NASA Contractor Report 165710

COMPARISON OF SELECTED LIFT AND SIDESLIP CHARACTERISTICS OF THE AYRES THRUSH S2R-800, WINGLETS OFF AND WINGLETS ON, TO FULL-SCALE WIND-TUNNEL DATA

J. Roskam and M. Williams

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC. Lawrence, Kansas 66045

NASA Grant NSG-1574
April 1981

MAY 5 i931

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23665
Page
LIST OF TABLES iv
LIST OF FIGURES. vi
LIST OF SYMBOLS. ix
CHAPTER 1 INTRODUCTION 1.1
CHAPTER 2 THE AYRES THRUSH S2R-800 AIRPLANE. 2.1
2.1 Geometric Parameters of Fuselage, Wing 2
Winglet, and Tails 2.8
2.2 Flight Condition Used in the Analysis. 2.12
CHAPTER 3 PRESENTATION OF RESULTS. 3.1
3.1 Lift Curve 3.1
3.2 Sideslip Derivatives 3.1
CHAPTER 4 PREDICTION OF PROPELLOR-OFF, HORIZONTAL TAIL-OFF LIFT CHARACTERISTICS USING AN ANALYTICAL METHOD. - . 4.1
4.1 Zero Lift Angle of Attack. 4.1
4.1.1 Wing Contribution. 4.1
4.1.2 α_{0} of the Ayres Thrush 4.2
4.2 Lift-Curve Slope, $C_{L_{\alpha}}$ 4.2
4.2.1 Wing Contribution to $C_{L_{\alpha}}$ 4.3
4.2.2 Fuselage Contribution to $C_{L_{\alpha}}$ 4.4
4.2.3 $C_{L_{\alpha}}$ of the Complete Airplane
Horizontal Tail Off. 4.4
4.3 Lift-Curve in the Non-Linear Region. 4.5
4.3.1 $C_{L_{\text {max }}}$ of the Wing, Wing-Fuselage 4.5
4.3.2 The Wing and Wing-Fuselage Angle of Attack at C_{L} 4.7
4.3.3 Upper Limit of Linearity of the Lift Curve 4.8
Page
4.4 Summary. 4.8
CHAPTER 5 PREDICTION OF PROPELLER-OFF LATERAL-DIRECTIONALSTATIC STABILITY USING AN ANALYTICAL METHOD. 5.1
5.1 Side Force Derivative, $C^{y_{B}}$ 5.1
5.1.1 Wing Contribution 5.1
5.1.2 Fuselage Contribution to $\mathrm{C}_{\mathrm{y}_{\beta}}$ 5.2
5.1.3 Vertical Tail Contribution to $\mathrm{C}_{\mathrm{y}_{\beta}}$ 5.3
5.1.4 Winglet Contribution to $C_{y_{\beta}}$ 5.5
5.1.5 $\quad C_{y_{\beta}}$ of the Complete Airplane, Winglets On and Winglets Off 5.6
5.2 . Yawing Moment Derivative, $C^{{ }^{n}}{ }_{\beta}$ 5.7
5.2.1 Wing Contribution to $\mathrm{C}_{\mathrm{n}_{\beta}}$ 5.7
5.2.2 Fuselage Contribution to $\mathrm{C}_{\mathrm{n}_{\beta}}$ 5.8
5.2.3 Vertical Tail Contribution to 5.9
5.2.4 Winglet Contribution to $\mathrm{C}_{\mathrm{n}_{8}}$ 5.9
5.2.5 Weathercock Stability of the Complete Airplane, Winglets On and Winglets Off 5.10
5.3 Rolling Moment Derivative, $C_{\ell_{\beta}}$ 5.11
5.3.1 Wing Contribution to $\mathrm{C}_{\ell_{B}}$ 5.11
5.3.2 Effect of Fuselage on Wing Contribution to $C_{l_{B}}$ 5.12
5.3.3 Vertical Tail Contribution to $\mathrm{C}_{\ell_{\beta}}$ 5.12
5.3.4 Winglet Contribution to $C_{\ell_{B}}$ 5.135.3.5 $\mathrm{C}_{\ell_{B}}$ of the Complete Airplane, WingletsOn and Winglets Off. 5.14

TABLE OF CONTENTS (continued)

Page
CHAPTER 6 PREDICTION OF LIFT AND SIDESLIP STABILITY CHARACTERISTICS USING A COMPUTER METHOD. 6.1
6.1 Description of QVLM. 6.1
6.2 QVLM Predicted C_{L} and α_{0} 6.2
6.3 QVLM Predicted $C_{Y_{\beta}}-C_{n_{\beta}}$ and $C_{\ell_{\beta}}$ 6.2
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS. 7.1
REFERENCES R. 1
Table Title Page
2.1 Specifications of the Ayres Thrush S2 R-800. 2.2
2.2
4.4 .1
4.1.1.1
4.2.1.14.2.2.1
4.2.3.14.3.1.1
4.3.1.24.3.2.1
2.5
Airfoil Coordinates for Winglet
Lift Characteristics of the Ayres Thrush, Tail and Propeller Off. 4.9
Wing Contribution to α_{0} 4.10
Wing Contribution to $\mathrm{C}_{\mathrm{L}_{\alpha}}$ 4.11
Fuselage Contribution to $C_{L_{\alpha}}$ 4.12
Linear $\mathrm{C}_{\mathrm{L}_{\alpha}}$ of the Ayres Thrush. 4.13
Maximum Wing Lift Coefficient 4.13
Summary Calculation for Wing-Fuselage $C_{L_{\text {max }}}$ 4.14
Summary Calculation for ${ }^{\alpha_{C}}$ 4.15
4.3.3.1
Summary for α^{+}Calculations ${ }^{\text {max }}$. 4.16
5.1.2.1
Fuselage Contribution to $C_{y_{\beta}}$ 5.15
5.1.3.1
Vertical Tail Contribution to $\mathrm{C}_{\mathrm{y}_{\beta}}$ 5.16

$$
5.1 .4 .1
$$

Winglet Contribution to $\mathrm{C}_{\mathrm{y}_{\beta}}$ 5.19
5.1.5.1
$C_{y_{B}}$ of the Complete Airplane. 5.21

$$
5.2 .1 .1
$$

Wing Contribution to $C_{n_{B}}$ 5.22

$$
5.2 .2 .1
$$

Fuselage Contribution to $C_{n_{B}}$ 5.23

$$
5.2 .3 .1
$$

Vertical Tail Contribution to $C_{n_{\beta}}$ 5.24

$$
5.2 .4 .1
$$

Winglet Contribution to $\mathrm{C}_{\mathrm{n}_{\beta}}$ 5.25

$$
5 \cdot 2 \cdot 5.1
$$$C_{n_{\beta}}$ of the Complete Airplane: Winglets On andWinglet Off.5.26

5.3.1.1
5.3.1.1
5.3.2.1

LIST OF TABLES (continued)

Table Title Page
5.3.3.1 Vertical Tail Contribution to $\mathrm{C}_{\ell_{B}}$ 5.29
5.3.4.1 Winglet Contribution to $C_{\ell_{\beta}}$ 5.30
5.3.5.1 $C_{\ell_{\beta}}$ of the Complete Airplane: Winglets On and
Winglets Off. 5.31

LIST OF FIGURES

Figure	Title Page
2.1	Three-View of Ayres Thrush S2R-800. 2.6
2.2	Three-View sketch of Ayres Thrush S2R-800 showing winglet installation.
2.1 .1	Geometric parameters of the fuselage. 2.9
2.1 .2	Definition sketch of wing dimensions. 2.10
2.1 .3	Definition sketch of horizontal tail. 2.11
2.1 .4	Definition sketch of vertical tail. 2.11
3.1 .1	Lift curve of Ayres Thrush S2R-800. 3.3
3.2 .1	Comparison of predicted $\mathrm{C}_{\mathrm{y}_{B}}$, winglets off, to full scale wind tunnel data for the Ayres Thrush S2R-800.
3.2 .2	```Comparison of predicted C }\mp@subsup{\|}{\mp@subsup{n}{\beta}{}}{}\mathrm{ , winglets off, to full scale wind tunnel data for the Ayres Thrush S2R-800. 3.5```
3.2 .3	```Comparison of predicted }\mp@subsup{C}{\mp@subsup{\ell}{B}{}}{}\mathrm{ , winglets off, to full scale wind tunnel data for the Ayres Thrush S2R-800.```
3.2 .4	Effect of winglet cant angle on airplane $C_{y_{\beta}}$ based on DATCOM methods 3.7
3.2 .5	Effect of winglet cant angle on airplane $C_{n_{B}}$ based on DATCOM methods 3.8
3.2 .6	Effect of winglet cant angle on airplane $C_{\ell_{B}}$ based on DATCOM methods 3.9
3.2 .7	Effect of winglet cant angle on $C_{y_{\beta}}$ based on QVLM computations for the S2R-800 3.10
3.2 .8	Effect of winglet cant angle on $C_{n_{\beta}}$. based on QVLM computations for the $\mathrm{S} 2 \mathrm{R}-800$. 3.11

LIST OF FIGURES (continued)

Figure Title Page
Effect of winglet cant angle on $C_{\ell_{\beta}}$ based on QVLM computations for the S2R-800. 3.12
4.1.1.1 Change in wing zero lift angle of attack due to wing twist 4.17
4.2.1.14.3.1.14.3.1.24.3.2.14.4.1
5.1.2.1
5.1.3.15.1.4.15.1.5.15.1.5.25.2.1.15.2.2.1
5.2.5.1

LIST OF FIGURES (continued)

Figure Title Page
5.2.5.2 Effect of winglet cant angle on airplane $C_{n_{B}}$ based on DATCOM methods 5.41
Effect of wing dihedral on wing $C_{\ell_{\beta}}$ 5.42
Aspect ratio contribution to $C_{\ell_{\beta}}$. 5.42 5.42
5.3.1.2
5.3.1.25.3.5.15.3.5.26.2 .16.3 .16.3 .26.3.3
Comparison of predicted $C_{\ell_{B}}$, winglets off, to
full scale wind tunnel data for the Ayres
Thrush S2R-800. 5.43
Effect of winglet cant angle on airplane $C_{\ell_{B}}$ based on DATCOM methods 5.44
Lift curve of S2R-800 based on QVLM computations. 6.3
Effect of cant angle on $\mathrm{C}_{\mathrm{y}_{\beta}}$ based on QVLM
computations for the S2R-800. 6.4
Effect of winglet cant angle on C_{n} based on
QVLM computations for the S2R-800 6.5
Effect of winglet cant angle on $C_{\ell_{B}}$ based on QVLM computations for the S2R-800 6.6

Symbol	Definition	Dimension
A	Aspect ratio	
$\mathrm{A}_{\mathrm{veff}}$	Effective vertical tail aspect ratio	
$\frac{A_{v}(f)}{A_{v}}$	Ratio of vertical tail aspect ratio in presence of fuselage to isolated vertical. tail aspect ratio	
$\frac{A_{v}(f h)}{A_{v}(f)}$	Ratio of vertical tail aspect ratio in presence of fuselage and horizontal tail to aspect ratio of tail in presence of fuselage alone	
$b,\left(\frac{b}{2}\right) e$	Span, exposed wing half span	m (ft)
\bar{c}	Mean aerodynamic chord	m (ft)
$c_{r},\left(c_{r}\right)_{e}$	Root chord, exposed wing root chord	m (ft)
c_{t}	Tip chord	m. (ft)
$\left(c_{v}\right)_{h}$	Vertical tail chord at horizontal tail quarter chord	m (ft)
C_{ℓ}	Wing section lift coefficient	
c_{ℓ}	Wing section lift coefficient due to wing angle of attack	
$c_{\ell b}$	Wing section lift coefficient due to wing twist	
$\mathrm{C}_{\ell_{i}}$	Wing section design lift coefficient	
$\mathrm{C}_{\ell_{\max }}$	Wing section maximum lift coefficient	
$\mathrm{c}_{\ell}{ }_{\alpha}$	Wing section lift curve slope	$\mathrm{deg}-1, \mathrm{rad}^{-1}$
$\left(c_{\ell_{\alpha}}\right)_{v}$	Vertical tail section lift curve slope	$\mathrm{deg}{ }^{-1}, \mathrm{rad}^{-1}$

