ΝΟΤΙΟΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

JPL PUBLICATION 80-23, REVISION 1

(NASA-CR-164357) SUBMILLIMETER, MILLIMETER, N81-24323 AND MICROWAVE SPECTRAL LINE CATALOGUE (Jet Propulsion Lab.) 151 p HC AU8/MF A01 CSCL 20N Unclas G3/32 42473

Submillimeter, Millimeter, and Microwave Spectral Line Catalogue

R. L. Poynter H. M. Pickett

June 1, 1981.

100 × 4

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute Of Technology Pasadena, California

Submillimeter, Millimeter, and Microwave Spectral Line Catalogue

R. L. Poynter H. M. Pickett

•

June 1, 1981

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute Of Technology Pasadena, California

2 Anna A

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under NASA Contract No. NAS7-100.

.

\$

.

ABSTRACT

٨

This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 3000 GHz (i.e., wavelengths longer than 100 μ m) The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment.

The catalogue has been constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (133 species) as new data appear.

The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records.

111

FOREWORD

Additions (9) and changes (24) have been made to the following molecular species:

OCS-34

0-18-CS

<u>New Species</u> (9)	
NH2D	03-V13
H20–V2	HOCL
H202	HOCL-37
CH3CH0-E	HNO3
03-V2	
Revised Species (24)	
NH3	CLO
N-15-H3	CL-37-0
Н20	C2H5CN
CH2NH	CH3CH2C-13-N
CH2ND	CH3C-13-H2CN
02	CH2DCH2CN-S
02-V1	CH2DCH2CN-A
0-18-0	OCS
СНЗОН	0C-13-S

H2S

PH3

NH2CHO

1

•

•

CONTENTS

.

.

Ι.	Introduction
II.	Format of data tape
III.	Intensity units and conversions
IV.	General comments on precision
۷.	Format of quantum numbers
VI.	Documentation by species

Tables

.

.

V-1.	Standard quantum number formats
V-2.	Special-case quantum number formats 10

I. Introduction

This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 3000 GHz (i.e. wavelengths longer than 100μ m). The catalogue is intended to be used as a guide in the planning of spectral line observations and as a reference which can facilitate identification and analysis of observed spectral lines. The selection of lines for the catalogue is based on the projected needs of astronomers and atmospheric scientists.

The catalogue is constructed using theoretical least squares fits and predictions based on spectral lines, mostly obtained from the literature. In subsequent versions of the catalogue, more molecules will be added and existing molecular listings will be updated as new data appears.

The catalogue is available as a magnetic data tape recorded in card images, with one card image per spectral line. The format of the data is given in Section II. Section III gives conversions between different measures of spectral line intensity. General comments on the precision of the spectral line positions and intensities are given in Section IV, while species specific comments are reserved for Section VI. Section V gives the format of quantum numbers as they appear in the catalogue. Documentation for each molecular or atomic species is listed in Section VI in order of the "species tag. This tag is a six digit number in which the three most significant digits represent the mass number of the molecule or atom and the last three digits are an accession number for the given mass. Usually there is a separate tag for each vibration-electronic state of a particular molecule.

1

II. Format of Data Tape

The catalogue data tape is composed of 80 character card images, with one card image per spectral line. The format of each card image is given below:

FREQ , ERR , LGINT, DR , ELOW , GUP, TAG, QNFORM, QN (F13.4, F8.4 , F8.4 , I2 , F10.4 , I3 , I7 , I4 , 1212, I1)

¥

FREQ: Frequency of the line in MHz.

ERR: Estimated or experimental error of FREQ in MHz.

- LGINT: Base 10 logarithm of the integrated intensity in units of nm^2 MHz at 300K. (See Section III for conversions to other units.)
- DR: Degrees of freedom in the rotational partition function (0 for atoms, 2 for linear molecules, 3 for non-linear molecules).
- ELOW: Lower state energy in cm^{-1} .

GUP: Upper state degeneracy.

- TAG: Species tag or molecular identifier. A negative value flags that the line frequency has been measured in the laboratory. The absolute value of TAG is then the species tag and ERR is the reported experimental error. The three most significant digits of the species tag are coded as the mass number of the species as explained above.
- QNFORM: Identifies the format of the quantum numbers given in the field QN. These quantum number formats are given in Section V.
- QN: Quantum numbers for the upper and lower states coded according to QNFORM.

III. Intensity Units and Conversions

The units of intensity given in the catalogue, nm^2 MHz, are based on the integral of the absorption cross section over the spectral lineshape. The value of the intensity is calculated for 300K and is directly comparable with the common infrared intensity unit of $cm^{-1}/(molecule/cm^2)$. The latter is obtainable by dividing the catalogue intensity by 2.9979 $\times 10^{+18}$.

The line intensity in the catalogue Iba (300K), is obtained from

$$I_{ba}(T) = (8\pi^3/3hc)v_{ba} x_{Sba} \mu_x^2 [exp(-E'/kT) - exp(-E'/kT)]/Q_{rs}$$
 (1)

where v_{ba} is the line frequency, ${}^{X}S_{ba}$ is the line strength, μ_{X} is the dipole moment along the molecular axis x, E" and E' are the lower and upper state energies respectively, and Q_{rs} is the rotation-spin partition function (using the same zero of energy as E' and E"). Care must be taken to assure that ${}^{X}S_{ba}$ and Q_{rs} are determined with same state degeneracies. Note that with this definition the intensities are defined with respect to the total concentration of the vibration electronic state of the species. No vibrational partition function or vibrational Boltzmann factor is included. For the catalogue, Eq. (1) is evaluated for T=300K.

Values of I_{ba} at other temperatures can also be obtained from Eq. (1) once the temperature dependence of Q_{rs} is known. For linear molecules Q_{rs} is proportional to T in the limit where the energy spacings are small compared to kT. For non-linear molecules Q_{rs} is proportional to $T^{3/2}$ in the same limit. Explicitly, I_{ba} (T) is

$$I_{ba}(T) = I_{ba}(300K) [Q_{rs}(300)/Q_{rs}(T)] [exp(-E'/kT)-exp(-E'/kT)]/$$
 (2)

$$[exp(-E'/k \cdot 300K) - exp(-E'/k \cdot 300K)]$$

$$\cong I_{ba}(300K) \cdot (300K/T)^{n+1} \exp[-(1/T - 1/300K)E^{n+1}]$$
(2a)

where n = 1 for a linear molecule and 3/2 for non-linear molecule. Eq. (2a) requires that the energy spacings are small compared with kT.

Peak intensities of collision broadened lines can be obtained from I_{ba} with the relation

$$\alpha_{max} = [Iba(T)/\Delta v](300K/T) \times 102.46$$
 (3)

in which Δv is the half-width at half-height in MHz at 1 torr partial pressure of absorber at temperature T, I_{ba} is in units of nm^2 MHz, and α_{max} is in units of cm^{-1} . The corresponding value of α_{max} in the thermal Doppler limit is

$$\alpha_{max} = [I_{ba}(T)p/\nu_{ba}](300K/T)^{3/2}(m/28)^{1/2} \times 1.2898 \times 10^{8}$$
(4)

in which p is the partial pressure of absorber in torr, and m is the mass of the absorber (in atomic mass units). In Eq. (4) - (6), v_{ba} is the line frequency in MHz.

The absorption cross-section of an interstellar absorber integrated over a 1 kms velocity interval is

- -

$$\sigma_{\rm ba} = [I_{\rm ba}/v_{\rm ba}] \times 2.9979 \times 10^{-9} \,\rm cm^2.$$
 (5)

The inverse of σ_{ba} is the column density per unit optical depth in the same 1 km/s velocity interval.

The average spontaneous emission rate from the upper states into the lower states is

$$A_{ba} = I_{ba}(T) v_{ba}^2 [Q_{rs}/g'] [exp(-E'/kT) - exp(-E'/kT)]^{-1} \times 2.7964 \times 10^{-16}$$
 (6)

,

$$\cong I_{ba}$$
 (300K) v_{ba} [Q_{rs}(300K)/g'] exp [E'/k·300K] x 1.748 x 10⁻⁹ sec ⁻¹ (6a)

in which g' is the degeneracy of the upper state. The value of g' is listed as part of the spectral line information in the catalogue, and the value of Q_{rs} (300K) is listed in Section VI.

IV. General Comments on Precision

「ない」のないないでしたというというというというというという」

STATE TO STATE OF

The expected errors of the frequency as listed in the catalog are usually based on a propagation of errors estimated from a least squares fit of the observed frequencies to a model Hamiltonian, using the following equation:

$$\varepsilon_n^2 = \sum_{k,\ell} \frac{\partial v_n}{\partial p_k} \frac{\partial v_n}{\partial p_\ell} V_{k\ell}$$
(7)

in which ϵ_n is the estimated error of frequency v_n and $V_{k\ell}$ is an element of the least squares variance – covariance matrix for the parameters p_k . This variance – covariance matrix is determined from the observed lines by

$$\left(V^{-1}\right)_{k\ell} = \sum_{\mathbf{m}} \frac{\partial v_{\mathbf{m}}}{\partial \mathbf{p}_{\mathbf{k}}} - \frac{\partial v_{\mathbf{m}}}{\partial \mathbf{p}_{\ell}} e^{-2}$$
 (8)

in which the summation over \underline{m} is over the experimental lines using experimental uncertainties, $\varepsilon_{\underline{m}}$. The diagonal elements of \underline{V} are the squares of the parameter uncertainties and the off-diagonal elements of \underline{V} are products of the parameter uncertainties and correlation coefficients.

Experimental uncertainties in the literature vary from 1.6 σ estimates to 3 σ estimates and are more usually "guess-timates". Many times the statistical nature of the uncertainties are not stated. Therefore, the expected errors in predicted lines will usually reflect this ambiguity .n laboratory uncertainties through Eq (6) and (7). In some cases, the quality of the least squares fit of the parameters to the experimental lines can be a guide to the statistical nature of the experimental uncertainties. Whenever possible, the expected errors in the catalog will reflect an expected 95% confidence interval based on the model used to fit the data. However, the errors can be different from this design goal by factors of three just due to the quality of input error estimates. Lines with an expected error greater than 1 GHz have been dropped from the catalogue.

5

The expected errors can only be computed relative to the model used. There are at least two ways the model can be "wrong" for the predicted frequencies. First, higher-order centrifugal distortion terms may no longer be negligible for the predicted frequencies. This effect will generally be important for lines of higher J or K than the laboratorydetermined data set. In a sense, the predictions are then a form of extrapolation rather than interpolation and are therefore more suspect. A second factor leading to discrepancies in the predicted frequencies comes from "resonances". These resonances come from a near overlap of energy states that are coupled by elements of the Hamiltonian matrix. Poor predictability comes when these elements are neglected in the model or are treated inadequately by some form of perturbation theory. Such a neglect of coupling elements is always necessary at some level in any practical calculation. A major contributing problem is that often the existing data set is not sensitive to the parameters which are needed to characterize the resonance.

Precision in the intensity estimates is generally less critical than precision in the frequency. Contributing to intensity uncertainty are errors in the dipole moment, errors in the line strength ${}^{X}S_{h_{2}}$ and errors in the rotation-spin partition function. (The vibration-electronic partition function does not enter directly because the catalogued intensities are defined on the basis of concentrations of the given vibrationelectronic state.) Dipole moment errors come directly from the experimental determination and indirectly from the J dependence of the dipole moment due to centrifugal mixing of vibrational states. Line strength errors can come from deficiencies in the model Hamiltonian and are particularly severe when resonances have been inadequately accounted for. Partition function errors are relatively benign but can become significant if the classical formulae are used at low temperatures for small molecules. With the exception of unanticipated resonances and poorly determined dipole moments, worst case errors in the intensity will generally be at the 1% level or lower.

6

V. Formac of Quantum Numbers

The quantum numbers of the catalogued lines are given in the field in according to a format QNFORM, as discussed in Section II. In this section the identities of the quantum numbers will in described for each distinct format. The field QN will be regarded as being divided into 13 integers. The first 12 integers are two digits long and the last integer is a single digit (a FORTRAN 1212, Il format).

The spectroscopic nomenclature followed is the standard one in which upper state quantities are denoted by a single prime and lower state quantities are denoted by a double prime.

