 .1(1-1’ 2’ es ey

i
p), all principal components contribute equally to D. Also note that the

Mahalanobis distance can be controlled by defining.

U, = UsD = § a,z.D,

=1 1 o1
where D is the distance between Ll and T, 1f bi # 1 for all i, then
- ol - - g
(ug - U 'z “(uy - uP (llp)i-1 by . (5.6)

Therefore, b1 will be selected so that § bi = p; and hence, (5.6) has a
i=]

value of 1 for any set of bi's. This sum of the bi's is easily controlled

by using the properties of arithmetic sequences and series.
The bi's are defined here in the following three different ways:

a b, = 2D

i p-1 1i=1,2, ..., p,

(2) bi =] i=1,2, ..., P,

(3 b, = _2.15’{_;.9 21,2, couy P«

The above definitions of the bi'a are convenient for computer coding.
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Let N = n, + Ny, vhere t\J is the size of the sample from « 3 Recall
that any general biased estimator of I was denoted by S: « T'[e ,)‘1] {e 1 .
where c, = Ail(h:l + k:l.) and k1 > 0. Now, each procedure for computing k1
will correspond to a particular s:I. The ki used in the simulation study
here and the corresponding symbol for s:]' are listed as (a) through (f)

below and (g) through (i) later.

Corresponding Symbol

ﬁ for s;'l
(01 1 =1
(a) k‘-4xpifxi>lx—land1>1 s;]‘-s;l
{ _‘/i;"‘z'”p“*if-/’q
)
L } (0 4f 4 = 1
l (b) k1'1insz—kpifk >/X—;and1>1 8;1-821
: -N-p-Z(F Ag+A) A€ Ay < /AT
'
| (0 4f £ = 1
EL- | (c) k1 -J&-E'-;E—pr if x1>/;qandi>1 SEI-S;I
T S -
| “‘\{;32(3212 "11_1 8 e A < AT .

R A A
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Cotrespoﬁﬁtng Symbol

-1
k for §
e 3 ¢
[k for £ = 1, 2, ..., p
vhere
d) k, ={ -1 g1
(d) ' f k1 ‘sK sc
ke L:%f_ and k1 is as defined in
. (c) above
(&) k =1fori=1,2 ..., p s(',1 - szl
() kg =4mforsie=l,2 cyp . sptesla1

The choice of ki and the corresponding identity matrix in (f) are
motivated by the behavior of the limit of y% at k = 4=, where this limit is

evaluated in (4.32). Although it is clear that if k:l + 4o for i =1, 2,

1 in (f) converges to the zero matrix;

«s+» P, the corresponding matrix S;
but, the ratio in (4.32) converges to the expression given there. Since
the function DF(E) = (X - é(zl + zz)]'l(zl - zz) produces the identical
ratio given in (4.32) when its expected value is divided by the square

root of its variance provided zj = _llj (g =1,2), Dp(g) is taken to be the

biased discriminant function that corresponds to ki =+ forl=1, 2,

LR ] P.

The following symbols represent the biased estimator sc vwhen the

eigenvalues of the sample correlation matrix are biased. For this case,

recall that S0 = ETVF'(1/(y, + k1P FE™!

f=1 as given by (4.31).
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Correspon.ding Symbol

E& for s;l
r 0 if £ = }
2
55%:5 Yo v, > f;; and { > 1
(8 X, 9 so1 . g1
p+2 i ',Y—i - YE R ¢
™ 0 1if §{ = }
i S, =85
'/;;'Yi*Ypifyi-c_/-g_l M e
0 if Yy > 0.1
(1) k1 = : S = s-l
' += {f Yi < 0.1 D c

The reader should recall that the situation where a particular k1 ig 4=

while all other k,'s are zero is equivalent to an earlier definition of the

i
principal component discriminant function where the i'th eigenvalue is

equated to zero. Each biased discriminant function is defined by

— - ’ -1 — - —

where § = A, P, G, K, O, F, R, M, D and the unbiased discriminant function
is denoted by Ds(g).

For the present simulation study, p = 10, gi = (0, 0, 1/(p~2),
1/¢(p-2), 0, ..., 0), and gé = (3, 3,0, ..., 0), where p, &> and e, are

defined in (5.5). This means that when both 02 and ci are small, multi-

1

collinearities exist between variables 3, 4, and 9 as controlled by 51
and variables 1, 2, and 10 which is controlled by e,. In order to achieve
the purposes outlined in section 5.1, the variables n; = n, =n, ci. oi.

a, (1i=1, 2, ..., P), and D were assigned the following values:
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oi = 001, 10.0

2

g, * .001, 1.0

' Y s
2(P-1)¥ v Tocie
a‘ = [ 9 1-! ’ l.-t] ’ [M ) ]
I Lp % 1
n=10, 25

D bad 006. 1.0. 300 -

This gives 72 different simulation design configurations to be evaluated
on each of the nine different biasing procedures (a) through‘(i).

To evaluate the 72 configurations, a computer program was written
to: |

1. Generage an independent random sample of size n for each uj
(3 = 1,2) population.

2. Compute Xl. XZ‘ and S for the sample.

3. Compute the values for k1 as defined above.

4. Compute the conditional PMC for ns(g) and for each biased
discriminant function.

5. Replicate steps 1-4 30 times.

6. Calculate the means and variances of the conditional PMC's for

the 30 replications.

5.3 Summary of Results

The complete results of the sampling experiments are given in tables

8 through 79 in appendix D. The data contained in each column is described

below:

Column 1. Name of the estimator.
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Column 2. Average PMC for the 30 replications using D 0)5’ where
j=8,K,G, R, D, M, A, P, O, F.

Column 3., Variance of the PMC for the 30 replications

Column 4. Average PMC for a biased estimator minus average PMC
for estimator S evaluated on the 30 replicatioms.

Column 5. Number of times, out of 30, a biased PMC is lower than
that >f estimator S.
The actual population values for D along with the associated PMC, denoted
by OPT, and the orientatiion of gi - 22 are given for each table. Note
that in tables 8-31, d:/*p = 0 and dilwi > di+1/*i+1 for 1 < p; in tables

2
3

I¥y (141); and in tables 56-79, di/wl - 0 and di/ L <
2 -1
for 4 > 1, where 1§1 dilwi = - gz)'z @, - 22).

2
32-55, 41/¢1 =d

Sl
5.4. Discussion of Results

In order to compare the performance of the biased procedures to the
standard unbiased one, it is necessary to examine the indicators of
improved performance in tables 8-79. The indicators are columns 3-4.

The most striking feature of tables 8-79 is the dominant influence of
the position of vector Y -3,on the indicators of improved performance.
In tables 8-31, gi - 22 is positioned so that dilwi > di+1/¢1+1. For
this position, all biased procedures, except K, showed positive values for
column 4; and the entry in column 4 for K is positive when D > 1. A com-
parison of the variances of the estimators in tables 8-31 shows that when
D < 1.0, the variance of each biased estimator is greater than the variance
of the unbiased one; the opposite is true when D > 1.0, except for biased
estimators D and K. Indicators in column 5 are generally good for Qll

biased estimators except for K, but K was favorable when D > 1. Tables

32-55 show that the performances of biasing procedures are mixed. Here
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gi - QQ is positioned so that all eigenvectors coatribute equally to D
and the general trend is for all indicators to improve as D gets larger.
Tables 56-79 show that all biasing procedures performed poorly when

2
91 - ge is defined so that dillb1 < d1+1’*1+1.

tended to improve on indicators in column 4 and 5 as the value of D

Although most procedures

increased, the general performance of all biasing procedures was poor

when n = 25 and the orientation of U,

components associated with small eigenvalues contributed heavily to D.

- 22 wvas such that the principal

A noticeable exception is K. The amount of improvement in the mean PMC
for K over the mean PMC for S is considerable when n = 10 and D > 1.

It appears that no firm statements on the effects of eigenvalue size
or the degree of multicollinearity can be made, because the effects of
efigenvalue size seem to depend on the position of the mean vector gl - 22.
A comparison of results in tables 1 through 4 adds support to this claim.

In tables 1 and 2, U, - 22 = /$I§1 is parallel to Z.; and in tables 3 and

1 1}
4 U, - U, = JE;ZP is parallel to any Z,, then the optimum PMC can be
achieved by letting K + +», This result was obtained under the assump-

tion that yj - 25. Tables 1 and 2 show that when gj - U, 1s parallel teo
gh. the mean PMC of F is close to the optimum PMC and all biased procedures

perform well even though 02 «ola .001, which is the worst multicollin-

1° %
earity case considered in this study. However, in tables 3 and 4,
performance of F and all other biased procedures is poor, in spite of
the fact that all configurations are the same as in tables 1 and 2,
except_l_l_.1 - 22 is now parallel to gp. The poor performance of biased

procedures in tables 3 and 4 is due to the large variances in the com-

ponents of S-l(zi - X ) as discussed in section 4.2. It is also
2
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Table 1

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = 1.0 (OPT = .3085), U, - U, = (v))'Z,,

n=10
Number of Times
PNC 18 Lower
Estimator %;;? Variance Img;::::t:: gver than That of
Estimator S
(max = 30)
S .4482785 .0025357
K .4177978 0279583 .0384815 15
G .3956326 .0020253 0526459 27
R 3705756 .0020419 0777029 29
D .3998220 .0923597 .0492565 26
M .3657406 0022464 .0825379 29
A .3854223 .0016827 .0628562 28
P .3805779 .0018560 0677006 28
0 .4082210 .0025667 .0400575 26
F .3510729 0034107 .0972056 28

Table 2

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = 1.0 (0PT = .3085), U) - U, = (v))%2,,

n=25 "=

Number of Times
PMC is Lower

Mean Improvement Over
Estimator PMC Variance gstimator S than That of

Estimator S
(max = 30)

S .3978117 .0011525

X .3936135 0017926 .0241985 20

(o . 3895865 .0010908 .0082253 21

R .3721815 .0008544 .0257103 30

D .3914080 .0611284 .0064038 20

M .3382653 0002799 0595464 30

A . 3744258 .0008205 .0233860 28

P .3835509 0009451 0142668 26

0 .3813010 .0009768 .0165107 29

F .3238669 .0000759 0739449 30
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Table 3

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replicatjions, ;
vhea D = 1.0 (OPT = ;33823. g,-9- (vp) 2 ;

