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George R. Terrell

ABSTRACT

If a function of a single variable is convex and symmetric in a neighborhood

of an extremum, the extremum may be approximated to a precision that increases

by at least a power of two per functional :valuation. This procedure may

be used to drive a complex optimization procedure (such as the Davidon-

Fletcher-Powell) in the kind of multivariate area estimation problem

encountered in remote sensing.
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1. INTRODUCTION

Let f(X) have a minimum on an interval [X 01 ,X2 1 and assume further that f is

convex upward there and symmetric around its winlmr. Then we know the

following fact about the minimum: (Let X1 	
02	 2).

Theorem: Assume without loss of generality that f(X 0 ) 5 M2 ). Then f

assumes its minimum at a point between

2 (X 0 + X 1 ) + 2 (X2 - X 1 ) f ( X O) - TX2	 1

and whichever of X O and X1 that has snaller functional value f(X).
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2. PROOF OF THEOREM

Case I: f(X 1 ) < f(X O) < f(X2).

Let X* be such that f(X * ) - f(X0 ) and X 1 ; X* ; X2 . It exists by symmetry

about the minimum and convexity upward. Similarly, by upward convexity

{X* ,f(X* )} is below a segment ,coining the points {X l ,f(X 1 )} and {X2,f(X2)}

in the graph of f, so	 *

f(X0)	 f(X*)	 f(X1) + (X2 - X 1
1) Cf(X2 ) - f(X1)]

So x* 
> X + f(XO ) - f(X1) (

X	 x )1	 f X2 - f X 1	 2	 1

By symmetry of f around its minimum

_ XO + X*
Xmin - ' 2

So

1	
1(X 	

f(X
0
) - f(X1)

Xmin = (X0 + X 1 ) + 22 X 1 ) fX2 ^j

X +X* X +X
Now X* - X2 implies X

min	 2	 ^ ^^ - X1

So X1 =Xmin and we have case I.

Case II: f(X0) ; f(X 1 ) ; f(X2)

Again, let X* be such that f(X*) = f(X 0) but X  # X*. X* < X 1 by

convexity. Also by upward convexity, {X 19 F(X 1 )I is below the segment

connecting lX*,f(X*)E to IX 29 f(X2 )1 , so

f(X 1 )	 f (x*) + X̂-^--_- (F(X2 ) - f(X*))
2
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and this may be manipulated t

X* ; X 1 + ( X2 - X1) f ^" _
2	 1

Again by symmetry

XO + X*

Xmin =
	

2	 . so

X	 < 1 X0 	^	 1	 f(X0) - f(Xl)

min ^	 D	
Y 

1 1 - 2 X2 - X1)	 2 -	 (1

But X0 S Xmin by assumption, so we have case II.

The case f(X0 ) < f(X 2 ) < f(X 1 ) violates convexity upward, so%

Q. E. D.

Corollary: The new sub-interval containing the minimum of f is at

most one fourth the length of 
IX O9X 21'

Proof: The computed boundary in the formula is clearly from its formula

nearer the other boundary thaii is

XO + X1
----2	 = 3/4X0 + 1/4X2

1
	 Q.E.D.
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3. APPLICATION

These results become an algorithm for the minimization or maximization of

a function meeting or nearly meeting the requirements of symmetry and

convexity. This method involves replacing IXO ,X2]by the new interval

at successive iterations. Convergence is at least by powers of one

fourth at a cost of two functional evaluations per iteration.
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