In addition,

L	electron orbital angular momentum
R	rotational angular momentum
N = R+L	
S	electron spin
J = N+S	total electron and rotational angular momentum
I	nuclear spin
$F_1 = I_1 + J$	intermediate F value for two nuclear spins ${\rm I}_1 \text{and} {\rm I}_2$
$F=\mathbf{I}_2\circF_1$	(for two non-zero nuclear spins)
≠ I + J	(for one non-zero nuclear spin)
Ω	projection of J on the molecular axis of a linear molecule
K	projection of J on the symmetry axis of a
	symmetric rotor
P	parity under inversion (1 = gerade, -1 = ungerade)
v	vibrational quantum number
K1	prolate K quantum number for an asymmetric rotor
K ₊₁	oblate K quantum number for an asymmetric rotor

In all cases, half integer quantum numbers will be written into the QN field after rounding <u>up</u> to the next integer. For example, J = 1/2 will be entered in the catalogue as a <u>1</u>. The format specification QNFORM is designed so that the correct half-integer value can be recovered unambiguously.

The format integer QNFORM is allocated four digits. The most significant digit is zero for the standard formats described in Table V-1 and is non-zero for special-case formats which will be allocated as the need arises. Of the remaining three digits, the most significant is used to describe the type of species involved and the least significant digits are used to specify the nature of the integers in the field. The formats are shown in Tables V-1 and V-2.

.

antimite & a care

÷

	Remarks	I = 0, J half integer	I = 0, J integer	J and F half integer	J half integer. F integer	J integer, F half integer	J and F integer
e V-1: Standard Quantum Number Formats	NO	J' + ½, J'' + ½	J', J"	$J' + \frac{1}{2}, J'' + \frac{1}{2}, F' + \frac{1}{2}, F'' + \frac{1}{2}$	J' + ½, J" + ½, F', F"	J', J'', F' + ½, F" + ½	3*, 3*, f', f*
Tabl	QNFOPM	010	020	110	012	021	022

Atoms

ч.

²₂ state 15 state

J' + ½, N', J" + ½, N", X', X", y', y"

J', J", X', X", Y', Y"

Linear molecules and Diatomic molecules

١XY 2XV эхү 4XY SXY бХУ 7XY

³2 state ¹ state

³, state 2.7 state

J' + ½, ⁿ' + ½, p', J'' + ½, ⁿ'' + ½, p'', x', x'', y', y''

J', p', J", p", x', x", y', y" J', N', J", N", X', X", Y', Y"

J'. R'. P'. J*. R". P". X'. Y". Y'

J'. .'. P'. J". .". P". ×'. ×". Y'. y"

J' , K' , J" , K" , x' , x" , y' , y"

Symmetric Rotors (3-fold symmetry or higher, S = 0)

ن

8XY

1 state

*

4

٠

D. Asymmetric Rotors

J', K'₁, K₁, J", K'₁, K₁, x', x", y', y" N', K'₁, K₁, N", K₁, K₁, J' + 5, J" + 4, y', y" 9XY 95 Y 96 Y

closed shell molecule S=15 open shell radical y = 0 $y = F_1 + F_2 \text{ or}$ $z = F_1 + F_2 \text{ if } X = 4$ S=l triplet state ¥ = 0: ¥ =]: N' . K' . K' . N'' . K'' . K'' . J' . J' . Y' . Y' (Y must be zero) (F half integer) (F integer) ж ж ж ж н н н н 0 ~ 0 4

if X = 4

y = F₁ Or = F if)

Y = 2:

specified in the species description)

vibrational state label (further

> = X

' signifies upper energy state, " signifies lower energy state

Table V-2: Special-Case Quantum Number Formats

Remarks	³ ∑ state "non-resonant" transition; frequency is {g J where g is the molecular g factor i.e. the frequency is the Zeeman splitting for a M ∸ J level in a 0.78145 gauss magneticc field.	
N	х " Г	
QNFORM	1 300	

.

.

VI. Documentation by Species

The documentation for each molecular or atomic species appears in order of "species tag." On the following page, immediately preceding the documentation, is an "Index of Species." This index lists all the species documentation contained in this publication, ordered by "species tag."
 1001
 H-Atom
 34001
 0-18-0
 51001
 HCCN

 2001
 D-Atom
 34002
 H2S
 51002
 C10

 3001
 HD
 34003
 PH3
 52001
 HCC-13-N

 12001
 C-Atom
 34004
 H202
 52002
 HCC-13-CN

 13001
 C-13-Atom
 36001
 HC1
 52004
 HCC-15

 14002
 N-Atom-D-State
 38001
 HC1-37
 52005
 HCC-13-N

 16001
 C-Atom
 40001
 CH3CCH
 52005
 HCCCH

 17002
 H3
 41002
 CH3CCH
 53001
 CH2-13-N

 18002
 N-15-H3
 41005
 CH3CCH
 54001
 CH2C-13-N

 18003
 H20
 41006
 CH2CCH
 54004
 CH2C13-N

 18003
 H20
 41006
 CH2CCH
 54004
 CH2C13-N

 18004
 H2D
 42002
 CH2CO
 56001
 CH3CH2C13-N

 18005
 H2D-v2
 42002
 CH2CO
 56001

Species Tag: 1001 Page 1 of 1	Version: 1	Date: Oct, 1979	
Species Name: Atomic Hydrogen	Author: H. M. Pickett		
² S _{ly} ground state	Min. Int. = 8×10^{-10} nm ² MHz		
Q (Spin-Rot., T = 300K) = 4.0	$J Max. = (\frac{1}{2})$	Lines Listed = 1	
Dipole Moments/Debye: µ _a =	^µ b ^{= magnetic}	^µ c [≇]	
Rot. Const./MHz: A = B	1	C =	

All and a second second

しかられたいでき とうどうかんちょう

うわちきとうも 御子をつう

ころというである

The atomic hydrogen line at 21 cm has been measured to a precision of 0.001 Hz (L. Essen, R. W. Donaldson, M. J. Bangham, and E. G. Hope, 1971, <u>Nature 229</u>, 110). The average spontaneous emission lifetime of the three F = 1 states is 2.876 X 10⁻¹⁵ sec⁻¹.

Species	Tag:	2001	Page	1	of	1	Version: 1		Date: Oct. 1979
Species Name: Atomic Hydrogen Deuterium Isotope ² S ₁₂ ground state			Author: H. M. Pickett						
			Min. Int. = 5×10^{-11} nm ² MHz						
Q (Spin	-Rot.,	T = 300K) = 6.	.0			J Max. = (노) L1	nes Liste d = 1
Dipole Moments/Debye: µ _a =				µb [≖] magnet	ic ^µ c	2			
Rot. Cor	nst./MH	z: A =				B	3	C	2

The atomic deuterium line at 327 MHz has been measured to an accuracy of 0.002 Hz (D. J. Wineland and N. F. Ramsey, 1972, Phys. Rev. A 5, 821). The average spontaneous emission lifetime for the four F = 3/2 states is 4.695 X 10⁻¹⁷ sec⁻¹.

Species Tag:	Page 1 of 1	Version: 1	Date: Oct. 1979	
Species Name: HD Mono-deuterated mole	cular hydrogen	Author: H. M. Pickett		
	terur nyerogen	Min. Int. = 10^{-6} nm ² MHz		
Q (Spin-Rot., T = 300K) = 5.016	J Max. = (1)	ines Listed = 1	
Dipole Moments/Debye:	$\mu_a = 5.85 \times 10^{-4}$	ⁿ P = ¹	⁴ c [∓]	
Rot. Const./MHz: A =	В	= 1339100.	C =	

The dipole moment is from M. Trefler and H. P. Gush, 1968, Phys. Rev. Letters, <u>20</u>, 703. The rotational constant is from R. A. Durie and G. Herzberg, 1960, Can. J. Phys. <u>38</u>, 806. The frequency and its error limits were obtained from the difference of the S_1 (0) and R_1 (1) transitions listed by A. McKellar, 1974, Can. J. Phys. <u>52</u>, 1144.

JPL SMM CATALOGUE

Species Tag: 12001	Page 1 of 1	Version: 1	Date: Oct. 1979			
Species Name: Atom	ic Carbon	Author: H. M.	Author: H. M. Pickett			
³ P ground sta	ate	Min. Int. = 10^{-5} nm ² MHz				
Q (Spin-Rot., T - 300	K) = 7.8330	J Max. = (2)	Lines Listed = 2			
Dipole Moments/Debye:	^µ a ⁼	μ _b = magnetic	^μ c ⁼			
Rot. Const./MHz: A =		B =	C =			

The lines of atomic carbon have been measured by Laser Magnetic Resonance (R. J. Saykally and K. M. Evenson, 1980, Ap. J. <u>238</u>, L107.) Intensities were calculated using the free electron g factor. The 'partition function was calculated from the following table:

J	Energy	Degeneracy
0	0.0 cm ⁻¹	1
1	16.4168	3
2	43.4138	5

Species Tag: 13001 Page 1 of 1	Version: 1	Date: Oct. 1979			
Species Name: Atomic Carbon	Author: H. M. P:	Author: H. M. Pickett			
¹³ C isotope	Min. Int. = 10	Min. Int. = 10^{-16} nm ² MHz			
Q (Spin-Rot., T = 300K) = 15.666	J Max. = (2)	Lines Listed = 7			
Dipole Moments/Debye: µ _a =	µb [≢] magnetic	^µ c ⁼			
Rot. Const./MHz: A =	B =	C =			

The fine structure intervals of 12 C were multiplied by 0.999992967 to account for the isotope effect on the Rydberg constant. The hyperfine intervals of G. Wolber, H. Figger, R. A. Haberstroh and S. Penselin, 1969. (Physics Letters <u>A29</u>, 461) were then used to compute the line frequencies. Intensities were calculated using the free electron g value.

Species Tag: 14001	Page 1 of 1	Version: 1	Date: Oct. 1979		
Species Name: Atomic Nitrogen		Author: H. M. Pickett			
^S 3/2 ground st	tate	Min. Int. = 10 ⁻	13 nm ² MHz		
Q (Spin-Rot., T = 300K)	= 12.0	J Max. = (3/2)	Lines Listed = 2		
Dipole Moments/Debye:	^µ a ⁼	^µ b ^{= magnetic}	^и с ^т		
Rot. Const./MHz: A =	В	3	Ç =		

The hyperfine transitions of atomic nitrogen at 15.6 and 26.1 MHz were obtained from J. M. Hirsch, G. H. Zimmerman, III, D. J. Larson, and N. F. Ramsey, 1977, Phys. Rev. <u>A 16</u>, 484. Intensities were calculated using the experimental g_J value.

Species Tag: 14002 Page 1 of 1	Version: 1 Date: Nov. 197	9			
Species Name: Atomic Nitrogen	Author: H. M. Pickett				
² D excited state	Min. Int. = 10 ⁻⁸ nm ²	MHz			
Q (Spin-Rot., T = 300K) = 29.510	J Max. = (5/2) Lines Listed =	6			
Dipole Moments/Debye: µ _a =	^µ b ⁼ magnetic _µ c ⁼				
Rot. Const./MHz: A =	B = C =				

The ${}^{2}D_{5/2}$ state is 19223 cm ${}^{-1}$ above the ground ${}^{4}S_{3/2}$ state. (C. E. Moore, 1949, Atomic Energy Levels I, U. S. N. Bureau of Stds.). The ${}^{2}D_{3/2} - {}^{2}D_{5/2}$ inverted fine structure transition at 260 GHz has a predicted uncertainty of \pm 600 MHz, but the hyperfine structure intervals are uncertain by less than 1 MHz. (H. E. Radford and K. M. Evenson, 1968, Phys. Rev. <u>168</u>, 70). The average spontaneous emission rate from the ${}^{2}D$ states to the ${}^{4}S$ states is 1.06 X 10⁻⁶ sec ${}^{-1}$. In contrast, the spontaneous emission rate from ${}^{2}D_{3/2}$ F = 5/2 tc ${}^{2}D_{5/2}$ F = 7/2 is 3.15 X 10⁻⁹ sec⁻¹.