Number of Times

Mean Improvement Over PMC is Lower
Estimator PMC Variance Estimator S than That of
Estimator $
(max = 30)
S .4349328 .0018492
K .4679930 .0237833 -.0336602 11
1 G .4999833 .0000000 -.0650505 2 :
b R .4999707 .0000000 -.0650379 2 |
: D .5086451 .0000000 -.0651123 2
- M .4999633 .0000000 -.0650305 2
,{f A .4999865 .0000000 -.0650538 2
ST P .4999697 .0000000 -.0650569 2
- 0 .4999484 .0000000 -.0650156 2
F .4999921 .0000000 -.0650593 2
Table 4
Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
, when D = 1.0 (OPT = .3085), U, - U, = (¢ )2 ,
! n= 25 =1 =2 PP
'

Number of Times

: PMC is Lower i
; { ) Estimator ﬁ:;? Variance: Img:::::i:: 2ver than That of
. ' Estimator S n
oy (max = 30) i
. S .3956383 .0012857 !
j K .4226880 .0030092 -.0270577 2 :
c .4998305 .0000000 -.1042082 0
R .4999249 .0000000 -.1042946 0
‘ D 4999747 .0000000 -. 1043444 0
I M .4999791  .0000900 -.1043487 0 f
' A .4999810 .0000000 -.1043587 0
.- P .4999485 .0000000 -.1043182 0
- 0 .4999029 .0000000 -.1042726 0
n F . 4999881 .0000000 =.1043577 0
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worthwhile to consider the variance of '5'1 - iz in combination with the

magnitude of the components of X, - X,. In tables 1 through 4, %, - X,

is an estimate of 91 - 22 and Var(ii - Zé) - t/(n1 + nz); but the magnitudes
of the components of Jblgl are larger than the magnitudes of the corres-
ponding components of JE;EP whenever ¥, 1s much larger than *p' This
means that _-x:l - 22' when used to estimate _gl - gz - /r’gp. has a greater
chance of being the zero vector and some compenents could change signs
from sample to sample.

The above observations suggest that the performance of a biasing

procedure seems to be related to the ratio

@ -5’ -5y

b o,

i=1

(5.7

When this ratio is large, say greater than 1/p, as 18 the case in tables

8-31, then biasing with a large k, tends to give good results. In tables

i
32-55, note that the ratio in (5.7) becomes 1/p when D = 1 and increases

(decreases) as D increases (decreases). Since the simulations of this
study did not focus on the ratio in (5.7) as a controlled condition, it

is perhaps worth considering in a future study.

2
i+l

tendency for the amount of improvement of the biased estimator over the

It is also worthwhile to note that when dilwi >d /w1+1. there is a
unbised one to increase as the ki‘s get larger, as shown by column 4 of
tables 8-31. Recall from section 5.2 that the biasing constants k1 in A
and P differ only by the multiple (p+2)/(N-p-2). When the sample size

is 2n = N = 20, the value of k1 in P is larger than the corresponding k1 in

A. When the sample size is 2n = N = 50, the reverse is true. This differ-

ence in A and P 1s also reflected in the relative change in the magnitudes
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of column 4 as the sample size n changes from 10 to 25. This observation
in addition to the hehavior of F provides evidence that for certain positions
of 21 - 22. the amount of improvement of a biased estimator increase as the
ki'c get larger.

The average PMC of a biased estimator may be compared to the average
PMC of the unbiased one through the application of the two sample t-test,
t -J;kfii - ié)/]§{7;'§§), As a modification of the formula for a given

2

population value for D, let 8° = maximum variance of the sample PMC; then

Jsl +5, < V252, Hence, tulzli§77/5 may serve as a conservative value to

which ii - X, may be compared. That is, column 4 lists the difference

2
between estimator S and all other biased estimators. If any value in this
column that corresponds to a given biased estimator is larger than
ta/2/i§77/;. then the biased estimator gives results that are significantly
different from that of S at level a. The critical values, C.V., for the

three values of D and a = .05 are as follows: when D = 0.6, C.V. = ,0156;

when D = 1,0, C. = ,0226; when D = 3,0, C.V. = ,0329.
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5.4 Conclusion

This otudi has extended and generalized recent published work in the
area of biased estimation i1 discriminant analysis. Several methods of
biasing the sample linear discriminant function have been described and
compared on the basis of Monte Carlo experiments. The results of the
experiments show that no one method is uniformly best for all configura-
tions considered, although D give a relatively poor performance in all
situations studied. It is of special interest to note that M, A, and F
did well whenever the ratio in (5.7) was greater than 1l/p. These methods
are particularly effective for the sample size n = 10 in combination with
(5.7) being larger than 1/p. The performance of K was erratic as can be
seen by comparing its variance to the variance of other estimators. With
some modification, K seems to have the potential to become a good biased
procedure for cases where di/*i > di+1. When n = 25 and dilwi > d1+1/w1+1.
F showed the largest positive values for column 4. As mentioned earlier
and restated here, F is equivalent to ignoring the sample variance and
covariance between the components of X by defining a discriminant function
wvhere the identity matrix replaces matrix S. In an applied situation, one
can easily determine whether F is likely to outperform the standard

unbiased function § by computing

2] T 22 (5.8)

where 511 are the diagonal entries of matrix S. 1f this ratio is much

larger than 1l/p, then F will probably do better than S.
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Finally, an examination of the simulation results seems to support the
following general conclusions:

1. The method of deleting the smallest eigenvalues of the sample

|

correlation matrix gives relatively poorer performance than the other biased

Ll - i dEa el

!; procedure.

l\ 2. Biased discriminant functions labeled by M, A, and F (see section
S.2 for a description) performed better than all others when gi - g. is

lx positioned so that the ith principal component contributes more to the

Mahalanobis distance than the (i+l)th principal component.

(. 3. The effect of small eigenvalues in S on biasing procedures depends
l on the position of the vector U, - U,.
' 2 2
4. When the orientation of U, - U, is such that d /v, > &, /¥, »
l vhere D2 - E di/v1 is the square of Mahalanobis distance, all biasing
. i=]

methods are particularly effective for small samples.
i In applying Hoerl and Kennard's ridge regression model to practical
problems, a general difficulty lies in the selection of an appropriate
value for k. Similar difticulties exist in choosing a set of kt" for the
< biased discriminant models propocedi by this paper. However, based on the

simulation results of this study, an applications oriented user of discri-
1 minant analysis should use the results of an inspection of the following
two items as an aid in deciding when a biased model should be used:

1. Eigenvalues of matrix R vhere R is the sample correlation matrix.

i { 2. The ratio given by (5.8).

; . 1f one or more eigenvalues of R are small, say less than .7, and if the

l 2~ ratio (5.8) is larger than 1/p, then {t is worthwhile to proceed with the

; . selection of a set of ki"' That is, items 1 and 2 provide evidence that
\ biasing will improve the performance of the discriminant function. Given
i that an inspection of items 1 and 2 show that conditions are suitable for
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blasing, the recommendation here {s to construct the unbiased discrimi-

nant function along with several biased dizcriminant functions, say A, M,

and F, where the ki's for these functions arce defined in this section. The
error rates for the unbiased as well as for the biascd discriminant functions
should be estimated by using onc Qf the methods desceribed in Lachenbruch
(1975). The discriminant function to usc would be the one which gives the
smallest crror rate.

Lastly, any user should keep in mind that in a practical situation,
the eyror rate of the population discriminant function {s unknown and that
the above method of choosing a discriminant functfon is simply an effort
to choose the best classification model possible from the available data.
The U method, as given by Lachenbruch (1975), of estimating error rates
scems to be an efficient procedure in terms of using available data. Hence,
this author ruvcommends its use in estimating error rates in applied situa-
tions where a chofce is te be made between using one cof the biased discrimi-
nant functions or the unbiased one.

Results from this study raise the following questions that should
merit further study:

1. For biasing methods using ki’ there is an optimum set of ki's
(perliaps not a unique set) for each problem, but no technique has been
developed to compute them.

2. Additional study is necded to determine how well each biased
procedure introduced in this paper will perform in multiple group discriai-
nation 1n studying this proble, sovme consideration should be given the
orientation of population mean vectors.

3. Further siady is needed to assess the performance of both the
two-group and the mult:nle-group quadratic discriminant procedures under

biasing conditions introduced by this study.
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APPENDIX A
(.

CALCULATIONS LEADING TO THE EQUALITY
FOR Yj It SECTION 2.2

-

e

E 3 X X = - X X ' -1 X - X
Let W = (D (X)X, X,, §) = [X - WX, +X,)1'S" (X, - X)), vhere
zi. X,» and S are fixed.

The conditional probability of misclassifica-
tion using ns(g) is computed by

m—

. PMC = [P (1]2) + P (2[D)] ,
{ vhere
l ’ 98(1|2) = Pr(W > 0] and Ps(zlx) = pr{W < 0] .
l. Since W is a linear function of the components of the multivariate normal

vector X, W is univariate normal with means and variance (2.15)-(2.17).
' Hence,

P _(1]2) = Pr(W > 0] = Pr W - E(W!):_,_ =E(W) .
° {Var(w)) (Var(W)]

| - prlY > y],
‘ i is the univariate standard normal distribution, and
[Var(w)] :

e o
- =1y, - %X, + X)1'S (X, - X))
b varw)? ([, - Zz)'s‘lz:s'l(zl - Xz)l”

By a similar calculation,

P.(le) = Pr(Y < y,]

where
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i.

‘ - - -1,= -
L _ ol -tk ¢ RUS W - X))

2 5 % yre-dpelon -_‘. "
(X, - X)'s72s (X - X))
Therefore, in general

. rs(xlz) = Pr(Y2y,) and P“(le) - Pr(Y <y,) ,

where
N
i - - k(X X P ¥ - X
UL B T R
| 1@ - slsT@, - )
1
|
o
g !
Bt
;
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APPENDIX 8

Show that, in general, (5 + K) ¢ T'[A + K|T, where T is the matrix
of cigenvectors of S, T'T @ TT' = [, A ~ l\i_]:.1 is a diagonal matrix so
P22 e 2 lp is the set of eigenvalues of S, K = [ki]‘;_1 is a
general diagonal matrix, and S is a p¥p symmetric matrix.

It is clear that S + K = T'{A + K]T if LA kj for 1 ¢ §. Let it

be assumed that ki ¢ X, whenever 1 ¢ j. Then,

3

S+ K= T'[A+ KT

iff
S + K e T'AT + T'KT
i€t
S+Ke=§ <+ T'T
iff
K = T'RT
iff
TK = KT .

