A Reproduced Copy

Reproduced for NASA

 by theNASA Scientific and Technical Information Facility

A General Algorithm for the Construction of Contour Plots

Wayne Johnson and Fred Silva

(MASA-TM-81287) A GENERAL ALGORITHM FOR THE CONSTRUCTION OF CONTOUR RIOTS (HASA) 107 p HC A 06/ MF A 01 CSCI 12A

N81-23813

63/6i $\begin{aligned} & \text { Uncles } \\ & 42271\end{aligned}$

April 1981

NSA
National Aeronautics arid Space Administration

United States Army
Aviation Research and Development Command

A General Algorithm for the Construction of Contour Plots

Wayne Johnson. Aeromechanics Laboratory AVRADCOM Research and Technology Laboratories Ames Research Center, Moffett Field California
Fred Silva, Informatics, Inc., Palo Alto, California

Nattonal Aeronautics and
Space Administration
Arrues Rusearch Centar
Motrett Field. Calitorna 94035
United States Army Aviation Research and Deveiopmert Command St Lours Missounn 63966
Page
1.0 INTRCDUCTION 2
1.1 Description of the Auproach 2

1. 2 Summary of Component Modules 11
2.0 MASTER SUBROUTINE 17
2.1 Description of Arqument List 17
2.2 Description of Aldorithm 19
2.3 Description of Subroutine CBVCIK 24
3.0 TRIANGULATION SUBROUTINE 25
3.1 Description of Argument List 25
3.2 Descriotion of the Alqorithm 26
3.3 Description of Function MIDDLE 39
4.0 SMOOTHING SUBROUTINE 40
A. 1 Description of the Arqument List 41
2. 2 Description of Algorithm 4.
4.3 Description of Function POLYX2 47
4.4 Description of Subroutine LLSQF 47
5.0 INTERPOLATION SUBROUTINE 49
5.1 Description of Arqument List 49
5.2 Description of Algorithm 50
6.0 CONTOUR SUBROUTINE 54
6.1 Description of the droument List 55
6.2 Lescription of Alyorithm 55
6.3 Description of Subroutine CNTCRV 62
7.0 PROGRAMMIVG CONSIDERATIONS 63
APPEINDIX - PROGRAM LTSTINGS 68

A GENERAL ALGORITHM FOR THE

CONSTRUCTION OF CONTOUR PLOTS

Wayne Johnson
Ames Research Center and
Aeromechanics Laboratory AVRADCOM Research and Technology Laboratories

Fred Silva
Informatics, Inc.

SUMMARY

An algorithm is described that nerforms the task of drawing equallevel contours on a plane, which requires interpolation in two dimensions based on data prescribed at points distributed irregularly over the plane. The approach is described in detail. The computer program that implements the algorithm is documented and listed.

Abstract

The araphical presentation of experimentally or theuretically generated data sets frequently involves the construction of contour plots. Consider a dependent variable z that is a function of two independent variables x and $y: z=f(x, y)$. The functional form f is not known. It is assumed that f is a single-valued function of x and γ. By measurements or calculations, the value of z is obtained at a set of N discrete points. The data may be presented in araphical form in terms of contours of equal value of z on the $x-y$ piane. To construct such contours, it is necessary to interpolate the values of z between the orescribed data points. In qeneral, these data !oints may be distributed irreqularly over the $x-y$ plane. This report describes an aldorithm developed to construct contour plots for such cases. The computer program that implements the algorithm is documented and iisted.

1.1 Description of the Anoroach

The data are mrescribed at a set of N points distributed irrequlariy over the $x-y$ plane: $z^{n} n^{\prime} x_{n}$ " Y for $n=1$ to N. In order to pexform the interbolation, the points on the $x-y$ plane are conmected by serainht line seaments, to form a set ot trianales with a convex boundary (Eiqure l). Then the data can be

Figure 1, Construction of the contours
interpolated over the cdaes of the triangles. To construct the contour for the value Z, all points on the edocs where $z=7$ are located. Finally, these points are connected to form the $z=\%$ contour. With the triangulation algorithm described hore, the intorpolation along the edges often involves widely separated points on the $x-y$ plane. In such a case, linear irterpolation hetween the end points of the edge is unlikoly to nroduce a smooth contour. Hence, it is usually noccssary to smooth the data, by using a least-squared-error fit of the data to a bivariable polynominal for $z=f(x, y)$. Wen the interpolation along the edqes is performed using this functional form. It is also possible to use some standard technicue to draw a smooth curve through the interpolated noints on the edoes of the trianoles. In summary, the alqorithm involves four basic steps: (a) triangulation of the plane: (b) smoothing of the data; (c) interpolation along the sdges: and (d) drawing the contours.

The first step is trianqulation of the plano. There are N data points X_{n} and Y_{n}. The trianqulation will be described by an array that identitios the two end boint: of each edie, amd an array that identifies the three vortices of each triamdex. At each stace in the procedure, there are a set of points that define (in order) a boundiry, inside which the triangles have been identified. At the start, all the data points are outside the bourdary, and no woints on the boumdary hove been located. The last data point and the data point closcat to it are used to
start the procedure: they are the initial boundary points, and are no longer in the set of points outside the bnundary: one edge has been identified. Thereafter, the algorithm proceeds by marching around the boundary, examining points outside the boundary relative to a boundary edqe. The objective is to identify a point that together with the boundary edge wiil form a new triandle. The criteria for locating such a point are that it be closest to the boundary edge and that there be no other points within the resulting triangle. These criteria are satisfied by locating the point such that the parameter n is minimized, where D equals the sum of the distances from the point to the two end points of the boundary edge. The points examined in this manner are those on the boundary, immediately adjacent to the boundary edge being considered; as well as the points outside the boundary. From the points outsid: the bourdary it is necessary to exclude any for which the resulting triangle would overlap the triangles already identified (within the boundary), which requires two tests. Fixst, relative to the boundary edge there is a side within the boundary. The straight line formed by the boundary edge and its extensions to infinity divides the $x-y$ plane into two half-planes. All points that are either on this line or in the half-plane corresponding to within the boundary are immediately excluded. Second, the point identified as closest to the boundary edge is examined to determine whether the two new edges of the resulting triangle would pass through any of the boundary, inside which
the trianales have been identified. At the start, all the data points are outside the boundary, and no noints on the boundary have been located. The last data noint and the data point closest to it are used to start the procedure: they are the initial boundary points, and are no lonner in the set of noints outside the boundary; one edqe has been identified. Thereaftor, the aldorithm nrocceds by marching around the ioundary, examining noints outside the boundary relative to a houndary edge. The objective is to identify a noint that together with the boundary edoe will form a new triangle. The criteria for locating such a noint are that it be closest to the boundary edoe and that there be no other noints within the resultind trianale. These criteria are satisfied by locating the point such that the warameter D is minimized, where D equais the sum of the distances from the noint to the two end soints of the boundary edge. The points examinea in this manner are those on the boundary, immediately adjacont to the boundary edge being considered: as well as the noints outside the boundary. From tho noints outside the boundary it is necossary to exclude anv for which the resulting triangle would overlan the tiandes already identified (within the boundary), which recuires two tests. First, relative to the boundary edre there is a side within the boundary. The strainht line formed hy the boundary edae and its extensions to infinity divides the $x-y$ nlane into two half-blanes. All points that are either on this line or in the half-nlane correswonding to within the boundary are imnediately excluded. Second, the noint identified

Abstract

as closest to the boundary edge is examined to determine whether the two new edges of the resulting triangle would pass through any of the other edqes on the boundary (which may happen if the boundary is concave). If so, the point is excluded. When a Doint has been successfully found from among the goints outside the boundary, a new triangle and two new edqes have been identified; a new boundary point is inserted between the two current boundary points being considered (hence two new boundary edges replace the old edge); and the point is no longer outside the boundary. When a noint has been successfully found from among the adjacent boundary noints, a new triangle and one new edge has been identified; and the middle boundary noint is no longer on the boundary (hence the new boundary edge renlaced the two old edges). This procedure continues, marching around the boundary until there are no more noints outside the boundary. The boundary may be concave at this stage, however, so the procedure still continues, examining adjacent boundary points relative to each boundarv edge until the boundary is completely convex, that completes the trianquiation. The end points of all edces have been identified. For the interpolation procedure it is necessary then to identify those edges that form the houndary. To draw the contours, the four other edges that form the two triangles on either side of each edge must be identified as well.

The followind relationships are useful. Let $P=$ number of data points, $:=$ number of edges, $T=$ number of triangles, and $B=$ number of boundary noints or edqes. Then
so

$$
\begin{aligned}
E & =\frac{3}{2} T+\frac{1}{2} \mathbf{B} \\
P & =\frac{1}{2} T+\left(\frac{1}{2} B+1\right) \\
T & =2(P-1)-B \\
E & =3(P-1)-B \\
E-T & =P-1
\end{aligned}
$$

The minimum number of boundary points $B_{m i n}=3$ qives the maximum number of triangles and edges: $T_{\max }=2 \mathrm{P}-5$ and $\mathrm{E}_{\text {max }}=3 \mathrm{P}-6$. The maximum number of boundary points is $B_{\text {max }}=n$, which dives: $T_{\text {min }}=P-2$ and $E_{\text {min }}=2 P-3$.

The triangulation depends only on the x and y coordinates of the data noints, hence it is the same for all dependent variables. The remaining steps depend on the devendent variable as well.

The second step in the alaoxithm is smoothing of the data for z. This sten is ontional, and does not depend on the trianculation. The z-surface is fitted to a nolynomial of the form:

$$
\dot{z}={\underset{i}{i=0}}_{I}^{\underset{j=0}{L_{1}} c_{i j} x^{i} y^{j}, ~}
$$

where

$$
\begin{aligned}
& K=\operatorname{maximum}(I, J) \\
& L=\operatorname{minimum}(K-i, J)
\end{aligned}
$$

The innut narameters I and J define the highest powers in the polvnomial. The coefficients $c_{i j}$ are obtained from a leastsquared error fit of this function z to the actual data z, at the set of N data noints. Then the polynomial is used to evaluate a new set of z values at the data point. This set of smoothed values of the dependent variable reolaces the original data in the interpolation algorithm. The error of the smoothed data is defined as:

$$
\therefore=\frac{1}{N}\left[\sum_{n=1}^{N}\left(z_{n_{o l d}}-z_{n_{n e w}},\right]^{\frac{1}{3}}\right.
$$

The third step is interpolation alung the edges. The contour value $\%$ is specified. Then each edge is examined to detcrmine whether $z_{1} \leq ? \leq z_{2}$ where z_{1} and z_{2} are the values of the dependent variable at the end points of the edge. If so, then there is a point on the edge where $z=2$, hence this is a point on the required contour. This point is obtained by linear interpolation between the end points if the data has not been smoothed. If the data has been smoothed, the fitted polynomial is used to evaluate z along the edge and hence locate the point where $z=z$. The result of the intexpolation procedure is a set of noints on the $x-y$ nlame where $z=2$, and the edges on

The fourth step is drawing the contour for $z=3$. The task is to convert the incernolated points in the oroper order. The contour will consist of one or more lines that oither start and end at a boundar: edqe, or are closed curves. 'Ihere can only be one contour through a triangle. The procedure starts by searching the list of interpola'ed points for one that lies on a boundary edqe. There are two outer edcy: that form a triangle with this boundary edge, which were identified in the triangulation algorithm. The contour must nass through one, and only one of these edaes. So the list of internolated wints is searched for the point that liss on one of these two edges. There are four edges (identified in the trianciulation algorithon that form two triangles with one edae on which ehis second point lies. The list of interpolated noints is searched for the point that lies on one of these four edges. (There will be only ane such point in the list: one from each of the two triandes, and one of these will be the orevious point on the contour.) rie orocedure continues searching for woints in this fashion unt il another boundary noint is reached. thon a wontour line is drawn throurh these voints, in the order locater. the procedure is repeated until there are no more moints in the list that lie on boundary edqes. If there are still interpolated noints that have not been used, there must be a contour seqment that forms a closed curve. One of the remainina points is nicked as a
starting point, and the above procedure is followed until this starting point is encountered again. Then a contour line is drawn through these points, in the order located. The procedure is repeated until all the interpolated points have been used.

The desired contours are specified in terms of a base value z_{0} and an increment Δz, so the contour value is $z=z_{o}+n \wedge z$ where n is any integer (positive, negative, or zero). The interpolation and conrour drawing steps are repeated for every such 7 that lies within the range of the data.

The computer program described here does not include the graphics software. The user must supply the subroutine that is called to draw the contour on the particular graphics device heing used for the output.

$$
1.2
$$

Summary of Component Modules

The above procedures are computationally independent steps in the process. For this reason, each procedure is selfcontained within separate subroutine modules. One master subroutine is called by the user program and it, in turn, controls and sequences the execution of the procedures described above. The master subroutine also accepts, by means of an argument list, the date and parameters that the user supplies for the procedure. In adaition, the user supplies a subroutine for graphics output

The modular approach allows flexibility in modifying the algorithm for certain applications. In cases where the $x-y$ data points define a regular or predetermined arid on the plane, it may be desirable to replace the triangulation subroutine with a specific procedure for the known distribution of points. This replacement will often increase the execution speed substantially. In other cases, there may be a large number of data points given and the function values may be regular enough to allow for a linear interpolation over many triangle edges. For such a case, the smoothing option would not be exercised and the procedure for the surface curve fitting could be deleted altogether. This would result in a substantial savings in object time program size.

There are other variations which may be used to modify the method for the purpose of reducing object time storage requirements or increasing execution speed. These modifications are discussed later in section 7.

The remainder of this section is composed of a short description of each component module.. Figure 2 presents a heirarchy diagram of the processing package.

Fisure 2. Program Heirarchy Diagram

CNTLNS

This is the subroutine accessed by the users calling prouram for drawing contour l ines of constant z_{c} for some set of data defining $z=f(x, y)$. CirmNS is suprlied with the known values of x, y and 2, several computational parameters, and a list of constant z values for which contours are to be calculated and drawn. There must be at least 3 triplets of $x-y-z$ points and no duplicate points are allowed. The function $z=f(x, y)$ must be sinale valued.

TRIANG

Called by CNTLNS. This subroutine constructs the conves polygon of triangles from the $x-y$ data.

MIDDLE

Function subproaram used by T?IANS. This routine tinds the middle value of three known inteder values.

SMSRF

Called by CNTLNS. Performs lenst-square smoothing of the z-surface. The smoothina is an optional procedure.

LLSQF

Abstract

Called by SMSRF. This is a utility module takon from the International Mathematical and Statistical library (IMSI,). IfSOF is used to solve a linear least-scpuares problem. It solves for the solution vector x of the general problem $\Lambda X=B$, where A is the coefficient matrix and is is the rioht hand solution vector. LLSQF is a proprietary program; lissof or its equivalent must be obtained by the user.