JPL SMM CATALOGUE

Species Tag: 16001	Page 1 of 1	Version: 1	Date: Oct. 1979
Species Name: Atom	nic Oxygen	Author: H. M. I	Pickett
³ P ground sta	ite	Min. Int. = 10	nm ² MHz
Q (Spin-Rot., T - 300	K) = 7.4943	J Max. = (2)	Lines Listed = 1
Dipole Maments/Debye:	μ _a =	µ _b ≖ magnetic	^µ c ⁼
Rot. Const./MHz: A =	B		C =

The 68 cm⁻¹ J = 1-2 line of oxygen has been measured by Laser Magnetic Resonance (R. J. Saykally and K. M. Evenson, 1979, J. Chem Phys. <u>71</u>, 1564. Intensities were calculated using the free electron g factor. The partition function was calculated from the following table:

<u></u>	Energy	Degeneracy
0	227.0195	l
1	68.7165	3
2	0.0	5

Species Tag: 17001	Page 1 of	Version	: 1	Date: Dec.	1979		
Species Name: Hydroxyl Radical OH ground ² II _{3/2} and ² II _{1/2} states		Author:	Author: R. L. Poynter & H. M. Picket				
		Min In	Min Int. = 10^{-13} nm ² MHz				
Q (Spin-Rot., T = 300K) = 83.328	J Max.	• 19.5 L1	ines Listed	= 125		
Dipole Moments/Debye:	$\mu_a = 1.667$	^µ b =	ب ۲				
Rot. Const./MHz: A =		B = 55614	0.9 (; =			

"Castal

The calculational method and microwave data are reported in R. A. Beaudet and R. L. Poynter, 1978, J. Phys. Chem. Ref. Data 7, 311. The partition function was calculated by a sum over states to J = 11.5. Other values are:

Т	Q _{sr}
150K	40.230
70	21.800
30	16.354
10	15.696

Only the J = 5/2 - 3/2 and J = 3/2 - 1/2 submillimeter transitions are included in the catalogue.

21

Species Tag: 17002 Page 1 of	1	Version: 2	Da	ate: Feb. 1981		
Species Name: Ammonia, NH ₃ ,		Author: R.L. Poynter & H.M. Pickett				
ground inversion states		Min. Int. = 10 ⁻	17	nm ² MHz		
Q (Spin-Rot., T = 300K) = 578.984		J Max. = 20	Line	s Listed = 235		
Dipole Moments/Debye: µ _a =		^µ b ⁼	^μ c *	1.476		
Rot. Const./MHz: A =	B	= 298117.59	C =	186711.		

The computational method and most of the microwave data are given in R. L. Poynter and R. K. Kakar, 1975, Ap. J. Suppl. <u>29</u>, 87. Additional microwave transitions have been reported by B. V. Shinha and P. D. P. Smith, 1980, J. Mol. Spectrosc. 80, 231.

Other values of the partition functions are:

<u> </u>	<u>_</u> Q_
10	5.719
30	20.37
60	53.76
150	206.64
200	316.64

The rotational energy levels were computed from a fit of the far IR lines measured by J. Dowling, 1968, J. Mol. Spectrosc., <u>27</u>, 527 and the J = 1 - 0, K = 0 transition reported by P. Helminger, F. DeLucia, and W. Gordy, 1971, J. Mol. Spectrosc. <u>39</u>, 94. The C and D rotational constants which were not determined in the fit, were taken from D. Laughton, S. Freund and T. Oka, 1976, J. Mol. Spectrosc. <u>62</u>, 263, and from S. Sundaram, F. Suzek, and F. Cleveland, 1960, J. C. P. <u>32</u>, 251. The rotational constants were in good agreement with those of Laughton, et al.

Species Tag: 17003 Page 1 of 1	Version: 1	Date: Feb. 1980
Species Name: Deutero Methane	Author: R. L. P	oynter
сн ₃ р	Min. Int. = 10 ⁻	8 nm ² MHz
Q (Spin-Rot., T - 300K) = 402.166	J Max. = 1 3	Lines Listed = 80
Dipole Moments/Debye: $\mu_a = 5.6 \times 10^{-1}$	³ μ _b =	^μ c ⁼
Rot. Const./MHz: A = 157412. B	= 116325.308	C = B

The J = 0 1 line has been measured by H. M. Pickett, E. A. Cohen and T. G. Phillips, 1980, Ap. J. Letters, <u>236</u>, 43. Predicted lines are based upon the constants given by C. Chakerian and G. Guelachvilli, 1980, J. Mol. Spect., <u>84</u>, 447. The dipole moment has been measured by I. Ozier, W. Ho, and G. Birnbaum, 1969, J. Chem. Phys. <u>51</u>, 4873, and by S. C. Wofsey, J. S. Muenter, and W. Klemperer, (1970), J. Chem. Phys. <u>53</u>, 4005.

Species Tag: 18001	Page 1 of 1		Version:	1	Da	te:Dec.	1979
Species Name: Deuterated hydroxyl		Author: R.L. Poynter & H.M. Pickett					
radical: OD ² n groun	d states		Min. Int.	= 10	13		nm ² MHz
Q (Spin-Rot., T = 300K) = 215.558		J Max. =	19.5	Lines	Listed	= 235
Dipole Moments/Debye:	$\mu_a = 1.653$	1	^u b =	1	^µ c ⁼		
Rot. Const./MHz: A =		B	= 296312.0	0	C =		

The calculational method and microwave data are reported in R. A. Beaudet and R. L. Poynter, 1978, J. Fhys. Chem. Ref. Data <u>7</u>, 311. The partition function was calculated using the relation $Q=6 Q_{rot} [1 + exp$ (-188.112/T)], in which Q_{rot} is the rotational partition function for a diatomic molecule. No submillimeter lines are currently listed in the catalogue for OD.

Species Tag: 18002 Page 1 of	¹ Version: ²	Date: Jan 1981			
Species Name: Ammonia, ¹⁵ NH ₃	Author: R. Poy	Author: R. Poynter			
ground inversion states	Min. Int. ≖	10 ^{-17.} nm ² MHz			
Q (Spin-Rot., T = 300K) = 575.808	J Max. = 20	Lines Listed = 235			
Dipole Moments/Debye: µ _a =	^μ b =	μ c = 1.476			
Rot. Const./MHz. A = B	B = 297390.8	C = 186711.			

The same computational method was used here as for 14 NH₃. These lines are based upon the precision molecular beam measurements by S. G. Kukolich, 1967, Phys. Rev. <u>156</u>, 83 and 1968, Phys. Rev. <u>172</u> 59, and upon the most recent microwave measurements of H. Sasada, 1980, J. Mol. Spect. <u>83</u>, 15. The energy levels were computed from the recent far IR measurements of M. Carlotti, A. Trombetti, B. Velino, and J. Vrbancich, 1980, J. Mol. Spect. <u>83</u>, 401. The C rotational constant was assumed to be the same as in 14 NH₂.

The dipole moment was assumed to be the same as 14^{14} NH₂.

The partition function was determined by a sum over states to J = 20. Other values are:

<u> </u>	_Q
10	5.72
30	20.42
60	53.97
150	207.21

25

Species Tag: 18003	Page 1 of 1	Version: 2	Date: July 1980	
Species Name: Water		Author: R.L. Poynter & H.M. Pickett		
н ₂ 0		Min. Int. = 10 ⁻⁹ nm ² MHz		
Q (Spin-Rot., T - 300K) = 178.037		J Max. = 15	Lines Listed = 151	
Dipole Moments/Debye: $\mu_a = 0$ $\mu_b = 1.855$ $\mu_c = 0$				
Rot. Const./MHz: A =	835840.29 B	= 435351.72	C = 278138.7	

The data set used in this new fit includes all the lines measured by F. C. De Lucia, P. Helminger, R. Cook, and W. Gordy (1972), Phys. Rev. <u>A</u>, 5, 487 as well as the interferometer lines below 10 THz measured by T. Kauppinen, T. Karkkainen, E. Kyro (1978), J. Mol. Spec. <u>71</u>, 15. The dipole moment is from S. Clough, Y. Beers, G. P. Klein and L. Rothman (1973), J. Chem. Phys. <u>59</u>, 3125. Other references are given in F. C. De Lucia, P. Helminger, and W. H. Kirchhoff, (1974), J. Phys. Chem. Ref. Data, <u>3</u>, 211.

The partition function was determined by a sum over states to J = 15. Other values are:

<u>T</u>	2		
150	63.677		
100	35.153		
60	16.818		
30	6.192		
10	1.328		

Species Tag: 18004	Page 1 of 1	Version: 1	Date: Jan. 1981		
Species Name: Monodeutero Ammonia, NH ₂ D, ground vibrational states		Author: H. M. Pickett			
		Min. Int. = 10^{-10} nm ² MHz			
Q (Spin-Rot., T = 300K) = 1258.	J Max. = 14	Lines Listed = 5036		
Dipole Moments/Debye:	μ a = -0.18`	μ b = 0.	μ _c = 1.463		
Rot. Const./MHz: A =	290124.	B = 192194.	C = 140797.		

The experimental lines were measured by F. C. DeLucia and P. Helminger, 1975, J. Mol. Spec. <u>54</u>, 200 and by E. A. Cohen and H. M. Pickett at JPL. The dipole moments and quadrupole splitting was also determined by Cohen and Pickett. The Hamiltonian included terms up to 8-th power in angular momentum as well as a $P_{ac} + P_{c} P_{a}$ interaction term. The relative sign of the dipoles is determinable and is important for intensities because of mixing by the interaction term.

Species Tag: 18005	Page 1 of 1	Version: 1	Date: Jan. 1981	
Species Name: Water excited bending state, ν ₂ or (010) H ₂ 0		Author: H. M. Pickett		
		Min. Int. = 10^{-10} nm ² MHz		
Q (Spin-Rot., T - 300	K) = 169.226	J Max. = 12	Lines Listed = 122	
Dipole Moments/Debye:	μ a = 0	μ <mark>= 1.8</mark> 55	μ c = 0	
Rot. Const./MHz: A =	933052. B	= 440318.	C = 273710.	

The rotational lines were determined by M. Herman, J. W. C. Johns, and A. R. W. McKellar, 1979, Can. J. Phys. <u>57</u>, 397 and H. Kuze, 1980, Ap. J. <u>239</u>, 1131. These lines were fit to the Hamiltonian of C. Camy-Peyret and J. M. Flaud, 1976, Molec. Phys. <u>32</u>, 523 in such a way that the parameters of Camy-Peyret and Flaud were modified in a least squares sense to accomodate the rotational lines. The partition function was determined by a sum over states. Additional values are:

<u> </u>	<u>_Q</u>		
10	1.325		
30	5.983		
60	15.964		
100	33.350		
150	60.446		

The zero of energy is 1594.75 cm^{-1} above the zero of energy for the ground state species.

Species Tag: 19001	Page 1 of	1	Version: 1	Date: Dec. 1	979
Species Name: Hydroxyl radical Oxygen - 18 isotope ¹⁸ OH		Author:R. L. Poynter & H. M. Pickett			
		Min. Int. = 10^{-13} nm ² MHz			
Q (Spin-Rot., T = 300K) = 83.882		J Max. = 20	Lines Listed =	113	
Dipole Moments/Debye: $\mu_a = 1.667$ μ_b		^µ b ⁼	^µ c ⁼		
Rot. Const./MHz: A =		B	= 552470.	C =	

The calculational method and microwave data are reported in R. A. Beaudet and R. L. Poynter, 1978, J. Phys. Chem. Ref. Data <u>7</u>, 311. The partition function was calculated using the 16 OH value and the ratio of the B values. No pure rotational lines are currently listed in the catalogue.
Species Tag: 19002	Page 1 of 1	Version: 1	Date: Feb. 1980			
Species Name: Water Single Deuterium Isotope HDO		Author: R. L. P	Author: R. L. Poynter			
		Min. Int. = 10^{-13} nm ² MHz				
Q (Spin-Rot., T = 300K) = 146.05	J Max. = 13	Lines Listed = 221			
Dipole Moments/Debye:	$\mu_a = 0.657$	"b = 1.732	μ _c = 0.			
Rot. Const./MHz: A =	701931.5 B	= 272912.6	C = 192055.2			

The observed lines are from F. C. De Lucia, R. L. Cook, P. Helminger, and W. Gordy (1971), J. Chem. Phys. <u>55</u>, 5334, and J. W. Fleming and M. J. Gibson, (1976), J. Mol. Spect. <u>62</u>, 326. The dipole moment components are from S. A. Clough, Y. Beers, G. P. Klein, and L. S. Rothman, (1973), J. Chem. Phys. <u>59</u>, 2254.

Further references can be found in F. C. De Lucia, P. Helminger, and W. H. Kirchhoff, (1974), J. Phys. and Chem. Ref. Data <u>3</u>, 211.

