JOINT INSTITUTE FOR AERONAUTICS AND ACOUSTICS

N/S^
National Aeronautics and Space Admınistration
Ames Research Center

JIAA TR - 31

A NOTE ON

SOUND RADIATION INTO A UNIFORMLY FLOWING FLUID

SEP

HAROLD LEVINE

JIAA TR - 31

A NOTE ON
 SOUND RADIATION INTO A UNIFORMLY FLOWING FLUID

HAROLD LEVINE

JANUARY 1980

A NOTE ON
 SOUND RADIATION INTO A UNIFORMLY FLOWING FLUID
 by

Harold Levine

Introduction and Summary

There exists a considerable body of analysis pertaining to the sound radıation generated by mechanical or vibratory source arrangements and, in some instances of planar or piston types, the results encompass all magnitudes of the wavelength or frequency as well as disposition of the observation site. Fewer detalls are avallable in the clrcumstance of relative motion between the source and its surroundings and, particularly, with an aptness for both the compact and noncompact characterızatlons of a given source model. The comparative increase in average total radiated power from infınıtesimally small or point sources of periodic strength, on passing from rest to steady rectılınear motion, depends only on the Mach number in the latter state; and a formally analogous rıse in output ls lınked, by Ffowcs Wıllıams and Lovely (1975), to the presence of a steady parallel flow past a rigid plane wall in which a compact clrcular piston executes normal oscıllations. It is the intention here to waden the perspective of effects connected with such a background flow by regard for an elongated or strip piston, which prototype permits a straightforward and general analysis.

The tıme average net power output of a strip piston that vibrates normally to itself with uniform amplitude, has a finıte width δ and is located in an otherwise rıgıd plane wall, admıts dıfferent expansıons according as

$$
\begin{equation*}
\mathrm{k} \delta \ll 1, \quad M<1, \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
M k \delta \ll 1, \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
k \delta \gg 1, \quad M<1 \tag{iii}
\end{equation*}
$$

respectively, where k, M are the wave and Mach number, the last being a measure of the ratio between flow and sound speeds. In the absence of flow, M vanishes and classıcal (or lınear acoustical) theory predicts that the total rate of energy radiation (which is distributed nonuniformly over a semicircular range) amounts to

$$
\begin{align*}
P & =\frac{1}{2} \rho_{o} k c^{3}(k \delta)\left\{\int_{0}^{k \delta} J_{0}(\nu) d \nu-J_{1}(k \delta)\right\} \tag{1}\\
& =\frac{1}{2} \rho_{o} k c^{3}(k \delta)\left\{1-\int_{k \delta}^{\infty} \frac{J_{1}(\nu)}{\nu} d \nu\right\} \tag{2}
\end{align*}
$$

per unit amplitude and length of the plston; here ρ_{0} specifies the equilıbrium density of the medıum, c is the sound speed and J_{0}, J_{1} are Bessel functions with the designated orders. The development which sults a compact piston,

$$
\begin{equation*}
P=\frac{1}{4} \rho_{o} k c^{3}(k \delta)^{2}\left\{I-\frac{(k \delta)^{2}}{24}+0(k \delta)^{4}\right\}, \quad k \delta \rightarrow 0 \tag{3}
\end{equation*}
$$

is a ready consequence of (1), while that obtained from (2),

$$
\begin{equation*}
P=\frac{1}{2} \rho_{o} k c^{3}(k \delta)\left\{1-\sqrt{\frac{2}{\pi}}(k \delta)^{-3 / 2} \cos \left(k \delta-\frac{\pi}{4}\right)+0(k \delta)^{-5 / 2}\right\}, \quad k \delta \rightarrow \infty \tag{4}
\end{equation*}
$$

represents the noncompact alternative.
It appears, in what follows, that the development containing powers of the Mach number and conforming with (ii),

$$
\left.\begin{array}{rl}
P=\frac{1}{2} \rho_{o} k c^{3}(k \delta) & \int_{0}^{k \delta} J_{0}(\nu) d \nu-J_{1}(k \delta) \quad M k \delta \ll 1
\end{array}, \quad M^{2}\left[\frac{1}{2} k \delta J_{0}(k \delta)+\frac{3}{2} J_{1}(k \delta)+\frac{1-J_{0}(k \delta)}{k \delta}\right]+0\left(M^{4}\right)\right\},
$$

extends the prior result (1) and implies that

$$
\begin{equation*}
P=\frac{1}{4} \rho_{o} k c^{3}(k \delta)^{2}\left\{1+3 M^{2}+0\left(M^{4},(k \delta)^{2}\right)\right\} \tag{6}
\end{equation*}
$$