Symbol	Definition	Dimension
$\mathrm{c}_{\ell_{B}}$	Rolling moment due to sideslip	$\mathrm{deg}^{-1}, \mathrm{rad}^{-1}$
$\left(C_{\ell_{B}}\right)_{f(w)}$	Fuselage rolling moment due to sideslip in the presence of the wing	
$\left(C_{\ell}\right)_{B} v(w f h)$	Vertical tail rolling moment due to sideslip in the presence of the wing, fuselage, and horizontal tail	$\mathrm{deg}^{-1}, \mathrm{rad}^{-1}$
$\left(C_{\ell_{\beta}}\right)_{w}$	Wing roliling moment due to sideslip	$\mathrm{deg}^{-1}, \mathrm{rad}^{-1}$
$\left(\mathrm{C}_{\ell_{\beta}}\right)_{\mathrm{WLT}}$	Winglet rolling moment due to sideslip	$\mathrm{deg}{ }^{-1}, \mathrm{rad}^{-1}$
$\frac{c_{\ell_{B}}}{C_{L_{w}}}$	Low-speed variation of $\mathrm{C}_{\ell_{\beta}}$ as a function of wing lift	$\mathrm{deg}{ }^{-1}, \mathrm{rad}^{-1}$
$\frac{c_{\ell_{B}}}{\Gamma_{w}}$	Effect of geometric dihedral on $\mathrm{C}_{\ell_{\beta}}$	$\mathrm{deg}^{-2}, \mathrm{rad}^{-2}$
C_{L}	Lift coefficient	
${ }^{L_{\text {max }}}$	Maximum lift coefficient	
$\left(C_{L_{\max }}\right)_{W}$	Wing maximum lift coefficient	
$\left(C_{L_{\max }}\right)_{\mathrm{wf}}$	Wing maximum lift coefficient in the presence of the fuselage	
$\mathrm{C}_{L_{\alpha}}$	Lift curve slope	$\mathrm{deg}-1, \mathrm{rad}^{-1}$
$\left(\mathrm{c}_{L_{\alpha}}\right)_{f_{(w)}}$	Lift curve slope of the fuselage in the presence of the wing	
$\left(C_{L_{\alpha}}\right)_{v(f h)}$	Vertical tail lift curve slope in the presence of the fuselage and horizontal tail	$\mathrm{deg}{ }^{-1}, \mathrm{rad}^{-1}$

LIST OF SMMBOLS (continued)

Symbol	Definition	Dimension
${ }^{\left(C_{L_{\alpha}}\right)_{w}(e)}$	Exposed wing lift curve slope	$\mathrm{deg}^{-1}, \mathrm{rad}^{-1}$
$\left(C_{L_{\alpha}}\right)_{W}(f)$	Wing lift curve slope in the presence of the fuselage	$\operatorname{deg}^{-1}, \mathrm{rad}^{-1}$
$\left(C_{L_{\alpha}^{\prime}}^{\prime}\right)_{v}$	Effective lift curve slope of the vertical tail	$\mathrm{deg}^{-1}, \mathrm{rad}^{-1}$
$c_{n_{B}}$	Yawing moment due to sideslip	$\mathrm{deg}^{-1}, \mathrm{rad}^{-1}$
$\left(c_{n_{B}}\right)_{f(w)}$	Fuselage yawing moment due to sideslip in the presence of the wing	$\mathrm{deg}^{-1}, \mathrm{rad}^{-1}$
$\left(C_{n_{B}}\right)_{v(w f h)}$	Vertical tail yawing moment due to sideslip in the presence of the wing, fuselage, and horizontal tail	$\mathrm{deg}{ }^{-1}, \mathrm{rad}^{-1}$
$\left(C_{n_{\beta}}\right)_{w}$	Wing yawing moment due to sideslip	$\mathrm{deg}{ }^{-1}, \mathrm{rad}^{-1}$
$\left(C_{n_{B}}\right)_{\text {WLT }}$	Winglet yawing moment due to sideslip	$\mathrm{deg}^{-1}, \mathrm{rad}^{-1}$
$\mathrm{C}_{\mathrm{y}_{B}}$	Side force due to sideslip	$\operatorname{deg}^{-1}, \operatorname{rad}^{-1}$
$\left(C_{y_{B}}\right)_{B}$	Body side force due to sideslip	$\mathrm{deg}{ }^{-1}, \mathrm{rad}^{-1}$
$\left(C_{y_{B}^{\prime}}\right)_{f}$	Fuselage side force due to sideslip including wing-fuselage interference contribution	$\operatorname{deg}^{-1}, \mathrm{rad}^{-1}$
$\left(c_{y_{\beta}}\right)_{v(w f h)}$	Vertical tail side force due to sideslip in the presence of the wing, fuselage, and horizontal tail	$\mathrm{deg}{ }^{-1}, \mathrm{rad}^{-1}$
$\left(C_{y_{B}}\right)_{w_{\Gamma}}$	Wing side force due to sideslip contribution due to wing dihedral	$\mathrm{deg}^{-1}, \mathrm{rad}^{-1}$
$\left(C_{y_{\beta}}\right)_{W L T}$	Winglet side force due to sideslip	$\mathrm{deg}{ }^{-1}, \mathrm{rad}^{-1}$
$\left(d_{f}\right)_{h}$	Diameter of the fuselage at the horizontal tail	m (ft)

LIST OF SYMBOLS (continued)

Symbol	Definition	Dimension
$\left(\mathrm{d}_{\mathrm{f}}\right)_{\mathrm{v}}$	Diameter of the fuselage at the vertical tail	m (ft)
$\left(d_{f}\right)_{W}$	Diameter of the fuselage at the wing	m (ft)
$\left(\mathrm{d}_{\mathrm{f}}\right)_{\text {WLT }}$	Diameter of the fuselage at the winglet	m (ft)
h	Fuselage height	m (ft)
h_{1}	Fuselage height at one-quarter of the fuselage length from the nose	m (ft)
h_{2}	Fuselage height at three-quarters of the fuselage length from the nose	m (ft)
${ }_{\text {i }}^{\text {WLT }}$	Incidence angle of winglet	deg, rad
K_{h}	Relative tail size factor	
K_{i}	Wing-body interference factor	
K_{N}	Empirical factor for fuselage $C_{n_{\beta}}$ in the presence of the wing	
K_{1}	Relative body size factor	
k_{v}	$\left(C_{\ell_{\alpha}}\right)_{v} / 2 \pi$	
ℓ_{f}	Length of fuselage	m (ft)
ℓ_{v}	Distance from the center of gravity to the quarter-chord of the mean aerodynamic chord of the vertical tail	
M	Mach number	
N_{Re}	Reynolds number	
prop	Propeller	
\bar{q}	Dynamic pressure	$\mathrm{N} / \mathrm{m}^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$

Symbol	Definition	Dimension
$\frac{\bar{q}_{v}}{\bar{q}_{\infty}}$	Dynamic pressure ratio at the vertical tail	
S	Area	$m^{2}\left(f t^{2}\right)$
$\left(S_{f}\right)_{s}$	Fuselage side area	$\mathrm{m}^{2}\left(f t^{2}\right)$
t / c	Airfoil thickness ratió	
$\overline{\mathrm{v}}$	Fuselage volume	$m^{3}\left(f t^{3}\right)$
WLT	Winglets	
$W_{\text {max }}$	Maximum fuselage width	m (ft)
$x_{a c_{h}}\left(c_{r}\right)_{\ell_{e}}$	Distance from leading edge of the vertical tail to the a.c. of the horizontal tail, in plane of the horizontal tail	m (ft)
$x_{c . g}$.	Distance from the center of gravity to the leading edge of the wing mean aerodynamic chord	m (ft)
$x_{c_{r_{h}}}\left(c_{r_{v}}\right)$	Distance from root chord of vertical tail to root chord of horizontal tail	m (ft)
$\mathrm{x}_{\text {m }}$	Distance from the airplane nose to the center of gravity	m (ft)
$z_{c_{r_{h}}}\left(c_{r_{v}}\right)$	Distance from the root chord of the vertical tail to the root chord of the horizontal tail	m (ft)
z_{v}	Distance from the center of gravity to the vertical tail chord, perpendicular to the X -body axis	m (ft)
z_{w}^{\prime}	Vertical distance from the X -axis of the equivalent circular fuselage to the quarter chord of the root chord of the exposed wing	m (ft)

Greek Symbols:

Symbol	Definition	Dimension
α	Angle of attack relative to the 2 -body axis	deg, rad
α_{i}	Angle of attack for the wing section design lift coefficient	deg, rad
α^{+}	Angle of attack at which the lift-curve slope is no longer linear	deg, rad
α_{1}^{+}	Section angle of attack at which the lift curve is no longer linear	deg, rad
${ }^{\alpha} 0$	Zero lift angle of attack	deg, rad
$\left(\alpha_{0}\right)_{\theta=0}$	Zero lift angle of attack for an untwisted wing	deg, rad
$\left(\alpha_{C_{L_{\text {max }}}}\right)_{w}$	Wing angle of attack at the maximum lift coefficient	deg, rad
$\left.\left.{ }^{\left(\alpha_{C_{L}}\right.}\right)_{\text {max }}\right)$	Wing-fuselage angle of attack at the maximum lift coefficient	deg, rad
${ }^{\Delta \alpha_{C_{L}}}$	Increment in angle of attack for wing maximum lift	deg, rad
β	Sideslip angle	deg, rad
Γ	Dihedral angle	deg, rad
$\frac{\Delta \vec{q}}{\bar{q}_{\infty}}$	Dynamic pressure increase behind the propeller as a ratio of the free stream dynamic pressure	
$\frac{\partial \sigma}{\partial \beta}$	Variation of sidewash with sideslip	
n	Non-dimensional spanwise station, $\mathrm{y} /(\mathrm{b} / 2)$	
θ	Wing twist	deg, rad
Λ	Sweep angle	deg, rad

Symbol	Definition
$\left(\Lambda_{c / 2}\right)_{v}$	Sweep angle of vertical tail half chord
λ	Taper ratio
$\phi_{\text {TE }}$	Section trailing-edge angle
Subscripts:	
c/2	Half-chord line
c/4	Quarter-chord line
c.g.	Center of gravity
e	Exposed panel
f	Fuselage
fh	Fuselage-horizontal tail combination
h	Horizontal tail
ℓ_{e}	Leading edge
max	Maximum
prop off	Propellers removed
r	Root
t	Tip
v	Vertical tail
w	Wing
wf	Wing-fuselage combination
wfh	Wing-fuselage-horizontal tail combination
WLT	Winglets

Dimension
deg, rad
deg, rad
deg, rad

Subscripts:

This report describes work carried out by the Flight Research Laboratory of the University of Kansas (KU-FRL) and sponsored by Grant NSG 1574 from the National Aeronautics and Space Administration (NASA), Langley Research Center. The purpose of this project was to correlate theoretically predicted aerodynamic characteristics of the Ayres Thrush S2R-800 airplane with full scale wind tunnel data. The theoretical prediction schemes have been documented in this report to provide an analytical method for calculating selected longitudinal and lateral-directional characteristics of the Ayres Thrush, winglets on and winglets off.

It has been previously found that winglets have favorable effects on wing tip vortex entrainment and wake interaction characteristics of chemical sprays dispensed from the airplane. These effects are especially important for an agricultural type airplane such as the $52 R-800$; therefore, this report investigates the winglet effect on the S2R-800 lateral-directional stability.

The two methods used in this report for theoretical predictions were a Quasi-Vortex Lattice Method (QVLM, Reference 3), which is a computer method, and DATCOM analytical methods (Reference 1). The results of these calculations are compared to full scale wind tunnel data where possible, and recommendations and conclusions given concerning these comparisons. All calculations have been done in the stability axes system.

THE AYRES THRUSH S2R-800 AIRPLANE

The Ayres Thrush S2R-800 is designed especially for agricultural flying. Typical applications for the S2R-800 include seeding, fertilization, insect control, and defoliation. The S2R-800 is a monoplane featuring a full cantilever low wing and, with the exception of fabric empennage surfaces, is of all-metal construction. The major physical characteristics are listed in Table 2.1, and a threeview drawing is shown in Figure 2.1

The winglets used on the S2R-800 consist of a modified $G A(W)-2$ airfoil. Table 2.2 lists the airfoil coordinates of the winglets. Figure 2.2 shows a three-view sketch of the aircraft with winglet installation.