Thus, it is sufficient to show that K and T are not generally permutable.
Theorem 3, page 223 of Gantmacher (1960) states that, "If two matrices A

and B are permutable and one of them, say A, has quasi-diagonal form

O
Al i 0
A= ---1---- .

o |a,

where matrices Al and Az do not have characteristic values in common, then

the other matrix B must have the same quasi-diagonal form . . ." Using

this theorem, it is clear that since the gencral form of K requires that
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its dliagonal elcments are generally pairwise differeant, a necessary

condition for permutability between K and T is that T be a diagonal matrix.

However, T is not generally diagonal; therefore, in general, TK # KT and

hence (S + K) ¥ T'(A + K)T for the general diagonal matrix K.
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APPENDIX C
NOMENCLATURE
Mahalanobis distance between two populations.

Population discriminant function.

. Generic representation for any biased discriminant function

Unbiased sample discriminant function.

A pxp diagonal matrix with d,. on the diagomal.

i1
The probability density function for the jth population.
The number of nonzero eigenvalues in matrix ss.

The jth eigenvalue of matrix R.

A nonnegative bias factor added to the jth eigenvalue of

matrix S.

The jth eigenvalue of matrix S.

2, + a,.

The size of sample from jth population.

Total optimum prodability of misclassification.
Standard normal cumulative distribution.

The jth population
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P(1l3)

R <

>

X
q

The probability of classifying an observation into LT vhen it

is really from “j (143).

Probability of misclassification.

The jth eigenvalue of matrix L.

The prior probability of obn:l.n:l.ng‘ an observation from w 5
Sample correlation matrix.

The region for classifying ;o into ’j'

Sample estimate of matrix L.

Generalized inverse of ss (wken S8 is singular).

Common covariance matrix.

The jth population covariance matrix.

Positive values used to control multicollinearity in L.
Sample estimate of -matrix I It
Angle between j:h eigenvector of T and vector 9_1 - 22.
Total probability of misclassificatiom.

The jth population mean.

Sample estimate of U, .

ﬂ

Observation vector to be clagsified.




| 5 APPENDIX D

,ﬁ t | CONTROL FACTORS FOR SIMULATIONS
| z 1. Sample Size: N = 10, 25.

2. Mahalancbis Distance: D = [(21 - gz)'l:"l'(p_1 - !2)]"
D = 0.6, 1.0, 3.0.

3. Severity of Multicollinearity:

2
2

2
2

- Matrix 1: o, = 001, o, = 001

Matrix 2: o, = .001, o, = 1.00

=N N e

Matrix 3: o2 = 10.00, u§ = .001

2

‘ ) Matrix 4: 9 " 10.00, cg = 1.00

See tables 5 and 6 for eigenvalues of the correlation and covariamnce

matrices for the four data matrices used.

4. Orientation of (gl - !2) to eigeavectors of the four covariance

! utﬁcé. . - i
. 10 | 2v, (10-3)
Orientation 1: U, - U, = - 274

w[,]"
Orientation 2: U, - U, = ] |35 oz,

s

Orientation 3: U, - U 90

5 E
2y, (3-1) |
- 2 w—L_ Dz

) where gj
¥

D = Mahalanobis distance between 1 and 2°

= the jth eigenvector of matrix L,

= the jth eigenvalue of matrix [,
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See table 7 for specific values of cosé T vhere @ 3 is che angle betwsen

.Z_J and (U, - U,).




Table $

Bigenvalues of Population Correlation Matrices Used

; Eigen- 1 2 3 4
; ) values
1 2.953026 2.889975 2.646488 2.565580
2 1.710753 1.686068 1.416878 1.410616
{ 3 1.282204 1.28213% 1.150556 1.150228
4 1.070584 1.070579 1.061076 1.061044
S 0.870809 0.871681 0.890215 0.891328
] 0.834498 0.835236 0.846128 0.846285
7 0.68298S 0.683049 0.763410 0.763500
8 0.594070 0.594387 0.631768 0.631794
9 0.000971 0.085915 0.593380 0.5937110
10 0.000098 0.000971 0.000098 0.085913
Table 6
Eigenvalues of Population Covariance Matrices Used
Eigen- 1 2 3 4
values
' 1 26.192363 26.291875 26.357706 26.453878
2 17.175468 17.224441 17.226322 17.280056
3 13.037192 13.152136 13.399986 13.494534
4 12.107236 12.107237 12.340140 12.351819
S 8.822387 8.860483 9.410080 9.438447
, 6 7.934043 7.954317 8.620528 8.636769
E 7 7.283433 7.307305 7.916816 7.938362
8 5.959092 5.963760 7.280512 7.30390S .
9 0.000970 0.649324 5.959092 5.963760
10 0.000667 0.000970 0.000667 0.649323
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Table ?
Orientations for Y - U, Expressed 1n Terns of cos‘,
Ortentacion | Matrix 1 ' Matrix 2
vector oy 2 3 1 2 3
1 6037 5156 6036  .s150 o
2 4609 4175 | 267s 4606 4160 2647
3 3758 3638 3397 3764 (3635 3373
4 3353 3506 .3g9; 336 3487 3ass
[ 2612 .2992 3335 3612 2984 379y
6 «2216  .2837 4065 2211 (2827 iom
7 1838 [2719 427 -1838 2710 4204
8 1356 .2460 4170 1353 2447 4120
9 0012 L0031 -0057 0316 .ogog 1454
10 0 0026 0050 0 0031 0059
Matrix 3 ' Matrix 4
1 2 3 1 2 3
1 5956  ,4929 0 . .s956 4915 0
2 4340 3985 534 4539 3973 | j3u4
3 3%S 3514 295 - 3752 (3510 2929
4 3327 3372 ey - -3323 3353 (3,3,
[} 22652 2944 3496 +2652  .2936 3465
6 2271 L2818 3741 2270 2809 3706
7 1885 2645 3973 -1884 2693 .3gg;
8 1476 2590  406s 1475 2582 4031
9 0944 2344 3936 0942 2333 3g0,
10 0 0025 0044 0 0770 1364

o0
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Table 8

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = .6 (OPT = ,382l1), Orientation },
Matrix 1, n = 10

KRumber of Times
PMC is Lowver

ot o e o o

Mean Ilmprovement Over
Estimator Variance than That of
Pe !stiugor s Estimacor §
(max = 30)
-] 4721895 .000716S . *
1 K .5004223 0182717 -,0282328 11
1] 4614415 0009447 .0107480 22
' R .4579530 0008195 0142365 20
D .4652601 0011444 0069294 18
M 4577994 .00086138 01463960 20
' A 4577805 .0007817 .0144090 22
P 4563847 0007113 .0158047 20
0 4661020 0012684 0060875 22
t ¥ 4522470  .0008839 .0199425 23
Table 9

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = .6 (OPT = ,3821), Orientation 1,
Macrix 1, n= 25

{ Kunmber of Tines
B} PMC {s Lower
| Estimator !::: Variance hg:::;:::: g"" than That of
Estimator §
. (max = 30)
L.
— -4 L4621413 0005747 L] *
! X .4665843  .0012835 -.0064430 15
- ¢ 4594191  .0007630 0027222 19
R 45504013 .0007587 0071010 23
B D 4597878 .000753S 0023538 17
M 4467804 .0007187 0153609 26
A 4553200 .0008518 00682113 20
‘E P 4578666 0007878 0042747 18
: 0 .4570131 .00075856 .0051082 21
F «4394531 0006497 .0226882 28
[
lj 61
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Table 10

Comparison of Probabilities of Misclassification for
Several Discriri. ant Functions, 3u Replications,
wvhen D = .6 (OPT = ,3821), Orientation 1,
Matzix 2, n= 10

Number of Tiwmes

laprovement Over PMC {s Lower

Bstimator 1;;? Variance Escimator $ than That of
Estimacor S
(max = 30) ;
$ 4731673  .0006971 * * f
4 5059392 0161971 -.0327919 11 f
G 4616265 .0008701 0115407 2
R 4576283 0006411 .0155389 23
D 4700283 .0013315 .0031390 16 ;
M 4575804 .0006680 0155869 2a |
A 4574818 0007038 .0156858 23 f‘
4 4558591 .00064 24 .0173082 22
0 .6655391 .0010692 .0076281 21
4 4535410 .0009435 0196263 23
Table 11 '
Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = .6 (OPT = .3821), Orientation 1,
Matrix 2, n = 2§
Number of Times
PMC 43 Lower
Estimator ﬁ;;? Variance Im::::::::: g”‘: than That of
Estimator §
(max = 30)
S 4619189 .00060133 ] *
4 +4613094 .0007568 0006095 17
G 4591505 0007032 0027684 20
R * 4553493 0007457 .0065696 22
D .4597061 .0007579 .0022128 1?7
M 4486507 0006848 .0132681 23
A .4558683 0009036 .0060505 20
4 .4578710 .0008038 00460479 21
0 4570830 0007464 0048358 22
4 4412313 .0006982 .0206876 27
62




Table 12

.Comparison of Probabilities of Misclassification for
Several Discriminant Punctions, 30 Replications,
vhen D = 1.0 (OPT = ,3085), Orientation 1,
Matrix 1, n = 10

X ¥mber of Times
MC 1s Lower
‘ Estimator !::: Variance I.::::::: :"' than That of
; Bstimator §
‘ (max = 30)
) | ;
o s 4352555 .0019316 . . 5
| X 4102568 00259528 0249987 17 |
G .4036046  .0018006 .0316509 26 |
2 4026084  .0016065 0326471 22
D 4136102 .0022986 0216454 19
| M 4021568  .0016737 .0330987 22
| A .3978281  .0014702 10376275 28
? .3963853  .0013612 .0388703 25
) 4146123 .0024739 .0206432 22
; r .3885997  .0016683 .0466558 24
s V.
S
| Table 13

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
whea D = 1.0 (OPT = ,3085), Orientation 1,
| \ Matrix 1, o = 25

NMumber of Times
PMC 4{s Lower

| Mean Izprovement Over
: Estimator Variance than That of
™MC Estimactor 8 Estimator S
. ! (nax = 30)
{
t «60214581 0013089 * .
o K 23973249  .0019124 .0048202 19
‘ G .3946661  .0013566 0074790 25
5 R «3846051 0011317 0175400 27
: i D «3962315 0013599 0059136 21
T M 3723917 .0007196 0297534 25
oo A «3830196 0012260 0191255 25
f ? 3897421 .0012888 0124030 25 |
) ) .3892117 0012610 0129334 2 |
- 4 «3619399 0004518 04602052 28 |
.
‘o
. 6]