in the lımit $k \delta \rightarrow 0 ; ~ 1 f ~ k \delta \gg l$, on the other hand, the expression

$$
\begin{equation*}
P=\frac{1}{2} \rho_{0} k c^{3}(k \delta) \quad\left\{1+\frac{M^{2}}{\sqrt{1-M^{2}}} \frac{1}{k \delta}+0(k \delta)^{-3 / 2}\right\}, \quad k \delta \rightarrow \infty \tag{7}
\end{equation*}
$$

takes the place of (4). The princlpal effect of flow in (6) is merely to ralse the long wave power estımate by a numerıcal factor $1+3 \mathrm{M}^{2}$, whereas the comparison of (4) and (7) discloses that the flow brings about a significant change in the relative order of magnitude of the second term in the short wave estimate, namely from $(k \delta)^{-3 / 2}$ to (k $)^{-1}$. Inasmuch as the second term of (7) $1 s$, in the absolute sense, independent of the piston geometry (and, specifically, of its breadth), a corresponding feature may be presumed for other shapes. A further estimate,

$$
P=\frac{1}{4} \rho_{o} k c^{3}(k \delta)^{2} \frac{1+\frac{1}{2} M^{2}}{\left(1-M^{2}\right)^{5 / 2}}+0(k \delta)^{4}, \quad k \delta \ll 1, \quad 0<M<1,(8)
$$

which accompanies the stipulation (1), has a more extenslve valıdıty in respect to the Mach number than does (6).

The Analysis

Let the undısplaced pıston occupy a strip $|x|<a,-\infty<y<\infty$, in the fixed plane (or wall) $z=0$, and assume the existence of a steady flow with uniform speed $U=M c$ in the parallel (or $x-$) direction. Glven the normal piston displacement (exclusive of a perıodic time factor $\left.e^{-1 \omega t}\right)$,

$$
\begin{equation*}
z=\eta(x)=\int_{-\infty}^{\infty} A(\zeta) e^{I \zeta x} d \zeta \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
A(\zeta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \eta(x) e^{-1 \zeta x} d x=\frac{\sin \zeta a}{\pi \zeta} \tag{10}
\end{equation*}
$$

for the 'top-hat' profile

$$
\eta(x)=\begin{align*}
& 1,|x|<a \tag{ll}\\
& 0,|x|>a
\end{align*}
$$

then the corresponding acoustlcal excitation, derlvable from a velocity potential $\phi(x, z) e^{-i \omega t}$, is implicit in the convected wave equation

$$
\nabla^{2} \phi=\left(-1 k+M \frac{\partial}{\partial x}\right)^{2} \phi \quad, \quad k=\omega / c
$$

or

$$
\begin{equation*}
\left(1-M^{2}\right) \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}+2 _M k \frac{\partial \phi}{\partial x}+k^{2} \phi=0, \quad z>0, \tag{12}
\end{equation*}
$$

together with the boundary or wall condition

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial z}\right|_{z=0}=-i \omega \eta+U \frac{\partial \eta}{\partial x} \tag{13}
\end{equation*}
$$

and an outgoing wave condition at infinıty.
A solution of the linear partial differential equation (12) has
the form

$$
\begin{equation*}
\phi(x, z)=\int_{-\infty}^{\infty} B(\zeta) \exp \{I \zeta x+i k(\zeta) z\} d \zeta \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa^{2}(\zeta)=(k-M \zeta)^{2}-\zeta^{2}, \quad \text { arg } k(\zeta) \geq 0 \tag{15}
\end{equation*}
$$

and compliance with the boundary condition (13) necessitates a proportıonalıty

$$
\begin{equation*}
B(\zeta)=\frac{\zeta U-\omega}{K(\zeta)} A(\zeta) \tag{16}
\end{equation*}
$$

between the welghting factors $A(\zeta), B(\zeta)$ of the respective integrals (9), (14). The normal derıvative of ϕ, as computed from (14), (15) and (10), proves to be