Table 2.1: Specifications of the Ayres Thrush S2R-800

Wing:

Airfoil

NACA 4412

Section Characteristics

$$
\alpha_{i}, \text { deg } \quad 0.4933
$$

C_{ℓ}
0.5067
$C_{\ell}{ }_{\alpha}$, per deg
0.105
$\alpha_{1}^{+}, \operatorname{deg}$
7.5

Area, $\mathrm{m}^{2}\left(\mathrm{ft}{ }^{2}\right)$
30.34 (326.6)

Exposed area, $m^{2}\left(f t^{2}\right)$ 27.45 (295.5)

Span, m (ft)
$13.27(43.5)^{*}$
Exposed Span, m (ft)
12.00 (39.4)

Aspect ratio
5.81

Exposed aspect ratio
5.25

Thickness ratio
0.12

Dihedral, deg
3.5

Taper ratio
1.0

Root chord, m (ft)
2.29 (7.5)

Mean aerodynamic chord, m (ft)
2.29 (7.5)

Incidence angle at root, deg 0
Incidence angle at tip, deq -1.5
Sweep angle of quarter chord line, deg 0

Horizontal tail:
Airfoil
NACA 0003
Area (including elevator and tabs), $\mathrm{m}^{2}\left(\mathrm{ft} \mathrm{t}^{2}\right)$
5.25 (56.47)

[^0]Table 2.1: (continued)
Span, m (ft) 4.71 (15.45)
Aspect ratio 4.23
Thickness ratio 0.03
Dihedral, deg 0
Taper ratio 0.66
Root chord, m (ft) 1.34 (4.4)
Mean aerodynamic chord, m (ft)1.13 (3.71)
Incidence angle at root and tip, deg 0
Quarter chord sweep angle, deg 8.5
Vertical Tail:
Airfoil NACA 0003
Area (including rudder), $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$ 2.12 (22.77)
Span, m (ft) 1.51 (4.96)
Aspect ratio 1.08
Taper ratio 0.5
Root chord, m (ft) 1.87 (6.14)
Mean aerodynamic chord, m (ft) 1.3 (4.26)
Quarter chord sweep angle, deg 14.0
Wing1et:
Airfoil Modified GA(W)-2
Area, $m^{2}\left(f t^{2}\right)$ (per winglet) 1.80 (19.34)
Span, m (ft) 1.52 (4.98)
Aspect ratio 1.28
Taper ratio 0.56
Root chord, m (ft) 1.52 (4.98)
Mean aerodynamic chord, m (ft) 1.22 (3.99)
Leading edge sweep angle, deg 12.5
Weights:
Typical operating weight, N (1b) 34,696 (7800)
Empty weight, N (1b)18,238 (4100)
Powerplant:
Number of engines 1
Manufacturer Wright
Model R-1300-1B CycloneTakeoff power, kw (hp)1072.4 (800)
Takeoff rpm 2600
Propeller:
Manufacturer Hamilton Standard
Model
3 D40/EAC
Number of blades 3
Diameter, m (ft) 2.74 (9)

Table 2.2: Airfoil Coordinates for Winglets

x / c	z / c for -	
	Upper surface	Lower surface
0	0	0
. 0020	. 0077	-. 0032
. 0050	. 0119	-. 0041
. 0125	. 0179	-. 0060
. 0250	. 0249	-. 0077
. 0375	. 0296	-. 0090 .
. 0500	. 0333	-. 0100
. 0750	. 0389	-. 0118
. 1000	. 0433	-. 0132
. 1250	. 0469	-. 0144
. 1500	. 0499	-. 0154
. 1750	. 0525	-. 0161
. 2000	. 0547	-. 0167
. 2500	. 0581	-. 0175
. 3000	. 0605	-. 0176
. 3500	. 0621	-. 0174
. 4000	. 0628	-. 0168
. 4500	. 0627	-. 0158
. 5000	. 0618	-. 0144
. 5500	. 0599	-. 0122
. 5750	. 0587	-. 0106
. 6000	. 0572	-. 0090
. 6250	. 0554	-. 0071
. 6500	. 0533	-. 0052
. 6750	. 0508	-. 0033
. 7000	. 0481	-. 0015
. 7250	. 0451	. 0004
. 7500	. 0419	. 0020
. 7750	. 0384	. 0036
. 8000	. 0349	. 0049
. 8250	. 0311	. 0060
. 8500	. 0270	. 0065
. 8750	. 0228	. 0064
. 9000	. 0184	. 0059
. 9250	. 0138	. 0045
. 9500	. 0089	. 0021
. 9750	. 0038	-. 0013
1.0000	-. 0020	-. 0067

Figure 2.2: Three-view sketch of Ayres Thrush S2R-800 showing winglet installation (Reference 5)

2.1 Geometric Parameters of Fuselage, Wing, Winglet, and Tails

Many of the geometric parameters used in the subsequent analysis were taken from manufacturer's specifications or actual blueprints. Pertinent dimensions for the fuselage, wing, winglet, horizontal tail, and vertical tail are shown in Figures 2.1.1, 2.1.2, 2.1.3, and 2.1.4, respectively. It should be noticed that the wing span as defined in Figure 2.1.2 is different from the wing span definition in Figure 2.1. This is done for convenience in the analysis so that the wing may be considered to be an untapered wing, 1.e., the tapered wing tips have been replaced with an untapered tip of equivalent area. This has little, if any, significant effects on the accuracy of the analysis as evidenced by Figures 3.1.1-3.2.3. Care must be taken not to generalize this conclusion to other airplane configurations.

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{f}}\right)_{\mathrm{WLT}} & =1.62 \mathrm{~m} \\
\left(\mathrm{~d}_{\mathrm{f}}\right)_{\mathrm{v}} & =0.61 \mathrm{~m} \\
\overline{\mathrm{~V}} & =7.72 \mathrm{~m}^{3} \\
\mathrm{~W} & =1.26 \mathrm{~m} \\
\mathrm{Z}_{\mathrm{W}} & =0.43 \mathrm{~m} \\
\mathrm{~h} & =1.26 \mathrm{~m}
\end{aligned}
$$

Figure 2.1.1 Geometric parameters of the fuselage

Figure 2.1.2: Definition sketch of wing dimensions

Figure 2.1.3: Definition sketch of horizontal tail

Figure 2.1.4: Definition sketch of vertical tail

2.2 Flight Condition Used in the Analvsis

The center of gravity of the airplane was fixed at 25 percent of the wing mean aerodynamic chord in the longitudinal direction and at 11 percent of the wing mac above the wing root. See Figure 2.1.

Since the S2R-800 is a low subsonic regime vehicle, the flow has been assumed to be incompressible; therefore, the results of the analysis are valid for both the climb and cruise speeds of the Ayres Thrush.

PRESENTATION OF RESULTS

In this chapter the results of the analysis are presented and discussed. Full scale wind-tunnel data ($\bar{q}=718.2 \mathrm{~N} / \mathrm{m}^{2}$, Reference 4) are compared to theoretical results where applicable. These results apply to both cruise and climb speeds of the Ayres Thrush S2R-800.

3.1 Lift Curve

The analytical method used in predicting the lift curve of the S2R-800 is presented in Chapter 4. The Quasi-Vortex-Lattice Method (QVLM) prediction of the lift curve is discussed in Section 6.2 . The results of both methods are compared to each other and to fullscale wind-tunnel data in Figure 3.1.1.

Figure 3.1 .1 shows that both predictions agree very well with wind tunnel data. The QVLM prediction underestimates the lift curve slope because QVLM assumes that the wing dominates the lift behavior of the total airplane and therefore doesn't take into account fuselage and/or empennage lift effects.

3.2 Sideslip Derivatives

In Figures 3.2.1 through 3.2.3, the calculated sideslip derivatives for the winglet off configuration are compared to full scale wind tunnel data. The calculations compare favorably with the tunnel data. In Figure 3.2 .2 the predicted $C_{n_{\beta}}$ increases with increasing angle of attack, while the tunnel data shows $C_{n_{\beta}}$ decreasing with increasing angle of attack. This is to be expected, since the
analytical method taken from Reference 1 does not account for fuselage and wing-fuselage interference effects on $C_{n_{\beta}}$. However, the nominal predicted value of $C_{n_{B}}$ agrees well with the average tunne1 $C_{n_{\beta}}$.

Comparing Figures 3.2.4-3.2.6 to 3.2.7-3.2.9, it can be seen that winglet effect on the sideslip derivatives has not been properly accounted for in the analytical method of Reference 1. This is especially evident in the sideslip derivative $C_{\ell_{B}}$, where the computer results (Reference 3) indicate that winglets have a very strong influence on $C_{\ell_{B}}$, while the analytical results (Referencel) show only a weak influence.

Figures 3.2.7-3.2.9 show that winglet cant angle has a significant influence on the sideslip derivatives. No wind tunnel data for the airplane-winglet configuration were available.

Figure 3.1.1: Lift curve of Ayres Thrush S2R-800.

Figure 3.2.1: Comparison of predicted $\mathrm{C}_{\mathrm{Y}_{\beta}}$, winglets off, to full-scale wind tunnel data for the Ayres Thrush S2R-800.
(ancom

Figure 3.2.2: Comparison of predicted $C_{n_{\beta}}$, winglets off, to full scale wind tunnel data for the Ayres Thrush S2R-800.

$\begin{aligned} \text { Figure 3.2.3: } & \text { Comparison of predicted } C_{\ell_{B}}, \\ & \text { winglets off, to full scale wing } \\ & \text { tunnel data for the Ayres Thrush } \\ & \text { S2R-800. }\end{aligned}$

	-	S2R-S00, No SLT		
	----	S2R-800 + WLT	20°	Caini
		S2R-600 + NLT	0°	Cant
		S2R-800 + WLT	-10°	CANT

Figure 3.2.4: Effect of winglet cant angle on airplane $C_{y_{\beta}}$ based on DATCOM
methods.

Figure 3.2.5: Effect of winglet cant angle on airplane C_{n} based on DATCOM
methods.

Figure 3.2.6: Effect of winglet cant angle on airplane C_{l} based on DATCOM methods.

$$
\begin{array}{cc}
- & \text { WING ALONE } \\
- \text { WING }^{-} \text {WLT } 20 \mathrm{deg} \text { cant } \\
- & \text { WING + WLT } \quad 0 \text { deg cant } \\
- & \text { WING + WLT }-10 \mathrm{deg} \text { cant } \\
i_{\text {WLT }}=0 \operatorname{deg}
\end{array}
$$

Figure 3.2.7: Effect of winglet cant angle on $C_{y_{\beta}}$ based on QVLM computation for the S2R-800.

$$
\begin{array}{rc}
-\quad \text { WING ALONE } \\
-\quad \text { WING + WLT } 20 \text { deg cant } \\
- & \text { WING + WLT } 0 \text { deg cant } \\
- & \text { WING + WLT }-10 \text { deg cant } \\
i_{\text {WLT }}=0 \mathrm{deg}
\end{array}
$$

$$
\begin{aligned}
& \text { Figure 3.2.8: Effect of winglet cant angle on } C_{n_{\beta}} \text { based } \\
& \\
& \text { on QVLM computation for the } \operatorname{s2R}-800 .
\end{aligned}
$$

$$
\begin{array}{cc}
-\quad \text { WING ALONE } \\
-\quad \text { WING + WLT } 20 \text { deg cant } \\
- & \text { WING + WLT } 0 \text { deg cant } \\
-\quad \text { WING }+ \text { WLT }-10 \text { deg cant } \\
i_{\text {WLT }}=0 \text { deg }
\end{array}
$$

Figure 3.2.9: Effect of winglet cant angle on $C_{\ell_{B}}$ based on QVLM computation for the S2R-800.

In this chapter the propeller-off, horizontal tail-off lift behavior of the Ayres Thrush will be discussed. This chapter presents the methods used in calculating the lift characteristics of the Thrush and illustrates the contribution of each relevant component to these characteristics. Table 2.1 lists the pertinent parameters and their magnitudes used in the analysis. All calculations were made in English units. Extensive use of Reference 1 was made to predict the lift behavior of the Thrush.