Due to model problems and an incomplete least squares fitting program for this special case, no least squares fit was done for this molecule. Rather, the line frequencies were calculated in double precision using the set of rotational constants determined by De Lucia, et al. (1971, 1974) with a Hamiltonian that included up through tenth order distortion terms. The lower frequency lines that are computed from this Hamiltonian are in reasonable agreement with De Lucia, et al., but the higher frequency, higher J lines show deviations, possibly due to round off problems. The error estimates were set to a fixed 160 MHz for all the calculated lines, since our present program does not give the information necessary to evaluate the predicted errors.

Further work will be done on this problem. The present list is therefore an interim set of results.

Species Tag: 27001 Page 1 of	Version: 1 Date	e: Dec, 1979
Species Name: Hydrogen Cyanide	Author: R. L. Poynter	r
HCN	Min. Int. = 10 ⁻⁴	nm ² MHz
Q (Spin-Rot., T = 300K) = 424.154	J Max. = 34 Lines	Listed = 45
Dipole Moments/Debye: u _a = 2.984	"h = "c	
Rot. Const./MHz: A =	B = 44315.975 C =	

The observed transitions are from F. C. De Lucia and W. Gordy (1969), Phys. Rev. <u>187</u>, 58. The dipole moment is from G. Tomasevich, (1970), Thesis, Harvard Univ.

Salar and the second second

いたちちたとれたままで、たちにもあたりとうとうためましょうというねがあったと

SUSSEED S. & LONG STATE

こうかったが、「なっている」というないが、そうないで、それできたが、いたものとうないでいたが、「ないたい」のできた。「ないたいで、」というないできた。「ここと」という、こことで、こことで、

Species Tag: 27002 Page 1 of 2	Version: 1 Date: Dec.	1979			
Species Name: Hydrogen Isocyanide	Author: R. L. Poynter	Author: R. L. Poynter			
HNC	Min. Int. = 10^{-3} nm ² MHz				
Q (Spin-Rot., T = 300K) = 138.223	J Max. = (34) Lines Listed	= 34			
Dipole Moments/Debye: µ _a = 2.699	^µ b ⁼ ^µ c ⁼				
Rot. Const./MHz: A =	B = 45332.00 C =				

The observed lines are from R. A. Creswell, E. F. Pearson, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>310</u>, 221, and E. F. Pearson, R. A. Creswell, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 1394.

Species Tag: 28001 Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Carbon Monoxide Author: R. L. Poynter		
со	Min. Int. = 1	0 ⁻⁵ nm ² MHz
Q (Spin-Rot., T = 300K) = 108.787	J Max. ≖ (26)	Lines Listed = 26
Dipole Moments/Debye: u = 0.1098	μ _Β =	μ _c =
Rot. Const./MHz: A =	B = 57635.97	C =

The experimental measurements were reported by B. Rosenblum, A. H. Nethercot, Jr., and C. H. Townes, 1958, Phys. Rev. <u>109</u>, 400; W. Gordy and M. J. Cowan, 1957, Bull. Am. Phys. Soc. <u>2</u>, 212; and by P. Helminger, F. C. De Lucia and W. Gordy, 1970, Phys. Rev. Lett. <u>25</u>, 1397.

The dipole moment was measured by J. S. Muenter, 1975, J. Mol. Spect. 55, 490.

Species Tag: 28002 Pc	ige 1 of 1	Version: 1		Date: Dec. 1979		
Species Name: Hydrogen Cyanide		Author: R.	Author: R. L. Poynter			
Carbon - 13 isotope H ¹³ CN		Min. Int. = 10^{-4} nm ² MHz				
Q (Spin-Rot., T = 300K) =	435,385	J Max. = 34	4 Lii	nes Listed = 45		
Dipole Moments/Debye: 11	= 2.984	"b =	^μ c	2		
Rot. Const./MHz: A =		B = 43170.137	C	2		

The measured lines are from E. F. Pearson, R. A. Creswell, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 1394.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 28003 Page 1 of 1	Version: 1	Date: Dec. 1979			
Species Name: Hydrogen Cyanide	Author: R. L. 1	Author: R. L. Poynter			
Nitrogen - 15 isotope hC ¹⁵ N	Min. Int. = 3	Min. Int. = 3×10^{-3} nm ² MHz			
Q (Spin-Rot., T = 300K) = 435.204	J Max. = 35	Lines Listed = 35			
Dipole Moments/Debye: µ _a = 2.984	^µ b ⁼	^µ c [*]			
Rot. Const./MHz: A =	B = 43027.69	C =			

The measured lines are from E. F. Pearson, R. A. Creswell, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 1394.

The dipole moment was assumed to be the same as the parent species.

ŝ

Species Tag: 28004	Page 1 of	1	Version: 1	Date: Dec. 1979	
Species Name: Hydrogen Cyanide		Author: R. L. Poynter			
Deuterium isotope DCW		Min. Int. = 7×10^{-5} nm ² MHz			
Q (Spin-Rot., T = 300K) = 518.916		J Max. = 41	Lines Listed = 54		
Dipole Moments/Debye: $\mu_{1} = 2.984$			ν _b =	^µ c ⁼	
Rot. Const./MHz: A =		B	= 36207.46	C =	

The observed transitions are from F. C. De Lucia and W. Gordy (1969), Phys. Rev. 187, 58. The dipole moment is from G. Tomasevich, (1970), Thesis, Harvard Univ.

Species Tag: 28005	Page 1 of 1		Version:	1	Dat	te: Dec.	, 1979
Species Name: Hydrogen Isocyanide Carbon - 13 isotope HN ¹³ C		Author: R. L. Poynter					
			Min. Int. = 2×10^{-3} nm ² MHz				
Q (Spin-Rot., T = 300K) = 143.880		J Max. =	(35)	Lines	Listed	= 35
Dipole Moments/Debye:	$\mu_{a} = 2.699$	1	'b ⁼		"c =		
Rot. Cunst./MHz: A =		B =	= 43545.61	l	C =		

Charles Street and a second

The observed lines are from R. A. Creswell, E. F. Pearson, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 221, and E. F. Pearson, R. A. Creswell, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 1394.

Species Tag: 28006	Page 1 of	1	Version: 1	Date: Dec. 1979	
Species Name: Hydrogen Isocyanide		Author: R. L. Poynter			
Nitrogen - 15 isotope H ¹⁵ NC		Min. Int. = 2×10^{-3} nm ² MHz			
Q (Spin-Rot., T = 300K)	= 141.013		J Max. = (33)	Lines Listed = 33	
Dipole Moments/Debye:	μ _a = 2.699		"Р <u>=</u>	ⁿ c ⁼	
Rot. Const./MHz: A =		B	= 44433.04	C =	

The observed lines are from R. A. Creswell, E. F. Pearson, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 221, and E. F. Pearson, R. A. Creswell, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 1394.

		and the second se			
Species Tag: 28007 Page 1	of 1 Version:	1	Date: Dec. 1979		
Species Name: Hydrogen Isoc	yanide Author:	Author: R. L. Poynter			
Deuterium isotope					
DNC	Min. Int.	Min. Int. = 10^{-3} nm ² MHz			
Q (Spin-Rot., $T = 300K$) = 16	4.169 J Max. =	(39) Li	nes Listed = 39		
Dipole Moments/Debye: $\mu_a = \frac{1}{a}$	2.699 μ _b =	μ	■		
Rot. Const./ MHz: A =	B = 38152.9	95 () =		

The observed lines are from R. A. Creswell, E. F. Pearson, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 221, and E. F. Pearson, R. A. Creswell, M. Winnewisser and G. Winnewisser, (1976), Z. Naturforsch. <u>31a</u>, 1394.

ł

Sec. Sec.

Species Tag: 29001	Page 1 of 1	Version: 1	Date: Dec. 1979			
Species Name: Carbon monoxide		Author: R. L. P	Author: R. L. Poynter			
Carbon - 13 isotop	e					
¹³ co		$Min. Int. = 8 \times 10^{-6} nm^2 MHz$				
Q (Spin-Rot., T = 300K) = 113.776		J Max. = (27)	Lines Listed $= 27$			
Dipole Moments/Debye:	µ _a = 0.110	"P	"c =			
Rot. Const./MHz: A =	E	= 55101.02	(=			

The experimental measurement was reported by B. Rosenblum, A. H. Nethercot, Jr. and C. H. Townes, 1958, Phys. Rev. <u>109</u>, 400.

The dipole moment was measured by W. L. Meerts, F. H. De Leeuw, and A. Dymanus, 1977, Chem. Phys. <u>22</u>, 319.

Species Tag: 29002	Page 1 of	1	Version: 1	Date: Dec. 1979
Species Name: Formyl radical cation		Author: R. L. Poynter		
нсо+			Min. Int. = 10 ⁻	-3 nm ² MHz
Q (Spin-Rot., T = 3001	() = 140.504		J Max. = (33)	Lines Listed = 33
Dipole Moments/Debye:	μ _a = 3.30		^µ b ⁼	^μ c ⁼
Rot. Const./MHz: A =		B	= 44594.46	C ='

Only one line has been observed in the laboratory, by R. C. Woods, T. A. Dixon, R. J. Saykally, and P. G. Szanto, (1975), Phys. Rev. Lett. <u>35</u>, 1269.

The dipole moment was estimated theoretically in the same paper.

Species Tag: 29003	Page 1 of 1	Version: 2	Date: Jan 1981
Species Name: Methyle	neimine CH ₂ NH	Author: R. Poynt	ter
		10 ⁻¹ Min. Int. = belo 10 ⁻¹	3 ow 120 GHz nm ² MHz ⁵ above 120 GHz
Q (Spin-Rot., T = 300K) = 5892.86	J Max. = 33	Lines Listed = 2834
Dipole Moments/Debye:	μ _a = 1.325	µb ■ 1.530	^µ c ⁼
Rot. Const./MHz: A =	196211.045 B	a 34532 . 395	C = 29352.232

The data set and computational method are referenced in W. H. Kirchhoff, D. R. Johnson, and F. J. Lovas, 1973, J. Phys. Chem. Ref. Data, <u>2</u>, 1.

Additional values of the partition function are:

<u> </u>	<u>Q</u>
10	37.62
30	189.12
60	530.52
150	2086.92
200	3210.36

Species Tag: 30001	Page 1 of	1	Version: 1		Date: Dec.	1979
Species Name: Carbon Monoxide		Author: R. L. Poynter				
oxygen - 18 isotop C ¹⁸ O	e		Min. Int. = 8	x 1	l0 ⁻⁶	nm ² MHz
Q (Spin-Rot., T = 300K) = 114.2096		J Max. = (27)	Li	nes Listed	= 27
Dipole Moments/Debye:	$\mu_{a} = 0.110$		^μ b ⁼	^µ c	= 28	
Rot. Const./MHz: A =		B	= 54891.425	С	=	

The experimental measurement was reported by B. Rosenblum, A. H. Nethercot, Jr. and C. H. Townes, 1958, Phys. Rev. <u>109</u>, 400.

The dipole moment was reported by W. L. Meerts, F. H. De Leeuw, and A. Dymanus, 1977, Chem. Phys. $\underline{22}$, 319.

Species Tag: 30002	Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Formyl radical cation		Author: R. L. P	Author: R. L. Poynter		
carbon - 1 H ¹³ CO ⁺	3 isotope	Min. Int. = 3 2	< 10 ^{−3} nm ² MHz		
Q (Spin-Rot., T = 300K)	= 144.437	J Max. = (34)	Lines Listed = 34		
Dipole Moments/Debye:	$\mu_{a} = 3.30$	^μ b ⁼	^µ c ⁼		
Rot. Const./MHz: A =		B = 43377.36	C = '		

Only one line has been observed in the laboratory, by R. C. Woods, R. J. Saykally, T. A. Dixon, P. G. Szanto, and T. Anderson, (1976) 31st Symposium on Molecular Spectroscopy, Columbus, Ohio.

Species Tag: 30003 Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Formyl radical cation	Author: R. L. Poynter		
Deuterium isotope DCO ⁺	Min. Int. = 2	x 10 ⁻³ nm ² MHz	
Q (Spin-Rot., T = 300K) = 173.872	J Max. = (42)	Lines Listed = 41	
Dipole Moments/Debye: $\mu_a = 3.30$	¹¹ P =	^µ c ⁼	
Rct. Const./MHz: A = B	= 36019.76	C =	

Only one line has been observed in the laboratory, by R. C. Woods, R. J. Saykally, T. A. Dixon, P. G. Szanto, and T. Anderson, (1976) 31st Symposium on Molecular Spectroscopy, Columbus, Ohio.