$$
\begin{align*}
\left.\frac{\partial \phi}{\partial z}\right|_{z=0} & =i \int_{-\infty}^{\infty} B(\zeta) K(\zeta) e^{1 \zeta x} d \zeta=-i \int_{-\infty}^{\infty}(\omega-\zeta U) A(\zeta) e^{\perp \zeta x} d \zeta \\
& =-\frac{1 \omega}{\pi} \int_{-\infty}^{\infty} \frac{\sin \zeta a}{\zeta} e^{1 \zeta x} d \zeta+\frac{1 U}{\pi} \int_{-\infty}^{\infty} \sin \zeta a e^{\perp \zeta x} d \zeta \\
& =-\frac{1 \omega}{2}\{\operatorname{sgn}(a+x)+\operatorname{sgn}(a-x)\}+U\{\delta(x+a)-\delta(x-a)\} \tag{17}
\end{align*}
$$

where $\operatorname{sgn} \nu= \pm 1, \nu \gtrless 0$ and δ sıgnıfies a Dirac delta function; it is thus evident that $\partial \phi / \partial z$ vanıshes on the rıgıd section of wall ($|x|>a$), has a unıform magnıtude over the pıston ($|x|<a$) and manıfests the joint presence of a line sınk/source at the leading/traıling edges of the piston $(|x|=\mp a)$.

The time average power output of the piston is conveniently found through its rate of local working on the adjacent medıum (with an equilıbrıum densıty ρ_{0}), vız.

$$
\begin{equation*}
P=\frac{1}{2} \rho_{0} \omega I m \int_{-\infty}^{\infty} \phi^{*}(x, 0) \frac{\partial \phi(x, 0)}{\partial z} d x \tag{18}
\end{equation*}
$$

and, consequent to the use of the representation (14) for ϕ and the connection (16), this becomes

$$
\begin{align*}
P & =\pi \rho_{0} \omega \operatorname{Re} \int_{-\infty}^{\infty}|B(\zeta)|^{2} K(\zeta) d \zeta \\
& =\pi \rho_{o} \omega(k c)^{2} \operatorname{Re} \int_{-\infty}^{\infty} \frac{\left(1-\frac{M \zeta}{k}\right)^{2}}{\left\{(k-M \zeta)^{2}-\zeta^{2}\right\}^{1 / 2}}|A(\zeta)|^{2} d \tau ; \tag{19}
\end{align*}
$$

the same result obtains if the transformation of (18) commences with a version

$$
\begin{gathered}
P=\frac{1}{2} \rho_{0} \omega \operatorname{Im} \int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} B^{*}(\zeta) e^{-1 \zeta x}\left\{-\frac{i \omega}{2}[\operatorname{sgn}(a+x)+\operatorname{sgn}(a-x)]\right. \\
+U[\delta(x+a)-\delta(x-a)]\} d \zeta
\end{gathered}
$$

that incorporates the explicit determınation of $\partial \phi / \partial z$ given in (17). On substituting the expression (10) for $A(\zeta)$ and samplıfyıng (19), it appears that

$$
\begin{aligned}
P & =\frac{\rho_{0} k c^{3}}{\pi} \int_{-\frac{1}{1-M}}^{\frac{1}{1-M}} \frac{(1-M \tau)^{2}}{\left\{(1-M \tau)^{2}-\tau^{2}\right\}^{1 / 2}} \frac{\sin ^{2}(k a \tau)}{\tau^{2}} d \tau \\
& =\frac{\rho_{0} k c^{3}}{\pi \sqrt{1-M^{2}}} \int_{-1}^{1} \frac{(1-M \xi)^{2}}{\sqrt{1-\xi^{2}}} \frac{\sin ^{2}\left(k a \frac{\xi-M}{1-M^{2}}\right)}{(\xi-M)^{2}} d \xi \quad, \quad M<1
\end{aligned}
$$

ın whlch the change of varıable $\tau=(\xi-M) /\left(1-M^{2}\right)$ figures.
To reduce the latter integral put $\xi=\cos \theta$ and introduce the abbreviations

$$
\begin{equation*}
\alpha=\mathrm{ka}, \quad \beta=\frac{1}{1-M^{2}} \tag{20}
\end{equation*}
$$

whence

$$
\begin{equation*}
\mathrm{P}=\frac{\rho_{\mathrm{o}}}{\pi} \mathrm{kc}^{3} \beta^{1 / 2}\left\{\mathrm{~F}_{\mathrm{o}}(\alpha, \mathrm{M})-2 \mathrm{MF}_{1}(\alpha, \mathrm{M})+\mathrm{M}^{2} \mathrm{~F}_{2}(\alpha, \mathrm{M})\right\} \tag{21}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{n}(\alpha, M)=\int_{0}^{\pi} \cos ^{n} \theta \frac{\sin ^{2}(\alpha \beta(\cos \theta-M))}{(\cos \theta-M)^{2}} \quad d \theta, \quad n=0,1,2 \tag{22}
\end{equation*}
$$