INTERP

Called by CNTLNS. Performs linear or non-linear interpolation over the triangle edges for constant contour values.

POLYX2

Function subproaram used by INrPRP to evaluate the polynomials obtained in SMSRF for values on triandle dioes.

CNTOUR

Called by CNTLNS. Reorders intermiated mints into orover contour lines. Both closed and open contours are accommodatod. CNTOUR calls a user supplied subroutine to draw the contour line. The user subroutine must be named CNTCRV.

CBVCHK

Called by CNTLNS. If the user specifies a base value andincrement schemc for defining 7 , (as described later), thenthis routine is used to verify that Z_{0} is within the range ofthe known data. If not, π_{o} is incremented or decremented by12 until z_{0} is in the proper range.CNTCRV
Called by CNTOUR. This is the user sunplied subroutine used to draw the contour on the araphics device.

Abstract

The subroutine CNTLNS is the user's application proqram contact with the contour software. Its primary function is to check for errors and, based on user indut parameters, control and properly sequence the calls to other modules which perform the computational tasks. After all requested contours have been processed, control is passed back to the application proqram.

2.1 Description of Argument List

CALL CNTLIS $(X, Y, Z, N, I S M O P T, I F X P, J E X P, N C N T R S, C L I S T$, EPSLON, YERR)

Innut arguments:

$x_{n} \quad=$ the list of independent variable values for the fusction $z=f(x, y)$ for $n=1$ to N
$Y_{n} \quad=$ the list of independent variable values for the function $z=f(x, y)$ for $n=1$ to N
$\because n \quad=$ the list of lependent variable values for the function $\because=f(x, y)$ finr $n=1$ to N
$\therefore \quad=$ the rancte of N for the x, y and z lists
ISMOPT $=$ smoothing option parameter
$=0$ for no smoothino
$\nexists 0$ then the function $z=f(x, y)$ is smoothed by means of a least squared error curve fit

IEXP $=$ hiahest order of the smoothing polynomial for x if ISMOPT 0

JE:SP = highest order of the smoothing polynomial for Y if ISMOPT $\neq 0$
(The dimension C in the program must be at least $(K+1)\left(L+1-\frac{1}{2} K\right)$ where $K=\min (I, J)$ and $L=\max (I, J)$,)

NONTRS = the number of contours of constant 2 to be generated, and NCNTRS ≤ 30. If NCNTRS ≤ 0, then the program will determine constant 2 values to process from the relation
$z_{c}=z_{0}+n \Delta z$
where $z_{c}=$ constant z value
$\mathrm{z}_{0}^{\mathrm{c}}=$ contour base value
$\Delta z=$ increment value.
CLIST $_{j}=$ If $1 \leq$ NCNTRS <50, then CLIST is the list of constant z valūes (Z) for which contours will be generated, for $j=1$ to NCNTRS.

If NCNTRS ≤ 0, then CLIST(1) is taken to be Z_{0} and $\Delta Z=$ CLIST(2).

Return arguments:

EPSLON $=$ the error ε, introduced by the smoothing if ISMOPT $\neq 0$.
IERR = return error flag
$=0$ for no errors
$=1$ for $N<3$ or $N>M A X P T S$ where MAXPTS is the maximum number of x, y, z triplets allowed
$=2$ for invalid IEXP and/or JEXP values if ISMOPT $* 0$
(Note -
IERR is 2 if the number of coefficients resulting from IEXP and JEXP is greater than HAXCOF or greater than N, the number of points under consideration)
(where MAXpTS is the dimension N, and MAXCOF is the dimension C in the program.)

```
Required dimensions:
    X(N)
    Y(N)
    Z(N)
    CLIST(50)
    ZNIOW(N)
    IE(E,2)
    ITEE(E.,4)
    XI(E)
    ETA(E)
    LAM:BDA (E)
    IBE(E)
    IPOWR(C)
    JPOWR(C)
    COEF (C)
For the array dimensions given above, and for all array dimensions
used in this document, the following definitions a!ply:
    N = the maximum number of data points to be processed
    C = the maximum number of coefficients to be used for
            smoothing
        E = 3N-6 = the maximum number of triangle edges oroduced
            bv the trianqulation of N points
        T=2N-5 = the maximum number of trianqles produced by
            the trianculation of N noints.
```

2.2 Description of Algorithm
Fiqures $3 a$ and 30 present a block diagram of the muciule CNTLNS.
The functions of parts A to M are as follows:

Figure 3a. Block nianram of CNTLNS, Parts a to F

(A) Initialize local variables and check input arguments
for errors

```
MAXCOF =23, MAXPTS = 500
TERR=0
E =0.0
if N }3\mathrm{ or N>MAXPTS goto
(B) Call subroutine to triangulate the \(X-Y\) data

CALL TRIANG( \(X, Y, N, L E D G E S, I E, I B E, I T E)\)
(C) If smoothing option is off (equal to zero) then skip around sections \(D\) and if ISMOPT \(=0\), qoto 10
(D) Else, check the requested exponents for errors if IEXP \(<0\) or JEXP \(<0\), goto 998
\(\overline{\text { II }}=\) EXP \(+1, J 1=\) JEXP +
NMIN = minimum of II, JI
MAX \(=\) maximum of \(I 1, J 1\)
if \(\mathrm{J} 1 \geq \mathrm{Il}\) then \(\mathrm{NC}=(\mathrm{IEXP}+1) *(\mathrm{JEXP}+1)-\mathrm{IEXP} / 2)\)
if if I< Il then NC \(=(J E X P+1) *(I E X P+1-J E X P / 2)\)
if \(\mathrm{NC}>\mathrm{N}\) or \(\mathrm{NC}>\mathrm{MAXCOF}\), goto 998
for \(\mathrm{K}=1\), MAXCOF IPOWR (K) \(=0\)
JPOWR \((K)=0\)
(E) Call \(\underset{Z=f(X, Y)}{ }\) subroutine to smooth the data for the function Call SMSRF ( \(X, Y, Z, Z N E H, N, I E X P, J E X P, N C O E F\), COFF, IPOWR,JPOWR)
If there were no errors in the smoothing process, calculate the epsilon value -- the normalized error
if NCOEF<0 goto 120
for \(k=1\) to \(N\)
\(\therefore=+\left(Z_{k}-Z\right.\) NEG \(\left._{k}\right)\)
\(\varepsilon=(\sqrt{\text { s }}) /\) FLOAT (N)
soto 120
110
\(\left\{\begin{array}{l}\text { for }^{k}=1 \text { to } N \\ \text { aNEW }_{k}=z_{k}\end{array}\right.\)
(F) Determine the range of the \(z\) data under consideration. The minimum and maximum values of \(z\) determines the contour values which can be accommodated.
```

ZMIN = 2(1)
2MAX = ZMIN

```
```

For $k=2$ to N
ZMIN $=$ minimum of ZMIN, Z_{k}
ZMAX $=$ maximum of $2 M A X, Z_{k}^{k}$

```
(G) Branch around the next section if the contour list is given,
(H) otherwise call subroutine to range check the base value and reset it if necessary.
\(K=0\)
\(\mathrm{FN}=1.0\)
(200) if NCNTRS \(=0\) goto 180

Call CBVCHK (CIIST(I),CLIST (2), ZMIN, ZMAX,CLNEW)
if CLIST(1) \(\neq\) CLNEW then CLIST \((1)=\) CLNEW
(I) Determine the (next) contour constant value.
210) \(\mathrm{K}=\mathrm{K}+1\)

ZCON \(=(K)(F N)(\operatorname{CLIST}(2))+\operatorname{CLIST}(1)\)
if \(Z C O N>2 M I N\) and ZCON:ZMAX qoto 150
if \(\mathrm{FN}<0.0\) goto 300
\(\mathrm{FN}=-1.0\)
\(K=0\)
(130) \(K=K+I\)
if K K NCNTRS goto
300
ZCON \(=\) CLIST (K)
If ZCON \(<2 M I N\) or ZCON \(>\) ZMAX goto 200
300
(J) Call subroutine INTERP to interpolate
(K) contour points for constant 2
(150) CALL INTERP (X,Y,Z VEW, ZCON, LEDGES,IE,IEXP, JEXP, ISMOPT,LN'BDA, XI, E'SA, J, COEF, IPOWR, JPOWR, NCOEF ,N)
(L) if \(J \neq 0\), CALL CNTOUR (ZCON,XI,ETA,I,AMBDA,J,IBE,ITE)
(M) goto 200

300 RETURN
997 IERR \(=1\)
RETURN
998 TERR \(=2\) RETURN

\section*{2.3}

This subroutine is called by CNTLNS after the \% data rango has been determined. CBVCHK will check the given valiso of the contour base vaser \(\left(Z_{0}\right)\) to verify that it is within the rance of the data. If not, the base value is shitted by the riven increment \((\Delta Z)\) until ZMIN: \(\quad\) ZMAX, and the shifted value of \(z_{0}\) assunes the new reset value. This verification and resetting of \(Z_{0}\) is often useful for cases in which the qiven base value is only a quess by the user and the range of the \(z\) lata may not be known in advance. The arqument list for CBVCuk is established as follows:

CALL CBVCHK (ZZERO,DELZ,ZMIN, 2MAX,ZZNEW)

Where \(Z_{0}\) and \(\Delta z\) are the selected base and increment values for selecting the constant values of \(z\) for the contours. \(z a l N\) ind 7Max are the data range as calculated in cortaids. ?row is, N return, the base value which falls between TMIN and 7 MAX and may or may not be equal to \(z_{0}\).

The subroutine TRIANG performs the triangulation, as described in Section 1. This subroutine uses the function middle.

\subsection*{3.1 Description of Argument rist}

CALL TRIANG (XD,YD,N,L,E,BE,TE)

The triangulation algorithm is supplied with a set of \(N\) data points \(\left(X_{i}, Y_{i}\right), i=1\) to \(N\). The coordinate pairs are to be connected by straight lines to form the triangles. The procedure input consists of:
\(X D(i)\) - the list of abscissa values
YD(i) \(=\) the list of corresponding ordinates
\(N \quad=\) the range of \(i\); the number of points in the \(x\) and \(y\) lists

The subroutine output consists of a set of index pointers defining each triangle edqe, each boundary edge of the final polygon, and indices of adjacent edges to each triangle edge. The subroutine output is stored as:
```

E(\ell,2) = index pointer of end points of a triang!a
edue in ascending order (E(\ell,1)<E(x,2) for
all \& for }t=1\mathrm{ to L

```
```

BE (\ell)
TE (\ell,4) = index of adjacent edges for each
L
=1 if the \ell-th row of E defines a boundary
edge; otherwise equal to zero; for
l = 1 to L.
corresponding row of E; for v = = to L.
= total number of edqes constructed by the
triangulation procedure

```

An assortment of local variables are used during the
triangulation process and are defined as follows:
\begin{tabular}{|c|c|c|}
\hline P(j) & & Index numbers of points lying outside the boundary of the trianqulated points. \(P\) lists the indices of the remaining candiuate points, for \(j=1\) to J . \\
\hline \(J\) & = & Number of points remaining in array \(P\). \\
\hline \(B(k)\) & \(=\) & Index numbers of points defining the current boundary, in order, for \(k=1\) to \(K\). \\
\hline K & \(=\) & Number of values listed in array B. \\
\hline \(T(m, 3)\) & \(=\) & Indices of triangle vertices of each triangle, in ascending order, for \(m=1\) to M . \\
\hline M & \(=\) & Total number of triangles; the same as the limit of \(m\) for array \(T\). \\
\hline X(i), Y(i) & \(=\) & Arrays of \(X\) and \(Y\) data after the \(X D\) and \(Y D\) input values have been scaled by the ra.ge of data. Scaling of the data eliminates problems with machine precision while leaving the relative posi ion of the data points unchanged. \\
\hline
\end{tabular}
3.2 Description of the Algorithm

Figures 4a to 4 e present a block diargram of the module TRIANG. The functions of parts \(A\) to \(Y\) are as follows.

Fiqure Aa. Block Diaqram of TRIANG, Parts A to F


Fiqure Ab. Block niagram of rRiANG, Farts a to \(f\).


Figure 4c. slock niagram of TRIANG, Parts 4 to \(O\)




Trianqulation is complete.
(X) Establish array BE which identifies the boundary edges.
\(\nabla\)
(Y)

Establish TE, the array of adjacent edges for each triangle.


RETURN
(A) The procedure beqins with no boundary, no edqes, and all noints under consideration. Initialize local variables and scale the \(X, Y\) data.
\(J=N, \quad K=L=M=0\)
\(P(j)=j\) for \(j=1\) to \(J\)
\(X M A X=X M I N=X D(1)\)
\(Y M A X=Y M I N=Y D(1)\)

> for \(k=2\) to \(J\) XMAX=maximum of XMAX,XD(k) XMIN=minimum of XMIN,XD(k) YMAX=maximum of YMAX,YD(k) YMIN=minimum of YMIN,YD \((k)\)

DLXINV \(=1.0 /(\) XMAX-XMIN \()\)
DLXINV \(=1.0 /(\) XMAX-XMIN \()\)
for \(k=1\) to \(J\)
\(X(k)=(D L X I N V)(X D(k))\)
\(Y(k)=(D L Y I N V)(Y D(k))\)
(B) Begin by taking the last pair of points, ( \(X, Y\) ) in the list: to be the first boundary point.
\[
\begin{aligned}
& B(1)=J \\
& J=J-1
\end{aligned}
\]
(C) From the remaining points, find the point nearest the first
\[
i 1=B(1)
\]
find i \(2 \neq i l\) which minimizes
\[
\left[(X(i 1)-X(i 2))^{2}+(Y(i 1)-Y(i 2))^{2}\right]
\]
(D) Now, \(B(1)\) to \(B(i 2)\) is the first edge. There is one edge and two boundary points.
\[
\begin{aligned}
& B(2)=i 2, K=2, L=1, J=J-1 \\
& E(R, l)=i 1, E(X, 2)=i 2 \\
& \text { if } i 2 \leq J \text { then } P(j)=P(j+1) \\
& \text { for } j=i 2 \text { to } J
\end{aligned}
\]
(E) Now begin circling around the boundary of the polygon, considering, in order, each boundary edge. The following indices are maintained --
\(K 1=B\) array index of current edge - point 1
\(K 2=B\) array index of current edge - point 2
B1,B2=index numbers of boundary point coordinates

\(K l=K T=0\)
\(K 1=K 1+1\)
if \(K 1>K\) then \(K 1=1\)
\(\mathrm{K} 2=\mathrm{K} 1+1\)
if \(K 2, K\) then \(K 2=1\)
\(B 1=B(K 1)\)
\(B 2=B(K 2)\)
\(K T=K T+1\)
(F) Consider the boundary edge from B1 to B2. For all points not yet triangulated (the \(J\) points remaining in \(P\) ) find the point that, when triangulated with B1, 32 , minimizes the length of the two new edges to be drawn.
\(\mathrm{Jl}=\mathrm{Dl}=0\)
BFLAG=0
if \(J=0\) goto
for \(L J=1\) to \(J\)
\(P J=P(L J)\)
if \(\left[\left(Y_{P J}-Y_{B 1}\right)\left(X_{B 2}-X_{B 1}\right)-\left(X_{P J}-X_{B 1}\right)\left(Y_{B 2}-Y_{B 1}\right)\right] \leq 0.0\)
then goto (1)
\(\left.D=\sqrt{\left(X_{D J}-X_{B 1}\right)^{2}+\left(Y_{P J}-Y_{B 1}\right)^{2}}+\sqrt{\left(X_{P J}-X_{P 2}\right)^{2}+\left(Y_{P J}-Y_{B 2}\right)}\right]\)
if \(J 1=0\) or \(D 1<D\) then \(J 1=[J, D l=D\)
next LJ
(G) If less then three edges exist (no triangle defined yet) then there are no adjacent boundary points to be considered
if \(K \leq 3\) goto
(H) Consider the adjacent boundary point of the next edge of the polygon. Call its index number K 3 and see if it's closer to the current edge then \(P(J 1)\).
(6) \(\quad \mathrm{K} 3=\mathrm{K} 2+1\); if \(\mathrm{K} 3>\mathrm{K}\) then \(\mathrm{K} 3=1\)

PK 3 \(=\mathrm{B}(\mathrm{K} 3)\)
if \(\left[\begin{array}{l}\left.\left[Y_{P K 3}-Y_{B 1}\right)\left(X_{B 2}-X_{B 1}\right)-\left(X_{P K 3}-X_{B 1}\right)\left(Y_{B 2}-Y_{B 1}\right)\right]=0.0 \\ \text { toto } 2 \text {. }\end{array}\right.\)
then goto (2)
\(D=\sqrt{\left(X_{P K}-X_{B 1}\right)^{2}+\left(X_{P K 3}-X_{31}\right)^{2}}+\sqrt{\left(X_{P K}-X_{B 2}\right)^{2}+\left(Y_{P K}-Y_{B 2}\right)^{2}}\)
if \(J 1=0\) or \(D<D 1\) then \(J l=K 3, D l=D, B F L A G=1\)
(I) Consider the adjacent boundary point of the previous edge of the polygon. Call its index number \(k \%\) and determine if it's closer to the current edge than \(P(J 1)\) and \(B(K 3)\)
(2) \(\quad K \varnothing=K l-1\); if \(K \varnothing<1\) then \(K \varnothing=K\)
\[
P K \varnothing=B(K \varnothing)
\]
\[
\text { if }\left[\begin{array}{l}
\left.\left(Y_{P K \varnothing}-Y_{B 1}\right)\left(X_{B 2}-X_{B 1}\right)-\left(X_{P K 0}-X_{B 1}\right)\left(Y_{B 2}-Y_{B 1}\right)\right] \leq 0.0 \\
\text { then goto (3) }
\end{array}\right.
\]
\[
D=\sqrt{\left(X_{F K O}-X_{B 1}\right)^{2}+\left(Y_{P}-X_{B 1}\right)^{2}}+\sqrt{\left(X_{P K O}-X_{B 2}\right)^{2}+\left(Y_{B 2}-Y_{B 1}\right)^{2}}
\]
\[
\text { if } J l=0 \text { or } D \text { DI then } J l=K \varnothing, D 1=D, B F L A G=-1
\]
(J) Skip the next section if \(J 1\) is still zero, since a candidate point for trianalation with edge B1, 82 was not found.
(3) if \(\mathrm{Jl}=0\) goto ( 9
(K) If the search for a candidate point has already considered
(L) each boundary edge at least once (K T>K) or if the boundary is being checked for concave edges \((J=0)\), then the next section can be omitted.
```