14
€ {




| Table 14

. Comparison of Probabilities of Misclassification for
; . Several Discriminant Functions, 30 Replications,
‘, vhen D = 1.0 (OPT = ,3085), Orientation 1,

1 Matrix 2, n = 10

e Nuaber of Times

\ PMC i{s Lower
. Estimator m‘ Variance x':::::::: g'“ than That of
i Bstinator 8
- : (max = 30)
yo S 4357742 .001859S * *
,’ \ 4 .4207499 .0226456 .0150244 15
G 4027121 0016562 0330621 26
| 3 .3996047  .0012180 .0361695 22
\ D 4187074 0026853 0170668 18
| M «3988943 .0012721 .0368800 23
‘ A «3961644 0013449 .0396099 27
| i P «3943118 0012238 04146625 S
: o 4135403 0021135 .0222340 2%
4 «3892598 .0015826 0665145 23
1
) .
]
|
i Table 15

\ Compariscn of Probabilities of Misclassification for

! Several Discriminant Functions, 30 Replications,

‘ vhen D = 1.0 (OPT = .3085), Orientation 1,
Macrix 2, n = 10

Hunber of Timas

PMC {s lower
Zstimator ’;:: Variance h::::;:::: g“' than That of
Estimator §
(max = 30)
-] .601263S .0013480 L] .
K +3955002 0015308 0057632 21
G 3944540 0012847 0068095 22
 § 3842272 .0010717 0170362 26
, D 3955788 .0013032 0056846 19
L M «3743676  ,0007243 0268959 25
‘ t A .3839138 0012546 0173500 26
? 3895937 0012650 0116697 28
(4] +3892706 0012074 .0119929 26
. ' .3642266  .0005054 .0370389 %6
{ " .
s
:
IR
-
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Table 16

Comparison of Probabilities of Misclassification for

Matrix 2, n = 10

Several Discriminant Functions, 30 Replicatioms,
vhen D = 3.0 (OPT = .0668), Orientation 1,

Number of Times

. PMC i{s Lower

Estimator ﬁ;;? Variance In::::::t:: gver than That of

_ : Egtimator S

' (max = 30)
S 2532152 .0085259 * bd
K 1302365 0126336 1229787 27
G .1368733 . .0016761 1163419 30
R «1323025 .0011064 1209127 28
D «1745411 0024220 0786741 22
M 1312406 .0010598 .1219746 28
A «1241410 .0011634 1290742 3
P 1216026 .0009846 1316126 29
0 1634272 0029187 .0897879 25
F 1094501 0002702 .1437650 2
Table 17

Comparison of Probabilities of Misclassification for

Matrix 2, n = 25

Several Discriminant Functions, 30 Replicatioms,
when D = 3.0 (OPT = .0668), Orientation 1,

Number of Times

» PMC is Lower

Estimator 1;;? Variance In::::::z:: gver than That of

- Estimator S

(max = 30)
S 1339836 0019074 * *
K 1106339 0013456 .0233497 29
G 1156332 .0013953 .0153504 27
R .1026748 .0006175 .0313068 28
D .1225503 0015961 0114333 23
M .0982620 .0002503 0357216 26

A .0981882 0005615 0357954 29
P .1082184 .0008354 0257652 28
0 .1099456 .0008859 .02401381 28
F .09653553 .0001367 .0354283 26
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Table 18

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = 3.0 (OPT = .0668), Orientation 1,

Matrix 2, n = 10

Number of Times

e
L
L
L
L
§

. PMC is Lower
Estimator 1;;? Variance I;z:::::::tsover than That of
Estimator S
: t (max = 30)
: :
i S «2565326 0080737 * *®
o K .1228519 . .0102818 .1336807 27
; G 1344490 .0015525 .1220836 30
L R 1285779 0007489 1279547 29
o D .1761069 .0032892 .0804257 25
P M 1285241 .0007831 .1280085 28
Qo A .1210284 .0010253 .1355042 30
j P 1180248 .0008606 .1385078 30
3 [ 0 * 41618516 0024774 .0946810 30
K ) F .1697688 .0003251 .1467638 30
|
b
Table 19

Comparison of Probabilities of Misclassification for
_ Several Discriminant Functions, 30 Replicatioms,

i when D = 3.0 (OPT = .0668), Orientation 1,
o Matrix 2, n = 2§

! 3 Number of Times

P PMC is Lower
3 Estimator ﬁ;;? Variance I"gr°v°m°nt Over than That of
. atimator § Estimator S$
{ (max = 30)
' S «1317634 .0017680 * *
‘ K .1180470 0015949 0137164 30
G 1193976 .0012774 .0123658 28
R 1007304 0004446 .0310330 30
D 1210195 0012470 .0107439 21 ,
M .0962238 .0002184 .0355395 27 B
A .0982682 .0004192 .0334952 29 |
P 1076276 .0006695 0261358 28 ¥
o - «1095399 ~  .0007521 .0222235 28 p
¥ .0989428 .0021467 .0328205 23




Table 20

‘Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replicatiomns,
when D = .6 (OPT = ,3821), Orientation 1,
Matrix 3, n= 10

Number of Times

PMC i8 Lower
Estinator ﬂ;&? Variance I"g:i:::::: gver than That of
Estimator S
(max = 30)
S 4733989 .0006782 * *
K 4971384 .0145314 -.0237395 10
G 4626321 .0008694 .0107668 21
R 4553495 0009316 .0180494 21
D 4658064 0011544 .0075925 18
M 4552476 .0009972 .0181514 21
A 4576355 .0007795 .0157034 22
P .4559194 .0007378 0174795 22
0 4680424 0010460 .0053565 19
F 4528751 .0009568 .0205238 23
b
{
Table 21

Comparison of Probabilities of Misclassification for
: Several Discriminant Functions, 30 Replications,
. when D = .6 (OPT = ,3821), Orientation 1,
’ ; Matrix 3, n = 25

Number of Times

PMC is Lower
Estimator 2;;? Variance Im::zI;::2: gver than That of
; Estimator §
i (max = 30)
$ 4619080  .0005039 * *
K 4668184  .0011250 -.0049104 15
G 4592696  .0006578 .0026385 20
| R 4531585  .0006627 .0087495 24
? D 4602147 .0006546 .0016933 17
5 M 4418609  .0007154 .0200471 23
o A 4531532 .0007265 .0087548 23
- P 4568855  .0006745 .0050225 21
; 0 4566850  .0006546 .0052231 22
F F 4379801  .0005992 .0239279 27
67
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Table 22
Pl ‘Comparison of Probabilities of Misclassification for
B Several Discriminant Functions, 30 Replications,
P . when D= .6 (OPT = ,3821), Orientation 1,
E . Matrix 3, n = 10
| Number of Times
. PMC 4s Lower
s Estimator Mesn Variance 1‘::';:::‘;: V8T than That of
b . Estimator S
‘ (zax = 30)
i
; L s 4738649  .0006150 * *
. K +5022683 0136387 -.0284034 10
- _ G 4622541 .0007822 0116107 21
A R 4556584  .0007593 .0182065 23
‘ D .4675753 .0012553 .0062896 19
: i M .4548204 .0007921 0190445 23
. A 4575199 0007348 .0163449 22
: P 4556534 .£J307061 0182114 24
_ 0 4671534 .0008232 0067114 20
i; F 4543066 0010736 .0195582 25
.
e
Table 23

o

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
1 when D = .6 (OPT = .3821), Orientation 1,
. Matrix 3, n = 25

{ . Number nf Times

. PMC 1is Lower

~ Estimator ﬁ;;? Variance Ing:z:::::: gver than That of

Estimator S

A (max = 30)

; 3 4620522 .0005445 * *
! K 4624846 .0007348 -.0004324 16
X (] .4596430 .0006425 .0024092 21
e R .4533117 .0006838 .0087405 24
- D .4610649 .0006666 .0009872 18
! M 4417442 ,0006493 0203080 27
- A .4533371 .0007548 .0087151 23
- P .4573193 .0007006 0047329 20
N 0 .4576000 .0006637 .0044522 23
b r 4398371 .0006321 .0222151 26




Table 24

-Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = 1,0 (OPT = ,3085), Orientation 1,

b A T, PO

; {; Matrix 3, n = 10
b '
5 )
[E { Number of Times ‘g
) PMC is Lower %
ti : Estimator %;a? Variance Img:::::::: gvcr than That of :
' . Estimator §
; l (m = 30)
‘? s 4357952  .0018402 * N
8 1 K 4189812  .0200049 .0168140 17
c 4071377  .0017119 .0286575 2
R .3964953  .0018037 0392999 22
? D 4145193 .0021565 0212759 20
\ M .3958199  .0019141 .0399753 2
A .3988230  .0015270 0369722 25.
% P .3962343  .0014592 .0395609 24
! 0 3192497  .0021358 0165455 22
F 3888942  .0017892 0469010 24
i
§
} Table 25

Comparison of Probabilities of Misclassification for
' Several Discriminant Functions, 30 Replications,
’ when D = 1.0 (OPT = .3085), Orientation 1,
Matrix 3, n = 10

Number of Times

- PMC is Lower
Estimator %;;? Variaancce Ing:::::::: gver than That of
Estimator $ 4
(max = 30) ﬁ
\ |
‘ s 4018569  .0010668 * .
| X .6007859  .0015441 .0010709 19
. c .3951770  .0010529 .0066799 2
& R 3814448 0008253 .0204121 27
‘l D .3980616 0010812 .0037952 17
3 { M .3637072 0005564 .0381497 29 ;
il A .3802136  .0009138 .0216433 28 1
| P .3890553  .0009586 .0128015 27 |
. 0 .3892713  .0009437 .0125866 27 |
%; ; F .3591038  .0003616 .0627531 29 {
1
by -
L 69

-

3
g
1)




e S

~%zM Table 26

o Comparison of Probabilities of Misclassification for
f! Several Discriminant Functions, 30 Replications,
’ vhen D = 1.0 (OPT .3085), Orientation 1,

