NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

AN ALgORITHM FOR THE RAPID LOCATION OF AN EXTREMUM OF A FUNCTION SUBJECT ONLY TO GEOMETRIC RESTRICTIONS

George R. Terrell

ABSTRACT
If a function of a single variable is convex and symmetric in a neighborhood of an extremum, the extremum may be approximated to a precision that increases by at least a power of two per functional -valuation. This procedure may be used to drive a complex optimization procedure (such as the Davidon-Fletcher-Powell) in the kind of multivariate area estimation problem encountered in remote sensing.

Key words: Optimization, convex functions

Ref: 643-81-084
Contract NAS 9-15800
Job Order 73-306

TECHNICAL MEMORANDUM
 AN ALGORITHM FOR THE RAPID LOCATION
 OF AN EXTREMUM OF A FUNCTION SUBJECT ONLY TO GEOMETRIC RESTRICTIONS

by
George R. Terrell

Approved By: $\frac{\substack{x_{i}, C, M}}{\text { Techniques Development Section }}$

January 1981

1. INTRODUCTION

Let $f(X)$ have a minimum on an interval $\left[X_{0}, X_{2}\right]$ and assume further that f is convex upward there and symmetric around its minimym. Then we know the following fact about the minimum: (Let $x_{1}=\frac{x_{0}+x_{2}}{2}$).

Theorem: Assume without loss of generality that $f\left(x_{0}\right) \leqslant f\left(x_{2}\right)$. Then f assumes its minimum at a point between

$$
\frac{1}{2}\left(x_{0}+x_{1}\right)+\frac{1}{2}\left(x_{2}-x_{1}\right) \frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}
$$

and whichever of X_{0} and X_{1} that has smaller functional value $f(x)$.

2. PROOF OF THEOREM

Case I: $f\left(X_{1}\right) \leq f\left(X_{0}\right) \leq f\left(X_{2}\right)$.
Let X^{*} be such that $f\left(X^{*}\right)=f\left(X_{0}\right)$ and $X_{1} \leq X^{*} \leq X_{2}$. It exists by symmetry about the minimum and convexity upward. Similarly, by upward convexity $\left\{x^{*}, f\left(X^{*}\right)\right\}$ is below a segment joining the points $\left\{X_{1}, f\left(X_{1}\right)\right\}$ and $\left\{X_{2}, f\left(x_{2}\right)\right\}$ in the graph of f, so

$$
f\left(x_{0}\right)=f\left(x^{*}\right) \leq f\left(x_{1}\right)+\frac{\left(x^{*}-x_{1}\right)}{\left(x_{2}-x_{1}\right)}\left[f\left(x_{2}\right)-f\left(x_{1}\right)\right]
$$

So $x^{*} \geq x_{1}+\frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}\left(x_{2}-x_{1}\right)$
By symmetry of f around its minimum

$$
x_{\text {min }}=\frac{x_{0}+x^{*}}{2}
$$

So

$$
x_{\min } \geq \frac{1}{2}\left(x_{0}+x_{1}\right)+\frac{1}{2}\left(x_{2}-x_{1}\right) \frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}
$$

Now $x^{\star} \leq X_{2}$ implies $X_{\min }=\frac{x_{0}+x^{*}}{2} \leq \frac{x_{0}+x_{2}}{2}=x_{1}$
So $X_{1} \geq x_{\min }$ and we have case I.

Case II: $f\left(X_{0}\right) \leqslant f\left(x_{1}\right) \leqslant f\left(x_{2}\right)$
Again, let X^{\star} be such that $f\left(X^{\star}\right)=f\left(X_{0}\right)$ but $X_{0} \neq X^{\star} . X^{*} \leq X_{1}$ by convexity. Also by upward convexity, $\left\{x_{1}, F\left(X_{1}\right)\right\}$ is below the segment connecting $\left\{x^{*}, f\left(x^{*}\right)\right\}$ to $\left\{x_{2}, f\left(x_{2}\right)\right\}$, so

$$
f\left(x_{1}\right) \leq f\left(x^{*}\right)+\frac{\left(x_{1}-x^{\star}\right)}{\left(x_{2}-x^{\star}\right)}\left(F\left(x_{2}\right)-f\left(x^{\star}\right)\right)
$$

and this may be manipulated to

$$
x^{*} \leqslant x_{1}+\left(x_{2}-x_{1}\right) \frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}
$$

Again by symmetry

$$
\begin{gathered}
x_{\min }=\frac{x_{0}+x^{*}}{2}, \text { so } \\
x_{\min } \leq \frac{1}{2}\left[x_{0}+w_{1}\right]: \frac{1}{2}\left(x_{2}-x_{1}\right) \frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{f\left(x_{2}\right)-f\left(x_{1}\right)}
\end{gathered}
$$

But $x_{0} \leq x_{\min }$ by assumption, so we have case II.
The case $f\left(x_{0}\right) \leqslant f\left(x_{2}\right)<f\left(X_{1}\right)$ violates convexity upward, so
Q.E.D.

Corollary: The new sub-interval containing the minimum of f is at most one fourth the length of $\left[x_{0}, x_{2}\right]$.

Proof: The computed boundary in the formula is clearly from its formula nearer the other boundary than is

$$
\frac{x_{0}+x_{1}}{2}=3 / 4 x_{0}+1 / 4 x_{2} .
$$

3. APPLICATION

These results become an algorithm for the minimization or maximization of a function meeting or nearly meeting the requirements of symmetry and convexity. This method involves replacing $\left[x_{0}, x_{2}\right]$ by the new interval at successive iterations. Convergence is at least by powers of one fourth at a cost of two functional evaluations per iteration.