4.1 Zero Lift Angle of Attack, α_{0}

The zero lift angle of attack at low speeds of the complete airplane, minus the horizontal tail, is considered to be relatively independent of fuselage effects and is primarily determined by the wing airfoil properties. Therefore, the airplane zero lift angle will be found by considering only the wing including the effect of wing twist.
4.1.1 Wing Contribution, $\left(\alpha_{0}\right)_{\theta=0}+\left(\alpha_{0}\right)_{\theta}$

For untwisted constant section wings the zero lift angle of attack is given by Equation 4.1.1.1 from Reference 1.

$$
\begin{equation*}
(\alpha)_{\theta=0}=\alpha_{i}-\frac{c_{\ell_{i}}}{C_{\ell \alpha}} \quad \operatorname{deg} \tag{4.1.1.1}
\end{equation*}
$$

where:
α_{i} is the angle of attack for the wing section design lift coefficient, obtained from Table 2.1
$C_{\ell_{i}}$ is the wing section design lift coefficient, from Table 2.1
$C_{\ell_{\alpha}}$ is the wing section lift curve slope, from Table 2.1
To account for wing twist, Equation 4.1.1.2 from Reference 1 is used.

$$
\begin{equation*}
\left(\alpha_{0}\right)_{\theta}=\left(\frac{\Delta \alpha_{o}}{\theta}\right)^{\theta} \quad \operatorname{deg} \tag{4.1.1.2}
\end{equation*}
$$

where:
$\frac{\Delta \alpha_{0}}{\theta}$ is the change in wing zero-lift angle of attack due to a unit change in linear wing twist, obtained from Figure 4.1.1.1
θ is the twist of the wing tip with respect to the root section, in degrees (negative for washout), from Table 2.1.

Table 4.1.1.1 sumarizes the wing contribution to the airplane zero lift angle of attack.
4.1.2 α_{0} of the Ayres Thrush

The zero lift angle of attack of the complete airplane, prop-off, horizontal tail-off, is considered to be identical to the wing-alone α_{0}. Therefore, for the Ayres Thrush:

$$
\alpha_{0}=-3.69 \mathrm{deg}
$$

4.2 Lift-Curve Slope, $C_{L_{\alpha}}$

For a conventional horizontal tail-off configuration, the liftcurve slope in the linear angle-of-attack range can be found by considering the following components:
(1) Wing, including interference effects
(2) Fuselage, including nose lift and fuselage-wing interference.

4.2.1 Wing Contribution to $\mathrm{C}_{\mathrm{L}_{\alpha}}$

The wing-alone lift-curve slope, based on exposed planform dimensions, for a straight tapered wing in the low subsonic region can be calculated using the standard Polhamus equation.

$$
\begin{equation*}
\left(C_{L_{\alpha}}\right)_{W_{(e)}}=\frac{2 \pi A_{e} / 57.3}{2+\sqrt{\frac{A_{e}^{2}}{R^{2}}\left(1+\tan ^{2} \Lambda_{W_{c / 2}}\right)+4}} \text { per deg } \tag{4.2.1.1}
\end{equation*}
$$

where:
A_{e} is the aspect ratio of the wing based on its exposed planform, obtained from Table 2.1.
$K=\frac{{ }_{c_{\ell}}}{2 \pi}$
$\Lambda_{c / 2}$ is the wing sweep angle at the half-chord location, from Table 2.1.

Equation 4.2.1.2 from Reference 1 accounts for wing-fuselage interference on the wing contribution to C_{L}.

$$
\begin{equation*}
\left(C_{L_{\alpha}}\right)_{w_{(f)}}=K_{w_{(f)}}\left(C_{L_{\alpha}}\right)_{w_{(e)}}{\stackrel{S}{S_{w}}}^{S_{w}} \quad \text { per } \operatorname{deg} \tag{4.2.1.2}
\end{equation*}
$$

where:
$K_{W}(f)$ is the ratio of the wing lift in the presence of the fuselage to the wing-alone lift, obtained from Figure 4.2.1.1.
S_{e} is the exposed wing area, obtained from Table 2.1.
The summary calculation for the wing contribution to $C_{L_{\alpha}}$ is shown in Table 4.2.1.1.

For the Ayres Thrush:

$$
\left(C_{L_{\alpha}}\right)_{W}=0.0732 \text { per deg }
$$

4.2.2 Fuselage Contribution to $C_{L_{\alpha}}$

The fuselage contribution to $C_{L_{\alpha}}$ is accounted for in Equation 4.2.2.1 taken from Reference 1.

$$
\begin{equation*}
\left(C_{L_{\alpha}}\right)_{f(w)}=\left[K_{f(w)}+K_{N}\right]\left(C_{L_{\alpha}}\right)_{W(e)} \frac{S_{e}}{S_{w}} \quad \text { per } \operatorname{deg} \tag{4.2.2.1}
\end{equation*}
$$

where:
$\mathrm{K}_{\mathrm{f}}(\mathrm{w})$ is the ratio of the fuselage lift in the presence of the wing to the wing alone lift, obtained from Figure 4.2.1.1.

$$
K_{N}=\frac{2}{57.3\left(C_{L_{\alpha}}\right)_{W}(f)}\left(\frac{\pi r^{2}}{S_{e}}\right) \text { and is the fuselage nose lift based on }
$$

slender body theory where:
r is the radius of the equivalent circular fuselage, obtained from Figure 2.1.1.

The summary calculation for the fuselage contribution to $C_{L_{\alpha}}$ is shown in Table 4.2.2.1

For the Ayres Thrush:

$$
\left(C_{L_{\alpha}}\right)_{f(w)}=0.0130 \quad \text { per deg. }
$$

4.2.3 $C_{L_{\alpha}}$ of the Complete Airplane, Horizontal Tail Off

The horizontal tail-off, power-off lift-curve slope of the airplane is given as:

$$
c_{L_{\alpha}}=\left(c_{L_{\alpha}}\right)_{(f)}+\left(c_{L_{\alpha}}\right)_{f(w)} \quad \text { per deg }
$$

Table 4.2.3.1 summarizes the contribution of each component.
For the Ayres Thrush:

$$
C_{L_{\alpha}}=0.0862 \quad \text { per } \operatorname{deg}
$$

4.3 Lift-Curve in the Non-Linear Region

To obtain a description of the non-linear portion of the liftcurve, propeller and horizontal tail off, it will be necessary to consider the following components:
(1) the wing and wing-fuselage $C_{L_{\max }}$
(2) the wing and wing-fuselage angle of attack at $C_{L_{\text {max }}}$
(3) the upper linearity of the wing lift-curve slope.

4.3.1 $\mathrm{C}_{\mathrm{L}_{\max }}$ of the Wing, Wing-Fuselage

The maximum lift coefficient of a wing with twist may be estimated from the assumption that $C_{L_{\max }}$ is reached when the local section lift coefficient, C_{ℓ}, at any position along the span is equal to the local C_{ℓ} for the corresponding section. The method used is taken from max Reference 2.

The first step in finding $C_{L_{\max }}$ of the wing is to calculate the variation of the local section lift-coefficient with span location, at a total C_{L} of 1 . This is done with Equation 4.3.1.1, which only applies to unswept, untapered, linearly twisted wings.

$$
\begin{equation*}
c_{\ell}=c_{\ell}+c_{\ell b} \tag{4.3.1.1}
\end{equation*}
$$

where:
C_{ℓ} is the wing section lift coefficient due to wing angle of attack, given by Equation 4.3.1.2
$C_{\ell_{b}}$ is the wing section lift coefficient due to wing twist, given by Equation 4.3.1.3.

$$
\begin{align*}
& C_{\ell_{a}}=c_{1}+\left(C_{2}+c_{3}\right) \frac{4}{\pi} \sqrt{1-\pi^{2}} \tag{4.3.1.2}\\
& C_{\ell_{b}}=C_{\ell_{a}} \theta C_{\ell} c_{4}\left(n+\frac{\Delta \alpha_{o}}{\theta}\right) \tag{4.3.1.3}
\end{align*}
$$

where:
$C_{1}, C_{2}, C_{3}, C_{4}$ are coefficients for additional and basic lift distributions, obtained from Figure 4.3.1.1
$\eta=\frac{y}{b / 2}$ and is the wing spanwise station
θ is the wing twist measured from the wing root in degrees, negative for washout, from Table 2.1
$\frac{\Delta \alpha_{0}}{\theta}$ is the ratio of the change in wing zero lift angle of attack with wing twist, obtained from Figure 4.1.1.1.

Table 4.3.1.1 summarizes the calculation of the wing lift distribution. From this table the minimum value of the ratio of $\left(C_{\ell} \max -C_{\ell}\right)$ to $C_{l_{a}} @ C_{L}=1$ is considered to be the maximum lift coefficient of the wing; C_{ℓ} is the wing section maximum lift coefficient. Table 4.3.1.1 also summarizes the calculation of $C_{L_{\max }}$ for the wing.

For the Ayres Thrush:

$$
\left(C_{L_{\max }}\right)_{W}=1.412
$$

To account for the presence of the fuselage, Reference I. gives the following equation:

$$
\begin{equation*}
\left(C_{L_{\max }}\right)_{w f}=\frac{\left(C_{L_{\max }}\right)_{w f}}{\left(C_{L_{\max }}\right)_{W}}\left(C_{L_{\max }}\right)_{W} \tag{4.3.1.4}
\end{equation*}
$$

where:

$$
\frac{\left(C_{L_{\max }}\right)_{w f}}{\left(C_{L_{\max }}\right)_{W}} \text { is the ratio of the wing and fuselage } C_{L_{\max }} \text { to the wing- }
$$

alone $C_{L_{\text {max }}}$, obtained from Figure 4.3.1.2.
Table 4.3.1.2 summarizes the calculation for $C_{L_{\max }}$ of the wingfuselage.

For the Ayres Thrush:

$$
\left(C_{L_{\max }}\right)_{w f}=1.412
$$

4.3.2 The Wing and Wing-Fuselage Angle of Attack at $C_{L_{\max }}$

For high-aspect-ratio, constant-section wings, the angle of attack at the wing $C_{L_{\max }}$ is computed using Equation 4.2.3.1 from Reference 1 .

$$
\begin{equation*}
\left(\alpha_{C_{L_{\max }}}\right)_{W}=\frac{\left(C_{L_{\max }}\right)_{W}}{\left(C_{L_{\alpha}}\right)_{W}}+\alpha_{0}+\Delta \alpha_{C_{(e)}} \tag{4.3.2.1}
\end{equation*}
$$

where:
$\left(C_{L_{\text {max }}}\right)_{w}$ is obtained from Section 4.3.1 and is the wing maximum lift coefficient
$\left(C_{L_{\alpha}}\right)_{{ }_{W}}$ (e) is obtained from Section 4.2.1 and is the exposed wing 1ift-curve slope
α_{0} is obtained from Section 4.1 .1 and is the wing zero lift angle of attack
${ }^{\Delta \alpha_{C_{~}}}{ }_{\text {max }}$ is the angle of attack increment for subsonic maximum lift, obtained from Figure 4.3.2.1.

To account for the fuselage, Reference 1 gives the following equation:

$$
\begin{equation*}
\left(\alpha_{C_{L_{\max }}}\right)_{w f}=\frac{\left(\alpha_{C_{L_{\max }}}\right)_{w f}}{\left(\alpha_{C_{L_{\max }}}\right)_{W}} \quad\left(\alpha_{C_{L_{\max }}}\right)_{W} \tag{4.3.2.2}
\end{equation*}
$$

where:

to the wing-alone angle of attack at $C_{L_{\text {max }}}$, obtained from Figure 4.3.2.2.
A summary calculation for the angle of attack at $C_{L_{\max }}$ is shown in Table 4.3.2.1.