if KT>K or J=0 goto (9)

```
(M) At this point the user may insert an additional constraint on the triangles, such as requiring that one interior angle be neither very small nor very large. If the triangle fails the test, it is deleted from consideration by setting Jl=0.
(0) The next procedure checks all boundary edges of the polygon for intersection with the candidate triangle. If any existing boundary edge intersects any of the edges to be formed.
```

 then the candidate point is rejected. If BFLAG is not zero,
 then the edge defined by }J1=K%\mathrm{ or }|l=k3\mathrm{ is exempt from the
 test.
(N) If there are three or less existing boundary edges or if
(9) if K\leq3 or J J=0 goto (7)
if BFLAG=0 then NQ=P(J1)
if BFLAG=1 then NO=B(K3)
if BFLAG=-1 then NQ =B(K\emptyset)
Ffor KL=1 to K
if KL=K1 goto 108
KN=KL+1; if KL=K then KN=1
if BFLAG=-1 and (KL=K\emptyset or KN=K|) goto
if BFLAG=1 and (KL=K3 or KN=K3) goto 108
P1=B(KL)
P2=B(KN)
for JL=1 to 2
for }\textrm{JL}=1\mathrm{ to 2
if JL=2 and (BFLAG=0 or BFLAG=-1) and KL=K2 yoto :
if }JL=1\mathrm{ then }BJ=B
if }\textrm{JL}=2\mathrm{ then BJ=?
XQB=X(NQ)-X(BJ)
YQB=Y(NQ) -Y(BJ)
X12=x(P1)-x(P2)
Y12=Y(F1)-Y(P2)
D=XQB*Y12-YQB**12
if D=0.0 goto (8)
X1B=X(P1)-X(BJ)
Y1B=Y(P1)-Y(BJ)
S=(X1B*Y12-Y1B*X12)/D
if S<0.0 or S:1.0 goto (8)
TC=(XQB*Y1B-YQB*X1B)/D
if TC}<0.0 or TC>1.0 goto (8
J1=0
goto
(B) next JL
(108) _ next KL

```
(7) continue
\((P)\) If \(J 1\) is zero, then the candidate point did not pass the above tests or no point was found. If BFLAG is not zero, then a point on the boundary was found.
```

if Jl=0 goto (10
if BFLAG=1 goto
if BFLAG=-1 goto
150

```
(R) The triangulated point is outside the boundary. Establish two new edges, a new boundary point and delete one point from outside the boundary.
```

E(L+1,1) = minimum of P(J1), B(K1)
E(L+L,2) = maximum of P(J1); B(K1)
E(L+2,1) = minimum of P(Jl), B(K2)
E(L+2,2) = maximum of P(J1), B(K2)
L=L+2
KT:=0
M=M+1
T(M,1) = minimum of P(J1), B(K1), B(K2)
T(M,2) = middle of P(J1), B(Kl), B(K2)
T}(M,3)=\mathrm{ maximum of }P(J1),B(K1),B(K2
if Kl\not=K then }B(k+1)=B(k) for K=K to (Kl+1
B(K1+1) =P(.T1)
L}=K+
J=J-1
if Jl<J then P(j)=P(j+1) for j=J1 to J
goto (10)

```
(S) The triangulated point is the next point on the boundary. Establish one new edge (from \(B(K 1)\) to \(B(K 3)\) ), one new triangle (from \(B(K 1)\) to \(B(K 2)\) to \(B(K 3)\) ), and delete one point from the boundary ( \(\mathrm{B}(\mathrm{K} 2)\).
(4) \(\mathrm{KT} \cdots 0, \mathrm{KK}=0, \mathrm{KKNT}=0\)
\(E(L+1,1) \quad\) minimum of \(B(K 1), B(K 3)\)
\(E(L+1,2) \quad\) maximum of \(B(K 1), B(K, 3)\)
```

L=L+1
K=K-1
M=M+1
T(M,1)=minimum of B(K1), B(K2), B(K3)
if K2<K then }B(k)=B(k+1) for k=K2 to
if K2=1 then K1=K1+1
goto
(10)

```
(S) The triangulated point is the previous point on the boundary. Establish a new edge (from \(B(K \varnothing)\) to \(B(K 2)\) ), one new triangle (Erom \(B(K \varnothing)\) to \(B(K 1)\) to \(B(K 2)\) ), and delete a point from the broundary ( \(B(K 1)\).
(150) \(K T=0, K K=0, K K N T=0\)
\(E(L+1,1)=\) minimum of \(B(K \emptyset), B(K 2)\)
\(E(L+1,2)=\operatorname{maximum}\) of \(E(K \emptyset), B(K 2)\)
\(L=L+1\)
\(K=K+1\)
\(M=M+1\)
\(T(M, 1)=\) minimum of \(B(K \varnothing), B(K 1), B(K 2)\)
\(T(M, 2)=\) middle of \(B(K \varnothing), B(K 1), B(K 2)\)
\(T(M, 3)=\) maximum of \(B(K \emptyset), B(K 1), B(K 2)\)
if \(K 1 \leq K\) then \(B(k)=B(k+1)\) for \(k=K 1\) to \(K\)
\(K 1=K 1-1\)
if \(K 1 \because 1\) then \(K I=K\)
coto
(10)
(T) If there are any points remaininy outside the boundary, then (U) repeat the procedure for the noxt edge.

(V) All points have been triangulated. Check that all boundary edges form a concave polygort.
\[
\begin{aligned}
& \text { if } K K \neq 0 \quad \text { goto } \\
& K K=1, K L=0
\end{aligned}
\]

55 KKNTT:KK:Sl'+1 If krill צ soto
5) \(K L=K L+1\)
\(K 2=K L+1\), if \(K 2>K\) then \(K 2=1\) \(K 1=K L-1\), if \(K 1 \cdot 1\) then \(K 1=K\)
\(P K=B(K), B 1=B(K 1), B 2=B(B 2)\)
if \(\left[\left(Y_{\mathrm{P}_{K}}^{\text {- }}-Y_{B 1}\right)\left(X_{B 2}-X_{B 1}\right)-\left(X_{P_{K}}-X_{B 1}\right)\left(Y_{B 2}-Y_{B 1}\right)\right] \leq 0\) then
Leto (ii)
if. \(K L<K\) goto (5)
(X) The triangulation is complete and has been checked for a concave boundary. Now identify the boundary edges.
for \(i=1\) to \(L\)
\(B E(R)=0\)
\(K L=0\)
21
\(K I_{\perp}=K L_{L}+1\)
if \(E(i, 1) \neq B(K L)\) goto
\(K I=K I+1\)
if \(K I \because K\) then \(K l=1\)
if \(E(1,2) \neq B(K 1)\) soto
BIE (i)
gite
24
\(K 1=K L-1\)
if \(: 1<1\) then \(K l=K\)
if \(E(1,2)\) soto 23 (Kl)
22
\(\mathrm{BE}(\therefore)=1\)
if \(K L \cdot K\) goto
21
23 next :
(Y) Finally, establish the indices of adjacent edges for each edge in the triangulation. Each boundary edge will have two adjacent edges: each interior edge will have four.
initialize TE
for \(\&=1\) to \(L\)
for \(i=1\) to 4
\(\mathrm{TE}(\) (io) \(=0\)
```

 establish TE
 for m=1 t.o M
 for & = to L
 if E(\ell,1)=T(m,1) and E(\ell,2)=T(m,2) then Ll = \ell
 if}E(\ell,1)=T(m,2) and E(\ell,2)=T(m,3) then L2 = \ell
 If}E(\ell,l)=T(m,l) and E(\ell,2)=T(m,3) then L3=\ell
 \lambda=0; i.f TE (Ll,l)\not=J then }\lambda=
 TE(L1, \lambda+1) = L2
 TE(L1,\lambda+2)=L3
 \lambda=0; if TE(L2,1)\not=0 then }\lambda=
 TE (L2, \lambda+1) = LI
 TE(L2,\lambda+2)=L.3
 \lambda=0; if TE(L3,1)\not=0 then }\lambda=
 TE(L3, \lambda+1)=L1
 TE(L3,\lambda+2)=L2
 next m
 RETURN

```

\subsection*{3.3 Description of Function MIDDLE}

\section*{FU'NCTION MIDDLE (I,J,K)}

This function is used by the triangulation algorithm to find the middle value of three integer arquments (the value whinh is neither a minimum or maximum). I,J, and \(K\) are assumed to be discrete values, no two are equal.

The subroutine SMSRF performs the optional smoothing of the data for the denendent variable. This subroutine uses the library routine LLSOF and uses the function polyx2.

The smoothing alqorithm fits the surface \(z=f(x, y)\) to a polynomial of the form:
\[
\begin{aligned}
& z=c_{i=0}^{L} \quad c_{i j} x^{i} y^{i} \quad \text { wher } \quad \begin{array}{l}
K=\max (I, J) \\
L=\min (K-i, J) \\
I, J \text { are selected parameters }
\end{array} \\
& ={\underset{Z}{k=1}}_{M} c_{k}\left(x^{i} y^{j}\right)_{k} \\
& \text { for } M= \begin{cases}(I+1)(J+1-I / 2) & J \geq I \\
(J+1)(I+1-J / 2) & I \geq J\end{cases}
\end{aligned}
\]

The \(M\) terms of the polynomial are each evaluated for \(n=1\) to \(N\) noints, where \(N>M\). This evaluation generates an \(N\) by matrix denoted by \(|A M|\). The AM matrix is scaled by column so that the magnitudes of the elements remain close. The scaling factor for each column is the average of the absolute values of all elements in the column. The \(N\) by 1 matrix of \(\%\) data is known. The task, then, is to solve the system
\([A M][C]=[a]\)
for the \(M\) by 1 matrix \(C\) of coefficients. This is accomplished by the International Mathematical and statistical Library (IMSL) routine LLSQF, which solves the system by means of a linear least-
squared error criteria. The LLSQF routine is the only library procedure used in the contour calculation package. Installations which do not have the IMSL library available, would need to replace this function with a similar routine.

After obtaining \([C]\) from the curve fit subroutinc, the codfficionts are normalizal by the same scale factors originally
 the orioinal \(z\) data with new values acquired from evaluation of the nolynomial. If the coefficients are not properly found, then no smoothinf takes place and the original 2 data is retained.
4.1 Description of the Argument list

CALL SMSRF (X,Y,Z,ZNEW,N,I,J,NCOEF,C,IPOWR,JPOWR)

\section*{Input arguments:}
\(X, Y, Z=\) arrays containing the function values for \(z=f(x, y)\)
\(N \quad=\) the number of values stored in \(X, Y, Z\), INEW
I.J \(=\) smoothing parameters selected by the user: used to define the \(K, L\) values of the polynomial described earlier

Return Arguments:
\(\because \mathrm{NEW}_{n}:\), Mray of new (smoothed) \(Z\) data for \(n=1\) to \(N\) : if the matrix computations fail, zNEW=2 for all \(n\)
\(N C O E F=\) number of coefficients resulting from the values of and \(J\)
\(C_{i}=\) array of calculated coefficients for \(i=1\) to NCOEF
IPOWR \(_{i}=\) for the \(i=\) th term of the polynomial, the exivonent of \(x\) and \(J^{J P O W R} i \quad y\) respoctively for \(i=l\) to NCOEF

\section*{Required Dimension::}
\begin{tabular}{lll}
\(X(N)\) & IPOWR (C) & XX(C) \\
\(Y(N)\) & JPOWR (C) & \(H(C)\) \\
\(Z(N)\) & \(C(C)\) \\
\(Z N E W(N)\) & CNORM(C) \\
\(B(N)\) & AVE (C) & ID \\
AM(C,N) &
\end{tabular}

\subsection*{4.2 Description of Algorithm}

Fiqures \(5 a\) and \(5 b\) present a block diagram of the module SMSRF. The functions of parts \(A\) to \(J\) are as follows.

Figure 5a. Block Diagram of SMSRF, rarts A to F


\section*{Fiqure 5b. Block Diaqram of SMSRF, Parts G to J}


Set the smoothed values of : equal to the oriainal : data. sot NCoffr to -1 to indicate that the smoothing brocedure failed.
(A) Initialize local variables
```