An alternative single antegral representation for each of the functions $F_{n}(\alpha, M)$, which is the more suitable in seeking estamates appropriate to different hypotheses regarding the magnitude of the argument variables, rests on the fact that the second order α - derivatives of the F_{n} are explıcıtly known in terms of trıgonometric and Bessel functıons, viz.

$$
\begin{align*}
& \frac{\partial^{2} F_{o}}{\partial \alpha^{2}}=2 \pi \beta^{2} \cos (2 \alpha \beta M) J_{0}(2 \alpha \beta) \tag{23}\\
& \frac{\partial^{2} F_{1}}{\partial \alpha^{2}}=2 \pi \beta^{2} \sin (2 \alpha \beta M) J_{1}(2 \alpha \beta) \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} F_{2}}{\partial \alpha^{2}}=2 \pi \beta^{2} \cos (2 \alpha \beta M)\left\{J_{0}(2 \alpha \beta)-\frac{1}{2 \alpha \beta} J_{1}(2 \alpha \beta)\right\} . \tag{25}
\end{equation*}
$$

The two-stage integration of (23), which serves as a model for that of (23), (24) and is rendered definite by the universal conditions $F_{n}(0, M)=\frac{\partial F_{n}(0, M)}{\partial \alpha}=0$, begins with the expression

$$
\frac{\partial F_{o}}{\partial \alpha}=2 \pi \beta^{2} \int_{0}^{\alpha} \cos (2 \beta M \tau) J_{o}(2 \beta \tau) d \tau
$$

and carries on via the sequential formulas

$$
\begin{align*}
F_{0}(\alpha, M) & =2 \pi \beta^{2} \int_{0}^{\alpha} d \nu \int_{0}^{\nu} \cos (2 \beta M \tau) J_{0}(2 \beta \tau) d \tau \\
& =2 \pi \beta^{2}\left\{\alpha \int_{0}^{\alpha} \cos (2 \beta M \tau) J_{0}(2 \beta \tau) d \tau-\int_{0}^{\alpha} \tau \cos (2 \beta M \tau) J_{0}(2 \beta \tau) d \tau\right\} \\
& =\pi \alpha \beta \int_{0}^{2 \alpha \beta} J_{0}(\nu) \cos M \nu d \nu-\frac{\pi}{2} \int_{0}^{2 \alpha \beta} \nu J_{0}(\nu) \cos M \nu d \nu \\
& =\pi \alpha \beta \int_{0}^{2 \alpha \beta} J_{0}(\nu) \cos M \nu d \nu-\frac{\pi}{2}\left\{\frac{d}{d M} \int_{0}^{2 \alpha \beta} J_{0}(\nu) \sin M \nu d \nu-4 \alpha \beta^{2} M \sin (2 \alpha \beta M) J_{0}(2 \alpha \beta)\right\} \\
& =\pi \alpha \beta P(\alpha, M)-\frac{\pi}{2} \frac{d}{d M} Q(\alpha, M)+2 \pi \alpha \beta^{2} M \sin (2 \alpha \beta M) J_{0}(2 \alpha \beta) \tag{26}
\end{align*}
$$

where

$$
\begin{equation*}
P(\alpha, M)=\int_{0}^{2 \alpha \beta} J_{0}(\nu) \cos M \nu d \nu=\beta^{\frac{1}{2}}-\int_{2 \alpha \beta}^{\infty} J_{0}(\nu) \cos M \nu d \nu \tag{27}
\end{equation*}
$$

and

$$
M<1
$$

$$
\begin{equation*}
Q(\alpha, M)=\int_{0}^{2 \alpha \beta} J_{0}(\nu) \sin M \nu d v=-\int_{2 \alpha \beta}^{\infty} J_{0}(\nu) \sin M \nu d \nu \tag{28}
\end{equation*}
$$