Species Tag: 30004	Page 1 of 1	Version: 1	Date: Jan. 1980		
Species Name: Formaldehyde		Author: R. L.	Author: R. L. Poynter		
н ₂ со		Min. Int. = 10	o ⁻²⁰ nm ² MHz		
Q (Spin-Rot., T = 300K) = 2876.7		J Max. = 40	Lines Listed = 611		
Dipole Moments/Debye:	µ _a ≖ 2.331	μ _b = 0.	μ _c = 0.		
Rot. Const./MHz: A = 281925.97 B		B = 38836.582	C = 34001.6729		

The experimental data were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

- J. K. Bragg and A. H. Sharbaugh, 1949, Phys. Rev. 75, 1774.
- J. S. Chardon and D. Guichon, 1977, J. Phys. (Paris), <u>38</u>, 113; 1973, J. Phys. (Paris), <u>34</u>, 791.
- F. Y. Chu, S. M. Freund, J. W. C. Johns, and T. Oka, 1973, J. Mol. Spect. <u>48</u>, 328.
- D. Dangoisse, E. Willemot, and J. Bellet, 1978, J. Mol. Spect. 71, 414.
- D. R. Johnson, R. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data, <u>1</u>, 1011.
- A. F. Krupnov, L. I. Gershtein, V. G. Shustrov, and V. V. Polyakov, 1970, Opt. Spect. (USSR), <u>28</u>, 257.
- R. B. Lawrence and M. W. P. Strandberg, 1949, Phys. Rev. 75, 1774.
- T. Oka, H. Hirakawa, and K. Shimoda, 1960, J. Phys. Soc. Japan, 15, 2265.

T. Oka, T. Takagi, Y. Morino, 1964, J. Mol. Spect. 14, 27.

The dipole moment was measured by K. Kondo and T. Oka, 1960, J. Phys. Soc. Japan, <u>15</u>, 307.

Species Tag: 30005	Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Methylenimine		Author: R. L. Poynter		
¹³ _{CH₂NH}		Min. Int. = 10	o ⁸ nm ² MHz	
Q (Spin-Rot., T = 300K) = 2012.45	J Max. = 10	Lines Listed = 439	
Dipole Moments/Debye:	μ = 1.325 ^μ a	^µ b = 1.530	^µ c = 0.	
Rot. Const./MHz: A =	196195.217 B	= 33747.872	Ç = 28707.047	

The computational method is the same as that used on the parent species, CH_2NH . The data are from R. Pearson, Jr. and F. J. Lovas, 1977, J. Chem. Phys. <u>66</u>, 4149. The dipole moment has been assumed the same as for the parent species.

.

Species Tag: 30006	Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Methylenimine		Author: R. L. Poynter		
Nitrogen - 15 isotope CH ₂ ¹⁵ NH		Min. Int. = 10 ⁻⁸ nm ² MHz		
Q (Spin-Rot., T = 300K) = 2015.792		J Max. = 10	Lines Listed = 440	
Dipole Moments/Debye: 1	a = 1.325	μ. = 1.530 b	μ _c = 0.	
Rot. Const./MHz: A =	195738.07	B = 33736.100	C = 28688.614	

The computational method is the same as that used on the parent species, CH_2NH . The data are from R. Pearson, Jr. and F. J. Lovas, 1977, J. Chem. Phys. <u>66</u>, 4149. The dipole moment has been assumed the same as for the parent species.

Species Tag: 30007	Page 1 of 1	Version: 2	Date: Feb 1981	
Species Name: Methylenimine		Author: R. L. Poynter		
Deuterium on nit CH ₂ ND	rogen atom	Min. Int. = 10 ⁻⁶	below 120 GHz, 2 nm ² MHz above 120 GHz	
Q (Spin-Rot., T = 300K) = 2393.69		J Max. = 14	Lines Listed = 1834	
Dipole Moments/Debye:	$\mu_{a} = 1.325$	μ _b = 1.530	^µ c ⁼	
Rot. Const./MHz: A =	157673.877 B	32069.366	C = 26563.849	

The computational method is the same as that used for the parent species, CH_2NH . The data are from R. Pearson, Jr. and F. J. Lovas, 1977, J. Chem. Phys. <u>66</u>, 4149.

The dipole moment was assumed to be the same as for the parent species.

Additional values of the partition function are:

<u> </u>	<u>_</u> Q
10	15.21
30	76.71
60	215.37
150	847.55
200	1303.93

Species Tag: 30008	Page 1 of	1	Version: 1	Date: Feb.	1980
Species Name: Nitric Oxide		Author: H. M. Pickett			
ground ² II states NO			Min. Int. = 10	-20	nm ² MHz
Q (Spin-Rot., T = 300K) = 1159.464		J Max. = 35.5	Lines Listed	= 1909	
Dipole Moments/Debye:	$\mu_a = 0.158$	372	^µ b = 0.	^µ c = 0.	
Rot. Const./MHz: A =		В	= 50849.06	C =	

The spectrum of NO was fit to the fine structure Hamiltonian described by C. Amiot, R. Bacis and G. Guelachvili, 1978, Can. J. Phys. <u>56</u>, 251, along with the hyperfine Hamiltonian described by W. L. Meerts, 1976, Chem. Phys. <u>14</u>, 421. The radio frequency lines are from W. L. Meerts and A. Dymanus, 1972, J. Mol. Spectroscopy. 44, 320. The millimeter lines were measured at JPL by H. M. Pickett and E. A. Cohen. The partition function was determined by a sum over states to J=71/2. Other values are:

T	<u>Q</u>
10	30.394
30	80.168
60	162.551
100	296.509
150	492.323

Species Tag: 31001	Page 1 of	1	Version: 1	Date: Dec. 1979
Species Name: Formyl radical cation		Author: R. L. Poynter		
Oxygen - 18 isotope HC ¹⁸ 0 ⁺		Min. Int. = 3×10^{-3} nm ² MHz		
Q (Spin-Rot., T = 300K) = 145.427		J Max. = (34)	Lines Listed = 34	
Dipole Moments/Debye: µ _a =		$\mu_{b} = 3.30$	^μ c ⁼	
Rot. Const./MHz: A =		В	= 43081.217	C = "

Only one line has been observed in the laboratory, by R. C. Woods, R. J. Saykally, T. A. Dixon, P. G. Szanto, and T. Anderson, (1976) 31st Symposium on Molecular Spectroscopy, Columbus, Ohio.

Species Tag: 31002	Page 1 of	1	Version: 1	Date: Jan. 1980
Species Name: Formaldehyde		Author: R. L. Poynter		
Carbon - 13 isotope H ₂ ¹³ CO		Min. Int. = 5×10^{-10} nm ² MHz		
Q (Spin-Rot., T = 300K) = 2949.7		J Max. ≠ 40	Lines Listed = 601	
Dipole Moments/Debye: $\mu_a = 2.331$		"b = 0.	μ _c = 0.	
Rot. Const./MHz: A = 281930.85 B		= 37811.92	C = 33213.19	

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

- D. Dangoisse, E. Willemot, and J. Bellet, 1978, J. Mol. Spect. 71, 414.
- D. R. Johnson, F. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data, <u>1</u>, 1011.
- R. B. Lawrence and M. W. P. Strandberg, 1951, Phys. Rev. 83, 363.

R. Nerf, 1972, Ap. J., <u>174</u>, 467.

T. Oka, H. Hirakawa, and K. Shimoda, 1960, J. Phys. Soc. Japan, 15, 2265.

T. Oka, T. Takagi, and Y. Morino, 1964, J. Mol. Spect. 14, 27.

K. D. Tucker, G. R. Tomasevich, and P. Thaddeus, 1972, Ap. J. <u>174</u>, 463, 1971, Ap. <u>169</u>, 429.

The dipole moment was assumed to be the same as the parent $H_2^{12}CO$.

الأنة مشدسة ال

Species Tag: 32001	Page 1 of 1	Version: 2	Date: June 1980
Species Name: Molecular Oxygen ${}^{16}O_2 v = 0$ state of ground ${}^{3}\Sigma_{g}^{-}$ electronic state		Author: H. M. Pickett	
		$Min. Int. = 10^{-32} nm^2 MHz$	
Q (Spin-Rot., T - 300K) = 218.529		J Max. = 60	Lines Listed = 174
Dipole Moments/Debye: µ _a =		μ _b = magnetic	^µ c ⁼
Rot. Const./MHz: A =	В	= 43099.795	C =

The measurements and calculational method are from T. Amano and E. Hirota, 1974, J. Mol. Spectroscopy 53, 346. The Raman lines of O_2 (M. Loete and H. Berger, 1977, J. Mol. Spectroscopy 68, 317) were used with the millimeter wavelength measurements and the submillimeter-line of W. Steinbach and W. Gordy (1973, Phys. Rev <u>A 8</u>, 1953) in a combined fit of the v = 0 and v = 1 transitions. The intensities of the magnetic dipole transitions have been calculated using the g values obtained from magnetic resonance by K. D. Bowers, R. A. Kamper and C. D. Lustig, 1959, Proc. Roy. Soc. (Lond.) <u>A251</u>, 565. The zero-frequency absorption is included but the frequency is set to a synthetic frequency of |g|J for the given level.

The value of Q is determined by a sum over states to J = 60. Other values are:

T	<u>Q</u>
10	8.306
30	22,615
60	44.326
100	73.327
150	109.605

Species Tag: 32002 Page	1 of 1	Version: 2	Date: Oct. 1979	
Species Name: Molecular Oxygen ${}^{16}O_2 v = 1 \text{ state of the}$ ground ${}^{3}\Sigma_g^-$ state		Author: H. M. Pickett		
		Min. Int. = 10^{-10} nm ² MHz		
Q (Spin-Rot., T = 300K) = 220.918		J Max. = (40)	ines Listed = 63	
Dipole Moments/Debye: µ _a =		^µ b ⁼ magnetic ;	'c ⁼	
Rot. Const./MHz: A =	В	= 42626.9	C =	

The calculations are described for the ground state (Species 32001). The vibrationally excited state, v = 1, is 1556.38 ± 0.01 cm⁻¹ above the ground state (M. Loete and H. Berger, 1977, J. Molec. Specty. <u>68</u>, 317). Intensities were calculated using the ground state g values.

The value of Q was determined by a sum over states to J = 60. Other values are:

<u> </u>	<u>_</u> Q
10	8.348
30	22.819
60	44.772
100	74.097
150	110.77 9

Species Tag: 32003	Page 1 of 1	Version: 2	Date: Nov. 1980
Species Name: Methyl	Alcohol (Methanol)	Author: H. M. P	ickett
CH ₃ OH lowest A, E ₁ , and E ₂ vibrational states		Min. Int. = 10^{-10} nm ² MHz	
Q (Spin-Rot., T - 300	K) = 6414.2516	J Max. = 12	Lines Listed = 709
Dipole Moments/Debye:	$\mu_{a} = 0.885$	μ _b = 1.440	^μ c = 0
Rot. Const./MHz: A =	127,484. B	= 24,679.98	C = 23769.70

The lines below 200 GHz are reported by R. M. Lees, F. J. Lovas, W. H. Kirchhoff, and D. R. Johnson, 1973, J. Phys. Chem. Ref. Data, <u>2</u>, 205. Additional lines are referenced in F. J. Lovas, L. E. Snyder, and D. R. Johnson, 1979, Ap. J. Suppl., <u>41</u>. The lines above 200 GHz were measured at JPL. Frequencies were predicted using energy polynomials in J (J + 1) for each value of K.