RN = FLOAT (N)
if I<l then I=1
If}J<1 then J=
II =I+1
J1=J+1
NCOEF = 0
IA = 500

```
(B) From the I and \(J\) exponent values provided by the calling program, determine the exponent lists. (IPOWR and JPOWR) to be used for the smoothing polynomial. The \(n\)-th entry in the lists is associated with the \(n\)-th term of the polynomial.
\[
K=\text { maximum of } 11, J 1
\]
for \(I I=1\) to \(I 1\)
\(\mathrm{KII}=\mathrm{K}-\mathrm{III}+1\) \(\mathrm{L}=\) minimum of \(\mathrm{KI} 1, \mathrm{JI}\)
for \(J J=1\) to \(L\) NCOEF \(=\) NCOEF +1 IPOWR (NCOEF) \(=\) II-1 JPOWR (NCOEF) \(=\) JJ-1 next JJ
next II
(C) Using the exponent lists and the \(x-y\) data, construct the matrix AM.
for \(\operatorname{KCOL}=1\) to NCOEF
IEX \(=\) IPOWR (KCOL)
JEX = JPOWR(KCOL)
for KROW = 1 to N
\(\mathrm{X2}=\mathrm{X}(\mathrm{KROW})\)
if \(\mathrm{x} 2=0.0\) then \(\mathrm{x} 2=1.0\)
\(\overline{\mathrm{XP}}=\mathrm{X} 2 * * \mathrm{IEX}\)
\(\mathrm{Y} 2=\mathrm{Y}(\mathrm{KROW})\)
if \(\mathrm{Y} 2=0.0\) then \(\mathrm{V} 2=1.0\)
\(\overline{\mathrm{YP}}=\mathrm{Y} 2^{* * J E X}\)
AM (KROW, KCOL) \(=\) XP*YP
next KROW
next KCOL
(D) Normalize eacir value in each column of \(A M\) by the average absolute value of that column. The average of column one is always one.
\(\operatorname{AVE}(1)=1.0\)
for L1 \(=2\) to NCOEF
AVE(LI) \(=0.0\)
for \(L 2=1\) to \(N\)
\(\operatorname{AVE}(L 1)=\operatorname{AVE}(L 1)+|A M(L 2, L 1)|\)
\(\operatorname{AVE}(L 1)=\operatorname{AVE}(L 1) / \mathrm{KN}, \underset{\operatorname{if}}{\operatorname{if}} \operatorname{AVE}(L 1)=0, \operatorname{AVE}(L 1)=1.0\)
For \(\mathrm{L} 2=1\) to \(\mathrm{N}^{-}\)
\(\operatorname{AM}(L 2, L 1)=\operatorname{AM}(L 2, L 1) /\) AVE \((L 1)\)
next L. 1
(E) Set up variables for least squares solution.
\(\mathrm{M}=\mathrm{N}\)
IER=0
KBASIS=NCOEF
TOL=0.0
for \(K K=1, N \quad B(K K)=7\) ( KK )
(F) Call IMSL routine LLSQF to solve (by least squares) the
(G) system \(A M^{*} C=z\) for matrix C. If IER is zero on return, then the solution was found.
CALL LLSQF (AM, IA, M, NCOEF, B, TOL, KBASIS, XX,H,IP,IER)
if IERFO then goto 950
(H) There were no errors. Transfer the calculated coefficients and divide out the normalization factor.
for \(\mathrm{L} 3=1, \mathrm{NCOEF}\)
\(C(L, 3)=X X(L 3)\)
CNORM(L3) = Cし(L3)/AVE(L.3)
(I) Evaluate (using function polyX2) each \(x-y\) pair to generate a new value for 2 .
for \(\mathrm{L} 3=1, \mathrm{~N}\)
ZNEW(L3) \(=\) - FOLYX2 \(0, X(L 3), Y(L 3)\), CNORM, IPOWR, JPOWR, NCOEF)
goto 999


\subsection*{4.3 Description of Function POLYX2}

FUNCTION POLYX2 (Z,X,Y,X,IPOWR,JPOWR,N)
The polynomial evaluation function is used when the smoothing option has been invoked. \(X\) and \(Y\) are the known values of the independent variables for which the function value is required. Array \(C\) is the list of coefficients for each term of the polynomial. IPOWR and JPOWR are the exponents for each term and \(N\) is the number of terms. \(Z\) is an offset value when evaluating for a constant 2. The required dimensions are as follows:

C ( N )
IPOWR (N)
JPOWR (N)

\subsection*{4.4 Description of Subroutine LLSQF}

This is the Library routine taken from IMSL to compute the solution of a linear least squares problem. Detailed discussions of the argument list and the algorithm can ise found in the second volume of tne IMSL Libraxy Reference Manual.
```

A summarv of its use is as follows:
CALL LLSQF (A,IA,M,N,B,TOL,XBASIS,X,H,IP,IER)

```

\section*{Input Arguments:}
\begin{tabular}{|c|c|}
\hline A & M by \(N\) coefficient matrix. A is overwritten with information generated by LLSQF. \\
\hline IA & Row dimension of matrix \(A\) as specified in the calling program. \\
\hline M & Number of rows in matrices \(A\) and \(B\). \\
\hline N & Number of columns in matrix A. \\
\hline B & On input, \(B\) is the right hand side of the least squares solution \([A \mid[X]=\{B \mid\). On return, \(B\) is overwritten with the residual \(R=B-A * X\) \\
\hline mot, & Tclerance parameter to determine the number of columns of \(A\) to be included in the basis for the least squares fit of \(B\). If TOL-0.0 is specified, pivoting is terminated only if the inclusion of the next column would result in a (numerically) rank deficient matrix. \\
\hline KBASIS & On input, KBASIS=K implies that the first \(K\) columns of A are to be forced into the basis. pivoting is performed on the last \(N-K\) colums of \(A\). un output, Kbasis gives the number of columns included in the basis. \\
\hline
\end{tabular}

\section*{Return Arguments:}
\(X \quad\) Solution vector of length N .
\(H\) Work vector of length \(N\).
IP Work vector of length \(N\).
IER Error parameter
\(=0\) for normal execution
\(=129\) for \(\mathrm{M}<0\) or \(\mathrm{N}<0\)
\(=130\) for TODL. 1.0
(129 and 130 are terminal errors)

\subsection*{5.0 INTERPOLATION SUBROUTINE}

The subroutine INTERP performs the interpolation of the data along the triandle edqes. This subroutine uses the function POLYX2 if the smoothing option has been called.

The interpolation algorithm is supplied with a set of \(L\) edges \((E(\ell, 1)\) and \(E(2,2)\) for \(\ell=1\) to \(L\) ) from the triangulation. At the endroints of each edge the function value \(z_{i}\) and the independent variables \(x_{i}\) and \(Y_{i}\) for \(i=1\) to \(N\) are known. Additionally, if a function has been qenerated for the values of \(z_{i}\) (from the SMSRF subroutine), the coefficients and exponents are provided. The interpolation procedure will check each edge of the triangulation. If the constant value \(z\) lies between the \(z\) function values at the end points, then the coordinates \(\left(\varepsilon_{J}, \eta_{J}\right)\) of \(z\) relative to the \(x, y\) coordinates of the endooints will be calculated. \(\xi\) and \(n\) are the result of a linear interpolation if the data has not been smoothed; otherwise, the polynomial previously fitted to the surface is solved for the point.
5.1 Description of Argument List

CALL INTERP ( \(X, Y, Z, Z C O N, L E D G E S, E, I S M O P T, L A M B D A, X I, E T A, E, C\), IPOWR, JPOWR,NCOEF, N)

\section*{Input Arguments:}
\(X_{i}=\) the \(X\) values of the function \(Z=f(x, y)\)
\(Y_{i}=\) the \(Y\) values of the function
\(z_{i}=\) the \(z\) values of the function
\(N=\) the range of \(i\) : the number of points in the \(X, Y\) and \(z\) lists
ZCON \(=\) the constant value of \(z\) for which the contour values are being interpolated

LEDGES \(=\) the number of triangle edges generated by the triangulation procedure
\(E(\ell, 2)=\) index pointers of endpoints of each triangle edge: \(\ell=1\) to LEDGES
ISMOPT = smoothing option flag; 1 if SMSRF was called, \(\varnothing\) if not
\(c_{k}=\begin{aligned} & \text { coefficients } \text { of the polynomial terms as provided } \\ & \quad \text { by SMSRF }\end{aligned}\)

\section*{Required Dimensions:}
\begin{tabular}{lll}
\(X(N)\) & \(\operatorname{IE}(E, 2)\) & \(\operatorname{IPOWR}(C)\) \\
\(Y(N)\) & \(X I(E)\) & \(\operatorname{JPOWR}(C)\) \\
\(Z(N)\) & ETM(E) & \(C(C)\)
\end{tabular}
5.2 Descrintion of Algorithm

Figure 5 presents a block diagram of the module INTERP. The functions of parts \(A\) to \(F\) are as follows:

Fiqure 6. Block Diagram of INTERP

\(J=0\)

\section*{for \(l=1\) to LEDGES}
(A) determine \(x, y, z\) values of the endpoints of the next edge; order them
\(11=E(\ell, 1), \quad 12=E(\ell, 2)\)
\(X 1=X(I 1), \quad Y 1=Y(I 1), \quad \%=Z(I 1)\)
\(X 2=X(I 2), \quad Y 2=Y(I 2), \quad X=Y(I 2)\)
(B) function values equal or contour value (constant) not between endpoints?
if \(\mathrm{Zl}=\mathrm{z2}\) goto 200
if \(\mathrm{Z1}>22\) then reverse \(\mathrm{X1}\) and \(\mathrm{X2}\)
Y1 and Y2
4.1 and 22
if 21 : \(Z C O N\) or \(2 C O N \geq 22\) goto (200
if \(22 \equiv \mathrm{zCON}\) then \(22^{2}=(1.00001)(2 \mathrm{CON})\)
\(\mathrm{J}=\mathrm{J}+1\)
(C) has data been smoothed?
if not, goto statement label 101
if ISMOPT \(=0\) goto 101
(D) non-linear interpolation is required
(F) on this edge over the 7 surface

F1 = POLYX2 (ZCON, X1,Yl,C,IPOWR,JPOWR,NCOEF)
for \(k=1\) to 10 (.18 resolution)
\(\mathrm{XN}=(\mathrm{X} 1+\mathrm{X} 2) / 2.0\)
\(\mathrm{YN}=(\mathrm{Y} 1+\mathrm{Y} 2) / 2.0\)
FN = POLYX2 ( CON, XN,YN,C,IPOWR,JPOWR,NCOEF)
if \(\mathrm{FN}=0.0\) goto
132
if \(\operatorname{sign}(F 1)=\operatorname{sign}(F N)\) then \(X 1=X N, Y I=Y N\)
if \(\operatorname{sian}(F 1) \neq \operatorname{sign}(F N)\) then \(X 2=X N, Y 2=X N\)
next \(k\)
\(132 X I(J)=(X 1+X 2) / 2.0\)
\(\operatorname{ETA}(J)=(Y 1+Y 2) / 2.0\)
LAMBDA \(=\) \& toto 200
(E) linear interpolation is required
(F) on this edge (no smoothing)
\(101 \times 1(J)=\left(\frac{22-2 \operatorname{con}}{22-Z 1}\right) \times 1+\left(\frac{2 \operatorname{con}-21}{22-21}\right) \times 2\)
\(\operatorname{ETA}(J)=\left(\frac{22-2 \operatorname{CON}}{22-21}\right) Y 1+\left(\frac{2 \operatorname{CON}-21}{22-Z 1}\right) Y 2\)
\(\operatorname{LAMBDA}(J)=\ell\)
next \(\ell\)

RETURN

The subroutine CNTOUR draws the recuired contour for \(2=\%\). This subroutine calls the user supplied proqram Ci:TCRV to draw the contour on the graphics device.

The contour alqorithm makes use of the results of the triandulation and interpolation procedures in order to establish, for each contour to be drawn, the ordering of the \(\varepsilon_{j}\) and \({ }_{j}{ }_{j}\) points (for \(j=1\) to \(J)\). The coordinates of all internolated points are known and the trianqulation edqe number associated with each coordinate pair is also known. For each edge, a list of adjacent edge numbers is orovided. A contour line is constructed by choosing a boundary edge as a starting voint (if any) for which an interpolated point exists. Then, the remaining points on the contour are ordered by means of searching adjacent edges for internolated points, until another boundary edge is encountered. For closed contours, the iteration ands if the list of common edqes ends. Then a graphies subroutine is called to draw the curve and perform any other user sumplied arylication for example, label the curve). The contour aluorithm then continues to the next curve, if there are any points remaining. lhis ?rocess continues until all contours are drawn and the list of: and \(\eta\) coordinates is exhausted.
6.1 Description of tho Aryument List

CALL CNTOUR (YCON, XI, BIM, LAMBDA,J, IBE:, TTE)

\section*{Input arguments:}
zCON \(=\) the constant value of \(\%\) for which the contours are being drawn
XIj \(=\) the \(x\)-coordinate of the interpolated point on the edge \(E(l), \ell=\) LAMBDA \((j)\)
ETAj \(\quad=\) the \(y\)-coordinate of the interpolated point on the edge \(E(l), \ell=\) LAMBDA \((j)\)
LAMBDAj \(=\) the index number of each edge associated with XI and ETA values
\(J \quad=\) the range of \(j\); the number of interpolated points found for zCON by the interpolation procedure

IBE(R) \(=1\) if the \(i\)-th edge is a boundary edge; otherwise zero
\(\mathrm{tTR}(2,4)=\) indices of adjacent edges for the e -th odge

Reguired Dimensions:

XI(E)
ETA (E:)
LAMBI)A(E)
IBE(E)
\(\operatorname{ITE}(E, t)\)
6.2 Description of Algorithm

Fisures 7,1 and 70 prescone a block diduram ot the module contorn. The functions for parts a to \(P\) are ss follows.

Figure 7a. Hoork Dianram of contour, Parts A to



Figure 7c. Block Diagram of CONTOUR, Parts \(N\) to \(P\)

(A) Initialize local variables)
\(\mathrm{Jl}=0\)
(B) Search the list of edges for a
(C) boundary edge. If none is found, af to the procedure for closed contours.
\(J 1=J 1+1\)
\(\mathrm{L} 1=\mathrm{LAMBDA}(\mathrm{Jl})\)
If \(B E(1,1)=1\) goto if Ul J auto (T) toto 11
(D) Put this point at the top of the list and reset fl.
\(\underline{\text { if } J l=J \text { yoto (3) }}\)
\(X I(J+L)=X I(J)\)
\(\operatorname{ETA}(J+1)=\operatorname{ETA}(J)\)
\(\operatorname{LAMBDA}(J+1)=\operatorname{LAMBDA}(J)\)
\(\left\{\begin{array}{l}\text { FOr JC=1.J } \\ \mathrm{XI}(J C)=\mathrm{XI}(J C+1) \\ \operatorname{ETA}(J C)=\text { ETA }(J C+1) \\ \text { LAMBDA }(J C)=\text { LAMBDA }(J C+1)\end{array}\right.\)
\[
\begin{aligned}
\mathrm{JB} & =\mathrm{J} \\
\mathrm{~L} & =\mathrm{L} 1
\end{aligned}
\]
(E) Search the remaining points for an adjacent (common) edge.
\[
J B=J B-1
\]
(5) \(11=0\)
5) \(11=J l+1\)
\(\mathrm{L} l=\mathrm{LAMBDA}(\mathrm{J} I)\)

(F) An error has occurred. There is no next point.
auto
800
(b) Put this point at the top of the list. Continue if it's not a boundary edge.
```