The analogues of (26) for F_{1} and F_{2} are

$$
\begin{equation*}
F_{1}(\alpha, M)=\pi \alpha \beta M P(\alpha, M)-\frac{\pi}{2} Q(\alpha, M)-\frac{\pi}{2} M \frac{d}{d M} Q(\alpha, M)+2 \pi \alpha \beta^{2} M^{2} \sin (2 \alpha \beta M) J_{0}(2 \alpha \beta) \tag{29}
\end{equation*}
$$

and

$$
\begin{align*}
F_{2}(\alpha, M) & =\pi \alpha \beta M^{2} P(\alpha, M)-\frac{\pi}{2} M Q(\alpha, M)-\frac{\pi}{2} \frac{d}{d M} Q(\alpha, M)+\pi \alpha \beta^{2} M\left(1+M^{2}\right) \sin (2 \alpha \beta M) J_{0}(2 \alpha \beta) \\
& +\pi \alpha \beta \cos (2 \alpha \beta M) J_{0}(2 \alpha \beta)+\frac{\pi}{2}\left\{1-\cos (2 \alpha \beta M) J_{0}(2 \alpha \beta)\right\} \tag{30}
\end{align*}
$$

respectively.
Hence, the three integrals F_{0}, F_{1}, F_{2} are characterized, apart from explicit terms, through the smpler pair, namely $P(\alpha, M)$ and $Q(\alpha, M)$; and the representation for the power which involves the latter turns out to be

$$
\begin{gather*}
P=\rho_{0} k c^{3}\left\{\alpha \beta^{-\frac{1}{2}} P(\alpha, M)+\beta^{\frac{1}{2}} M\left(1-\frac{M^{2}}{2}\right) Q(\alpha, M)-\frac{1}{2} \beta^{-\frac{1}{2}} \frac{d}{d M} Q(\alpha, M)\right. \\
+\alpha \beta^{\frac{3}{2}} M\left(2-M^{2}\right) \sin (2 \alpha \beta M) J_{o}(2 \alpha \beta)+\alpha \beta^{\frac{3}{2}} M^{2} \cos (2 \alpha \beta M) J_{1}(2 \alpha \beta) \\
\left.+\frac{1}{2} \beta^{\frac{1}{2}} M^{2}\left(1-\cos (2 \alpha \beta M) J_{o}(2 \alpha \beta)\right)\right\} \tag{31}
\end{gather*}
$$

Multıple differentiation of $P(\alpha, M)$ and $Q(\alpha, M)$ with respect to M, at the specific value $M=0$, permats the formation of developments containing powers of the Mach number, which commence in the fashion

$$
P(\alpha, M)=\int_{0}^{2 \alpha} J_{0}(\nu) d \nu+\frac{1}{2} M^{2}\left\{-4 \alpha^{2} J_{1}(2 \alpha)+2 \alpha J_{0}(2 \alpha)+\int_{0}^{2 \alpha} J_{0}(\nu) d \nu\right\}+o\left(m^{4}\right)
$$

and

$$
Q(\alpha, M)=2 \alpha M J_{1}(2 \alpha)+\frac{1}{3} M^{3}\left\{-4 \alpha^{3} J_{1}(2 \alpha)+8 \alpha^{2} J_{o}(2 \alpha)+4 \alpha J_{1}(2 \alpha)\right\}+o\left(M^{5}\right)
$$

Employing these estimates and approximating the other terms of (31) in accordance with the hypothesis that $\alpha \beta M \ll 1$, or sımply Mka $\ll 1$, the development (5) cited in the introduction emerges after the dimensionless magnitude

$$
2 \alpha=2 \mathrm{ka}=\mathrm{k} \delta
$$

is redefined in terms of the strip breadth δ.
The same development for the average rate of energy radiation can be secured, as a matter of technical interest, by the judicious extraction of finıte parts for divergent integrals; thus, recallıng the Legendre polynomial generating function

$$
\begin{equation*}
\left(1-2 z t+t^{2}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty} P_{n}(z) t^{n}, \quad|t|<1 \tag{32}
\end{equation*}
$$

and writing

$$
\left\{(k-M \zeta)^{2}-\zeta^{2}\right\}^{-\frac{1}{2}}=\left(k^{2}-\zeta^{2}\right)^{-\frac{1}{2}}\left(1-2 z t+t^{2}\right)^{-\frac{1}{2}}
$$

with the identifications

$$
\begin{equation*}
t=\frac{M \zeta}{\sqrt{k^{2}-\zeta^{2}}}, \quad z=\frac{k}{\sqrt{k^{2}-\zeta^{2}}} \tag{33}
\end{equation*}
$$

it is formally inferred from (19) that

$$
P=\frac{\rho_{0} \omega(k c)^{2}}{\pi} \operatorname{Re} \int_{-\infty}^{\infty} \frac{\left(1-\frac{M \zeta}{k}\right)^{2}}{\sqrt{k^{2}-\zeta^{2}}} \frac{\sin ^{2} \zeta a}{\zeta^{2}} \sum_{n=0}^{\infty}\left(\frac{M \zeta}{\sqrt{k^{2}-\zeta^{2}}}\right)^{n} P_{n}\left(\frac{k}{\sqrt{k^{2}-\zeta^{2}}}\right) d \zeta
$$