The partition function is twice the value for a rigid rotor with the rotational constants given above. The quantum numbers for methanol are listed in the 840 format even though methanol is not a symmetric rotor. The \underline{v} quantum numbers in the catalogue are:

<u>v</u>	species	asymmetric rotor correspondence			
1	A+	upper K state for K even, lower for K odd			
2	A-	upper K state for K odd, lower for K even			
3	E ₁	no direct correspondence			
4	E2	no direct correspondence			

Species Tag: 32004	Page 1 of 1	Version: 1	Date: Feb. 1980
Species Name: Formaldehyde		Author: R. L. Poynter	
Oxygen - 18 isotope H ₂ C ¹⁸ O		Min. Int. = 10 ⁻⁹ nm ² MHz	
Q (Spin-Rot., T = 300K) = 3017.226		J Max. = 20	Lines Listed = 449
Dipole Moments/Debye: µ _a = 2.331		μ _b = 0.	μ _c = 0.
Rot. Const./MHz: A =	281993.0 B	= 36903.573	C = 32514.740

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

D. Dangoisse, E. Willemot, and J. Bellet, 1978, J. Mol. Spect. 71, 414.

D. R. Johnson, F. Lovas, and W. K. Kirchhoff, 1972, J. Phys. Chem. Ref. Data, <u>1</u>, 1011.

R. B. Lawrence and M. W. P. Strandberg, 1951, Phys. Rev. <u>83</u>, 363.

T. Oka, H. Hirakawa, and K. Shimoda, 1960, J. Phys. Soc. Japan, <u>15</u>, 2265.

T. Oka, T. Takagi, and Y. Morino, 1964, J. Mol. Spect. 14, 27.

K. D. Tucker, G. R. Tomasevich, and P. Thaddeus, 1972, Ap. J. <u>174</u>, 463, 1971, Ap. J., <u>169</u>, 429.

The dipole moment was assumed to be the same as the parent species.

The second se

Species Tag: 34001	Page 1 of 1	Version: 2	Date: Oct. 1980
Species Name: 18 ₀ 16 ₀		Author: H. M. Pickett	
Molecular Oxygen - O ¹⁸ species ground state		Min. Int. = 2.5 x 10 ⁻¹¹ nm ² MHz	
Q (Spin-Rot., T = 300K) = 462.32		J Max. = (42)	Lines Listed = 132
Dipole Moments/Debye:	μ _a =	^µ b ⁼ magnetic	^µ c ⁼
Rot. Const./MHz: A =	В	= 40708.	C =

The measurements and calculational method are from T. Amano and E. Hirota, 1974, J. Mol. Spectroscopy <u>53</u>, 346. Intensities of magnetic dipole transitions have been calculated using the g values obtained from magnetic resonance by K. D. Bowers, R. A. Kamper and C. D. Lustig, 1959, Proc. Roy. Soc. (Lond.) <u>A251</u>, 565. The zero-frequency absorption is included but the frequency is set to a synthetic frequency of |g|J for the given level.

The value of Q is determined by a sum over states to J = 60. Other values are:

T	<u> </u>
10K	17.13
30	47.46
60	93.44
100	154.85
150	231.67

Species Tag: 34002	Page 1 of 1	Version: 2	Date: July 1980
Species Name: Hydrogen Sulfide		Author: R.L. Poynter & H.M. Pickett	
н ₂ s		Min. Int. = 10 ⁻⁸ nm ² MHz	
Q (Spin-Rot., T - 300K) = 514.197		J Max. = 15	Lines Listed = 311
Dipole Moments/Debye: µ _a = 0.		^μ b = 0.974	μ _c = 0.
Rot. Const./MHz: A =	310182.24 B	= 270884.05	C = 141705.880

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

P. Helminger, R. L. Cook, and F. C. De Lucia, 1972, J. Chem. Phys. <u>56</u>, 4581.
P. Helminger, F. C. De Lucia, and W. H. Kirchhoff, 1973, J. Phys. Chem. Ref. Data, <u>2</u>, 213.

The dipole moment was reported by C. Huiszoon and A. Dymanus, 1965, Physica, <u>31</u>, 1049.

The partition function was calculated by a sum over states to J = 15. Other values are:

<u>T</u>	2	
150	182.783	
100	100.157	
60	47.239	
30	17.296	
10	3.234	

Species Tag: 34003	Page 1 of 1	Version: 2	Date: Feb. 1981	
Species Name: Phosphine PH ₃		Author: R. L. Poynter		
		Min. Int. = 10^{-17} nm ² MHz		
Q (Spin-Rot., T = 300K) = 608.55		J Max. = (19)	Lines Listed = 142	
Dipole Moments/Debye: $\mu_a = *7.2 \times 10^{-5}$		μ ^b =	μ _c = 0.574	
Rot. Const./MHz: A =	*centrifugally ind B	uced = 133480.22	C = 117488.39	

The measured lines are taken from D. Helms and W. Gordy, 1971, J. Mol. Spect., <u>66</u>, 206; F. Y. Chu and T. Oka, 1974, J. Chem. Phys. <u>60</u>, 4612; P. B. Davies, R. M. Newman, S. C. Wofsy, and W. Klemperer, 1971, J. Chem. Phys. <u>55</u>, 3564; A. F. Krupnov, A. A. Melnikov, and V. A. Skvortsov, 1979, Opt. Spectrosc. (USSR) <u>46</u>, (5), 570; and H. M. Pickett, R. L. Poynter and E. A. Cohen, J. Quant. Spectrosc. and Radiat. Transfer, in press, 1981.

The dipole moment measured by P. B. Davies, et al., above, is 0.57395 + 0.0003D.

Note that the K=3 energy levels are split by vibrational and distortion interactions with the K=0 level for a given J. (H. H. Nielsen and D. M. Dennison, 1947, Phys. Rev. <u>72</u>, 1011; J. M. Hoffman, H. H. Nielsen and K. N. Rao, 1960, Z. Elektrochem, <u>63</u>, 606; J. K. G. Watson, 1971, J. Mol. Spectrosc. <u>40</u>, 536). We flag the lower of the two K=3 energy levels by a minus sign. Thus, a (J, K) = (4, -3) - (3, +3) designation indicates that the transition is between the upper (J, K) = (4, 3) level. Computations always involve only K = |k|. This choice is similar to, but slightly different from that employed by A. G. Maki, R. L. Sams and W. B. Olson, 1973, J. Chem. Phys. 58, 4502, where further details are discussed.

Other values of the partition function are:

	<u> </u>
10	4.29
30	20.16
60	55.56
150	216.24
200	332.10

Species Tag: 34004	Page 1 of	1	Version: 2	Date: Oct 1980	
Species Name: Hydrogen Peroxide ground torsional states H ₂ 0 ₂			Author: H. M. Pickett Min. Int. = 10 ⁻⁸ nm ² MHz		
Dipole Moments/Debye:	μ _a =		^μ b ⁼	^μ c = 1.5728	
Rot. Const./MHz: A =	301878.	B	= 26211.9	C = 25099.14	

The spectral lines and method of calculation are from P. Helminger, W. C. Bowman and F. C. De Lucia, 1981, J. Mol. Spec. <u>85</u>, 120 and W. Bowman, personal communication. Additional lines and the dipole moment were measured by H. M. Pickett and E. A. Cohen at JPL. The quantum number designation is v = 0 for $\tau = 1$, 2 and v = 1 for $\tau = 3$, 4.

Species Tag: 35001	Pagel of 1	Version: 1	Date: 1980
Species Name: Hydrogen Sulfide Deuterium Isotope HDS		Author: R. L.	Poynter
		Min. Int. = 4×10^{-12} nm ² MHz	
Q (Spin-Rot., T - 300	K) = 430.900	J Max. = 20	Lines Listed = 1138
Dipole Maments/Debye:	$\mu_{a} = 0.470$	μ <mark>=</mark> 0.974	μ _c = 0.
Rot. Const./MHz: A =	292351.302	B = 147861.801	C = 96704.120

- Carlor

 The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. 40, 125. G. Steenbeckliers, quoted in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

The dipole moment was reported by R. E. Hillger and M. W. P. Strandberg, 1951, Phys. Rev. <u>83</u>, 575.

Species Tag: 36001	Page 1 of 1	Version: 1	Date: Feb. 1980
Species Name: Hydrogen Chloride H ³⁵ Cl		Author: R. L. Poy	nter & H. M. Pickett
		Min. Int. = 5 x	10 ⁻² nm ² MHz
Q (Spin-Rot., T = 300K) = 81.232	J. Max. = 4	Lines Listed = 17
Dipole Moments/Debye: $\mu_a = 1.109 \mu_b = 0 \mu_c = 0$			^µ c ^{= 0}
Rot. Const./MHz: A =	B	= 312989.3	C =

The observed lines were measured by F. C. De Lucia, P. Helminger, and W. Gordy, 1971, Phys. Rev., <u>A</u> 3, 1849.

The aipole moment was measured by F. A. deLeeuw and A. Dymanus, 1971, Symposium on Molec. Spect., Columbus, Ohio.

Species Tag: 38001	Page 1 of	1	Version:	1	Date: F	eb. 1980
Species Name: Hydrogen Chloride Chlorine - 37 isotope H ³⁷ C1			Author:R.	L. Poy	ynter & H.	L. Pickett
			Min. Int. = 5×10^{-2} nm		nm ² MHz	
Q (Spin-Rot., T = 300K) = 81.352			J Max. =	4	Lines List	ed = 17
Dipole Moments/Debye: $\mu_a = 1.109$ $\mu_b = \mu_c =$						
Rot. Const./MHz: A =		B	= 312519.	12	C =	

The observed lines were measured by F. C. De Lucia, P. Helminger, and W. Gordy, 1971, Phys. Rev., A $\underline{3}$, 1849.

The dipole moment was measured by F. A. DeLeeuw and A. Dymanus, 1971, Symposium on Molec. Spect., Columbus, Ohio.

Species Tag: 40001	Page 1 of 1	Version: 1	Date: Dec, 1979		
Species Name: Propyne	9	Author: R. L. Poynter			
сн ₃ ссн		Min. Int. = 3×10^{-5} nm ² MHz for J > 14			
Q (Spin-Rot., T = 300K) = 5428.80	J Max. = 80	Lines Listed = 813		
Dipole Moments/Debye:	$\mu_{a} = 0.750$	^µ b ⁼	^v c ⁼		
Rot. Const./MHz: A =	158590. B	= 8545.860	C = B		

The experimental measurements were obtained from A. Dubrille, D. Boucher, J. Burie, and J. Demaison, 1978, J. Mol. Spect. <u>72</u>, 158. The A moment was estimated from the structure.

The dipole moment was measured by J. S. Muenter and V. W. Laurie, 1966, J. Chem. Phys. <u>45</u>, 855.

ş

.

Species Tag: 41001	Page 1	of 1	Version: 1	Date: Dec. 197	9
Species Name: Acetonitrile CH ₃ CN ground state		Author: R.	Author: R. L. Poynter		
		Min. Int. =	Min. Int. = 3×10^{-5} nm ² MHz for J > 14		
Q (Spin-Rot., T = 300K) = 15145.		J Max. = 8	2 Lines Listed = 14	41	
Dipole Moments/Debye: "a = 3.919 "b = "c =					
Roi. Const./MHz: A =	158290.		B = 9198.8993	C = B	

i i

The experimental measurements were taken from D. Boucher, J. Burie, J. Demaison, A. Dubrille, J. Legrand, and B. Segard, 1977, J. Mol. Spect. <u>64</u>, 290; A. Bauer and S. Maes, 1969, J. Phys. <u>30</u>, 169; S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, J. Chem. Phys. <u>58</u>, 3155.

The dipole moment was reported by P. A. Steiner and W. Gordy, 1966, J. Mol. Spect. <u>21</u>, 291.
Species Tag: 41002 Page 1 of 1	Version: 1 Date: Dec. 1979		
Species Name: Propyne,	Author: R. L. Poynter		
Carbon - 13 isotope on atom 1 CH ₃ C ¹³ CH	Min. Int. = 3×10^{-5} nm ² MHz for J > 14		
Q (Spin-Rot., T = 300K) = 5596.11	J Max. = 80 Lines Listed = 822		
Dipole Moments/Debye: _{Ha} = 0.750	^µ b = ^µ c =		
Rot. Const./MHz: A = 158590.	B = 8290.259 C = B		

The experimental measurements were taken from D. Boucher, J. Burie, J. Demaison, A. Dubrille, J. Legrand, and B. Segard, 1977, J. Mol. Spect. <u>64</u>, 290; A. Bauer and S. Maes, 1969, J. Phys. <u>30</u>, 169; S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, J. Chem. Phys. <u>58</u>, 3155.

The dipole moment was reported by P. A. Steiner and W. Gordy, 1966, J. Mol. Spect. <u>21</u>, 291.