XI(J+1) = XI(J1)
ETA(J+1)=ETA(J1)
LAMBDA(J+1) = LAMBDA(J1)

```

```

L = Ll
if BE(LI) }\not=1\mathrm{ goto (6)

```
(H) Draw the open contour from 11
to \(J\), then reset \(J\).
NPOINT \(=\mathrm{J}-\mathrm{JB}+1\)
if NPOINT:1 goto
Call CNTCRV (XI (JB), ETA (JB), NPOINT, ZCON)
(I) Are there any more points left?
\(300 \quad J=J B-1\)
if \(\mathrm{J}<0\) goto
IF \(\mathrm{J}=0\) goto
10
(J) Now draw internal lines (closed contours not starting or stopping at boundary edges). The point at \(J C=J\) in the list is chosen to start the contour.
\(\mathrm{JB}=\mathrm{J}+1\)
(k) Find the next point (on the edge with a
(M) common end point): put it at the top of
\((5)\) the list; repeat until no more edges are left.
\(L=L A M B D A\)
(J)
(16)
\(\mathrm{JB}=\mathrm{JB}-\mathrm{l}\)
\(J 1=0\), if \(J B \%\) then \(J=1\)
(15) \(\mathrm{Jl}=\mathrm{Jl}+1\)
\(\mathrm{Ll}=\) LambNa (J1)
if \(\mathrm{Ll}=\mathrm{TE}(\mathrm{L}, \mathrm{i})\) fifor \(\mathrm{i}=1\) to 4 , goto 14
IF T1:JB goto (15)
(L) Otherwise, no adjacent edge was found: this contour ine is complete; draw it.
goto (17)
```

 14) XI(J+1) = XI(J1)
 ETA(J+1) = ETA(J1)
 LAMBDA(J+1) = LAMBDA(J1)
 fror JJ=.J1 to J
 XI(JJ) = XI(JJ+1)
 ETTA(J.J) = ETA(J.J+1)
 LAMBDA(JJ) = LAMBDA(JJ +1)
 1. = LI
 1f JB \not=1 yoto 16
 17 JJ + JB
 if JB =1 then JJ = JB+1
 (O) Draw the closed contour - the interpolaced
 line through the points JJ to J to JJ
 KNT = 0
 for KK + JJ to J
 KNT = KNT+1
 XX(KNT) = XI(KK)
 YY(KNT) = ETA(KK)
 NPOINT = KNT+1
 XX(NDOINT) = XX(1)
 YY(NPOINT) = YY(1)
 Cal1 CNTCRV (XX.IY,NPUINT.ZCON)
 (P) Reset J. Establish next contour lines for
 remaining points or quit if J = 0.
 J = JB-1
 if J\O goto (11)
 (900) RETYRN

```

\subsection*{6.3 Description of Subroutine CNTCRV}
```

This module is supplied by the user and performs the graphical presentation of the contour to the device being used. Note that CNTOUR may call this routine several times for each constant value of z_{c}, and a new contour line is provided with each call.
The argument list consists of the following items:
CALL CNTCRV (XX,XY,NPOINT,ZCON)
$\mathrm{XX} \quad=$ (dimension NPOINT) is the array of X coordinates for each point on the contour
Yy $\quad=$ (dimension NPOINT) is the array of V coordinates for each noint on the contour
NPOINT $=$ is the number of values provided in the x, y coordinate lists
ZCON $=$ is the constant value of z associated with the provided contour line.

```

\subsection*{7.0 PROGRAMMING CONSIDER IONS}

The programs described in this document have been implemented in FORTRAN on both an IBM 360/67 (under TSSS) and a CDC 7600 (under SCOPE). The subprogram packages were coded in such a way that as many machine dependent FORTRAN statements as possible were elininated. In fact, the programs appear to be completely portable except for (1) the use of IMSL routine LLSOF in SMSRF would need to be replaced at installations where IMSL is not available and (2) the IBM version uses double precision statements in TRIANG that may need modification or deletion.

The execution time for the contour calculations increases with the number of points being processed. The following table illustrates typical execution times encountered on a CDC 7600. The test cases for this table all made use of the smoothing option (with parameters \(I\) and \(J\) both equal to 2 ), and were contrived so that three contour lines were generated, each consisting of about \(\mathrm{N} / 10\) interpolated points. The N data points were generated at random for these tests.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
\(N=\)\begin{tabular}{l} 
Number of \\
data points
\end{tabular}
\end{tabular} \begin{tabular}{c} 
CDC 7 ouv \\
Execution time \\
(CPi seconas)
\end{tabular} \\
\hline 50 & 0.20 \\
100 & 0.47 \\
150 & 0.91 \\
200 & 1.52 \\
300 & 2.66 \\
400 & 4.53 \\
\hline
\end{tabular}

So the execution time is approximately \(1.5 *(1 / 200) * 1.67\) seconds.

The algorithms require internal work areas that are used to store intermediate calculations during execution. The work areas required by the triangulation and smoothing procedures are the greatest contributing factors to the size of the total object time packaqe. The amount of storage required by the triangulation is promptional to the number of data points to be processed, and is approximately equal to 30 N . The amount of storade required by the ieast-squares curve fitting procedure for smooth data is proportional to both the value of \(N\) and the maximum number of coefficients to be computed (C), and is approximately equal to \(C(N+7)+N\). The total work area required by all the routines is proportional to both \(C\) and \(N\), and is approximately \(N(C+42)\).

For some applications, users may wish to reduce the program size. One method, already mentioned, is to eliminate the smoothind subroutines if linear interpolation is adequate for the data. Size reduction can also be accomplished by decreasing array dimensions to accommodate only the maximum number of points and coefficients to be processed. Conversely, the array dimensions can be enlarged to handle more points and/or coefficients if program size is not an imposiry consideration.

Table 1 itcmizes all array dimensions which may be given new dimensions for the purpose of increasina or decreasing program size as needed. For this table:
\(N=\) Number of da:a points to process
\(C=\) Number of coefficients to use during smoothing the \(z\) data
\(E=3 N-6=\) the maximum number of triangle edges which can result from the triangulation of \(N\) points
\(r=2: N-5=\) the maximum number of triangles which can result from the triangulation of \(N\) points.

Table 1. Array Dimensions
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Array \\
Name (s)
\end{tabular} & Required Dimension & Appears in the Following Modules \\
\hline 7,NEW & (N) & CNTLNS \\
\hline IE & \((E, 2)\) & CNTLNS, INTERP \\
\hline I BE & (E) & CNTLAS, CNTOUR \\
\hline ITE & \((E, 4)\) & COTTLNS, CATOUR \\
\hline XI, ETA, LAMBDA & (F.) & CNTLNS, IATERY, CNTOUR \\
\hline [P, XX, H & (C) & SMSRF \\
\hline 13 & ( N ) & SMSRF \\
\hline \(\wedge \mathrm{M}\) & ( \(\mathrm{N}, \mathrm{C}\) ) & SMSRF \\
\hline IPOWR, JPOWR & (c) & SMSRF, POLYX2, CATTLNS, INTERP \\
\hline C, CNORM & (C) & SMSRF, POIYX2, CATLLNS \\
\hline \(X X, Y Y\) & (E) & CNTOLR \\
\hline \(\mathrm{P}, \mathrm{B}, \mathrm{X}, \mathrm{Y}\) & ( N ) & TPIANG \\
\hline E & \((\mathrm{E}, 2)\) & TRIANG \\
\hline BE & (E) & TRIANG; \\
\hline TE & (E,4) & TRIANG \\
\hline 'T & (T, 3) & TRIANG \\
\hline
\end{tabular}

Table 2 itemizes local variables that are initialized by means of data statements. These data values should be given new data assignments if any array dimensions are respecified.

Table 2. Internal Parameter Values
\begin{tabular}{|l|c|c|}
\hline \begin{tabular}{c} 
Data Statement \\
Variable
\end{tabular} & \begin{tabular}{c} 
Required \\
Value
\end{tabular} & Module Name \\
\hline IA & N & SMSRF \\
MAXCOF & C & CNTLNS \\
MAXPTS & N & CNTLNS \\
\hline
\end{tabular}

As a final note, it should be pointed out that for some applications the \(x\) and \(y\) coordinate values may be used repeatedly and only the values of 2 will change. For such cases, the \(x-y\) plane trianqulation is valid for each call after the first since the triangulation is not based on the \(Z\) data. Since the trianqulation can be performed once and then saved, the master proqrams can be easily modified to bypass triangulation of the \(x-y\) data by inserting an extra parameter in the CNTINS argument list. Such a scheme would result in a considerable savings in execution time.

The subroutine modules described in this report are listed in the Appendix.

\section*{APDFANIX}

PRuciRNM I,ISTING:S
```

CNT1:1025%11/45/80 U9:29:2!

```












































```

t000

```
t000
6!60
6!60
c.200
c.200
6. 300
6. 300
&4CO
&4CO
6500
6500
tcu0
tcu0
O760
O760
has0
has0
69C0 C
69C0 C
7000
7000
7100
7100
7200
7200
7300
7300
7400
7400
7500
7500
7600
C |C| -
C |C| -
C SMuuthl'G kE,JIMEu? • - 
C SMuuthl'G kE,JIMEu? • - 
IF (ISMUPT.Ed.u) GCTC 110
IF (ISMUPT.Ed.u) GCTC 110
c
c
C
```

C

```


```

 11 = 1cx+4!
    ```
    11 = 1cx+4!
    J= JEx++1
    J= JEx++1
    P,MI = MiMiN(I:,Jl)
    P,MI = MiMiN(I:,Jl)
    4A, = MAA.(1!.j!1
    4A, = MAA.(1!.j!1
    |f (Jl.foc.1!) dC=(1EXP+1)*(JEXP+1-1EAP/2)
    |f (Jl.foc.1!) dC=(1EXP+1)*(JEXP+1-1EAP/2)
    if (Jl:LI.!!) ini=(jEXP+1)*(1&XP+1-JEXP/2)
    if (Jl:LI.!!) ini=(jEXP+1)*(1&XP+1-JEXP/2)
    if IidC.ST.in.ut.of+.OI.MAXCCF) uCJC 998
```

 if IidC.ST.in.ut.of+.OI.MAXCCF) uCJC 998
    ```

CMTLN:Ss:11/J5/8U U9:29:21
```

 OU 125 K=1, MAXCOF
 [PGnR(K) = 0
 125 JPGNR(k)=0
 C
C \E)
CALL SULRUUTINE SMSRF TL SMCUTH THE JATA L=F(X,Y)

```

```

 If (NCLEF.IJ.O) SCIO 120
 00 130 r.=1, %
 EPSLLCN = EPSLLSN + (L(K)-2NEW(K))**2
 CONTGINE
 EPSLON = SQNTIEPSLGNI/FLOAT(N)
 GLTj 120
 110 00. 100 k=1,N
 100 1NEN(k)=2(k)
 C
9400
~
C (F)
UETERMIAE TME PAFGGE OF THE 2 vatA UNUER CUPSIUERATIUN
9E00 C
99CO 160 LMIN = 2(1)
LMAX = LMIP.
DO 5O K=2,N
LMIN = AMINI(LMII:,L(K))
10100
10200
:030c
10400 C
10500
10600
10700 C
10800 C
:0900
10900
11100
112CO
11300 C
:1400 C
(H)

```
```

```
C1T142:8.11/05/80 J9:29:21
```

```
C1T142:8.11/05/80 J9:29:21
    1:500 C CALL SJUKLUTIT,E CBVCHK IC VEKIFY THAT THE SPECIFILJ DASE
    1:500 C CALL SJUKLUTIT,E CBVCHK IC VEKIFY THAT THE SPECIFILJ DASE
    11600 C VALUE IS WITHIH GANGE CF DATA, RESET IF NEEUEU
    11600 C VALUE IS WITHIH GANGE CF DATA, RESET IF NEEUEU
    !1700 C
    !1700 C
    11800 CALL CEVCHK (CLIST(1),CLIST(2), 2MII%, 2MAX,CLHEM)
    11800 CALL CEVCHK (CLIST(1),CLIST(2), 2MII%, 2MAX,CLHEM)
    11900 IF ICLISTII).IIL.CLNEW)CLISTII)=CLIEEN
    11900 IF ICLISTII).IIL.CLNEW)CLISTII)=CLIEEN
    12000 C
    12000 C
    12100
    12100
    2100 C III
    2100 C III
    12200.c
    12200.c
    12300 C
    12300 C
    12400 21U FK = FK+1.0
    12400 21U FK = FK+1.0
    12500
    12500
    12600
    12600
    12700
    12700
    12800
    12800
    i2900
    i2900
    13000
    13000
    13100
    13100
13200 18v k=k+1
13200 18v k=k+1
1`300 IF (K.UT.fi(HIKS) GLTC }20
1`300 IF (K.UT.fi(HIKS) GLTC }20
13400 LLSN = CLIST(K)
13400 LLSN = CLIST(K)
12500
12500
13600
13600
12700
12700
12700
12700
12800
12800
12900
12900
14000
14000
14100
14100
$4200
$4200
14300
14300
14400
14400
14500
14500
14600
14600
14700
14700
14800
14800
!4900
!4900
15000
15000
15!00
15!00
15200
```