$$
\begin{gather*}
=\frac{2}{\pi} \rho_{0} \omega(k c)^{2} \int_{0}^{k} \frac{\sin ^{2} \zeta a}{\zeta^{2}} \frac{1}{\sqrt{k^{2}-\zeta^{2}}}\left\{\begin{array}{l}
1+m^{2} \frac{\zeta^{2}}{k^{2}}-2 M^{2} \frac{\zeta^{2}}{k^{2}-\zeta^{2}}+\frac{1}{2} \frac{m^{2} \zeta^{2}}{k^{2}-\zeta^{2}}\left(3 \frac{k^{2}}{k^{2}-\zeta^{2}}-1\right) \\
\left.\quad+0\left(m^{4}\right)\right\} d \zeta
\end{array},\right.
\end{gather*}
$$

Sance the restriction $|t|<1$ which assures convergence of the expansion (32) does not hold unnformly in the context of the pertinent formulas (33), (34) all save a pair of terms in (35) possess nonintegrable singularities (at $\zeta=k$). The proper integrals are

$$
F(k a)=k^{2} \int_{0}^{k} \frac{\sin ^{2} \zeta a}{\zeta^{2}} \frac{d \zeta}{\sqrt{k^{2}-\zeta^{2}}}=\frac{\pi}{2} k a\left\{\int_{0}^{2 k a} J_{0}(\nu) d \nu-J_{1}(2 k a)\right\}
$$

and

$$
G(k a)=\int_{0}^{k} \frac{\sin ^{2} \zeta a}{\sqrt{k^{2}-\zeta^{2}}} d \zeta=\frac{\pi}{4}\left(1-J_{0}(2 k a)\right)
$$

after noting an alternative expression

$$
\int_{0}^{k} \frac{\sin ^{2} \zeta a}{\zeta^{2}} \frac{1}{\sqrt{k^{2}-\zeta^{2}}} \frac{\zeta^{2}}{k^{2}-\zeta^{2}} d \zeta=-\int_{0}^{k} \frac{\sin ^{2} \zeta a}{\zeta^{2}} \frac{d}{d k}\left(\frac{k}{\sqrt{k^{2}-\zeta^{2}}}\right) d \zeta
$$

for the first improper integral, its finite part may be identified as

$$
-\frac{d}{d k}\left\{k \int_{0}^{k} \frac{\sin ^{2} \zeta a}{\zeta^{2}} \frac{d \zeta}{\sqrt{k^{2}-\zeta^{2}}}\right\}=-\frac{d}{d k}\left\{\frac{F(k a)}{k}\right\}=-\frac{\pi a}{2 k} J_{1}(2 k a)
$$

Likewıse, the prescription

$$
\begin{aligned}
& \int_{0}^{k} \frac{\sin ^{2} \zeta a}{\zeta^{2}} \frac{1}{\sqrt{k^{2}-\zeta^{2}}}\left(3 \frac{k^{2}}{k^{2}-\zeta^{2}}-1\right) d \zeta \\
& =\int_{0}^{k} \frac{\sin ^{2} \zeta a}{\zeta^{2}} \frac{1}{\sqrt{k^{2}-\zeta^{2}}}\left(1-4 \frac{k^{2}}{k^{2}-\zeta^{2}}+3 \frac{k^{4}}{\left(k^{2}-\zeta^{2}\right)^{2}}\right) d \zeta \\
& \left.=\frac{d^{2}}{d k^{2}}\left\{k^{2} \int_{0}^{k} \frac{\sin ^{2} \zeta a}{\zeta^{2} \sqrt{k^{2}-\zeta^{2}}} d \zeta\right\}-\frac{d}{d k} \int_{0}^{k} \frac{\sin ^{2} \zeta a}{\zeta^{2} \sqrt{k^{2}-\zeta^{2}}} d \zeta\right\} \\
& =\frac{d^{2}}{d k^{2}}\{F(k a)\}-\frac{d}{d k}\left\{\frac{1}{k} F(k a)\right\} \\
& =\pi a^{2} J(2 k a)-\frac{\pi a}{2 k} J_{1}(2 k a)
\end{aligned}
$$

supplies a value for the other improper integral which appears in (35). When the various integral determinations are brought together with (35), the resultant power estimate,