Species Tag: 41003	Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Propyne,		Author: R. L. I	Poynter		
Carbon - 13 isotope on atom 2 $CH_3^{13}CCH$		Min. Int. = 3 ; for J	Min. Int. = 3×10^{-5} nm ² MHz for J > 14		
Q (Spin-Rot., T = 300k	() = 5431.06	J Max. = 79	Lines Listed = 813		
Dipole Moments/Debye:	^μ a = 0.750	¹¹ b =	^µ c ⁼		
Rot. Const./MHz: A =	158590.	B = 8542.304	C = B		

たいかいたいできたかかいがいできましたいかいかい シートレート・レッシングラー

A Service and all of the

アルモインド

State Second

したいしたりあいとうたい

・いといいたま

A ALL AND A AND A ALL AND

「日本でないという」とないであるとうない

The experimental measurements were taken from D. Boucher, J. Burie, J. Demaison, A. Dubrille, J. Legrand, and B. Segard, 1977, J. Mol. Spect. <u>64</u>, 290; A. Bauer and S. Maes, 1969, J. Phys. <u>30</u>, 169; S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, J. Chem. Phys. <u>58</u>, 3155.

The dipole moment was reported by P. A. Steiner and W. Gordy, 1966, J. Mol. Spect. <u>21</u>, 291.

Species Tag: 41004	Page 1 of 1	Version: 1	Date: ₂c. 1979	
Species Name: Propyne,		Author: R. L. Poynter		
carbon - 13 isotope on atom 3 H ₃ ¹³ CCCH		Min. Int. = 3×10^{-5} nm ² MHz for J > 14		
Q (Spin-Rot., T = 300K) = 5580.65		J Max. = 80	Lines Listed = 821	
Dipole Moments/Debye:	$\mu_{a} = 0.750$	^μ b ⁼	^µ c ⁼	
Rot. Const./MHz: A =	158590. B	= 81313.24	C = B	

The experimental measurements were taken from D. Boucher, J. Burie, J. Demaison, A. Dubrille, J. Legrand, and B. Segard, 1977, J. Mol. Spect. <u>64</u>, 290; A. Bauer and S. Maes, 1969, J. Phys. <u>30</u>, S. G. Kukolich, D. J. Ruben, J. H. S. Wang, and J. R. Williams, 1973, J. Chem. Phys. <u>58</u>, 3155.

The dipole moment was reported by P. A. Steiner and W. Gordy, 1966, J. Mol. Spect. <u>21</u>, 291.

Species Tag: 41005	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Propyne	29	Author: R. L. Po	ynter	
Deuterium isotope on carbon atom l CH ₃ CCD		Min. Int. = 3×10^{-5} nm ² MHz for J > 14		
Q (Spin-Rot., T = 300K) = 5956.732	J Max. = 82 l	ines Listed = 800	
Dipole Moments/Debye:	$\mu_a = 0.750$	^µ b = 1	c ⁼	
Rot. Const./MHz: A =	158590.0 B	= 7788.158	С = В	

語をいたいであるというというないであるという

The experimental measurements are from J. S. Muenter and V. W. Laurie, 1966, J. Chem. Phys. <u>45</u>, 855; L. F. Thomas, E. I. Sherrard, and J. Sheridan, 1955, Trans. Far. Soc. <u>51</u>, 619.

The dipole moment was assumed to be the same as the parent species for this calculation. An experimental value, 0.770D (avg.) corrected for the new OCS standard, has been reported by Muenter and Laurie (above). This result came to our attention too late to include in this version.

Species Tag: 41006	Page 1 of	1	Version: 1	Date: Jan. 1980
Species Name: Propyne Deuterium isotope on methyl carbon atom CH ₂ D CCH		Author: R. L. Poynter		
		-10 2		
		Min. Int. = 2 3	10 ⁻¹⁰ nm ⁻ MHz	
Q (Spin-Rot., T = 300K) = 9982.44		J Max. = 15	Lines Listed = 223
Dipole Moments/Debye:	$\mu_{a} = 0.750$		^µ b = 0.	μ _c = 0.
Rot. Const./MHz: A =	117744.370	B	= 8155.784	C = 8025.577

The experimental measurements are from L. F. Thomas, E. I. Sherrard, and J. Sheridan, 1955, Trans. Far. Soc. <u>54</u>, 619.

The dipole moment was assumed to be the same as the parent species for this calculation.

Species Tag: 42001	Page 1 of 1	Versi	on: 1	Date: Dec. 1979	
Species Name: Acetonitrile			Author: R. L. Poynter		
Nitrogen - 15 isotope CH ₃ C ¹⁵ N			Min. Int. = 2×10^{-5} nm ² MHz for J > 14		
Q (Spin-Rot., T = 300K) = 15145			. = 90	Lines Listed = 2755	
Dipole Moments/Debye: µ _a = 3.919				^µ c ⁼	
Rot. Const./MHz: A =	158290.	B = 919	8.8993	C = B	

And the second

ł

The experimental measurements were obtained from A. Bauer and S. Maes, 1969, J. de Phys. <u>30</u>, 169; J. Demaison, A. Dubrulle, D. Boucher, J. Burie, 1969, J. Mol. Spect. <u>76</u>, 1.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 42002 Page	l of 1	Version: 1	Date: Jan. 1980
Species Name: Ketene		Author: R. L. P	oynter
н ₂ ссо		Min. Int. = 3 x	10 ⁻¹⁵ nm ² MHz
Q (Spin-Rot., T = 300K) = 10	322.9	J Max. = 29	Line's Listed = 835
Dipole Moments/Debye: µ _a =	1.422	μ _b = 0	^µ c = 0
Rot. Const./MHz: A = 28247	3 B	= 10293.80	C =` 9916.38

B. Fabricant, D. Krieger, and J. S. Muenter, 1977, J. Chem. Phys. <u>67</u>, 1576.
J. W. C. Johns, J. M. R. Stone, and G. Winnewisser, 1972, J. Mol. Spect. <u>42</u>, 523.
H. R. Johnson and M. W. P. Strandberg, 1952, J. Chem. Phys. <u>20</u>, 687.

The dipole moment was reported by Johnson (above) and by B. Fabricant, et al. (above).

Species Tag: 43001	Page	1 of	1	Version:	1	Date: Jan.	1980
Species Name: Ketene Deuterium isotope HDCCO		Author: R. L. Poynter Min. Int. = 10 ⁻²³ nm ² MHz					
					nm ² MHz		
Q (Spin-Rot., T = 300K) = 66	682.68		J Max. =	29	ines Listed =	886
Dipole Moments/Debye:	μ _a =	1.422		^μ b ^{= 0} .)	² c ^{= 0} .	
Rot. Const./MHz: A =	194313	3.0	B	= 9647.39	6	C = ⁶ 9174.975	

L. Nemes and M. Winnewisser, 1976, Z. Naturforsch. 31a, 272.

The dipole moment was assumed the same as the parent species.

Species Tag: 44001	Page 1 of	1	Version: 1	Date: Dec. 1979
Species Name: Carbon Monosulfide		Author: R. L. Poynter		
ground state				
CS		Min. Int. = 4×10^{-5} nm ² Mi		
Q (Spin-Rot., T = 300K) = 255.515		J Max. = (60)	Lines Listed = 60
Dipole Moments/Debye:	$\mu_a = 1.957$		^µ b [≖]	^µ c [≭]
Rot. Const./MHz: A =		B	= 24495.554	C =

The experimental data were taken from the following papers:

R. Kewley, K. V. L. N. Sastry, M. Winnewisser, and W. Gordy, 1963, J. Chem. Phys. <u>39</u>, 2856.

R. C. Mockler and G. R. Bird, 1955, Phys. Rev. 98, 1837.

The dipole moment is from G. Winnewisser and R. L. Cook. 1968, J. Mol. Spect. <u>28</u>, 266.

ł

Species Tag: 44002	Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Silicon Monoxide		Author: R. L.	Poynter
28 ₅₁ 0		Min. Int. = 3 x	10 ⁻⁵ nm ² MHz
Q (Spin-Rot., T = 300K) = 287.232	J Max. = 66	Lines Listed = 66
Dipole Moments/Debye:	^µ a = 3.098	^µ b =	¹¹ c ⁼
Rot. Const./MHz: A =		B = 21787.46	C =

The experimental data were taken from the following papers:

E. Tiemann, 1974, J. Phys. Chem. Ref. Data, T. Törring, 1968, Z. Naturforsch. 23a, 777.

The dipole moment was reported by J. W. Raymonda, J. S. Muenter, and W. A. Klemperer, 1970, J. Chem. Phys. <u>52</u>, 3458.

A more recent set of measurements, discovered too late to include in this edition, has been given by E. L. Manson, W. W. Clark, F. C. De Lucia, and W. Gordy, 1977, Phys. Rev. <u>A15</u>, 223. The catalogue predictions are within three standard deviations of their measurements.

Species Tag: 44003	Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Acetaldehyde		Author: R. L. Poynter		
ground vibrational	A state			
снзсно		Min. Int. = 6	$\times 10^{-9}$ nm ² MHz	
Q (Spin-Rot., T = 300K)	= 12112.28	J Max. = 20	Lines Listed = 1347	
Dipole Moments/Debye:	μ <mark>=</mark> 2.550	μ _b = 0.870	$\mu_{c} = 0.$	
Rot. Const./MHz: A =	56609.474	B = 10162.766	C = 9100.412	

The data set used is referenced by A. Bauder, F. J. Lovas and D. R. Johnson 1976, J. Phys. Chem. Ref. Data <u>5</u>, 53. The lines were fit to a rigid rotor with centrifugal distortion.

Species Tag: 44004 Page 1 of 1	Version: 1	Dale: Jan. 1980	
Species Name: Nitrous Oxide	Author: R. L. F	Poynter & H. M. Pickett	
^N 2 ⁰	Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) =	J Max. = 61	Lines Listed = 61	
Dipole Moments/Debye: µ _a = .1608	"b *	^µ c [≖]	
Rot. Const./MHz: A =	B = 12561.637	C =	

The experimental data were taken from the summary given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 1445.

The dipole moment was measured by L. H. Scharpen, J. S. Muenter, and V. W. Laurie, 1970, J. Chem. Phys. <u>53</u>, 2513.

Species Tag: 44005	Page 1 of 1	Version: 1	Date: Dec. 1980			
Species Name: Acetaldehyde E state		Author: H. M. Pickett				
сн ³ сно		Min. Int. = 10^{-10} nm ² MHz				
Q (Spin-Rot., T - 300	K) = 12112.3	J Max. = 15	Lines Listed = 691			
Dipole Moments/Debye:	μ a = 2.55	μ _b = 0.870	μ _c = 0			
Rot. Const./MHz: A =	56448.5 B	= 10160.1	C = 9101.3			

The experimental lines of the lowest torsional state of E symmetry are listed in A. Bander, F. J. Lovas, and D. R. Johnson, 1976, J. Chem. Phys. Ref. Data 5, 53. These lines were fit to a Hamiltonian which included terms up to sixth power in angular momentum as well as P_a , $P_a P^2$, $P_a P^4$, P_a^3 , $P_a^{3}P^2$, and P_a^5 terms. The fit produced observed - calculated frequencies which were 3.5 times the experimental uncertainties in an rms sense. Calculat 3 values of μ^2 S agree with those of Bauder <u>et al</u>. The reference enc.gy is located at the J=0 level of the A state, but intensities are wased on E state concentrations.

Species Tag: 45001	Page 1 of 1	V	ersion:	1	Date:	Dec. 1979
Species Name: Carbon Monosulfide			Author: R. L. Poynter			
Carbon - 13 isotop 13 _{CS}	e	M	lin. Int.	= 3 2	; 10 ⁻⁵	nm ² MHz
Q (Spin-Rot., T = 300K) = 270.652	J	Max. =	(62)	Lines Lis	ted = 62
Dipole Moments/Debye:	μ _a = 1.957	۴t	Ξ		^µ c ¯	
Rot. Const./MHz: A =		B =	23123.8	0?	C =	

The experimental measurement was reported by R. C. Mockler and G. R. Bird, 1955, Phys. Rev. <u>98</u>, 1837.

.

- An other and the state

The dipole moment was assumed to be the same as the parent species.

Species Tag: 45002	Page 1 of 1	L	Version:	1	Date: Dec. 1979
Species Name: Silicon	Monoxide		Author:	R. L.	Poynter
silicon - 29 isotope			Min Int	= /	
²⁹ si 0			riii. 111.	- 4	
Q (Spin-Rot., T = 300K) = 290.878		J Max. =	66	Lines Listed = 66
Dipole Mon. J/Debye:	$\mu_a = 3.098$		ν _b =		^µ c ⁼
Rot. Const./MHz: A =		В	= 21514.0	07	C =

The experimental data were taken from the following papers:

E. Tiemann, 1974, J. Phys. Chem. Ref. Data, T. Törring, 1968, Z. Naturforsch. 23a, 777.

The dipole moment was reported by J. W. Raymonda, J. S. Muenter, and W. A. Klemperer, 1970, J. Chem. Phys. <u>52</u>, 3458.