Matrix 4, n = 10

_} L . Number of Times

——

L PMC is Lower
® | - Estimator ‘:;cn Variance m::::;:::: g"“ than That of
- . Estimator S
ke (max = 30)
MR
ot s 4354159  .0017285 * *
: K 4251562 .0195306 .0102597 16
'z G 4057336 0015603 .0296823 24
: R +3958520 .0013321 0395640 25
D .4158819 .0024094 .0195341 19
1 M 3941198 0013734 0412961 23
' l A «3973010 0014017 0381150 25
. P «3943527 .0013213 0410632 25
- (1] 4184096 0017654 .0170063 23
, F «3901320 .0018553 .0452840 23
.
Table 27
t 3
{ Comparison of Probabilities of Misclassification for ‘
Several Discriminant Functions, 30 Replications, {
" when D = 1.0 (OPT = ,3085), Orientation 1, , ]
Matrix 4, n = 2§
Number of Times
: PMC 1is Lower
Estimator ﬁ;;? Variance Im::::::::: gver than That of
‘g Estimator S
; (max = 30)
; i ] 4021550 0011225 ® *
) | K +3981924 .0013287 0039626 24
G +3956099 0010401 0065451 26
, R 3815127 0007640 0206423 27
f D .3985176  .0010365 .0036374 20
M «3631856 0004710 .0389694 30
A 3805082 .0009086 0216468 28
f P .3893249  ,0009615 0128301 27
(4] +3907515 .0009609 0114035 27
F +3616395 0004015 0605156 29

70




Table 28

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = 3.0 (OPT = ,0668), Orientation 1,

Matrix 3, n = 10

\

Number of Times

4 PMC is Lower
é 2 Estimator 1;;? Variance Img:z:::t:: gvgr than That of
S ] Estimator S
: (max = 30)
T z s .2535330  .0087476 * *
! K +1433302 .0166587 1102027 26
» 1 G «1390474 0020212 «1144855 30
{ { R 1217244 .0009741 .1318086 28
D .1678301 0022194 .0857029 23
! M .1198355 .0008380 .1336974 29
; ? A «1243295 .0013497 1292035 20
‘ e P .1209760 .0011145 .1325570 29
0 +1668324 .0036922 0867086 29
;. F .1062285 .0002769 1473044 29
\ b
-
Table 29

B  Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replicatioms,
- -+ when D = 3.0 (OPT = .0668), Orientation 1,
] ',» &trix 3’ ﬂ bt 25

Number of Times

' PMC {s Lower
Estimator ﬁ;;? Variance Ing:z::::z; gver than That of
. Estimator S
} (max = 30)
s 1333216 0017915 * *
K «1192148 0013915 .0141068 28
: G 1198772 0012919 0134444 29
- R 0998444 0004592 0334772 30
?§ D «1223266 .0014919 .0109950 25
Ly M 0922712 .0001474 0410504 28
: A .0968348 .0004249 .0364867 28
ty P .1081441 .0007065 0251778 29
1, 0 1102384 .0007987 .0230832 28
2 F 0944551 .0001096 0388664 25
'&
71
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Table 30

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
[: when D = 3.0 (OPT = ,0668), Orientation 1,
Matrix 4, a = 10

an B o

[ Number of Times
: PMC 13 Lower
Estimator ?;;? Variance Ing:zz::tg: gver than That of
[ Estimator S
- (max = 30)
‘ t s .2558041  .0089398 * *
; K .1336960 .0123173 .1221051 28
- G 1333707 .0016500 .1224334 30
} R .1214726 .0005824 .1343315 29
NS D 1590654 .0025688 .0967387 26
_ M 1208897 .0005408 1349144 28
_f) A 1200201 .0011033 .1357840 30
f. P 1166758 .0009311 .1391283 30
(o} .1671048 .0032112 .0886993 30
;- F .1070920 .0003425 .1487121 29
A
L [
: Table 31
i Comparison of Probabilities of Misclassification for
' Several Discriminant Functions, 30 Replicationms,
when D = 3.0 (OPT = .0668), Orientation 1,
{' Matrix 4, o = 25
{
- Number of Times
PMC is Lower
: S- Estimator 1;;? Variance I‘:;:I::t:; gvet than That of
: Estimator S
! g (max = 30)
{
S .1328329 .0015465 * *
,' K .1205019 .0011633 .0123709 30
. G 1196864 .0009976 0131464 30
R .0983347 .0002869 .0344982 29
D .1208810 .0010090 .0119519 21
,_ M .0907038 .0000900 0421240 29
A 0954688 .0002912 0373640 29
- P 1072921 .0005331 .0255408 30
i | 0 (1113893 .0006753 .0214436 30
- F .0951386 .0001210 0376943 25
|
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§ l Table 32

L Comparison of Probabilities of Misclassificacion for

: zﬂ Several Discriminant Functions, 30 Replicationms,

| when D = .6 (OPT = ,3821), Orientation 2,
Matrix 1, n = 10

< Numbaer of Times

""wm TTNTeT YT e
o — P —

PMC is Lower
Estimator %:a? Variance Iﬂg:::::::: gver than That of
' * Estimator S
(max = 30)
S 4748426 .0009860 * ®
K .5155888 .0148181 -.04607462 8
i G 4696251 .0007778 0052174 18
. R 4675198 .0006312 .0073228 17
D 4732984 .0008981 .0015442 17
. M 4677484 .0006629 .0070941 17
i A 4672965  .0006134 .0075461 14.
) P 4664045 .0005490 .0084381 15
. 0 .4731800 .0010791 .0016625 18
b F 4654012  .0006399 .0094413 20
!
¢
Table 33
} Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = .6 (OPT = ,3821), Orientation 2,
Matrix 1, n = 25
Number of Times
PMC 4is Lover
Estimator 1;;? Variance In;:::::::: gver than That of
, ‘ Estimator S
; (max = 30)
P ] 4627196 .0006670 * *
i K 4719242 .0014018 -.0092046 10
c 4694026 .0009036 -.0066830 6
‘ R .4668919 .0009133 -.0041723 16
\ D 4695432 .0008943 -.00682236 6
M 4616642 .0008998 .0010555 18
o A 4676708 .0010138 -.0049511 12
g ;} P 4687074 .0009316 -.0059878 9 ‘
: 0 4679746 0009010 -.0052550 10 i
{ F .4581825 .0008614 .0045371 17

¥
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Table 34

Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replications,
when D = .6 (OPT = ,3821), Orientation 2,

Matrix 2, n = 10

Number of Times
PMC 1is Lower

Mean Improvement Over
Estimactor Variance than That of
PMC Estimator S Zstizator S
(max = 30)
-] 4748407 0009862 * *
4 5124921 0142417 -.0376514 9
G 4689430 0007691 .0058977 17
R 4666333 0004998 .0082074 18
D 4777118 .0010373 -,0028711 15
M 4670981 .0005090 0077425 1?7
A 4665159 .0005723 .0083248 14
) 4 .465578S .0005018 0092622 15
o 4713298 .0010116 0035109 19
F 4658244 0006795 .0090163 1?7
Table 35

Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replications,
wvhen D = .6 (OPT = ,3821), Orientation 2,

Matrix 2, n = 2§

Number of Times

PMC is Lowver

Estimator ?;;? Variance In::z:;:::: gver than That of

Estimator §

(max = 30)

s 4627164 0006672 * %
K 6644286 0007672 -.0017121 12
G 4660719 0007766 «,0033555 8
R 4654612 .0008201 -,0027447 13
)} 6692930 0008660 -, 0065766 6
M 4625991 0007796 .0001173 1
A 4668268 0009913 «.0041104 11
P 46699138 .0008796 -.0042774 11
o «3657%00 .0008180 =,0030336 12
F 4591060 .0008321 0036104 17
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Table 36

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = 1.0 (OPT = ,3085), Orientation 2,

Matrix 1, n = 10

Ruaber of Times

PMC 1is Lower
Estimator ﬁ;;? Variance In::::::::: gv" than That of
Estimator S
(max = 30)
: 4353746  .0015345 . .
¢ .4330599 .0203526 .0023147 14
L R .6219073 .0014967 0134672 18
{ D .4226489 .0013245 .0127256 18
) s M 4308677 .0018493 .004 5069 16
. A +4230547 .0013879 .0123198 18
| lz ? 4179050  .0011787 0174696 17
b 0 4171228 .0010810 .0182518 2
L F 4311192 .0021821 .0042554 18
{* .4151206 .0012979 .0202540 22
L
e Table 37
) Comparison of Probabilities of Misclassification for
Pt Several Discriminant Functions, 30 Replications,

when D = 1.0 (OPT = ,3085), Orientation 2,

{ Matrix 1, n = 25
. Number of Times
- : PMC is Lower
3 t. Estimator ﬁ;;? Variance 1'::::;:::: gver than That of
2 Estimator $
1 } (max = 30)
- s 4032747 .0014401 * *
: f X 4051522  .0022599 -.0018774 16
; c 4152298  ,0017743 -.0119551 9
o R 4079954 0015654 -.0047206 12
- z D 4164404  ,0017685 -.0131657 9
R | +3989645 .0011283 .0043102 16
§.g A .4069522 .0016618 -.003677S 14
ke P 4117239 .0017241 -.0084492 12
., \$ 0 4112504 .0016739 -.0079757 11
; F 23917771 .0008223 011407, 17




Table 38

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
whea D = 1.0 (OPT = ,3085), Orientation 2,

Matrix 2, n = 10

Number of Tinmes

PMC 1s Lower

Estinmator ﬁ;;? Variance I'::::::::: gvur than That of

Estimator §

(uax = 30)
S 4353760 .0015353 bed *
4 .6288924 .0192817 .0064836 15
G 4197841 «0014778 .0155919 19
R 4194766 .0010147 .0158995 19
D .6386382 .0021675 -.00326 21 13
M 4196677 .0010474 .0157083 19
A 4154792 .0011159 .0198969 18
P 4145854 +0009961 .0207906 20
0 4278291 .0020048 0075470 18
1 4 +4149475 .0013041 .0204 286 22
Table 39
Comparison of Probabilities of Misclassification for

Several Discriazinant Functions, 30 Replications,
when D = 1.0 (OPT = ,3085), Orientation 2,
Matrix 2, a = 25

Numbder of Times 1

PMC {s Lower
Estimator ﬁ;;? Variance Ing:::;:::: gve: than That of [
Estimator §
{(max = 30)
S 4032655 0014404 * L
K 4003054 .0016533 .0029601 18
G .40801359 0015667 -.0047704 9
R +60462938 .0013951 -.0010283 14
D .6158558 .0017483 -,0125903 9
M +3998658 .0009956 0033967 12
A 4057463 0016503 -,0024808 13
P 4079364 .0016128 =-,0046709 13
(4] .60627113 .0015187 «.0030058 14
F 3935481 .0008284 0097173 1
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Table 40

Comparison of Probabilities of Misclassification for
Several Digcriminant Functions, 30 Replicativms, ;‘
vhen D = 3.0 (OPT = ,0668), Orientation 2,

. + - . . i .