15200

```
```

 JETEKMII,E (PEXT) CUNTLUF CUNSTANT VALUE
    ```
        JETEKMII,E (PEXT) CUNTLUF CUNSTANT VALUE
        LCUN= FK*&N*CLIST(2) + CLIST(1)
        LCUN= FK*&N*CLIST(2) + CLIST(1)
        IF (LLUN.GT.LMIf.AR.U.ZCON.LJ.LMAXI GGTO 150
        IF (LLUN.GT.LMIf.AR.U.ZCON.LJ.LMAXI GGTO 150
        IF IFN.LY.U.l GUTO 300
        IF IFN.LY.U.l GUTO 300
        FK = 0.0
        FK = 0.0
        FN = -1.J
        FN = -1.J
        GUIJ 210
        GUIJ 210
    C
    C
        IF (LCUN.LT.ZMIN.OP.LCON.GT.LMAX) GUTU 20J
        IF (LCUN.LT.ZMIN.OP.LCON.GT.LMAX) GUTU 20J
C (J)
C (J)
            (J)
            (J)
            INTEKPOLATE FOR CGHTUUR LINE JATA POINTS
            INTEKPOLATE FOR CGHTUUR LINE JATA POINTS
        !oJ LALL INTET.P IX,Y, LNEW,N, LCLN,LEOGES,IE,ISMOPT,LAMBLA,
        !oJ LALL INTET.P IX,Y, LNEW,N, LCLN,LEOGES,IE,ISMOPT,LAMBLA,
        *
        *
            \K:L)
            \K:L)
            ANY DATA PGINTS FCUND? . .
            ANY DATA PGINTS FCUND? . .
            GALL SULRCUTINE CNTQUK IO SLRT IHE INTERPGLATEJ PUIMIS
            GALL SULRCUTINE CNTQUK IO SLRT IHE INTERPGLATEJ PUIMIS
            UA: IHE LCMTOUR IINE AND OKAK IT
            UA: IHE LCMTOUR IINE AND OKAK IT
        IF {J,FL.OL CALL CNTCUR (LCGN,XI,ETA,LAMBUA,J,IZIE,ITE)
        IF {J,FL.OL CALL CNTCUR (LCGN,XI,ETA,LAMBUA,J,IZIE,ITE)
        6OTJ 200
        6OTJ 200
C
C
3ve RETJRN
```

3ve RETJRN

```

CFTINz3S:11/05/8U 39:29:2!

15300
15400
15500
\(? 5600\)
15300
\(G Y 7\) IERK = 1
RETJRN
9Y8 1EFR = 2 REIJRN ENO
\(\stackrel{\rightharpoonup}{3}\)

```

```
SMSRFSO ,11/J5/8N 09:27:4!
```

```
SMSRFSO ,11/J5/8N 09:27:4!
?900 C OIMENSION B(SUU),AM(500.23)
?900 C OIMENSION B(SUU),AM(500.23)
?900 C OIMENSION B(5UU),AM(500.23)
?900 C OIMENSION B(5UU),AM(500.23)
    4100
    4100
    4200
    4200
    4300
    4300
    4400
    4400
    4500
    4500
    4600
    4600
    4700
    4700
    4%00
    4%00
    4 9 0 0
    4 9 0 0
    5000
    5000
    5100
    5100
    5100
    5100
    5200
    5200
    5400
    5400
5500
5500
分 5600
分 5600
    5700
    5700
    5800
    5800
    5 9 0 0
    5 9 0 0
    ¢000
    ¢000
    6!00
    6!00
    6200
    6200
    6300
    6300
    E400
    E400
    0500
    0500
    600
    600
    C700
    C700
    3800
    3800
    8900
    8900
    8900
    8900
    7 0 0 0
    7 0 0 0
    7 1 0 0
    7 1 0 0
    7300
    7300
    7 3 0 0
    7 3 0 0
    7300
    7300
    7500
    7500
    ?600
```

 ?600
    ```
```

C

```
C
UATA IA /500/
UATA IA /500/
C
C
C
C
C
C
C
C
REALN= FLLAT(N)
REALN= FLLAT(N)
    IFI!.LT.1) I= = 
    IFI!.LT.1) I= = 
    IF!J.LI.I)J=1
    IF!J.LI.I)J=1
    11=1+1
    11=1+1
    JL=J+1
    JL=J+1
    NCOEF=J
    NCOEF=J
    C
    C
    C
    C
        (BE)
        (BE)
        CETER.IINE THE X AND Y EXPGNENTS TO EE
        CETER.IINE THE X AND Y EXPGNENTS TO EE
        NCOEF = J
        NCOEF = J
    K = MAXU(11,J1)
    K = MAXU(11,J1)
        IF (K.LU.U) COTG }95
        IF (K.LU.U) COTG }95
            DU lov 1II=1,11
            DU lov 1II=1,11
            KII=K-1II+1
            KII=K-1II+1
            L=MINO(KII,J!)
            L=MINO(KII,J!)
            D!) 181 JJ=1.L
            D!) 181 JJ=1.L
            NGCLF = NCLEFF+1
            NGCLF = NCLEFF+1
            IPCRP(NOLEF)=11-1
            IPCRP(NOLEF)=11-1
            JPOH.M(HCLEF)=JJ-1
            JPOH.M(HCLEF)=JJ-1
            CufITINJE
            CufITINJE
            CONTINUE
            CONTINUE
180
180
C
C
c
c
C
C
    (C)
    (C)
    JSIIGG THL EXPLNENT LISIS FRGN AUOVE ANS THL
    JSIIGG THL EXPLNENT LISIS FRGN AUOVE ANS THL
    KNDAN XY DATA PLINTS. CCNSTRUCT THE MATKIX AM
```

 KNDAN XY DATA PLINTS. CCNSTRUCT THE MATKIX AM
    ```
```

 〔MSPFD, |l!/J%/80 U9:く`:4:
    ```

7800
7\％00 8.200 8100
8200 P 300 8400 8500 8600
10900
\(: 1000 \quad\) C
```

 UC 182 KLOL=1,INCEF
 |EA = |PUWF{KCLL\
 JiK=JP'sing(KCLL)
 DU 204 KH.JW=1.%.
 X2 = X(KKUN)
 IF (<2.EU.J.01 x2=1.0
 XP}=\times2**IE
 Y2 = Y(KKUw)
 If 1Y2.EU.U.O1 Y2=1.0
 YP = YZ**JEX
 AM(KF.UW,KCLL) = XP#YP
 204 CNINIINSE
 1&2 CUNYINUE
 KRUN = IICLEF
 C
 C
CO
NGRMALILE EACH VALUE IN EACH CULUMA UF AM BY THE LLLUMN AVERAGE
AVE゙(1)=1.0
DD \&O3 LI = 2,NCOEI
AVE(LI)= =.O
OU 402 L2 = 1.A
4U2 AVE{LI)=AYE{L1) + ABS(AM(L2.L1))
AYE(Ll) = AVE{LI)/REALN
|F (AVE|LI| © FU. 0.J AVE|L|)=1.U
00404L? = 1,N
404 AM(L2,L1)=AMIL2,L1//AVEILI)
4U3 CIJNIINUE
C
C IE,F,LI
JSE l.ASL RLUTIME LLSUF TU SLLVE IVIA LEAST-SNUAKESJ
THE SYSIEY AM*C = L FOR MATKIX C
M=N

```
```

SMSRF%* .11/05/80 U9:29:41

```
    I1500 
```

 I1500
 11600
 11600
 0O 222 KK=1,N
0O 222 KK=1,N
B(KK) = L(KK)
B(KK) = L(KK)
222 COMIINUE
222 COMIINUE
CALL LLSSLF IAM,IA,M,NCOEF,B,TOL,KBASIS,XX,H,IP,IEKX)
CALL LLSSLF IAM,IA,M,NCOEF,B,TOL,KBASIS,XX,H,IP,IEKX)
IF IIEH.NE.OI GUTO }95
IF IIEH.NE.OI GUTO }95
C
C
C
C
24C0
24C0
*
*
!2500
!2500
-2600
-2600
12700
12700
12800
12800
12900
12900
13000
13000
12100
12100
2100
2100
\beth i2300
\beth i2300
13400
13400
13500
13500
13500
13500
13600
13600
13800
13800
13900
13900
13900
13900
14100
14100
14200
14200
14300
14300
14%00
14%00
14500
14500
14600 C
14600 C
14700
14700
14800
14800
14900
14900
15000
15000
!5:00
!5:00
15200

```
        15200
```

```
KHASIS = NCOUEF
```

KHASIS = NCOUEF
COMIINUE
COMIINUE
C (H)
C (H)
UIVIUE LUT THE SCALE FACTGR FRUM THE SOLUTIGN
UIVIUE LUT THE SCALE FACTGR FRUM THE SOLUTIGN
MATKIX AND ESIABLISH THE COEFFICIENTS
MATKIX AND ESIABLISH THE COEFFICIENTS
DU 905 LS = 1,NCUEF
DU 905 LS = 1,NCUEF
C(L3)= XX(L.3)
C(L3)= XX(L.3)
CNLRM(L3) = C(LE)/AVEIL3)
CNLRM(L3) = C(LE)/AVEIL3)
905 CUNTINUE
905 CUNTINUE
C
C
C (1)
C (1)
ESTAULISH THE NEH }2\mathrm{ VALUES GY
ESTAULISH THE NEH }2\mathrm{ VALUES GY
EVALIATING THE POLYNLMIAL FLR EACH KNOWN X-Y PAIK
EVALIATING THE POLYNLMIAL FLR EACH KNOWN X-Y PAIK
DO 734 L3=1,N
DO 734 L3=1,N
ON(1)
ON(1)
ZNEM(L3) = -1.0*PULYX2{0.0:X(L3).YIL3).CNORH.IPUWR\&JPGNK=NCOEFJ
ZNEM(L3) = -1.0*PULYX2{0.0:X(L3).YIL3).CNORH.IPUWR\&JPGNK=NCOEFJ
934 CUNTINUL
934 CUNTINUL
REIURN
REIURN
C
C
C (J)
C (J)
ERKUR KETURN, SET NCCEF TU -1 AND
ERKUR KETURN, SET NCCEF TU -1 AND
SENU JAGK ULD 2 VALUES TO CALLING PROGRAM
SENU JAGK ULD 2 VALUES TO CALLING PROGRAM
95u 00 960 Ll=1,N
95u 00 960 Ll=1,N
icu LNEN(Ll)= = \lll)
icu LNEN(Ll)= = \lll)
HCOEt = -1

```
        HCOEt = -1
```

```
SMSPFD, .11/05/80 09:29:41
```

 ! 5300 RETURH
 15400
 15400
15500
15600 ENO
$\stackrel{3}{0}$

TR!Aft ss,11/05/80 09:30:01

```
```

SUSROUTINE IKIANG IXU,YD,N,L,E,GEgIE:

```
```

```
SUSROUTINE IKIANG IXU,YD,N,L,E,GEgIE:
```

```
        A SET UF N LATA PCIMISS ARE KPIOWN (X(I),Y(II,I=L,N) THEY ARE TO
```

 A SET UF N LATA PCIMISS ARE KPIOWN (X(I),Y(II,I=L,N) THEY ARE TO
 QE CGNNECTEU UY LINES IL FOKM A SET UF TRIAINGLES It UK N.LE.
 QE CGNNECTEU UY LINES IL FOKM A SET UF TRIAINGLES It UK N.LE.
 MAXPTSI. THE FINAL TPIANGULATION ESIABLISHES A CUNVEA POLYGGN
 MAXPTSI. THE FINAL TPIANGULATION ESIABLISHES A CUNVEA POLYGGN
 UEFIHLD BY LINKEU LISTS CF EDGE NUMBERS, ENU PUIMTS AND
 UEFIHLD BY LINKEU LISTS CF EDGE NUMBERS, ENU PUIMTS AND
 BOUNDAKY EOGES.
 BOUNDAKY EOGES.
 SUBRJUTINE INPUT
SUBRJUTINE INPUT
XO = ARRAY CF AbSCISSAS
XO = ARRAY CF AbSCISSAS
YO = AFRAY UF ORDINATES
YO = AFRAY UF ORDINATES
IV = NUMBER UF PUINTS IN X AND Y
IV = NUMBER UF PUINTS IN X AND Y
SUBKOUTINE OUTPUT
SUBKOUTINE OUTPUT
L = HUMBER OF EUCES LISTED IN E, BE AND TE
L = HUMBER OF EUCES LISTED IN E, BE AND TE
L = LIST OF INUICES GF EACH TRAINGLE EDGE
L = LIST OF INUICES GF EACH TRAINGLE EDGE
BE = I IF I LF E IS A HOUNDAfYY EDGE
BE = I IF I LF E IS A HOUNDAfYY EDGE
TE = INLICIS UF NEIGHBOKING EDGES FOR EACH TRAINÖLE
TE = INLICIS UF NEIGHBOKING EDGES FOR EACH TRAINÖLE
LUCAL VARIAULES
LUCAL VARIAULES
P = IINOICES OF PGINTS OUISIDE THE BDUNDARY
P = IINOICES OF PGINTS OUISIDE THE BDUNDARY
J = NO. OF VALUES IN LIST P
J = NO. OF VALUES IN LIST P
U = INUEX OF POINTS ON THE BUUNDARY .. INURUER
U = INUEX OF POINTS ON THE BUUNDARY .. INURUER
K = NU. UF PUINTS LISTED IN ARKAY B
K = NU. UF PUINTS LISTED IN ARKAY B
, T = INLICES OF ADJACENT TRIANLLE EDGES
, T = INLICES OF ADJACENT TRIANLLE EDGES
* iNO. UF KUHS USED IN ARTAY T
* iNO. UF KUHS USED IN ARTAY T
= ARt.AY LF SCALEU X DATA
= ARt.AY LF SCALEU X DATA
= ARPAY OF SCALEU Y DATA
= ARPAY OF SCALEU Y DATA
IMPLIG1I IT,IEGER (P,8)
IMPLIG1I IT,IEGER (P,8)
INTEGER T.TE,E

```
INTEGER T.TE,E
```