For the Ayres Thrush:

$$
\left(\alpha_{C_{L_{\max }}}\right)_{w f}=17.2 \mathrm{deg}
$$

4.3.3 Upper Limit of Linearity of the Lift Curve

The angle at which the lift-curve slope is no longer linear, for the tail-off Thrush configuration, is considered to be approximately equal to the corresponding angle for the wing-alone configuration. From Reference 1:

$$
\begin{equation*}
\alpha^{+}=\alpha_{1}^{+}+\frac{\Delta \alpha_{o}}{\theta} \cdot \theta \quad \operatorname{deg} \tag{4.3.3.1}
\end{equation*}
$$

where:
α_{1}^{+}is the section angle of attack, in degrees, at which the liftcurve slope is no longer linear, from Table 2.1.

A summary calculation is shown in Table 4.3.3.1.
For the Ayres Thrush:

$$
\alpha^{+}=8.1 \quad \text { degrees }
$$

4.4 Summary

In this chapter an analytical method for predicting the lift behavior of the Ayres Thrush was presented. Table 4.4.1 below lists the
pertinent lift characteristics for the Ayres Thrush, horizontal tail and propeller off. Figure 4.4 .1 compares these predictions to actual full-scale wind tunnel data.

Table 4.4.1: Lift Characteristics of the Ayres Thrush, Tail and Propeller Off

Symbo1	Description	Reference	Magnitude
α_{0}	Zero lift angle of attack, deg.	Section 4.1.1	-3.69
$C_{L_{\alpha}}$	Linear lift-curve slope, per deg.	Section 4.2.1	0.0862
$C_{L_{\max }}$	Maximum lift coefficient	Section 4.3.1	1.412
$\mathrm{C}_{L_{\text {max }}}$	Angle of attack at the maximum lift coefficient, deg.	Section 4.3.2	17.2
α^{+}	Angle of attack for liftcurve slope is no longer linear, deg.	Section 4.3.3	8.1

Table 4.1.1.1: Wing Contribution to α_{0}

Table 4.2.1.1: Wing Contribution to $C_{L_{\alpha}}$

Table 4.2.2.1: Fuselage Contribution to $C_{L_{\alpha}}$

Table 4.2.3.1: Linear $C_{L_{\alpha}}$ of the Ayres Thrush

Table 4.2.1.1
$\left(C_{L_{\alpha}}\right)_{f_{(w)}}$
Table 4.2.2.1
0.0130
$\left(\mathrm{C}_{L_{\alpha}}\right)_{\text {prop off }}$ horiz. tail off
Equation 4.2.3.1
.0732
.0862

Table 4.3.1.1: Maximum Wing Lift Coefficient

η	$\begin{gathered} C_{\ell} \\ \text { Eq. } 4 \cdot 3 \cdot 1.2 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{\ell_{b}} \\ \text { Eq. } 4.3 .1 .3 \\ \hline \end{gathered}$	$\frac{\mathrm{C}_{\ell} \max ^{-C_{\ell}}}{C_{\ell}}$
0	1.160	. 0322	1.412
0.1	1.156	. 0246	1.424
0.2	1.543	. 0170	1.447
0.3	1.120	. 00941	1.482
0.35	1.106	. 00572	1.505
0.4	1.088	. 00211	1.533
0.45	1.168	-. 00138	1.565
0.5	1.045	-. 00472	1.603
0.6	0.988	-. 0108	1.701
0.7	0.914	-. 0159	1.844
0.8	0.816	-. 0195	2.070
0.9	0.675	-. 0205	2.505
1.0	0.300	-. 0110	5.603

Table 4.3.1.2: Summary Calculation for Wing-Fuselage $C_{L_{\max }}$

Symbol Description Reference Magnitude

$\frac{\left(C_{L_{\max }}\right)_{w f}}{\left(C_{L_{\max }}\right)_{W}} \quad$ Ratio of the wing and fuselage $C_{L_{\max }}$ to Figure 4.3.1.2 \quad the wing-alone $C_{L_{\max }}$	

Summary: $\quad\left(\mathrm{C}_{\mathrm{L}_{\text {max }}}\right)_{\text {wf }}=1.412$

Table 4.3.2.1: Summary Calculation for ${ }^{\alpha} C_{L_{\max }}$

Table 4.3.3.1: Summary for α^{+}Calculations

Symbol	Description	Reference	Magnitude
α_{1}^{+}	Section angle of attack at which the liftcurve slope is no longer linear, deg.	Table 2.1	7.5
$\frac{\Delta \alpha_{o}}{\theta}$	Incremental zero lift angle due to wing twist	Figure 4.1.1.1	-0.43
θ	Wing-tip twist with respect to the wing root, neg for washout, deg.	Table 2.1	-1.5

Figure 4.1.1.1: Change in Wing Zero Lift Angle of Attack
Due to Wing Twist (Reference 1)

Figure 4.2.1.1: Lift Ratios $K_{W(f)}$ and $K_{f(w)}$ (Reference 1)

Figure 4.3.1.1: Coefficients for Additional and Basic Lift Distribution (Reference 2)

Figure 4.3.1.2(a): Taper Ratio Correction Factor $C_{L_{\max }}$ (Reference 1)

Figure 4.3.1.2(b): Wing-Fuselage Maximum Lift (Reference 1)

Figure 4.3.2.1: Angle of Attack Increment for
Subsonic Maximum Lift (Reference 1)

Figure 4.3.2.2: Angle of Attack for Maximum Lift. (Reference 1)

Figure 4.4.1: S2R-800 lift curve based on DATCOM methods.

CHAPTER 5

PREDICTION OF PROPELLER-OFF LATERAL-DIRECTIONAL STATIC STABILITY USING AN AYALYTICAL METHOD

In this chapter an analytical method for predicting the propeller-off, lateral-directional behavior of the Ayres Thrush will be discussed. The derivatives that are considered here are the side force due to sideslip derivative, $C_{y_{B}}$; dihedral effect, $C_{\ell_{\beta}}$; and directional stability, $C_{n_{\beta}}$. The methods used are primarily from Reference 1.

5.1 Side Force Derivative, $C y_{B}$

The side force due to sideslip, $\mathrm{C}_{\mathrm{y}_{\beta}}$, of the complete airplane is found by considering the contributions of the following components:
(1) Wing
(2) Fuselage
(3) Vertical tail
(4) Winglets

Unless the horizontal tail has large twist or dihedral, it can be safely ignored in the calculations. These contributions to $C_{y_{\beta}}$ can be represented by:

$$
\begin{gather*}
\left.\left(C_{y_{B}}\right)_{\text {PROP OFF }}=\left(C_{y_{B}}\right)_{w_{\Gamma}}+\left(C_{y_{B}}\right)_{f}+\left(C_{y_{B}}\right)_{v(w f h}\right) \tag{5.1.1}\\
\left(C_{y_{B}}\right)_{\text {PROP OFF }}=\left(C_{y_{B}}\right)_{\text {PROP OFF }}+\left(C_{y_{B}}\right)_{\text {WLT }} \tag{5.1.2}
\end{gather*}
$$

5.1.1 Wing Contribution

The wing contribution to $C_{y_{\beta}}$ is primarily due to wing dihedral.

This can be computed by Equation 5.1.1.1 from Reference 1.

$$
\begin{equation*}
\left(C_{Y_{B}}\right)_{W_{\Gamma}}=-0.0001\left(\Gamma_{W}\right) \text { per deg } \tag{5.1.1.1}
\end{equation*}
$$

where:
F_{w} is the wing dihedral angle in degrees.
For the Ayres Thrush the wing dihedral angle is 3.5 degrees. Therefore,

$$
\left(C_{y_{B}}\right)_{w_{\Gamma}}=-.00035 \text { per deg }
$$

5.1.2 Fuselage Contribution to $C_{y_{B}}$

The fuselage side-force due to sideslip contribution can be considered as the sum of the side forces on the body and the wingbody interference. The fuselage alone is the main contributor. The wing-fuselage interference is primarily a function of wing vertical position on the fuselage. The total fuselage contribution to $C_{y_{\beta}}$ at subsonic Mach numbers is given by Equation 5.1.2.1 from Reference 1.

$$
\begin{equation*}
\left(C_{y_{B}}\right)_{f}=k_{i} \quad\left(C_{y_{B}}\right)_{B} \frac{\bar{v}^{2 / 3}}{S_{w}} \quad \text { per deg } \tag{5.1.2.1}
\end{equation*}
$$

where :
K_{i} is the wing-fuselage interference factor, obtained from Figure 5.1.2.1
$\left(C_{y_{B}}\right)$ is the body alone side force due to sideslip. For an estimation of the body side force due to sideslip, slender-body theory can be used, which gives $\left(C_{y_{B}}\right)_{B}=-0.0195$ per deg.
$\overline{\mathrm{V}}$ is the fuselage volume, obtained from Figure 2.1.1
S_{w} is the wing area, from Table 2.1
Table 5.1.2.1 is a summary calculation for the fuselage contribution to $\mathrm{C}_{\mathrm{y}_{\beta}}$.

5.1.3 Vertical Tail Contribution to $\mathrm{C}_{\mathrm{y}_{\beta}}$

The vertical tail contribution to $C_{y_{B}}$ is affected by the location of the horizontal tail, the fuselage crossflow on the vertical tail, and the wing-fuselage-induced sidewash.

Reference 1 accounts for horizontal tail and crossflow effects by computing an effective aspect ratio. The vertical tail effective aspect ratio is:

$$
\begin{equation*}
A_{v e f f}=A_{v}\left(\frac{A_{v(f)}}{A_{v}}\right)\left\{1+K \underset{h}{ }\left[\frac{A_{v(f h)}}{A_{v(f)}}-1\right]\right\} \tag{5.1.3.1}
\end{equation*}
$$

where:
$\frac{A_{v}(f)}{A_{v}}$ is the ratio of the aspect ratio of the vertical tail in the presence of the fuselage to that of the isolated tail, obtained from Figure 5.1.3.1
A_{v} is the geometric aspect ratio of the vertical tail, from Table 2.1
$\frac{A_{v(f h)}}{A_{v}(f)}$ is the ratio of the vertical tail aspect ratio in the presence of the horizontal tail and fuselage to that of the panel in the presence of the fuselage alone, obtained from Figure 5.1.3.1
K_{h} is a factor accounting for the relative size of the horizontal and vertical tails, obtained from Figure 5.1.3.1.

Table 5.1.3.1 shows the summary calculations made to obtain the effective aspect ratio of the vertical tail.

The effective aspect ratio found is used to calculate the lift-curve slope of the vertical tail. The standard Polhamus equation is used for this calculation.

where:
$K_{v}=\frac{\left(C_{\ell_{X}}\right)_{v}}{2 \pi}$
$\left(\Lambda_{c / 2}\right)_{v}$ is the mid-chord sweep angle of the vertical tail, obtained from Table 2.1

Table 5.1.3.1 summarizes the calculation for computing $\left(C_{L_{\alpha}}\right) v^{*}$
The complete vertical tail contribution to $\mathrm{C}_{y_{B}}$ is given in Equation 5.1.3.2 from Reference 1. This equation adjusts the vertical tail ift-curve slope to account for wake and sidewash effects.

$$
\begin{equation*}
\left(C_{y_{B}}\right)_{v(w f h)}=-K_{i}^{\prime}\left(C_{L_{\alpha}}\right)_{v(f h)}\left(1+\frac{\partial \sigma}{\partial \beta}\right) \frac{\bar{q}^{\prime} v}{\bar{q}_{\infty}} \frac{s}{S_{w}} \text { per rad } \tag{5.1.3.2}
\end{equation*}
$$

where:
K_{1}^{\prime} is a factor which accounts for the relative size of the fuselage near the vertical tail to the size of the tail, from Figure 5.1.3.1.

$$
\begin{equation*}
\left(1+\frac{\partial \sigma}{\partial \beta}\right) \frac{\bar{q}_{v}}{\bar{q}_{\infty}}=.725+3.06 \frac{S_{v} / S_{w}}{1+\cos \left(\Lambda_{c / 4}\right)_{v}}+\frac{0.4 Z_{w}}{\left(w_{f}\right)_{w}}+0.009 A_{w} \tag{5.1.3.3}
\end{equation*}
$$

where:
$\left(\Lambda_{c / 4}\right)_{v}$ is the quarter-chord sweep of the vertical tail, obtained from Table 2.1
Z_{w} is the vertical distance from the centerline of the equivalent fuselage to the quarter-chord point of the root chord of the exposed wing panel, obtained from Figure 2.1.1
$\left(w_{f}\right)_{W}$ is the width of the equivalent circular fuselage at the wing, obtained from Figure 2.1.1.