Macrix 1, o = 10

Number of Tines

PMC 1s Lower
Estimator :: Variance In:m: :'“ than That of ;
] Estimacor $ |
A (oax = 30)
,' 1
/I t s .2495078  .0060483 . )
) K «1123621 0066941 «137145%7 2
', (] «1692414 0020379 0802664 27
' R «1709730 .001507S 0785348 26
t \ D 2105048 .0029529 .0390030 20
M «1707156 0015022 0787921 27
. A «1877452 0014461 0917625 26
! P .1566116  .0013031 0928962 26
o 0 «1952627 0031842 0542450 25 |
) 4 1514887 .0007328 0980191 27 |
\ 1
L. Table 41 |

g

|
. ‘

—
- .

Comparison of Probabilities of Misclassificatiocn for
Several Discriminant Functions, 30 Replications,
when D = 3.0 (OPT = ,0668), Orientation 2,

' Matrix 1, n = 25

Fumber of Times

PMC 1is Lower

Estimator “;;c" Variance t‘:::::::: g'“ than That of

Estiaastor S

(mnax = 30)
] 1331733 0019587 L] *
K 1144944 0012634 .0186789 22
¢ 1477542 .0016095 -,0145809 7
R 1316691 0007811 0015042 13
D 1522981 .0018516 -,0191248 6
M .1279512 .0004250 0052221 13
A .1255118 +0006575 0076615 1)
4 «1364622 0009679 =,0032889 13
0 +1390306 0010629 -.0058573 12
4 . 1303412 .0002908 0028321 12
77
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Table 42

Comparison of Probabilities of Misclassificacion for
"~ Several Discriminant Functions, 30 Replications,
when D = 3.0 (OPT = ,0668), Orientation 2.
Matrix 2, n = 10

Number of Times
PMMC 1s Lower

Mean Iwprovenent Over
EZstimator Variance than That of
™C Estimator S Estinator S
(max = 30,
s « 2495055 .0060521 * * .
4 .1078930 0062406 1416125 29
( 16327585 0019554 0862300 27
R 1633573 0011703 0861482 27
D «2102215 .0030642 0392840 19
M .16441306 .0012311 .0850749 27
A 1523755 0013742 0971300 27
| 4 «1512669 .0011787 .0982386 27
0 1874490 0028035 .062056S 27
4 «1493155% .0008663 «1001900 27
Table 43
Comparison of Probzbilities of Misclassification for
Several Discriminant Functions., 30 Replications.
vhen D = 3,0 (OPT = .0668), Orientation 2,
' Matrix 2, n = 25
Numbe: of Times

PMC 43 Lower

Estimator ﬁ;;? - Variance I'::::::::: gvc: than That of

Estimator §

(max = 30)

: 1331863 ,0019554 N N
¢ .1195333 0016524 0136510 25
" 1364841 0016179 -,0032998 12
D 12325834 .0005845 .0099309 15
X .1508638 .0016469 -.0176798% 6
A .1247778 .0003938 0084068 15
by 1222640 .0004822 .0109203 16
6 1291367 .0007964 0040476 15
r .1297228 .0009705 0034615 16
+.1297631 .0002820 0024212 13
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Table 44

.Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = .6 (OPT = ,3821), Orientation 2,
Matrix 3, n = 10

Number of Times

PMC {is Lower i;
Estimator “;;: Variance I‘g::m:z: gvet than That of ff
Estimator S !
(max = 30) i
s .4748412  .0009861 * * b
K .5065296  .0128271 -.0316884 8 ﬁ
L G +4673149 .0007657 .0075263 16 1
} R .4629258  .0007699 .0119154 19
. D 4712337 .0010013 .0036075 17
_ M 4634376 .0008083 .0114036 21
\ A 4645034 0006641 .0103378 16
{ P 4637172 .0006158 .0111240 17
0 .4711998 0009542 0036414 17
}' F .4638498 .0007231 .0109914 22
N
ﬂ Table 45 :
} Comparison of Probabilities of Misclassification for 3
. Several Discriminant Functions, 30 Replicatioms, f
when D = .6 (OPT = ,382l1), Orientation 2, i
] Matrix 3, n = 25 !
. Nunber of Times
! . PMC is Lower
{. Estimator ’:::: Variance Img::\ir:::: (s)ver than That of
‘ Estimator S
i ' (max = 30)
.
i s 4627221 .0006673 * *
; ’ K 4711118 ,0014803 -.0083857 8
. c .4659177 .0008821 -.0031907 9
e R 4020172 .0009123 .0007048 16
0 £ D 4667498 .0008699 -.0040277 8
- {_ M 4548056 0009987 .0079165 20 ;
: A 4622694 0009641 .0004527 16 E
g P 14644339 .0009030 -.0017118 13
) 0 4642720 .0008835 -.6015499 13
’ f . F 4540518 .0008569 .0086636 18 i
: i l: %
. 79 1
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Table 46

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = .6 (OPT = ,3821), Orientation 2,
Matrix 4, n = 10

Number of Times

- PMC is Lower

Estimator ﬁ;;? Variance Ing:::::::: gver than That of

Estimator S

(max = 30)
S 4748412 .0009861 L *
K 35056651 .0125282 =-,0308240 9
G 4662255 .0006887 .0086157 18
R 4616149 0006204 .0132263 20
D 4720771 0010743 0027641 17
M «4614755 .0006246 .0153657 20
A 4635341 .0006006 .0113071 18
P .4627018 .0005589 0121394 18
0 4695581 .0008809 .0052831 18
4 4641099 .0007820 0107313 20
Table 47
Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replicatiomns,
when D = .6 (OPT = .3821), Orientation 2,
Matrix 4, o = 2§
Number of Times

: PMC 1is Lower

- Estimator ﬁ;&? Variance Ingrzzzztn: gver than That of

s ° . Estimator $

(max = 30)

S 4627165 .0006672 * *
K 4640364 .000867?2 -.0013198 13
G .46 30044 .0007643 =,0002878 15
R 4599910 .0008376 0027255 17
D 4668319 .0008721 -,0041153 9
M 6538565 .0008490 .0088601 19
A 4613622 .0009365 .0013543 14
P 4629706 .0008562 -,0002540 16
0 4624097 .0007983 .0003069 16
F .4550720 .0008097 0076445 19
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Table 48 !

.Comparison of Probabilities of Misclassification for
: Several Discriminant Functioms, 30 Replicatioms,
. when D = 1.0 (OPT = ,3085), Orientation 2,
Matrix 3, n = 10

Number of Times

. PMC is Lower
‘ Estimator ﬁ;;? Variance Img:z:::::: gver than That of
. Estimator §
_ ' (max = 30)
Fy
oy s 4353813  .0015353 . N
' K .4351904 .016103? .0001908 15
i ¢ 4179437 0014845 .0174375 22
; R 4120051  .0015629 .0233762 21
C D .4263450  .0019593 .0090362 16
e M 4125457 .0016542 .0228355 21
1 ; A 4127833  .0012942 0225979 19
P P 4116455 .0012239 .0237358 20
: 0 4277025 .0019486 .0076788 18
, l F 4107671  .0014623 .0246141 22

Table 49

§ Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replicationms,

. when D = 1.0 (OPT = .3085), Orientation 2,
S Matrix 3, a = 25

Number of Times

: . ~ PMC is Lower
{ ' Estimator “‘a“ Variance Improvement Over than That of
- PMC Estimator § Estimator S
, (max = 30)
S 4032712 0014404 * *
K 4074098 .0021665 -.0041386 14
G .4083671 .0016222 -.0050959 9
R «3976231 .0013577 0056481 18
D 4112139 0016231 =.0079427 8
M . 3844087 .0009758 .0182625 20
A +3962300 0013994 0070412 18
P 4034277 .0015071 =-.000156°5 13
0 .4038810 .0014969 =.0006098 15
F « .3829356  .0007398 .0203356 20
81
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.Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replicationms,

vhen D= 1.0 (OPT = ,3085), Orientation 2,
Matrix 4, n = 10
Number of Times
. PMC is Lower
Estimator ﬁ;;? Variance In:::::::z: gvet than That of
Estimator S
(max = 30)
s 4353760  .0015352 . e
K 4296659 .0160573 0057101 15
(] 4149252 0013206 0204508 23
R 4092804 .0012022 0260956 21
D 4271838 .0023609 .0081922 15
‘M .4087731 .0012207 .0266029 21
A .4099878 .0011568 .0253882 21.
P 4086955 .0010835 .026680S 2
0 4242760 .0016659 .0111000 19
F .4105393 .0015412 .0248367 22
Table S1

Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replications,
wvhen D = 1.0 (OPT = .3085), Orientation 2,

Matrix 4, n = 25

Number of Times

. PMC 1is Lower

Estimator * ﬁ;;? Variance I"g:z:::::: gver thaa That of

Estimator S

(max = 30)
-8 .4032658 0014404 * *
K .4001522 0016495 .0031135 23
G .4017023 .0013862 .0015634 16
R «3936941 .0011592 .0095717 19
D .4109952 0016423 -,0077294 11
M .3823102 .0007632 .0209556 20
A + 3948253 .0013578 0084404 15
P «3999439 .0013950 .0033219 15
0 + 3996 254 .0013405 0036404 17
F , +3848586 - .0007157 .0184072 21
82
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Table 52

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replicatiomns,
vhen D = 3.0 (OPT = ,0668), Orientation 2,

Matrix 3, n = 10

.

s o E " e IO ¢ - o TR
Jom— r—
HE . i

" Number of Times

M v
v .

PMC is Lower
Estimate %;;? Variance Ing:z:;:::: gver than That of
: A Estimator S
o S .2695356 0060531 * *
o K 1154327 .0070086 13541029 29
f G .1572698  .0022482 .0922657 30
L. R 1462953  .0010922 1032402 27
D .1921527 .0029914 .0573829 21
1 M 1457720 .0010216 1037635 27
L. A 1444945 .0014105 .1050411 28
P «1430998 .0012523 1064358 27
0 .1831795 .0035418 0663560 30
.Y 1366920 .0006592 .1128435 28
}
v
‘ Table 53
t Comparison of Probabilities of Misclassification for
) Several Discriminant Functions, 30 Replicatioms,
é ‘when D = 3.0 (OPT = .0668), Orientation 2,
! ' Macrix 3, n = 25
{ . Number of Times
; PMC is Lower
Estimate 1;;? Variance Img:::::::; gver than That of
Estimator S
(max = 30)
S 13313844 .0019566 * *
K .1201515 .0014764 .0130329 22
G 1360812 ,0014838 -.0028968 14
R .1158102 .0005663 .0173742 22
D .1398344 0017496 -.0066500 9
M .1198309 .0002947 .0223536 18
A .11123850 0004612 .0218995 22
P 1233566 .0007553 .0098279 16
0 «1265220 0009095 0066024 16
F _ 1149391 _ .0002346 0152453 16
83

e o et s —ema e




.