C
C
00
700
800
1000
1100
1200
1300
1400
: 500
1600
1700
20
C
C
1800
$!900$
2000
$2: 30$
2200
2200
2300
2400
8500
350
2600
2700
2800
? 300
3000

- 100
2200
3300
2400
3500
3600
3700
3800

```
TF:ANLSS:11/UJ/80 U9:30:01
```

2900	C	
4000		UIMENSIU＇a！）（n），YO（m）ixisuotorisuol
4100		UIMENSICAT P（5uJ）．El500）
4200		UlMENSIUN E（14．74，2），BE（1494），IE（1494，4）
4300		OiMENSION 「（995，3）
4400	C	
4500	C	
4500		
4700		HEAL＊ 8 XPl，X2l，YPl，Y21，XP2，X12，YP2，Y12，X1P，Y1P，X2P，Y2P
48100	C	
4900	C	
5000	C	
5100	C	THE PRULEUURE JEGINS hITI NL UQUNDARY，NL EUUES：ANU
5200	c	ALL $X-Y$ UAIA PUINTS UNDER CLNSIUERATIGİ
5300	C	SCALI．TriE X，Y dAta and liltialile local vaflables．
5400	c	
5500	C	
5600		$J=N$
5700		$k=0$
5800		$L=0$
5900		$M=0$
6000		Kん1dT $=u$
6100		OU LOU JCNT＝1．J
＋200	100	P（JLNT）$=J C N T$
（300		XMAX $=$ XU＇I！ 1
t400		XMIN $=$ Xolll
cijo		YMAX＝YJI！ 1
© 500		YMIA $=$ Yulll
₹ 700		Ju so $K=2, i$
C900		XMAX $=$ GMAX $1(X \mathrm{MAX}, \mathrm{XJ}(\mathrm{K}) \mathrm{l}$
6		XMIN $=$ AMIIVI（XMIN，XD（K）
7U0		YMAX $=$ CMAXI（YMAX，YU（K））
7100		YM\｜，$=$ AMIM！（YMIN，YD（K））
7200	93	Cl．dIINJt
7300		ULXIHY $=1.0 /($ XMAX－XMIti）
1400		UI．YINV $=1.9 /($ YMAX－YMIN）
1500		U儿らッK＝1，け
7600		

TRIANG $\$ 8.1: / 05 / 80$ 09:30:0:

TRIARK•S:11/05/8009:30:01
11500
11600
11700
11800
11900
12000
12100
12200
12300
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13700
12800
13900
14000
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200

```
B(2)=12
L = l
E(1,1)= M(NO(B(1),3(2))
E(1,2)= MAXO(B(1),E(2))
NJW BEGIN CIRCLING ARCUND THE JOUNOARY OF THE PLLYUON.
COISSIUEFING, IN CROER, EACH GOUNDAKY EDGE. MAINTAIN THE
FOLLOnIING INDICES -
Kl = E ARKAY INDEX CF THE CURRENT EDGE - PUINT I
K2 = G ARRAY IIDDEX OF IHE CURPENT EDGE - POINT 2
Bl.0U2 = IIUICES OF BCUNDAFY PGINT COOKDINATES
KI=0
KT}=
11K1 = K1+1
IF (KloúloK) Kl=1
12 K2 = K1+1
IF (K2.GT.K) K2=1
Bl = B(Kl)
B2 = B(K2)
KT=KI+1
(F)
CONSIUER THE BCUNDARY EDGE FRGM BI TO d2. FUR ALR PUINTS NUT
YET TRIARGULATED (THE J POINTS REMAIf|ING IH. P), FINU THE
PGINT THAT, WHEPG TRAIP.GULATEO HITH EI,BZ, MINIMIIES IHE LENGTH
JF THE INU REEW EDGES TO BE DKAHI..
ul=0.
Jl=0
BFLAG = J
IF (J.EN.O) UGTL 6
DU L LJ=1,J
\muJ=P(LJ)
```


C
C
$\begin{array}{ll}C & (E)\end{array}$
C
C
C
C
C
C

TRIANG:\$. 11/U5/80 09: 10:01

TH!AAル OS.! 1/05/8J Uצ: 2 J: J!


```
    TR!A!ths&,11/05/80 09:3u:0!
    22900 C
    23000 C
    23100
    23200
    23300
    23400
    23500
    23600
    23700
    23800
    23900
    24000 C
    24100 C
    24200
    24300
    24400
    24500
\infty 24600
24700
74800
24.900
25000
25100
25200
25300
$5400
25500
25600
25700
25800
25900
24000
26100
2\leqslant200
26300
26400
26500
26600
```

```
(N,C)
```

(N,C)
THE NEXT PRCCEOURE CHECKS ALL BOUNDARY EDGES OF THE PULYGON
THE NEXT PRCCEOURE CHECKS ALL BOUNDARY EDGES OF THE PULYGON
FOR INTERSECTIGN WITH THE CANDIDATE TRIANGLE. IF ANY EXISTING
FOR INTERSECTIGN WITH THE CANDIDATE TRIANGLE. IF ANY EXISTING
BOUNDAFY EDGE INTERSECTS ANY OF THE EDGES TO GE FORMEU BY THE
BOUNDAFY EDGE INTERSECTS ANY OF THE EDGES TO GE FORMEU BY THE
CANUIDATE TRIANGLE, THEN THE CANUIDATE POINT IS REJECTEU. IF
CANUIDATE TRIANGLE, THEN THE CANUIDATE POINT IS REJECTEU. IF
BFLAG IS NOT 2EKO, THEN THE EDGE DEFINED BY Jl=KO OR }11=K3 IS
BFLAG IS NOT 2EKO, THEN THE EDGE DEFINED BY Jl=KO OR }11=K3 IS
EXEMPT FURM THIS TEST.
EXEMPT FURM THIS TEST.
IF IHERE ARE THREE OR LESS EXISTING BGUNDARY EOGES UR IF
IF IHERE ARE THREE OR LESS EXISTING BGUNDARY EOGES UR IF
Jl HAS BEEN SET TO LERU. THIS TEST IS OMMITTED.
Jl HAS BEEN SET TO LERU. THIS TEST IS OMMITTED.
IF IK.LE.3.OK.Jl.EQ.OI GOTG 7
IF IK.LE.3.OK.Jl.EQ.OI GOTG 7
IF (BFLAu.EQ.O) NQ = P(Jl)
IF (BFLAu.EQ.O) NQ = P(Jl)
lF (BFLAG.LD.1) NQ = B(K3)
lF (BFLAG.LD.1) NQ = B(K3)
IF (BFLAU.EG.-1) NO = B(KO)
IF (BFLAU.EG.-1) NO = B(KO)
OO 108 KLNT=1,K
OO 108 KLNT=1,K
IF (KCINT.EU.KI) GOTO LO8
IF (KCINT.EU.KI) GOTO LO8
KY = KCHT+1
KY = KCHT+1
IF {KCPT,EQ.K) KN=1
IF {KCPT,EQ.K) KN=1
IF IBFLAG.EQ.-1.AND.(KCNT.EQ.KO.OK.KN.EQ.KOI) GUTO 108
IF IBFLAG.EQ.-1.AND.(KCNT.EQ.KO.OK.KN.EQ.KOI) GUTO 108
IF \BFLAG.EN. L.AAD.IKCNT.EQ.K3.OR.KN.EE.K3I) GUTO 108
IF \BFLAG.EN. L.AAD.IKCNT.EQ.K3.OR.KN.EE.K3I) GUTO 108
Pl = B(KCNT)
Pl = B(KCNT)
P2 = B(KN)
P2 = B(KN)
OU B JCNT=1,2
OU B JCNT=1,2
IF (JCNT.EW.I.ANU.\BFLAG.EG.O.UP.BFLAG.EL.1).ANU.KGNT.EG.KOI -
IF (JCNT.EW.I.ANU.\BFLAG.EG.O.UP.BFLAG.EL.1).ANU.KGNT.EG.KOI -
GOTO 108
GOTO 108
IF (JCH.T.EL.2.AND.IBFLAG.EL.O.UR.UFLAG.EG.-1).AND.KCNT.EM.K2I -
IF (JCH.T.EL.2.AND.IBFLAG.EL.O.UR.UFLAG.EG.-1).AND.KCNT.EM.K2I -
GOTU 1OB
GOTU 1OB
BJ= \&l
BJ= \&l
|F (JCNT.EC.2) BJ=B2
|F (JCNT.EC.2) BJ=B2
X\&B = X(M(N)-X(BJ)
X\&B = X(M(N)-X(BJ)
YOB = Y(NQ)-Y(BJ)
YOB = Y(NQ)-Y(BJ)
X12 = X(P1)-X(P2)
X12 = X(P1)-X(P2)
Y12 = Y(Pl)-Y(P2)
Y12 = Y(Pl)-Y(P2)
0=XU心*Y12-YQU*X12

```
        0=XU心*Y12-YQU*X12
```



```
    ?6,003
    26fGO
    ?6900
    2700
    ; 7!00
    27200
    27100
    27400
    27500
    27600
    7700
    27 Euo
    i7400
    26000
    2f!00
    ?8!00
    28209 C IF JILJ iERU, THERi THE CANUIUATE PUINT JID NOI PASS THE ABUVE
    28?00
C2 28400 c
28500
28600
28700
28800
28900
20000
2?000
29100
29200
?9300
29400
29500
29600
29700
29800
29900
30000
20100
30200
30300
30400
It (J.LN.N.) GLTC d
xlc = x(Pl)-x(LJ)
Y|L}=r(P)|-Y(GJ
J = |A1t*Y12-r18**12)/1
If (土.LT.U..LR.S.UT.!.l LCTC. b
IC = (x0B*YIB-YCB*x1t)/L
It IIC.LT.L.LK.IC.UT.l.I irTL E
Jl=0
GCJし7
8 Cut.timue
vo LuNTINUE
7 Ll.gTINuE
c
i
C (P.N)
C
POIfI LCN THE dGUNDARY US, IF BFLAG IS NLT LEKU, THEN A
        IF (Jl.EN.U) GCTC }1
        If (BFLAu) 15u.1co,4
C
C
Mのno
THE TRIANUULATEU PGINT IS GUTSIOE THE GLUNUAKY. ESTAOLISH TaC
NEm EJGES. A NEh BOUNUAFY PLINT AND UELETE CNE PLIIGT FGOM
JUISIUE THE BUUNUARY.
leU E(L+1,1)= M{NO(P(J)),d(Kl)]
        E(L+1,2)= MAXO(P(J1),B(K1))
        (l.+2,1) = MINO(f(J1),G(K2))
        E(L+2,2) = MAXU(P(JI),H(K2I)
        KT = j
        L=L+2
        M=M+1
        T(H,1)= MINO(P(J1),B(K1),B(K2))
?0300
    T(M,2)=MIUULE(P(JI),&(K1), 甘(K2))
    T(M,3) = MAXO{P(Jl), H(K1).,G(K2))
```



```
    O05(1)0
    2060:
    :0700
    2OROO
    ?0900
    71000
    :1!07
    2!201)
    :1200
    21410)
    :!500
    110.00
    :!7,0
    31801)
    :1000
    220c0
:31co
32200
22300
32400
22540
3260J
72701
;28u0
22900
?2.)0%:
`?!00
2?200
3??00
33410
M,O!
    30%0
:2隹)
: 4..1
    ?? 700
    :400!
    4.0
    .14?00
        If (nigenor.) GLIL 140
            KM=N
            KP: = 1.1+1
    !4! B(NM+1) = Z(KM)
            K.1 = KM-1
            It (KM.UE.KPI) UCT: }14
    1->J b(Kitl) = pljl)
        N}=\alpha*
        J=J-!
        If |Jl.ul.J\ GuT!, lu
        Uu!44 ルNNT=J!.J
        !44 P(JClvI) = P(JCNI+1)
        wL!J 10
C
C
C
ISI IRIAMGULATEU PGINT IS THE NEXt puINT UN the juUNUAKY.
IHSTABLISH UNE NEM EDGE (FROM O(KI) TO &(KJ)). UNE NEm
TRIAIGGLE (FHUM B(KI) TO B(K2) IO BIK3)). AND DELETE CNIE PUINT
FKCM THE BUUNOARY (B(K2J).
& E(L+1,1) = M{NO{B(K3),B(K1))
        E(L+1;2)= MAXO(B(K3):B(K1))
        KN = U
        KKNT = J
        KT = O
        L=L+!
        N=K-1
        M = M+:
        {(\cdots,l) - MlNu(u(kl), *(K2),B(N3))
        (19,2)= M!OOLL(E(ril),U(K2),d(f.3))
        (1:1,!)= M&A)(G(K!),b(k2),c(K:))
        If (0...,l.N) Li.TL. IS5
        NU 15: RCHI=K2,K
    !bl c(KLN|) = i (KGP.T+i)
```



```
    Gulu lu
```



```
    24300 c
    24400 (
    24500 (
    34500 (
    24700 (
    `M%0
    34900
    34900
    35000
    35100
    35200
    35300
    ?5400
    35500
    25600
    35700
    ?
    ?5900
\infty
?+0ro
16100
3+24,!
36 3:0
36360
36:00
26500
?ECON
36700
36800
26",jo
270r0 C
3710c
27201 C
```



```
?74CJ &F {J.UI.OV jCIO ll
\therefore750j
:7e0:
271•0
27%OC C ALL'PUINTS IAV: RLEF, TRIANJLLAIID. CHECK THAT ILL OUUNUAKY
OTOCO i: buLS FLRM & Lli.l AVE PULYCUl.。
```

```
1.:AO゙,0&!ll/Jさ/du J9:=J:0!
    ?P10C
    :8700
    ?8300
    -94)
    3^500
    %8800
    38700
    :a(1)O
    28900
    :900.)
    ?9140
    `4200
    39300
    :9400
    33500
    24500
39700
-9800
1990J
40000
40100
40200
4 0 3 0 0
40400
405i0
406!)O
40100
4 0 8 0 0
40705:
-1000
4110%
4200
4!:60
C1400
- \5i.,
\because!600
41700
4!31:0
        !t (KK.**.い) うl.Tし g%
        KK=1
        KL=j
```



```
    IF (KaluI.ul.fi) uLIL 170
    5 KL=KL+
    K2 = KL+1
    If (KZ.ü|.r) Ki=1
    KL=KL-1
    If (Kl.LI.j) Kl=n
    PKL = Y(KL)
    Bl = L'(K!)
    02 = B(K2)
    TEKA = (Y(fML)-Y(B:))*(X(82)-x(81))-(x(PKL)-X(B1))*(Y(B2)-Y(B1))
    IF (T!r.m.LI.J.) GUTC Il
    If (NL.LI.R) GliUS 5
C
c
17U UO 23 LCNT=1.L
    GE(LCNT) = 0
    KL = J
    <1 KL = KL+1
        1F IEILCNT,II.NE.G(KLI) GOTC 2?
        Kl = KL+1
        If (Kl.Gr,k) K!=1
```



```
        BEILGNI! = !
        GETO 2:
ic2 Kl = KL-:
        If (Kl.L!.1) K!=k
        |F (E(LGVl.2).f.E.BlK!J) GUTG 22
        UE[L(G:l) = 1
        gurg 2:
```



```
    4900 22 IF |NL.LP.K| GOTG 21
    42()U'S 2g LUf!ll!
    42!n0
    42?00
    4?300
    42:00
    4.2500
    42(:0)
    421:0
    42800
    42900
    -3000
    4?:00
    ..?2:0
    43206
    \therefore2400
& 2 400
4360L
    4.3700
    433700
    43900
    44000
    44!00
    44200
    44300
    444(0)
    44500
    ;46,00
    44700
    46:;(.)
    44700
    45300
    45100
    45260
    c
        OU 190 LCNI=1,L
    IGU IEILCP,T,LI: = j
        DC !9! MLNI=1,M
            u lYL LL=1,L
            If IE(LL,II.EG.I(MCH:I,1).ANU.EILL,2).EQ.I(MCNT,2)) LI=LL
            IE IE(LL,1).EQ.T(MCNT,2).AND.EILL,2).EO.T(MCNT,3)) L2=LL
            IF (EILL,I).EG.TIMCNT,L).ANO.E(LL,2).EC.I(MCNT,3)I L3=LL
    1s2 CONTIRUI
        LAMBDA=0
        IF (TE(LI,I).NE.O) LAMBUA=?
        TE(LI,LAMBDA+1)=L2
        IEIL:OLAMBLA+2I=L3
        LAMGDA = O
        IF (TE(LC,I).NE.O) LAMBUA=2
        IE(L2,LAMBUA+1)= L1
        TE(L2,LA.4BUA+2)=L3
        LAMBDA =0
        IF (TE(I.2.I).NE.O) LAMBGA= 2
        TEIL3,LAMB[.A+1)= Ll
        TE(LI,LAMEUA+2)=L2
    !.1 CONIINUE
    |EIJ.*
    &NJ
```

```
*1UUL':S,:1/05/80 J9:3U:5'=
```



```
c
C
C
C
0
700
800
900
:000
:100
!00
1300
1400
1500
1600
:100
~ 1800
:900
2000
2!00
```

```
Cr/CHA:s,!1/45/8v J9:21:17
    Suonjurlid! (#y(HK (LZLRU&UELZ,_MIH:2MAX,ZLNEm)
    CUNTUUF EASL VALUE CHECKIAO FCUTIME
    IHIS SUCKGUTINE SHIFIS THE GASE VALUE (LLEROI UNIIL If FALLS
    WIIHIN IHE KINUE LF UATA FCF THIS CONTOUR II.E. BETmEEN ZMIN
    ANJ ZMAXI. THE SHIfTED VALUE ITHE NEW STARTING BASE VALUEI IS
    RETJPNEJ TL. CALLEP AS LLNEh. THE JSER SHIFT INLREMENI LOMES
    INTJ CBVCAKK AS DELL FOR 2 CCNTCURS.
    ARJJMENTS -
        ZLEFL = OASE VALUE (INPUT)
        DELL = INCREMENT VALUE (INPUT)
        LMIN,ZMAX = RANGE CF Z JAIA IINPLTI
        LLNEM = NEW GASE VALUE, MAY OF ^AY NOT BE
                THE SAME AS LZERC (RETURN)
        IF (L:AIN.Ew.LMAX) GOTO 999
        LLNEN = L2ERO
        IF (LHIN.LE.LLMEW.AND.LZNEW.LE.LMAXI JOTG }99
        2 If (LLNEH.CE. LMAX) GOTO l
        ZLIVEM = LLNEN - CELZ
```



```
        OOTC 2
C
    1 LLNEn = LLERO
    - IF ILLI.EN.LE.ZMINI GOTC 909
        LLNEN = 2L'IEN - DELL
        IF (LMIN.LL.L2MEN.AtID.2LNEM.LE.2MAXIGOTO }99
        ~uIC 4
    C
    99% REIUKIN
```