Table 5.1.3.1 shows the summary calculations used to find the vertical tail contribution to $C_{y_{B}}$.

5.1.4 Winglet Contribution to $C_{y_{B}}$

Strictly speaking, at the present time there exist no analytical methods for calculating winglet effect on $C_{y_{B}}$. However, in this section this contribution will be approximated by treating the winglets as vertical tails at the wing tips.

Twin vertical tails are treated in Reference l. This method includes the effect of sidewash. Depending on winglet geometry, an effective aspect ratio is calculated from Figure 5.1.4.1:

$$
\begin{equation*}
\left(C_{y_{\beta}}\right)_{W L T}=\frac{-\left(C_{y_{B}}\right)_{v(w f h)}}{\left(C_{y_{B}}\right)_{V_{e f f}}}\left(C_{y_{B}}\right)_{v_{e f f}} \frac{2 S_{W L T}}{57.3 S_{W}} \text { per deg } \tag{5.1.4.1}
\end{equation*}
$$

where:
$\frac{\left(C_{y_{B}}\right)_{r(w f h)}}{\left(C_{y_{B}}\right)_{v_{e f f}}}$ is a mutual interference factor, obtained from Figure
5.1.4.1
 per rad, obtained from Figure 5.1.4.1.

To account for winglet cant angle effect on the side-force derivative, the following expression is used:

$$
\begin{equation*}
\left(C_{y_{B}}\right)_{W L T} \Gamma_{W L T}=-.0001\left(\Gamma_{W L T}\right) \frac{2 S_{W L T}}{S_{W}} \text {, per deg } \tag{5.1.4.2}
\end{equation*}
$$

where:
$\Gamma_{\text {WLT }}$ is the winglet cant angle (see Figure 2.2).
Summary calculations are shown in Table 5.1.4.1.
5.1.5 $\mathrm{C}_{\mathrm{y}_{\beta}}$ of the Complete Airplane, Winglets On and Winglets Off The side-force due to sideslip derivative, $\mathrm{C}_{\mathrm{y}_{B}}$, of the Ayres Thrush, winglets and power off, is:

$$
\left(C_{y_{B}}\right)_{\text {PROP OFF }}=-.0056 \text { per deg. }
$$

Table 5.1.5.1 summarizes the calculations and lists the effect of winglet cant angle on $C_{y_{B}}$ of the airplane.

5.2 Yawing Moment Derivative, C_{n}

The weathercock stability, $C_{n_{B}}$, is found by considering the contributions of the following airplane components:
(1) Wing
(2) Fuselage, including wing-fuselage interference
(3) Tails
(4) Winglets

These contributions to $C_{n_{\beta}}$ can be represented by:

$$
\begin{align*}
& \left.\left(C_{n_{\beta}}\right)_{\text {PROP OFF }}=\left(C_{n_{B}}\right)_{W}+\left(c_{n_{\beta}}\right)_{f(w)}+\left(C_{n_{B}}\right)_{V(w f h}\right) \text { per deg } \tag{5.2.1}\\
& \left(C_{n_{\beta}}\right)_{\text {PROP OFF }}=\left(C_{n_{B}}\right)_{\text {PROP OFF }}+\left(c_{n_{B}}\right)_{\text {WLT }} \text { pNT PFF } \tag{5.2.2}
\end{align*}
$$

5.2.1 Wing Contribution to $\mathrm{C}_{\mathrm{n}_{\beta}}$

The wing contribution to weathercock stability is primarily due to the asymmetrically induced drag distribution caused by an asymmetrical lift distribution.

For low subsonic speeds, Reference 1 gives the yawing moment derivative as:

$$
\begin{gather*}
\left(C_{n_{B}}\right)_{w}=\frac{C_{L_{w}}^{2}}{57.3}\left\{\frac{1}{4 \pi A_{w}}-\frac{\tan \Lambda_{c / 4}}{\pi A_{w}\left(A_{w}+4 \cos \Lambda_{c / 4}\right)}\left[\cos \Lambda_{c / 4}-\frac{A_{w}}{2}+\right.\right. \\
 \tag{5.2.1.1}\\
\\
\left.\left.\frac{-A_{w}^{2}}{8 \cos \Lambda_{c / 4}}+\frac{6 \bar{x} \sin \Lambda_{c / 4}}{\bar{c}_{w} A_{w}}\right]\right\} \quad \text { per deg }
\end{gather*}
$$

where, as obtained from Table 2.1:
A_{W} is the wing aspect ratio
$\Lambda_{c / 4}$ is the sweep of the wing quarter-chord line
\bar{c}_{w} is the wing mean aerodynamic chord
\bar{x} is the location of the wing aerodynamic center behind the center of gravity on the mean aerodynamic chord.

Since the wing on the $\operatorname{S2R}-800$ is unswept, Equation 5.2.1.1 reduces to:

$$
\begin{equation*}
\left(C_{n_{B}}\right)_{w}=\frac{C_{L_{w}}^{2}}{229.2 \pi A_{w}} \quad \text { per deg } \tag{5.2.1.2}
\end{equation*}
$$

where:
$C_{L_{W}}$ is the wing lift coefficient from Figure 5.2.1.1.
The contribution of the wing to $C_{n_{\beta}}$ of the subject airplane is calculated in Table 5.2.1.1 to be:

$$
\left(C_{n_{B}}\right)_{w}=.000239 C_{L}^{2} \quad \text { per deg }
$$

5.2.2 Fuselage Contribution to $C_{n_{B}}$

The net contribution of the fuselage and wing-fuselage interference to $C_{n_{B}}$, based on wing area and wing span and referenced to a selected center-of-gravity position, may be obtained from the following equation:

$$
\begin{equation*}
\left(C_{n_{\beta}}\right)_{f(w)}=-K_{N} \frac{\left(s_{f}\right)_{s}}{s_{w}} \frac{l_{f}}{b_{w}} \tag{5.2.2.1}
\end{equation*}
$$

where:
$\left(S_{f}\right)_{s}$ is the fuselage side area, from Figure 2.1.1
S_{W} is the wing area, from Table 2.1
ℓ_{f} is the fuselage length, from Figure 2.1.1
K_{N} is an empirical correlating factor for fuselage plus wingfuselage interference, obtained from Figure 5.2.2.1.

The contribution of the fuselage of the subject airplane to $C_{n_{B}}$ is calculated in Table 5.2.2.1.

5.2.3 Vertical Tail Contribution to $C_{n_{\beta}}$

The contribution of the vertical tail to the weathercock stability in the presence of the wing, fuselage, and horizontal tail is obtained from:
$\left(C_{n_{B}}\right)_{v(w f h)}=-\left(C_{y_{B}}\right)_{v(w f h)}\left\{\frac{\ell_{v} \cos \alpha-z_{v} \sin \alpha}{b_{w}}\right\}$ per deg
where:
$\left(C_{y_{B}}\right)_{v(w f h)}$ is the contribution of the vertical tail to the side force due to sideslip, obtained from Section 5.1.3
ℓ_{v}, Z_{v} are the distances from the center of gravity to the quarter chord of the vertical tail mean aerodynamic chord, parallel and perpendicular, respectively, to the x-body axis with Z_{v} positive below the center of gravity, obtained from Figure 2.1.4.

The contribution of the vertical tail to the weathercock stability of the subject airplane is calculated in Table 5.2.3.1.

5.2.4 Winglet Contribution to $C_{n_{B}}$

Winglet contribution to $C_{n_{\beta}}$ is obtained in a similar manner to the vertical tail calculations.

$$
\begin{equation*}
\left(c_{n_{\beta}}\right)_{W L T}=-\left(c_{y_{B}}\right)_{W L T}\left\{\frac{\ell_{W L T} \cos \alpha-z_{W L T} \sin \alpha}{b_{W}}\right\} \text { per deg } \tag{5.2.4.1}
\end{equation*}
$$

where :
($\left.C_{y_{\beta}}\right)_{W L T}$ is the side force due to sideslip of the winglets, Erom Section 5.1.4
$\ell_{\text {WLT, }} Z_{\text {WLT }}$ are the distances from the center of gravity to the quarter chord of the winglet mean aerodynamic chord, parallel and perpendicular, respectively, to the x-body axis with $Z_{\text {WLT }}$ positive below the center of gravity, obtained from Figure 2.2.

This approximate method does not take into account winglet-wing interference or changes in wing span loading that winglets produce. Both of these effects can be significant.

The contribution of the winglets to $C_{n_{\beta}}$ of the subject airplane is calculated in Table 5.2.4.1.
5.2.5 Weathercock Stability of the Complete Airplane, Winglets on and Winglets Off

The weathercock stability, $C_{n_{\beta}}$, of the subject airplane, winglets and power off, is given by Equation 5.2.1. Table 5.2.5.1 summarizes the calculations and lists the effects of winglet cant angle on C_{n}.

5.3 Rolling Moment Derivative, $C_{\ell_{\beta}}$

The airplane rolling moment due to sideslip, $C_{\ell_{B}}$, is composed of the following contributions:
(1) Wing
(2) The effect of the fuselage on the wing contribution
(3) Vertical tail
(4) Winglets

These contributions to $C_{\ell_{\beta}}$ can be represented as :

$$
\begin{align*}
& \left(C_{\ell_{B}}\right)_{\text {PROP OFF }}=\left(C_{\ell_{B}}\right)_{W}+\left(C_{\ell_{B}}\right)_{f(w)}+\left(C_{\ell_{B}}\right)_{V(w f h)} \text { per deg } \tag{5.3.1}\\
& \left(C_{\ell_{B}}\right)_{\text {PROP OFF }}=\left(C_{\ell_{B}}\right)_{\text {PROP OFF }}+\left(C_{\ell_{B}}\right)_{\text {WLT }} \text { per deg } \tag{5.3,2}
\end{align*}
$$

5.3.1 Wing Contribution to $C_{\ell_{B}}$

At low angles of attack and subsonic speeds, the dihedral effect contribution by the wing is primarily a function of wing aspect ratio, taper ratio, and dihedral angle.

$$
\begin{equation*}
C_{\ell}=C_{L_{w}}\left(\frac{C_{\ell_{B}}}{C_{L}}\right)_{A}+\Gamma_{w}\left(\frac{C_{\ell_{B}}}{\Gamma_{w}}\right) \text { per deg } \tag{5.3.1.1}
\end{equation*}
$$

where:
$C_{L_{w}}$ is the wing lift coefficient, from Figure 5.2.1.1
$\left(\frac{\ddot{C}_{\ell_{B}}}{\Gamma_{W}}\right)$ is the effect of uniform geometric dihedral on $C_{\ell_{B}}$, obtained from Figure 5.3.1.1
$\left(\frac{C_{\ell_{B}}}{C_{L}}\right)_{A}$ is the aspect ratio contribution to $C_{\ell_{B}}$, obtained from
Figure 5.3.1.2
Γ_{w} is the wing geometric dihedral, from Table 2.1. The contribution of the wing to $C_{\ell_{\beta}}$ of the subject airplane is calculated in Table 5.3.1.1.

5.3.2 Effect of Fuselage on Wing Contribution to $C_{\ell_{\beta}}$

While the contribution of the fuselage alone to $C_{\ell_{B}}$ is negligible, the fuselage does influence the flow over the wing which can alter the wing contribution significantly. Equation 5.3.2.i from Reference 1 accounts for this wing-fuselage interference.

$$
\begin{equation*}
\left(C_{\ell_{B}}\right)_{f(w)}=\frac{1.2 \sqrt{A_{w}}}{57.3} \frac{z_{w}}{b_{w}}\left(\frac{h+w}{b_{w}}\right)-.0005 \sqrt{A_{w}}\left(\frac{\left(d_{f}\right)_{w}}{b_{w}}\right)^{2} \Gamma_{w} \text { per deg } \tag{5.3.2.1}
\end{equation*}
$$

where:
$\left(d_{f}\right)_{w}$ is the diameter of the equivalent circular fuselage at the wing, obtained from Figure 2.1.1
Z_{W} is the vertical position of wing below centerline of equivalent circular fuselage, from Figure 2.1.1
h is the height of the fuselage at the wing location, obtained from Figure 2.1.1
w is the width of the fuselage at the wing location, obtained from Figure 2.1.1.