—vrey

s e~ e

b

Table 54

Comparison of Probabilities of Misclassification for

Matrix 4, n = 10

Several Discriminant Functions, 30 Replications,
when D = 3.0 (OPT = ,0668), Orientation 2,

Number of Times

PMC 1is Lower

Estimator ?;;? Variance Im::::::::: gve: than That of

' Estimator S

(max = 30)
S +2495033 .0060513 * *
K +1080565 0063426 1414469 29
G 1494012 +0019507 .1001021 30
R «1444231 .0008757 1050802 28
D .1854059 .0030886 0640974 24
M 01454299 .0008298 1040735 - 28
A «1384619 0013410 1110414 29
P 1371177 .0011693 1123856 28
0 .1760073 0032529 0734961 30
F 1349167 .0008031 1145866 28
Table 55

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replicatioms,
when D = 3.0 (OPT = .0668), Orientation 2,

) Matrix 4, n = 25

Number of Times

PMC {s Lower

Estimate ﬁ;ﬁ? Variance :nE:::::::: gve: than That of

Estimator S

(max = 30)
S .1331843 0019555 * *
K 1190056 .0015548 0141787 30
] 1246015 .0012961 .0085828 20
R 1081321 .0003603 0250521 24
D 1373143 .0013923 -,0041300 11
M 1072330 .0001883 0259513 23
A 1074417 .00013566 0257426 22
P .1164354 0006504 0167489 22
0 .1188429 .0008790 0143414 22
F .1145743 .0002266 .0186100 17
84




Table 56

.Comparison of Probabilities of Misclassificatiom for
Several Discriminant Functions, 30 Replications,
when D= G (OPT = ,3821), Orientation 3,
Matrix 1, n = 10

Number of Times

PMC is Lower
Estimator ﬁ;:? Variance Ing:::;:::: gver than That of
Estimator $
' (max = 30)
s .4715319  .0011503 * J
K 5323469 0096985 -.0608149 9
G 4768534 - .0006249 -.0053214 13
R 4778623 .0004963 -.0063303 11
D 4800106  .0005833 -.0084787 12
M .4788593  .0005130 -.0073274 11 i
A 4770617  .0005008 -.0055297 12
P 4771987 0004606 -.0056668 12
o .4785215  ,0008829 -.0069895 12
F 4803006  .0003943 -.0087686 10
)
$
Table 57

e

Comparison of Probabilities of Misclassification for
S Several Discriminant Functions, 30 Replications,
vhen D = .6 (OPT = .3821), Orientation 3,

# ' i Matrix 1, n = 25
.{ ' Number of Times
: PMC {s Lower
S Estimator 1;;? Variance Img:::::z:: gver than That of
' Estimator S
.i (max = 30)
t.
- s .4644161  .0008756 * *
K 47.:5874 0017452 -.0132713 9
G .4800509 .0011086 -.0156348 4
R 4794635 0011293 ~.0150474 7
D .4800156 .0011013 -,0155995 S
b | 4778069 .0010842 -.0133908 11
A 4806339 .0012203 -.0162178 7
P 4801776 0011342 -.0157615 S
0 4796249 .0011068 -.0152088 6
F 4784318 °  .0009580 -.0140154 9
85
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Table S8

.Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replications,
wvhen D = .6 (OPT = ,3821), Orientation 3,

Matrix 2, n = 10

Number of Times

‘ PMC is Lover

Estimator ﬁ;&? Variance Img:zz::::; gver than That of

. Estimator S

i (max = 30)
| S 4642913 .0008576 * L
{ K 4687696 .0010418 «.0044783 9
‘ G 06746042 .0009332 «,0103129 4
R 4769748 .0009503 -,0126835 7
i D 4802647  .0010202 -.0159734 &
' M 4781760 .0009360 -.0138847 8
A 4785895 0010921 -.0142982 6
i' P 4772830 .0009977 -,0129917 4
{ 0 4758248 .0009466 -.0115335 4
F 4784990 .0008267 -.0142077 8
86
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PMC is Lower

Estimator %;;? Variance Ing:::::::: gver than That of

Estimator S

o (max = 30)
s 4720387 .0012039 * ®
K 5150609 .0119458 -.0430222 10
G 4754963  .0006800 «,0034576 13
R 4759637 .0004033 -.0039250 13
D +4827731 0006635 =.0107344 10
M 4772016 .0003850 -.0051629 11
A 4757041 .0004880 =.0036655 12
P 4759760 0004263 =.0039373 12
0 4758769 0009777 =,CJ38382 12
F 4795544 .0003982 -.0075157 10
Table 59

Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replicatioms,
vhen D= .6 (OPT = ,3821), Orientation 3,

Matrix 2, n = 25

Number of Times




Table 60
_Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replicationms,
when D = 1.0 (OPT = ,3085), Orlentacion 3,
Matrix 1, n = 10
Number of Times
. PMC is Lower
Estimate ﬁ;;? Variance Ing:z:;:::: gver than That of
: Estimator §
(max = 30)
S 4338931 .0019116 * *
K 4460395 0190767 -=,0121464 14
c 4424260 .0013891 -.0085330 14
R 4454960 .0011540 -.0116029 13
D 4513071 .0013319 =.0174140 12
‘M 4474095 0011760 =.0135164 11
A 4416195 .0011068 -.0077264 13
P 4422021 .0010307 «.0083090 13
4] 4483870 .0020470 =.0144939 12
F .4489143 .0009267 «.0150213 10
Table 61
Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replicatione,
. when D = 1,0 (OPT = ,3085), Urientation 3,
Matrix 1, n = 25
Numbec of Times
4 PMC is Lower
Estimator ﬁ;;? Variance I"g::::::g: gver than That of
Estimator $
(max =.30)
S 4049063 .0015699 * *
K 4135915 .0031345 «=.0086851 12
G .4385528 .0024528 =.0336465 3
R «4356605 .0023311 =.0307541 7
D 4394411 .0024522 -.0345348 3
M 4325702 .0020114 -.0276639 9
A .4358236 .0024450 -.0309173 8
| 4 4370903 0024253 -.0321839 6
o 4367075 .0023890 -.0318012 S
F .4336094 .0018005 -.0287031 R
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Table 62

Comparison cf Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = 1.0 (OPT = ,3085), Orientation 3,
Matrix 2, n = 10

Number of Times

PMC 1is Lower

Estimator gt Vartance  IRBFOVemENt Over .l 'mp of

Estimator §

(max = 30)
S «4334909 0017418 * *
K +4246007 .0204109 .0088902 15
G 4383295 .0014730 -.0048386 13
R 6422662 .0008799 -,0087753 14
D 4558897 .0016159 -.0223988 9
M 4445498 .0008670 -.0110589 14
" A .4380882 .0010576 -.0045973 12
P +4389660 .0009383 «.0054751 13
0 +6418492 .0021301 -.0083583 12
F 4470639 .0009323 -.0135730 10
Table 63

Comparison of Probabilities of Misclassi{fication for
Several Discriminant Functions, 30 Replications,
. when D = 1.0 (OPT = ,3085), Orientation 3,
Matrix 2, n = 25

Number of Times

P

S e eme - WA = bl - -

. , PMC 4s Lower
Estimator m‘ Variance In:::vi::::: (s)ve: than That of
Estimator S
(max = 30)

S 4048470 0015816 * ®

K 4057734 .0020781 -.0009264 15

G .4241128 .0018660 -.0192658 2

R .6283507 .0018206 -,0235037 6

D 4396899 .0023539 -.0348429 3

. 4323980 .0016739 -,0275510 8

A 4313968 0021571 =.0265498 6

P 4293107 .0019954 -.0244637 4

0o 4262551 .0018580 -,0214081 3

F 4335959 .0015499 -,11287489 7
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Table 64

.Comparison of Probabilities of Misclassification for
Several Discriminant Functioms, 30 Replications,
vhen D = 3.0 (OPT - 00668). Orientation 3’

Matrix 1, n = 10 .

Number of Times
PMC is Lower

Mean Improvement Over
Estimator Variance than That of
PMC Estimator S Estimator S
(max = 30)
S «2333699 0047396 * *
K 1291883 «0092560 1041816 28
] 2123422 0019660 0210277 16
R «2232617 0022461 .0101082 13
D .2628658 0035742 =,0294959 12
M 2252484 0021650 0081215 14
A «2059766 0018948 0273933 18
P’ .2073982 0019220 0259717 18
o «2322150 0025430 0011549 11
F «2126169 .0020385 .0207530 18
Table 65 -

Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
., when D = 3.0 (OPT = .0668), Orientation 3,
Matrix 1, n = 25

Number of Times

e sem e

PMC 1s Lower

Estimator ﬂ;;? Variance I‘::::;:::: gve: than That of

Estimator $

(max = 30)
S .1315218 .0018469 * L
K »1219341 0014079 .0095876 19
G 1817822 .0015730 =,0502604 1l
R 1673601 0006437 -.0358384 3
D 1869159 .0018902 =.0553941 ) |
M 1621310 .0003605 «.0306092 3
A 1597117 0004277 =-.0281900 3
P 1709309 0008129 =,0394091 3
o 1740671 .0010193 =,0425453 3
F 1620265 0004422 «.0305047 6
89
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Table 66
‘: .Comparison of Prcbabilities of Misclassification for
,’ Several Discriminant Punctions, 30 Replications,
LU vhen D = 3.0 (OPT = .0668), Oriencacion 3,
}? Matrix 2, n = 10
|
E; Mumber of Times
| : PMC is Lower
; Bstizator "% yarimney IwProvesmt Over %o, SV
S ' Estimator S
: ' (max = 30)
s 224357 0036016 . e :
4 +1037136 «0030641 «1206438 30
¢ «1986870. .0020313 .0256704 2
R «2187200 .0018344 .0056374 16
D «2570681 +0046414 =.0327107 11
' M +2216029 .0018980 .0027544 16
l B «1950727 .0018596 «0292847 2
‘ ? 1976837  .0016971 0266737 20
0 «2131977 .0025543 0111597 16
,3 ? .2052253  .0022348 .0191321 -
|
| Table 67
! - - ' .
Comparison of Probabilities of Misclassification for
. Several Discriminant Functions, 30 Replicaticas,
. vhen D = 3.0 (OPT = ,0668), Orientation 3,
i Matrix 2, o = 2§
Number of Times ‘
: » PMC {s Lover ,i
Estimator u";g Variance h:::::::: g"' than That of i
, Estimator S |
(max = 30)
; S «1319591 .0021237 * *
o 4 «1194863 ,0018197 .0124728 22
o G 1545014  ,0017563 -.0225423 2
. R 1493955 .0006182 =.0174364 é
gg ! D 1871879  .0015492 -.0552288 2
i M 1579318 0005546 «.0259727 S i
‘s A «1513277 .0003614 =.0195686 6
b P «1536625 .0007857 =,0217034 4
P | 0 .1516813 +0010668 =.0197222 é >
r .1585516 0004067 =.026592$ 6 ]
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Table 68