E0:ithss.1:/J5/8u Jy:31:17

2960
ENU

IA.IERF:SS $11 / 05 / 80$ U9: $51: 24$


```
1!.TFRH23.11/05/du v9::1:<4
    3900
    4000
    4100 IF IN.LER.LI.1) ISMCPT=0
    4200
    4 3 0 0
    4400
    4500
    46C0
    46C0
    4700
    &800
    4000
    5000
    5100
    5200
    5300
    5400
    550:
5600
E7cu
c+3
5960
C 300
E?00
&200
E300
C400
coco
< 500
f.100
cdon
+900
7no
7:00
1.10
700
7300
7400
7540:
76.30
J=3
C
cu: lcmi=!,levges
C
C
(A)
determime x, y, < fir the enopgints of the nextedue - order them
11 = IEILCNT,1)
12= IENCHT,2)
xl = x(11)
x2 =x(12)
y= y(11)
v2=r(12)
Ul = v(l!)
- U2 = U(12)
C (o)
FUMCTIU: VAiLIS EUUAL AT ENUPLINTS Ca
CONSTANT LC HI EETWEEN THËMz..
IF (Ul.EU.UZ) GGTC
IF (U1.LT.L2) GGTC 100
    IEMP = U2
    U2=U1
    UL=TEMP
    TEMP = x
    x2 = xl
    xl= IEMM
    TEMP = Y?
    Y2=r!
    Yi = TEMi
```



```
    L=J
    :-1
```

```
1:1f0r-3;11/05180 <9:3!:24
    7%. r HAS JATA SEEN SMCCTHED? . -
    73LO & IF IUT, OUTL SECTICN E ISTATEMETOT LABEL IOII
    7200 :
    0.0
    8100
    8230
    8=00
    8400
    8500
    8600
    9700
    8.900
    400
    8400
    -000
    giro
    O200
    g2C0
    as00
    8500
    8500
    9500
    9700
    9800
    9800
10000
10!00
:620
    \because:200
    10400 C
    cros c
    1~500
    OSOO C (E,F)
    ODE C IIHEAK INTEFPCLATICN IS PEQUIKEJ
    IC30C C FOR THIS EDGE LVEP IHE b-SUFFAC2
    .ron
    1!
    H:
    :"0
    :-400
    1.4N0
    1u: I!=(v^-&(OIT)/|u2-Ul)
    12=(2CUN-U1)/(U2-U1)
        - ||J|= I!*\1+12*x2
        \TA|JJ= |I*YI+TL*Y?
    201 LA46DA(J) = LCHT
```



```
(2.7(0) 5%11/05/80 09:31:4t
```

\NU SUGKLUTINE CIVTLUK (LCCiV,XI,ETA,LAMBDA,J,IBE,ITEI

```
\NU SUGKLUTINE CIVTLUK (LCCiV,XI,ETA,LAMBDA,J,IBE,ITEI
    0
    0
    0
    0
    C
    C
    500
    500
    600
    600
    00
    00
    00 c
    00 c
    900
    900
    000
    000
    1100
    1100
    1200
    1200
    1300
    1300
    140n
    140n
    500
    500
    1e00
    1e00
    1700
    1700
    1800
    1800
    $900
    $900
            2300
            2300
            2100
            2100
2200
2200
2300
2300
2400
2400
2500
2500
2600
2600
?70U
?70U
2800
2800
2900
2900
2000
2000
3100 C
3100 C
300
300
3300
3300
2400 (
2400 (
3500
3500
350 C
350 C
2700
2700
7.100
```

7.100

```
```

*の

```
*の
*
*
No
No
MN
MN
の
の
O
O
C
C
O
O
O
O
M
M
            LCON = LUNSTANT VALUE CF L UNDER CONSIDERATIUN
            LCON = LUNSTANT VALUE CF L UNDER CONSIDERATIUN
            XI\J\ = AKKAY OF X COGRDIANIES OF IMTERPULATED POINTS
            XI\J\ = AKKAY OF X COGRDIANIES OF IMTERPULATED POINTS
            ETA\JI = ARRAY CF Y COORDIANTES OF INTERPULATEO POINTS
            ETA\JI = ARRAY CF Y COORDIANTES OF INTERPULATEO POINTS
            LAMBUAIJI = ARRAY OF EDGE NUMBERS FOR J-TH INTERPOLATED POINT
            LAMBUAIJI = ARRAY OF EDGE NUMBERS FOR J-TH INTERPOLATED POINT
            \ {HUABER OF POINTS IN THE LIST OF INTERPOLATED PQINTS
            \ {HUABER OF POINTS IN THE LIST OF INTERPOLATED PQINTS
            18E = THE LIST OF BOUNOARY EDGES TAKEN FROM THE TRIANGULATION
            18E = THE LIST OF BOUNOARY EDGES TAKEN FROM THE TRIANGULATION
            ITE' = LINKED LIST OF INDICES OF ADJACENT EDGES PROYIDED
            ITE' = LINKED LIST OF INDICES OF ADJACENT EDGES PROYIDED
                &Y THE TRIANGULATIUN PROGEUURE.
                &Y THE TRIANGULATIUN PROGEUURE.
            (A)
            (A)
            IMETALILL LLCAL JfEIAELES
            IMETALILL LLCAL JfEIAELES
            IU d!=0
```

 IU d!=0
    ```
```

C.vruta\$:11/05/80 09:31:4E

```
```

900 r

```
900 r
4000 C SBIC) SEAFCN IUE LIS: CF EUGES FUT A jCURIDARY ENGE (OEIII=1)
4000 C SBIC) SEAFCN IUE LIS: CF EUGES FUT A jCURIDARY ENGE (OEIII=1)
4200
4200
4300
4300
300
300
4400
4400
4 5 0 0
4 5 0 0
4500
4500
400
400
4900
4900
4 9 0 0
4 9 0 0
5000
5000
5100
5100
5200
5200
5300
5300
5400
5400
5500
5500
5500
5500
5600
5600
#
5900
5900
6000
6000
6100
6100
6200
6200
6 2 0 0
6 2 0 0
6300
6300
6400
6400
6500
6500
600
600
6 7 0 0
6 7 0 0
&800
&800
6900
6900
7000
7000
7100
7100
7200
7200
7300
7300
7300
7300
7400
7400
7500
7500
7500
7500
    1 Jl= \jmathl+l
    1 Jl= \jmathl+l
        Ll = Lamada(Jl)
        Ll = Lamada(Jl)
        &5 (IBE(LI).EG.I) G:TG 2
        &5 (IBE(LI).EG.I) G:TG 2
        IF (Jl.LT.J) GCYC !
        IF (Jl.LT.J) GCYC !
        GcTu il
```

 GcTu il
    ```


```

 (0)
    ```
            (0)
            GT IHIS INTERPGLATEO PGINT AT THE TOP CF THE
            GT IHIS INTERPGLATEO PGINT AT THE TOP CF THE
            1IST FOR THIS CONTOUR, SET II
            1IST FOR THIS CONTOUR, SET II
        2 1F (J!.EU.J) GCTO?
        2 1F (J!.EU.J) GCTO?
            XIIJ+I)= XI(Jl)
            XIIJ+I)= XI(Jl)
            ETA(J+1) = ETA(JI)
            ETA(J+1) = ETA(JI)
        LAMBDA(J+1) = LAMBDA(JI)
        LAMBDA(J+1) = LAMBDA(JI)
        DU 101 JCNT = Jl,J
        DU 101 JCNT = Jl,J
        XI(JCNT) = XI(JCNT+1)
        XI(JCNT) = XI(JCNT+1)
        ETA(JCNT) = ETA(JCNT+1)
        ETA(JCNT) = ETA(JCNT+1)
    101 LAMBDA(JCNT) = LAMBUA(JCNT+1)
    101 LAMBDA(JCNT) = LAMBUA(JCNT+1)
(E) SEARCH THE REMAINING POINTS FGR AN ADSACENT ICOMMONI EDGE
(E) SEARCH THE REMAINING POINTS FGR AN ADSACENT ICOMMONI EDGE
        LCR.I = Ll
        LCR.I = Ll
        J1B1G = 1181G-1
        J1B1G = 1181G-1
        J1=
        J1=
        < ll = jl+1
        < ll = jl+1
        Ll = LAMODȦ(Jl)
        Ll = LAMODȦ(Jl)
        DC 102 1=1;4
        DC 102 1=1;4
        IF (LI.EGOITE(LCNT,I|) ULIC 4
        IF (LI.EGOITE(LCNT,I|) ULIC 4
    102 COMTINUE
    102 COMTINUE
    C |F|
    C |F|
C FRECR - THELE IS NC MEXI POINT.
```

C FRECR - THELE IS NC MEXI POINT.

```
```

ENTCUR,\$:11/U5/80 U9:31:4t

```

```

 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
    ```

















```

 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
 l1500 C C CrOM NRAM INIENMAL LIMLS ICLUSED CONTOURS THAT DO MUT START
    ```
























```

 llol
    ```









(:TCuTs \(\$\) :11/05/80 09:31:40
```

 , 5300
 :54C0 C
 \5500 C
 $5600
 $5700
 $5800
 15900
 16000
 1*100
 18200
 it300
 1,400
 i6500
 !6800
 16700
 16800
 16900
 % }\quad1700
!7200
\$7300
\7500
17500
\$7800
:7700
17800
17900
78000
: }310
:310C
18200
C
|1JJ= 110!G
IF {JIGIJ.N.E.1) JJ=J1BIG+1
KNT = 0
OO 510 KK = JJ,J
KNT = KiHT+1
XX\&KNT: = XI{KK)
YY(KNT) = ETA(KK)
510 CONT INUE
XX(KNT+1)= XX(1)
YY{KNT+1)= YYI1)
NPOINT = KN.T+1
CALL CNICRY {XX{1|,YY(1),NPUINT,LCUN|
C
C
C (P)
(P)
RESET J. ESTABLISH THE NEXT CONTOUR LINE FOR RERAINING POINTS
JR QUIT IHE PROCEDURE IF NO MORE POINTS REMAIM.
J=J1BIG-1
IF (J) 800,800,11
8UO RETURF:
END

```


31176013472734```