The wing-fuselage interference effects on $C_{\ell_{B}}$ of the subject airplane are calculated in Table 5.3.2.1.
5.3.3 Vertical Tail Contribution to $C_{\ell_{\beta}}$

The vertical tail contributes to the airplane $C_{\ell_{B}}$ by virtue of the rolling moment produced by the vertical tail side force due to
sideslip. Equation 5.3.3.1 from Reference 1 is used to determine the vertical tail contribution.

$$
\begin{equation*}
\left(C_{\ell}\right)_{v(w f h)}=-\left(C_{y_{B}}\right)_{v(w f h)}\left\{\frac{z_{v} \cos \alpha+\ell_{v} \sin \alpha}{b_{w}}\right\} \text { per deg } \tag{5.3.3.1}
\end{equation*}
$$

where:
$\left(C_{y_{B}}\right){ }_{v(w f h)}$ is the vertical tail side force due to sideslip in the presence of the wing, fuselage, and horizontal tail, from Table 5.1.3.1
Z_{v} is the perpendicular distance from the x-body axis to the quarter chord of the vertical tail mean aerodynamic chord, from Figure 2.1 .4
ℓ_{v} is the distance along the x-body axis from the center of gravity to the quarter chord of the vertical tail mean aerodynamic chord, from Figure 2.1.4.

The contribution of the vertical tail to the $C_{\ell_{B}}$ of the subject airplane is calculated in Table 5.3.3.1.
5.3.4 Winglet Contribution to $\mathrm{C}_{\ell_{\beta}}$

The contribution of the winglets to $\mathrm{C}_{\ell_{\beta}}$ is calculated in a similar manner as the vertical tail contribution. Since the method presented in this section does not account for span loading variations induced by the winglets, it can be assumed that the method will tend to be inaccurate. Also, separation and interference effects are neglected, which can lead to large errors. However, since no analytical methods exist for predicting winglet contribution to $\mathrm{C}_{\ell_{\beta}}$, Equation 5.3.4.1 will be used to approximate it.

$$
\begin{equation*}
\left(c_{\ell_{B}}\right)_{W L T}=-\left(c_{y_{B}}\right)_{W L T}\left(\frac{z_{W L T} \cos \alpha+\ell_{W L T} \sin \alpha}{b_{W}}\right\} \text { per deg } \tag{5.3.4.1}
\end{equation*}
$$

where:
($\left.\mathrm{C}_{\mathrm{y}_{B}}\right)_{\text {FLT }}$ is the winglet side force due to sideslip, obtained from Table 5.1.5.1
$Z_{\text {ULT }}$ is the perpendicular distance from the x-body axis to the quarter chord of the winglet mean aerodynamic chord, from Figure 2.2
$\ell_{\text {ULT }}$ is the distance along the x-body axis from the center of gravity to the quarter chord of the winglet mean aerodynamic chord, from Figure 2.2.

The contribution of the vertical tail to the $C_{\ell_{B}}$ of the subject airplane is calculated in Table 5.3.4.1.
5.3.5 $\mathrm{C}_{\ell_{B}}$ of the Complete Airplane, Winglet On and Winglets Off

The dihedral effect, $C_{\ell_{B}}$, of the complete airplane, winglet and power off, is given by Equation 5.3.1. Table 5.3.5.1 summarizes the calculations and lists the effects of winglet cant angle on $C_{\ell_{\beta}}$ of the subject airplane.

Table 5.1.2.1: Fuselage Contribution to $\mathrm{C}_{\mathrm{y}_{\beta}}$

	Symbol	Description	Reference	Magnitude
	${ }_{\text {W }}$	Distance from body centerline to $1 / 4$ point of exposed wing root chord, m (ft)	Figure 2.1.1	. 43 (1.4)
	h	Maximum body height at wing-body intersection, m (ft)	Figure 5.2.2.1	1.62 (5.32)
	K_{i}	Wing fuselage interference factor	Figure 5.1.2.1	1.25
	$\overline{\mathrm{V}}$	Fuselage volume, $\mathrm{m}^{3}\left(\mathrm{ft}^{3}\right)$	Table 2.1	7.72 (254.8)
in in	S_{w}	Wing area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$	Table 2.1	30.34 (326.6)
	$\left(C_{y_{\beta}}\right)_{B}$	Body side force due to sideslip, per deg	Potential theory	-0.0195

Table 5.1.3.1: Vertical Tail Contribution to $C_{y_{\beta}}$

(a) Effective Aspect Ratio

Symbol	Description	Reference	Magnitude
S_{h}	Horizontal tail area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$	Table 2.1	5.25 (56.47)
S_{V}	Vertical tail area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$	Table 2.1	2.12 (27.77)
b_{v}	Vertical cail span, m (ft)	Table 2.1.	1.51 (4.96)
A_{v}	Vertical tall aspect ratio	Table 2.1.	1.08
$\left(c_{v}\right)_{h}$	Vertical tail chord at horizontal tail, m (ft)	Figure 2.1 .4	1.78 (5.84)
$X_{a c_{h}}\left(c_{v}\right)_{\ell_{e}}$	Distance from leading edge of vertical tail to a.c. of horizontal tail, in plane of horizontal tail, m (ft)	Figure 2.1.4	. 3048 (1.0)
$z_{c r_{h}}\left(c_{r_{v}}\right)$	Distance from root chord of vertical tail to root chord of horizontal tail, m (ft)	Figure 2.14	-3048 (-1.0)
$\left(d_{f}\right)_{v}$	Depth of fuselage at quarter-root chord of vertical tail, m (ft)	Figure 2.1.1	. 61 (2.0)
$\frac{A_{v}(f)}{A_{v}}$	Ratio of vertical tail aspect ratio in presence of fuselage to isolated vertical tail aspect ratio	Figure 5.1.3.1 (a)	1.53
$\frac{A_{v}(\xi h)}{A_{v}(f)}$	Ratio of vertical tail aspect ratio in presence of fuselage and horizontal tail to aspect ratio of tail in presence of fuselage alone	Figure 5.1.3.1 (b)	0.925
K_{h}	Relative tail size factor	Figure 5.1.3.1	1.18

Table 5.1.3.1: (Continued)
(b) Vertical Tail Lift Curve Slope

Table 5.1.3.1: (Concluded)
Symbol

Table 5.1.4.1: Winglet Contribution to $C_{y_{\beta}}$
(a) Zero Cant Angle

Table 5.1.4.1: (Continued)
(b) ($\left.\mathrm{C}_{\mathrm{y}_{\beta}}\right)_{\text {WLT }}$ Due to Cant Angle

Cant Angle, deg

+20	-.000237
0	0
-10	.000118

Table 5.1.4.1: (Concluded)
(c) Summary

Cant Angle, deg

$$
\left(c_{y_{\beta}}\right)_{\text {WLT }}=
$$

$+20$
0
-10

$$
\begin{aligned}
& \left(C_{y_{B}}\right)_{\text {WLT }} \text {, per deg (Equation 5.1.4.2) } \\
& \hline-.000237 \\
& 0 \\
& .000118
\end{aligned}
$$

	$\begin{aligned} & \left(\mathrm{c}_{\mathrm{y}_{\beta}}\right)_{\mathrm{WLT}} \Gamma_{\mathrm{WLT}=0} \end{aligned}$
+20	-0.00561
0	-. 00537
-10	-. 00525

$$
\begin{aligned}
& \left(c_{y_{\beta}}\right)_{\text {WLT }}+\left(c_{y_{\beta}}\right)_{\text {WLTT }}, \text { per deg } \\
& \Gamma_{\text {WLT }} \\
& \hline
\end{aligned}
$$

Table 5.1.5.1: $\mathrm{C}_{\mathrm{y}_{\beta}}$ of the Complete Airplane

Table 5.2.1.1: Wing Contribution to $C_{n_{B}}$

Symbol	Description	Reference	Magnitude
A	Wing aspect ratio	Table 2.1	5.81
$\Lambda_{c / 4}$	Sweep of wing quarter-chord line, deg	Table 2.1	0
\bar{c}	Wing mean aerodynamic chord, m (ft)	Table 2.1	2.29 (7.5)
C_{L}	Wing lift coefficient	Figure 5.2.1.1	$f(\alpha)$

Summary: $\quad\left(C_{n_{\beta}}\right)_{w}=0.000239 C_{L_{W}}{ }^{2} \quad$ per deg

(1)	(2)	(3)
$\underline{\alpha, \mathrm{deg}}$	$\mathrm{C}_{\mathrm{L}_{\mathrm{w}}}$	$\left(c_{n_{B}}\right)_{w}=0.000239(2)^{2}$
-4	-0.025	. 00000598
0	0.27	. 000174
4	0.56	. 0000750
8	0.86	. 000177
12	1.15	. 000316

Table 5.2.2.1: Fuselage Contribution to $C_{n_{\beta}}$

	Symbol	Description	Reference	Magnitude
	$\left(S_{f}\right)_{s}$	Fuselage side area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$	Figure 2.1.1	8.36 (90)
	S_{w}	Wing area, $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$	Table 2.1	30.34 (326.6)
	ℓ_{f}	Length of fuselage, m (ft)	Figure 2.1.1	8.5 (27.88)
	b_{w}	Wing span, m (ft)	Table 2.1	13.27 (43.55)
i	Z_{w}	Vertical position of wing below centerline of equivalent fuselage, m (ft)	Figure 2.1.1	0.43 (1.41)
ω	$\left(w_{f}\right)_{w}$	Width of equivalent fuselage at the wing, m (ft)	Figure 2.1.1	1.26 (4.15)
	$\mathrm{x}_{\mathrm{m}}, \mathrm{h}, \mathrm{h}_{1}, \mathrm{~h}_{2}$	Geometric fuselage parameters, m (ft)	Figure 5.2.2.1	as listed
	K_{N}	Empirical factor for fuselage $\mathrm{C}_{\mathrm{n}_{\beta}}$ in presence of wing	Figure 5.2.2.1	. 0024

Summary : $\left(C_{n_{\beta}}\right)_{f(w)}=-0.000423$ per deg

Table 5.2.3.1: Vertical Tail Contribution to $C_{n_{\beta}}$

Table 5.2.4.1: Winglet Contribution to $C_{n_{\beta}}$

Table 5.2.5.1: $\quad C_{n_{\beta}}$ of the Complete Airplane: Winglets On and Winglets Off

α, deg	$\left(\mathrm{C}_{\mathrm{n}_{\beta}}\right)_{\text {PROP OFF }}$ WLT OFF, per deg	$\begin{gathered} \left(\mathrm{C}_{\mathrm{n}}{ }_{\mathrm{B}}\right)_{\mathrm{PROP} \text { OFF }} \\ \text { WLT ON } 20^{\circ}, \\ \text { per deg } \end{gathered}$	$\begin{gathered} \left(\mathrm{C}_{\mathrm{n}_{\beta}}\right)_{\text {PROP OFF }} \\ \text { WhTT ON } 0^{\circ}, \\ \text { per deg } \\ \hline \end{gathered}$	$\begin{gathered} \left(\mathrm{C}_{\mathrm{n}_{\beta}}\right)_{\text {PROP OFF }} \\ \text { WLT }-1.0^{\circ} \\ \text { per deg } \\ \hline \end{gathered}$
-4	0.000419	0.000591	0.000585	0.000581
0	0.000457	0.000642	0.000635	0.000631
4	0.000526	0.000723	0.000716	0.000711
8	0.000634	0.000842	0.000834	0.000830
12	0.000775	0.000993	0.000985	0.000980

Table 5.3.1.1: Wing Contribution to $C_{\ell_{B}}$

Table 5.3.2.1: Effect of Fuselage on Wing Contribution to $C_{\ell_{B}}$

Symbol	Description	Reference	Magnitude
A_{W}	Wing aspect ratio	Table 2.1	5.81
b_{w}	Wing span, m (ft)	Table 2.1	13.27 (43.55)
Z_{W}	Vertical position of wing below centerline of equivalent circular fuselage, m (ft)	Figure 2.1.1	0.43 (1.4)
$\left(d_{f}\right)_{w}=h=w$	Diameter of equivalent circular fuselage at wing, m (ft)	Figure 2.1.1	1.26 (4.15)
$\Gamma_{\mathbf{w}}$	Wing geometric dihedral, deg	Table 2.1	3.5
Summary:	$f(w)=0.000271 \text { per deg }$		