T ey
e s ansdae cl ot B

. Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replications,
vhen D= .6 (OPT = .3821), Orientation 3,

Matrix 3, n= 10

R L e

o e . 7 et b e s x -

NHumber of Tines

: MC is Lower

Estimator ’;‘: Variance h:.m: :’“ than That of

Estimator S

‘ (max = 30)
8 - 6717440 0011812 L *
K «3126235 .0091900 =.0408795 9
(] .4714682 0007407 .0002758 11
R 4720959 .0007014 «=.0003519 13
D .4769108 .0008939 -.0051668 12
‘M 4736923 .0007007 =.0019483 13
A .4716619 0006418 .0000821 13
P 4724184 .0006048 -.0006714 13
0 4727913 0009229 =,0010473 14
Table 69

Comparison of Probabilities of Misclassification for

Several Discriminant Functicns, 30 Raplications,
when D = .6 (OPT = ,3821), Orientationm 3,

Matrix 3, n= 2§

Number of Times

PMC &3 Lower

Zstinator ’:;‘ Varisnce h:m: g"“ than That of

Estimator S

(zax = 30)
S ,4652608 00099135 * *
K .4761)15 0019887 =.0108607 S
G 6726288 .0012053 -,0073877 ]
R ,4708577 0012061 -,0056170 13
D 4729653 .0011982 -.0077246 8
M 4685765 0011787 -.00331357 16
A 4713554 .0012452 -,0061146 12
? 5719655 0012121 «,0067248 1)
0 4718916 .0011963 -,00665C8 11
6708172 .0010039 «,0055765 12
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Table 70

Comparison of Probabilities of Misclassification for
" Several Discriminant Functions, 30 Replicatioms,
when D = .6 (OPT = ,3821), Orientation 3,
‘Matrix 4, n = 10

Number of Times

PMC is Lower
Estimator “;’::" Variance h:::::::: g'“ than That of
Estimacor S
(max = 30)
s . «6720831 0012788 * *
4 «5031372 0127667 «,0310541 9
G .4700337 .0007420 .0020494 16
R 4694506 0005764 .0026324 16 - |
D A772137 0009871 «.0051306 11
‘M 4705986 0005446 0014848 15
 \ 4701204 .0006098 «0019627 14
4 4707832 .0005577 .0012999 14
0 4708626 .0010087 .0012208 17
4 4752869 .0005162 -.0032038 13
Table 71
Comparison of Probabilities of Misclassification for i
Several Discriminant Functions, 30 Replications, :
vhen D = .6 (0PT = ,3821), Orientation 3,
Matrix 4, a = 25 ;
Number of Times ’
PMC 48 Lower
Estimator m‘ Varisnce 1‘:::'”:::: g"" than That of ’
Zstimator S i
izmax = 30) ’
] 4651296 .0009873 » * .j
G +4673454 0010232 -,0022158 9 )
1 4676717 0010639 -.0023621 13 4
D 4728941 0011811 -, 0077645 9 ¥
M 4674353 ,0010331 -.0023057 12 ]
A 4697105 +0011609 -.0045809 13 i
? 4691317 .0010917 «-,0040021 $
- o P lu619627 0010369 -.0028331 11
r 5710952 .0008720 -.0059656 12
P 92
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Table 72

_Comparison of Probabilities of Misclassification for

ion 3,

Several Discriminant Functions, 30 Replications,
when D = 1.0 (07T = .308S), Orientat
Matrix 3, n= 10

Number of Times

PNC s Lower
Estimator ﬁ;;? Variance I'::::::::: gvcr than That of
Estimator S
(aax = 30)
! 8 .4353038  .0021210 * *
| K 4361356  .0139366 -.0008317 15
¢ 4290625  .0014621 0062413 16
R 4304059  .0015238 .0048978 16
] D 4418043  .0016709 -.0065006 13
M 4331626  .0015629 .0021412 15
A .4286235  .0013581 .0066803 15
P 4301593  .0013361 .005144S 15
0 4338156  .0018453 .0014882 16
§ P .4384861  .0011986 -.0031823 13
;
| Table 73

Comparison of Probabilities of Misclassification for

Matrix 3, n= 25

Several Discriminant Functions, 30 Replicatioms,
wvhen D = 1,0 (OPT = ,3085), Orientation 3,

Number of Times

. PMC 1is Lower
: Estimator ﬁ;;? Variance Ingrovenent Over than That of
; stimator S
; _ Estimator $
; i (max = 30)
i
: S .4055966 .0018138 * *
; [ K .4148539 .0031281 -,0092573 9
8 G 4220622 0024874 -.0164655 7
R 4156192 .0021668 -.0100226 10
o D 4241355 0024947 ~.0185389 6
' M .4110012 0017447 -.0054046 14
: A 4144310  .0021750 ~.0088343 10
P .4187178 .0023542 -.0131212 9
o 4193926 .0023535 =.0137960 9
4 «4145477 .0015400 -,0089510 11
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Table 74

. Comparison of Probabilities of Misclassification for
Several Discriminant Functions, 30 Replications,
when D = 1.0 (0?1' - 03083)3 Orientation ’.

Matrix 4, n = 10

Number of Times

PMC is Lower

Estivator ‘:: Variance In:m: g'" then That of

Bstimator §

‘ (max = 30)

8 4342608 +0019456 LI *
4 4233397 0179308 .0109212 15
(] 4245597 0013671 0097011 16
R 4270403 0012926 .0072208 15
D +4426120 0021714 =-.0083512 1
M 4290106  .0012626 .0052502 15
A 4245191 0012159 0097417 17
P .42603%4 0011228 0082254 1S
0 4277009 .0017663 .0065600 17
4 4361893 0011949 =.0019285 18

Table 75

Comparison of Probabilities of Misclagsification for
Several Di.criminant Functions, 30 Replicatioms,

- vhen D = 1.0 (OPT = ,.3085), Orientation 3,

Matrix 4, n = 25

Number of Times

‘ . PMC {s Lower

Estimator . ’::? Variance h::::;::: gv“ than That of g

Estimator § 1

' (max = 30) 4

1
S «4054626 .0018726 L L
K 4031839 0021245 .0022766 22
] 4085762 0018364 =.0031136 11
R 4078334 .0017050 =-.0023709 12
D 4238338 «0024 232 -,018371% 7

M .4078858 0014149 =.0024232 12 :
A 4109159 .0019538 =,0054533 11
4 4114918 0019335 =,0060289 1
0 «4093732 0018212 -,0039107 11
r 4149809 0013582 -,0095183 11
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Table 76
'eupauaon of Probabilities of Misclassiffcation for

Several Discrininant Functions, 30 Replications,

vhea D = 3,0 (OPT = ,0668), Orientatiom 3,

Matrix 3, o = 10

Number of Times

PNC is Lover

Bstimator m Variance hg.r:::;: gvu- than That of

- Estimator $

‘ (max = 30)
s « 2293197 .0037984 * *
4 1122443 0044695 «1170754 30
(] 1767313 ,0018591 0525884 27
R 1777807 .0018803 .0515390 23
D 2333672 .0037738 -.004047S 16
M 1784349 .0018331 +0508848 a3
A 1693173 .0017083 +0600024 25
P 1702761 .0018428 .0590436 26
0 .1973839 0024048 0317658 26
F 1735133 0018499 .0558064 23
Table 77

Couparison of Probabilities of Misclassification for

ultyix 3, n=2§

Several Discriminant Functions, 30 Replications,
when D = 3.0 (OPT = ,0568), Orientation 3,

Number of Times

—

. PMC is Lower

Estimator 1;;? Variance I‘::tf::::: gv" than That of

= Estimator S

(max = 30)
s «1304627 0017817 L ]
4 1213906 .0017554 .0090721 14
G 1496848 .0015936 =.0192221 2
R .1308800 .0005221 =,0004173 11
D 1541308 0019616 =,0236681 2
M 1251824 .0003101 .0053103 12
A 1243820 .0002787 .0060807 13
4 «1367060 .0006853 =.0062433 8
r .1250879 +0002812 .0053748 14
95
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Table 78

.Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replications,
vhea D = 3.0 (OPT = ,0668), Orientation 3,

Matrix 4, ne 10

Number of Times
. PMC 43 Lower ,
daan Isprovenent Over
Bstimator Variance than That of
me Estimator S8 Estimator $
) (max = 30)
s 2330261  .0048248 * . ‘
4 .0975499 .0027006 1354763 30
G 1639241  .0016791 «0691020 29
R 1730693 .0017608 .0599568 24
D 2249789 0035917 0080473 17
M «1760017 .0017952 0570244 25
A 1585676 .0016113 0744585 25
P «1598363 .0016097 .0731699 24
o .1808607 0025917 0521654 28
4 1669733 .0020316 +0660529 23
;
|
Table 79

Comparison of Probabilities of Misclassification for

Several Discriminant Functions, 30 Replicationms,
- vhen D = 3.0 (OPT = ,0668), Orientation 3,

Matrix 4, n = 10

Number of Times

: PMC {s Lower

Estimator 1;;? Variance I'::::::::: gver than That of

Estimator S

(max = 30)
S «1302982 0021113 * *
K 1147942 0017454 0155040 29
G 1259162 .0013530 .0043820 13
R 1161704 +0003746 0141278 18
D «1509116 0014984 =.0206134 4
M 1197156 .00025%6 0105826 13
A 1176184 0002667 0126798 16
4 «1225194 000640 .0077788 15
0 «1225293 .0009248 0077689 15
4 . «1223729 0002662 0079253 14
96
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