$$
\begin{array}{r}
P=\rho_{0} a k^{2} c^{3}\left\{\int_{0}^{2 k a} J_{0}(\nu) d \nu-J_{1}(2 k a)\right. \\
\left.+M^{2}\left[k a J_{0}(2 k a)+\frac{3}{2} J_{1}(2 k a)+\frac{1-J_{0}(2 k a)}{2 k a}\right]+0 M^{4}\right\} \\
\text { Mka } \ll I,
\end{array}
$$

agrees with (5).
Turning attention next to a noncompact plston, typıfied by the inequality $\alpha=k a \gg 1$, and having regard for the ultimate stage of the successive equalıties

$$
\begin{aligned}
& \int_{\gamma}^{\infty} J_{0}(\nu) \cos M \nu d \nu=\int_{\gamma}^{\infty} d\left(\nu J_{1}(\nu)\right) \frac{\cos M \nu}{\nu} \\
& =-J_{1}(\gamma) \cos M \gamma+\int_{\gamma}^{\infty} \nu J_{1}(\nu)\left\{\frac{\cos M \nu}{\nu^{2}}+M \frac{\sin M \nu}{\nu}\right\} d \nu \\
& =-J_{1}(\gamma) \cos M \gamma+\int_{\gamma}^{\infty} \frac{J_{1}(\nu)}{\nu} \cos M \nu d \nu+M \int_{\gamma}^{\infty} d\left(-J_{0}(\nu)\right) \sin M \nu \\
& =-J_{1}(\gamma) \cos M \gamma+\int_{\gamma}^{\infty} \frac{J_{1}(\nu)}{\nu} \cos M \nu d \nu+M J_{0}(\gamma) \sin M \gamma+M^{2} \int_{\gamma}^{\infty} J_{0}(\nu) \cos M \nu d \nu
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\int_{\gamma}^{\infty} J_{0}(\nu) \cos M \nu d \nu=\frac{1}{1-M^{2}}\left\{-J_{1}(\gamma) \cos M \gamma+M J_{0}(\gamma) \sin M \gamma+\int_{\gamma}^{\infty} \frac{J_{1}(\nu)}{\nu} \cos M \nu d \nu\right\} \tag{35}
\end{equation*}
$$

whence the function $P(\alpha, M)$ defined in (30) is expressible as
$P(\alpha, M)=\beta^{\frac{1}{2}}+\beta\left\{J_{1}(2 \alpha \beta) \cos (2 \beta M)-M J_{0}(2 \alpha \beta) \sin (2 \alpha \beta M)-\int_{2 \alpha \beta}^{\infty} \frac{J_{1}(\nu)}{\nu} \cos M \nu d \nu\right\}$.

Correspondingly,

$$
\begin{equation*}
\int_{\gamma}^{\infty} J_{o}(\nu) \sin M \nu d \nu=\frac{1}{1-M^{2}}\left\{-J_{1}(\gamma) \sin M \gamma-M J_{o}(\gamma) \cos M \gamma+\int_{\gamma}^{\infty} \frac{J_{1}(\nu)}{\nu} \sin M \nu d \nu\right\} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
Q(\alpha, M)=\beta\left\{J_{1}(2 \alpha \beta) \sin (2 \alpha \beta M)+M J_{0}(2 \alpha \beta) \cos (2 \alpha \beta M)-\int_{2 \alpha \beta}^{\infty} \frac{J_{1}(\nu)}{\nu} \sin M \nu d \nu\right\} \tag{38}
\end{equation*}
$$

from which it is deduced (on employing the result $\alpha \beta / d M=2 \beta^{2} M$) that

$$
\begin{align*}
& \frac{d Q}{d M}=\beta^{2} M^{2} J_{0}(2 \alpha \beta) \cos (2 \alpha \beta M)+\beta^{2} M J_{1}(2 \alpha \beta) \sin (2 \alpha \beta M) \\
& +2 \alpha \beta^{2} M J_{0}(2 \alpha \beta) \sin (2 \alpha \beta M)+2 \alpha \beta^{2} J_{1}(2 \alpha \beta) \cos (2 \alpha \beta M)-M \beta^{2} \int_{2 \alpha \beta}^{\infty} \frac{J_{1}(\nu)}{\nu} \sin M \nu d \nu \tag{39}
\end{align*}
$$