Table 5.3.3.1: Vertical Tail Contribution to $\mathrm{C}_{\ell_{B}}$

Symbol	Description	Reference	Magnitude
$\left.\left(C_{y_{\beta}}\right){ }_{v(w f h}\right)$	Vertical side force due to sideslip in presence of wing, fuselage, and horizontal tail, per deg	Table 5.1.3.1	-0.00225
2 v	Distance from x -body axis to quarter chord of vertical mean aerodynamic chord, m (ft)	Figure 2.1.4	-1.07 (-3.5)
ℓ_{v}	Distance along x-body axis from center of gravity to quarter chord of vertical-tail mean aerodynamic chord, m (ft)	Figure 2.1.4	5.09 (16.7)
b_{w}	Wing span, m (ft)	Table 2.1	13.27 (43.55)

5.29

Summary: $\quad\left(C_{\ell_{\beta}}\right)_{V(w f h)}=-0.000181 \cos \alpha+.000863 \sin \alpha$, per deg
(1)

-4
0
4
8
12

\cos (1)
\qquad
0.9976

1
0.9976
0.9903
0.9781
(3)

$=-0.000181$ $+0.000863$

$$
\begin{aligned}
& -0.000241 \\
& -0.000181 \\
& -0.000120 \\
& -0.000059 \\
& 0.000002
\end{aligned}
$$

Table 5.3.4.1: Winglet Contribution to $\mathrm{C}_{\ell_{\beta}}$

Table 5.3.5.1: $C_{\ell_{\beta}}$ of the Complete Airplane: Winglets On and Winglets off

	α, deg	ℓ_{β} $\begin{aligned} & { }^{B_{\text {PROP OFF }}} \\ & \text { WLT OFF, } \\ & \text { per deg } \end{aligned}$	```C \beta WLT 20', per deg```	```C B PROP OFF WLT 0} per deg```	$\begin{gathered} \mathrm{c}_{\ell_{\beta_{\text {PROP OFF }}}} \\ \text { WLT }-10^{\circ}, \\ \text { per deg } \end{gathered}$
	-4	-0.00066	-0.000852	-0.000844	-0.000841
	0	-0.00113	-0.00131	-0.00130	-0.00129
	4	-0.00160	-0.00178	-0.00176	-0.00176
\cdots	8	-0.00208	-0.00223	-0.00222	-0.00222
-	12	-0.00253	-0.00267	-0.00266	-0.00265

Figure 5.1.2.1: Wing-body interference factor for sideslip derivative $\mathrm{C}_{\mathrm{y}_{\beta}}$ (Reference 1)

Figure 5.1.3.1: Charts
for estimating $\left(C_{y_{B}}\right) v(w f h)$ for single vertical tails (Reference 1)

Figure 5.1.3.1 (concluded): Charts for estimating $\left(C_{y_{\beta}}\right){ }_{v}$ (wfh) for single vertical tails (Reference 1)

Figure 5.1.4.1: Charts for estimating winglet contribution to $\mathrm{C}_{\mathrm{y}_{\beta}}$ (Reference 1)

Figure 5.1.5.1: Comparison of predicted $\mathrm{C}_{\mathrm{y}_{\beta}}$, winglets off, to full-scale wind tunnel data for the Ayres Thrush S2R-800.

Figure 5.1.5.2: Effect of winglet cant angle on airplane $C_{y_{\beta}}$ based on DATCOM
methods.

Figure 5.2.1.1: Wing alone lift curve for the
S2R-800 (Reference 1).

Figure 5.2.2.1: Empirical factor K_{N} related to the derivative $C_{n_{\beta}}$ for the fuselage plus wing-fuselage interference (Reference 1).

Figure 5.2.5.1: Comparison of predicted $C_{n_{\beta}}$, winglets off, to full scale wind tunnel data for the Ayres Thrush S2R-800.

S2R-900, NO TKLT

———— S2R-800 + WLT 20° CANI

- \quad - $2 R-800+$ WLT $\quad 0^{\circ}$ CAITT
————S2R-800 \div WLT -10° CAST
$\mathcal{L}_{\text {WLI }}=0 \mathrm{deg}$

Figure 5.2.5.2: Effect of winglet cant angle on airplane $C_{n_{B}}$ based on DATCOM
methods.

Figure 5.3.1.1: Effect of wing dihedral on wing $C_{\ell_{\beta}}$ (Reference 1)

Figure 5.3.1.2: Aspect ratio contribution to $C_{\ell_{\beta}}$ (Reference 1)

Figure 5.3.5.1: Comparison of predicted $C_{\ell_{B}}$, winglets off, to full scale wing tunnel data for the Ayres Thrush S2R-800.

$$
-\quad \mathrm{S} 2 \mathrm{R}-800+\mathrm{NLT} \quad 0^{\circ} \mathrm{CANT}
$$

$$
- \text { S2R-800 + WLT }-10^{\circ} \text { CANT }
$$

CHAPTER 6

PREDICTION OF LIFT AND STABILITY CHARACTERISTICS

USING A COMPUTER METHOD

In this chapter the Quasi-Vortex Lattice Method (QVLII), developed by Lan (Reference 3) is used to predict the power-off lift curve slope and zero lift angle for the $S 2 R-800 . C_{y_{\beta}}, C_{n_{\beta}}$ and $C_{\ell_{B}}$ are also calcu1ated.

6.1 Description of QVLM

In QVLM the lifting surface is divided into a number of small lifting elements. The continuous vortex distribution representing the wing in a uniform flow is replaced with a discrete one. Wing edge square-root singularities and the Cauchy singularity in the downwash integral are theoretically accounted for. A mathematical description of QVLM is included in Reference 3.

6.1.1 Program Capabilities

The QVLM program used to predict stability derivatives for the Ayres Thrush has these following noteworthy features:

1) It is applicable to nonplanar wing configurations, such as wing-winglet combinations.
2) It cannot account for the fuselage effect on the stability derivatives.
3) If the airplane tails do not have camber, their effect on stability derivatives cannot be computed.
4) Arbitrary wing camber shapes defined at three spanwise stations or less are used in the program through cubic
spine interpolation.
5) The vortex-lift effect is calculated through the use of Polhamus' suction analogy.
6.2 QVLM-Predicted $C_{L_{\alpha}}$ and α_{0}

For computing $C_{L_{\alpha}}$, QVLM assumes attached potential flow and sets the wing angle of attack to 1 radian. The program outputs C_{L} where $C_{L_{\alpha}}=C_{L}$. Since attached potential flow is assumed, separation effects and stall behavior cannot be predicted. For the Ayres Thrush $C_{L_{\alpha}}=0.0715$ per deg as predicted by QVIM (Reference 3).

For computing α_{0}, several C_{L} 's were computed at different angles of attack. The zero lift angle could then be found by interpolation. For the Ayres Thrush:

$$
\left(\alpha_{0}\right)_{Q V L M}=-3.7 \mathrm{deg} .
$$

These results are compared to full-scale wind-tunnel data in Figure 6.2.1.

6.3 QVLM-Predicted $C_{y_{\beta}}{ }_{2} C_{n_{\beta}}$, and $C_{\ell_{\beta}}$

The QVLM calculations were done for winglets on and winglets off. The winglet cant angles were $+20^{\circ}, 0^{\circ}$, and -10°. Since the version of QVLM used for these calculations could not account for fuselage effects, it was not possible to compare these results with the available S2R-800 wind-tunnel data. The results are plotted in Figures 6.3.1 to 6.3.3. It is noted that Reference 4 (Figure 39) contains small scale model wind tunnel data on the effect of winglet cant on $C_{\ell_{\beta}}$.

Figure 6.2.1: Lift curve of the S2R-800 based on QVLM computation.

$$
\begin{array}{cc}
-\quad \text { WING ALONE } \\
--\quad \text { WING + WLT } 20 \text { deg cant } \\
- & \text { WING + WLT } 0 \text { deg cant } \\
- & \text { WING + WLT }-10 \text { deg cant } \\
i_{\text {WLT }}=0 \mathrm{deg}
\end{array}
$$

Figure 6.3.1: Effect of winglet cant angle on $C_{y_{\beta}}$ based on QVLM computation for the S2R-800.
— WING ALONE

$$
\begin{array}{ll}
--- & \text { WING + WIT } 20 \text { deg cant } \\
- & \text { WING + ULT } 0 \text { deg cant } \\
- & \text { WING + WIT - } 10 \text { deg cant }
\end{array}
$$

$$
i_{W L T}=0 \mathrm{deg}
$$

> Figure 6.3.2: Effect of winglet cant angle on $C_{n_{\beta}}$ based on QVLM computation for the $52 R-800$.

Figure 6.3.3: Effect of winglet cant angle on $C_{\ell_{\beta}}$ based on QVIM computation for the S2R-800.

CONCLUSIONS AND RECOMMENDATIONS

In this report an analytical method (Reference 1) and a computer method (Reference 3) were presented and used to calculate selected lift characteristics and sideslip derivatives of the Ayres Thrush S2R-800. Where possible, these results were compared to full-scale wind-tunnel data and to each other. Based on these comparisons, the following conclusions and recommendations are made:

1. The analytical method of Reference 1 and computer method of Reference 3 both give $C_{\ell_{\alpha}}$ and α_{0} values which correlated well with the wind-tunnel data. The analytical method gives a good "ballpark" estimation of the nonlinear lift behavior, while the computer method of Reference 3 does not apply to the nonlinear region.
2. The analytical predictions of Reference 1 for the sideslip derivatives $C_{y_{\beta}}, C_{n_{\beta}}$ and $C_{\ell_{\beta}}$ show good agreement with wind-tunnel data. The predicted $C_{y_{\beta}}$ is within 10 percent of the average tunnel $C_{y_{B}}$ value. While the trends with angle of attack are opposite, the nominal predicted $C_{n_{\beta}}$ agrees with the average tunnel $C_{n_{B}}$. Separation and interference effects caused by the fuselage need to be incorporated in the analytical method. The predicted $C_{\ell_{B}}$ compares well with windtunnel results.
3. The predictions by the method of Reference 3 indicate that winglet cant angle has a significant influence on the sideslip derivatives. From Figures 6.3.1-6.3.3 it is evident that the inwardly canted winglets have the least effect on the lateral-directional stability of the Ayres Thrush. Therefore, it appears that the use of inwardly :
canted winglets may offer a means of minimizing chemical spray wake interaction effects without degrading handling qualities (see Reference 4).
4. Computer results show that the analytical method of reference 1 is deficient in predicting winglet effect on the sideslip derivatives. It is recommended that a more accurate analytical method for calculating winglet effect on the sideslip derivatives, incorporating the following procedure, be developed.
a) To account for wing span loading increase due to winglets (endplate effect), calculate a modified wing aspect ratio based on winglet area.
b) Calculate winglet $C_{\ell_{\alpha}}$ based on airfoil section properties and adjusted for finite span.
c) Based on wind-tunnel data, calculate and plot wingwinglet interference factors.
d) Using the values calculated above, follow the procedure developed in this report, making modifications where common sense dictates.

REFERENCES

1. Finck, R. D.; and Hoak, D. E., "USAF Stability and Control DATCOM," Air Force Dynamics Laboratory, Wright Patterson Air Force Base, Ohio, October 1960 (Revised 1975).
2. Torenbeek, E., Synthesis of Subsonic Airplane Design, Delft University Press, Delft, Netherlands, 1976.
3. Lan, C. E., "A Quasi Vortex Lattice Method in Thin Wing Theory," Journal of Aircraft, Vol. 11, No.9, September 1974, pp. 518-527.
4. Johnson, J. L., Jr.; McLemore, H. C.; White, R.; and Jordan, F.L., Jr., "Full Scale Wind-Tunnel Investigation of an Ayres S2R-800 Thrush Agricultural Airplane," SAE Paper 790618, 1979.

[^1]
[^0]: * See Section 2.1, page 2.8 and Figure 2.10.

[^1]: * For sale by the National Technical Information Service. Springfield. Virginia 221161