Substituting the expressions (36), (38) and (39) for $P(\alpha, M), Q(\alpha, M)$ and d / dM into the formula (31) constıtutes the last step of our power analysis, and yields the generally valid representations

$$
\begin{gather*}
P / \rho_{o} k c^{3}=\alpha+\frac{1}{2} \beta^{\frac{1}{2}} M^{2}-\alpha \beta^{\frac{1}{2}} \int_{2 \alpha \beta}^{\infty} \frac{J_{1}(\nu)}{\nu} \cos M \nu d \nu+\frac{1}{2} M \beta^{\frac{1}{2}} J_{1}(2 \alpha \beta) \sin (2 \alpha \beta M) \tag{40}\\
-\frac{1}{2} \beta^{\frac{1}{2}} M \int_{2 \alpha \beta}^{\infty} \frac{J_{1}(\nu)}{\nu} \sin M \nu d \nu
\end{gather*}
$$

and

$$
\alpha=\frac{\mathrm{k} \delta}{2}=k a, \quad \beta=\frac{1}{1-\mathrm{m}^{2}}
$$

$$
\begin{gather*}
P / \rho_{\mathrm{O}} k C^{3}=\alpha \beta^{\frac{1}{2}} \int_{0}^{2 \alpha \beta} \frac{J_{1}(\nu)}{\nu} \cos M \nu d \nu+\frac{1}{2} M \beta^{\frac{1}{2}} J_{1}(2 \alpha \beta) \sin (2 \alpha \beta M) \\
 \tag{41}\\
+\frac{1}{2} \beta^{\frac{1}{2}} M \int_{0}^{2 \alpha \beta} \frac{J_{1}(\nu)}{\nu} \sin M \nu d \nu
\end{gather*}
$$

where the former lends itself to estimation if $\alpha \beta \gg 1$ and the latter if $\alpha \beta \ll 1$. In partıcular, when $\alpha \rightarrow 0$ and M does not assume values close to unity (or β close to infinity) the representation (41) implies

$$
P / \rho_{o} k C^{3}=\alpha^{2} \beta^{\frac{5}{2}}\left(1+\frac{1}{2} m^{2}\right)+O\left(\alpha^{4}\right)=\frac{1}{4}(k \delta)^{2} \frac{1+\frac{1}{2} m^{2}}{\left(1-m^{2}\right)^{\frac{5}{2}}}+O(k \delta)^{4}
$$

$$
=\frac{1}{4}(k \delta)^{2}\left\{1+3 M^{2}+o\left(M^{4}\right)\right\}+O(k \delta)^{4}, \quad M \rightarrow 0
$$

as stated previously. For small values of M, furthermore, the developments

$$
\begin{aligned}
& \int_{0}^{2 \alpha \beta} \frac{J_{1}(\nu)}{\nu} \cos M \nu d \nu=\int_{0}^{2 \alpha} \frac{J_{1}(\nu)}{\nu} d \nu+\frac{1}{2} M^{2}\left\{-\int_{0}^{2 \alpha} \nu J_{1}(\nu) d \nu+2 J_{1}(2 \alpha)\right\}+0 M^{4} \\
& =\int_{0}^{2 \alpha} J_{0}(\nu) d \nu-J_{1}(2 \alpha)+\frac{1}{2} M^{2}\left\{2 \alpha J_{0}(2 \alpha)+2 J_{1}(2 \alpha)-\int_{0}^{2 \alpha} J_{0}(\nu) d \nu\right\}+o\left(M^{4}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{2 \alpha \beta} \frac{J_{1}(\nu)}{\nu} \sin M \nu d \nu & =M \int_{0}^{2 \alpha} J_{1}(\nu) d \nu+o\left(M^{3}\right) \\
& =M\left\{1-J_{0}(2 \alpha)\right\}+O\left(M^{3}\right)
\end{aligned}
$$

support, in conjunction with (41), the propriety of the result (5).
The terms of (40) are arranged in a sequence that befits their relatıve importance in the lımit $\alpha \rightarrow \infty, M \neq 0$; namely, the first and second are $O(\alpha)$ and $O(1)$, respectively, while the third and fourth are $O\left(\alpha^{-\frac{3}{2}}\right)$ and the last is $O\left(\alpha^{-\frac{3}{4}}\right)$. Of particular note, as previously stated, is that the flow manıfests it presence, to the leading order in the average power output at short wavelengths, by a contribution which does not involve the piston scale. Estimates for the terms of (40) whlch contaln Bessel functions are readily gained through the utılızation of large argument asymptotic forms pertinent to these functions.

Reference

Ffowcs Willıams, J. E. and Lovely, D. J. 1975 J. Fluıd Mech. 71, 689.

End of Document