A more recent set of measurements, discovered too late to include in this edition, has been given by E. L. Manson, W. W. Clark, F. C. De Lucia, and W. C--dy, 1977, Phys. Rev. <u>A15</u>, 223. The catalogue predictions are within three standard deviations of their measurements.

\$

Species Tag: 45003	Page 1 of 1	Version: 2	Date: Jan. 1981			
Species Name: Formamide,		Author: R. Poynter				
NH2CHO		10^{-8} Min. Int. = below 120 GHz nm ² MHz 10^{-5} above 120 GHz				
Q (Spin-Rot., T = 300K) = 29155.55	J Max. = 30	Lines Listed = 3476			
Dipole Moments/Debye:	$\mu_a = 316.6$	μ = 0.852	^µ c ⁼			
Rot. Const./MHz: A =	72716.945 B	11373.453	C = 9833.903			

C. C. Costair and J. M. Dowling, 1960, J. Chem. Phys. <u>32</u>, 290.

D. R. Johnson, F. J. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data, <u>1</u>, 1011.

W. H. Kirchhoff and D. R. Johnson, 1973, J. Mol. Spect. 45, 159.

S G. Kukolich and A. C. Nelson, 1971, Chem. Phys. Lett. 11, 383.

R. J. Kurland and E. B. Wilson, Jr., 1957, J. Chem. Phys. 27, 585.

The dipole moment was reported in the paper by Kurland and Wilson.

Additional values of the partition function are:

<u>T</u>	Q
10	180.24
30	926.52
60	2613.45
150	10313.73
200	15874.68

Species Tag: 46001	Page	l of	1	Version: 1	Date: Dec. 1979
Species Name: Carbon	Monosul	fide		Author: R. L. P	oynter
Sulfur - 34 isotop C ³⁴ S	e			Min. Int. = 3 :	к 10 ⁻⁵ nm ² MHz
Q (Spin-Rot., T = 300K) = 25	9.665		J Max. = (61)	Lines Listed = 61
Dipole Moments/Debye:	"a =	1.957		^μ b ⁼	^µ c ⁼
Rot. Cons*./MHz: A =			В	= 24103,550	C =

The experimental measurement was reported by R. C. Mockler and G. R. Bird, 1955, Phys. Rev. <u>98</u>, 1837.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 46002	Page 1 of 1		Version: 1		Date: Dec. 1979		
Species Name: Silicon Monoxide			Author: R. L. Poynter				
Silicon - 30 isotope		E 0					
³⁰ si o			Min. Int. = 3	3 x 1(o ^{-s} nm ² MHz		
Q (Spin-Rot., T = 300K) = 294.358		J Max. = 67	Li	nes Listed = 67		
Dipole Moments/Debye:	μ _a = 3.098		^μ b ⁼	μc	=		
Rot. Const./MHz: A =		B	= 21259.48	C	Ξ		

The experimental data were taken from the following papers:

E. Tiemann, 1974, J. Phys. Chem. Ref. Data, T. Törring, 1968, Z. Naturforsch. 23a, 777.

The dipole moment was reported by J. W. Raymonda, J. S. Muenter, and W. A. Klemperer, 1970, J. Chem. kef. Data, T. Törring, 1968, Z. Naturforsch.

A more recent set of measurements, discovered too late to include in this edition, has been given by E. L. Manson, W. W. Clark, F. C. De Lucia, and W. Gordy, 1977, Phys. Rev. <u>A15</u>, 223. The catalogue predictions are within three standard deviations of their measurements.

Species Tag: 46003	Page 1 of 1	Version: 1	Date: Jan. 1980			
Species Name: Thiofor	maldehyde	Author: R. L. Poynter				
H ₂ CS		Min. Int. = 8 x	10 ⁻¹⁰ nm ² MHz			
Q (Spin-Rot., T = 300K) = 5984.646	J Max. = 27	ines Listed = 517			
Dipole Moments/Debye:	$\mu_{a} = 1.649$	μ _b = 0. μ	rc = 0.			
Rot. Const./MHz: A =	291291.641 B	= 17699.628	C = `16651.830			

D. R. Johnson, F. J. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data <u>1</u>, 1011.

Other references were taken from this paper.

The dipole moment was taken from B. Fabricant, D. Krieger, and J. S. Muenter, 1977, J. Chem. Phys. <u>67</u>, 1576.

Species Tag: 46004	Page 1 of	1	Version: 1		Date: Jan 1980		
Species Name: Ethyl Alcohol			Author: R. L. Poynter				
ground trans state C ₂ H ₅ OH			Min. Int. = 3×10^{-10} nm ² MHz				
	17010 5		1 May - 20				
$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}$) = 17010.5		J Max. = 20				
Dipole Moments/Debye:	$\mu_a = 0.046$		^μ b = 1.438	μc	= 0.		
Rot. Const./MHz: A =	34891.75	B	= 9350.635	C	= 8135.236		

J. Michielson-Effinger, 1969, J. de Phys. <u>30</u>, 333.
Y. Sasada, M. Takano, and T. Satoh, 1971, J. Mol. Spect. <u>38</u>, 33.
M. Takano, Y. Sasada, and T. Satoh, 1968, J. Mol. Spect. <u>26</u>, 157.
Additional measurements were made by E. A. Cohen, 1979, private communication.

The dipole moment was reported by Takano, et al, above.

Species Tag: 46005 Page 1 of	1	Version:	1	Date: .	Jan, 1980
Species Name: Formic Acid		Author: R	. L. Poy	nter	
ground trans state HCOOH		Min. Int. = 6×10^{-10} nm ² MHz			
Q (Spin-Rot., T = 300K) = 8884.2		J Max. =	20 Li	nes List	ed = 1888
Dipole Moments/Debye: µ _a = 1.396)	μ _b = 0.2	^{60 μ} c	= (0.
Rot. Const./MHz: Λ = 77512.25	В	= 12055.1	1 (= 104	16.12

J. Bellet, C. Samson, G. Steenbeckeliers, and R. Wertheimer, 1971, J. Mol. Structure 9, 49.
R. G. Lerner, B. P. Dailey, and J. P. Friend, 1957, J. Chem. Phys. 26, 680.
R. Trambarulo, A. Clark, and C. Hearns, 1958, J. Chem. Phys. 28, 736.

The dipole moment measured by H. Kim, R. Keller, and W. D. Gwinn, 1962, J. Chem. Phys. <u>37</u>, 2748, was adjusted to the new OCS standard, (J. S. Muenter, 1968, J. Chem. Phys. <u>48</u>, 4544).

Species Tag: 47001 Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Thioformaldehyde	Author: R. L. Po	Dynter
Carbon - 13 isotope H ₂ ¹³ CS	Min. Int. = 2	x 10 ⁻⁹ nm ² MHz
Q (Spin-Rot., T = 300K) = 6219.87	J Max. = 10	Lines Listed = 110
Dipole Moments/Debye: _{Pa} = 1.649	^µ b = 0.	μ _c = 0.
kot. Const./MHz: A = 291660.0	li = 16998.342	C = 16030.791

.....

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

D. R. Johnson, F. J. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data <u>1</u>, 1011.
Other references were taken from this paper.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 47002	Page 1 of 1	Version: 1	Date: Jan. 1980			
Species Name: Formic	Acid trans state	Author: R. L. Poynter				
Carbon - 13 isotope H ¹³ COOH	2	Min. Int. = 10^{-10} nm ² MHz				
Q (Spin-Rot., T = 300K) = 8896.76	J Max. = 20	Lines Listed = 1194			
Dipole Moments/Debye:	$\mu_a = 1.396$	$\mu_{\rm b} = 0.260$	μ _c = 0.			
Rut. Const./MHz: A =	77580.494 B	= 12053.567	C = 10378.997			

J. Bellet, A. Deldalle, C. Samson, G. Steenbeckeliers, and R. Wertheimer, 1971, J. Mol. Structure, <u>9</u>, 65.

R. G. Lerner, B. P. Dailey, and J. P. Friend, 1957, J. Chem. Phys. 26, 680.

The dipole moment was assumed the same as the parent species, tag #46005.

Species Tag: 47003	Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Formic Acid Deuterium isotope on C-atom DCOOH		Author: R. L. P	Author: R. L. Poynter	
		Min. Int. = 2×10^{-9} nm ² MHz		
Q (Spin-Rot., T = 300K) = 10531.19	J Max. = 20	Lines Listed = 628	
Dipole Moments/Debye:	¹¹ a = 1.396	"b = 0.260	^H c ⁼ 0.	
Rot. Const./MHz: A =	57709.33 B	= 12055.971	C = 9955.609	

「日本でした

and the

Ĩ

きょうしいちゃ ふちとうちゃ ちょういし

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

J. Bellet, A. Derdalle, C. Samson, G. Steenbeckeliers, and R. Wertheimer, 1971, J. Mcl. Structure, <u>9</u>, 65.

R. G. Lerner, B. P. Dailey, and J. P. Friend, 1957, J. Chem. Phys. 26, 680.

The dipole moment was assumed the same as the parent species, tag #46005.

Species Tag: 47004 Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Formic Acid	Author: R. L. Poynter		
Deuterium isotope on O-atom HCOOD	Min. Int. = 10^{-9} nm ² MHz		
Q (Spin-Rot., T = 300K) = 9954.87	J Max. = 20	ines Listed = 612	
Dipole Moments/Debye: _{"a} = 1.396	"b = 0.260 1	c ^ź 1.	
Rot. Const./MHz: A = 66100.14 B	= 11762.577	C = 9969.943	

- J. Bellet, A. Deldalle, C. Samson, G. Steenbeckeliers, and R. Wertheimer, 1971, J. Mol. Structure, <u>9</u>, 65.
- R. G. Lerner, B. P. Dailey, and J. P. Friend, 1957, J. Chem. Phys. 26, 680.

The dipole moment was assumed the same as the parent species, tag #46005.

.

Species Tag: 48001	Page 1 of	1	Version: 1		Date: Dec. 1979
Species Name: Sulfur monoxide SO ³ E ground state		Author: H. M. Pickett			
		Min. Int. = 10^{-6} nm ² MHz			
Q (Spin-Rot., T = 300K) = 850.099		J Max. = 50	Lii	nes Listed = 330
Dipole Moments/Debye:	μ _a = 1.55		^µ b ⁼	۴c	2
Rot. Const./MHz: A =		B	= 21523.02	С	2

The calculational method is described in T. Amano and E. Hirota, 1974, J. Molec. Spectroscopy <u>53</u>, 346. The data used is from W. W. Clark and F. C. DeLucia, 1976, J. Molec. Spectroscopy <u>60</u>, 332. Both electric dipole and magnetic dipole transitions are listed.

The partition function was obtained by a sum over states to J=50. Other values are

<u>T</u>	2
10K	17.284
30	69.382
6 0	154,400
100	269.677
150	414.502

Species Tag: 48002	Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Sulfur Monoxide v = 1		Author: H. M.	Author: H. M. Pickett		
vibrationally excited state of the ground ${}^{3}\Sigma$ electronic state		e Min. Int. = 4	Min. Int. = 4×10^{-6} nm ² MHz		
Q (Spin-Rot., T = 300K) = 856.726	J Max. = 50	Lines Listed = 261		
Dipole Moments/Debye:	$\mu_a = 1.55$	^μ b ⁼	^µ c ⁼		
Rot. Const./MHz: A =		B = 21351.0	C =		

The calculational method is described in T. Amano and E. Hirota, 1974, J. Molec. Spectroscopy <u>53</u>, 346. The data are from T. Amano, E. Hirota, and Y. Morino, 1967, J. Phys. Soc. Japan <u>22</u>, 399. All centrifugal distortion constants were fixed to their ground state values. Magnetic and electric dipole transitions are included.

This state is 1111.5 cm⁻¹ above v = 0 (G. Herzberg, 1950, Spectra of Diatomic Molecules, Van Nostrand, New York). The partition function is determined by a sum over states to J = 50. Other values are:

<u>T</u>	<u>Q</u>
10K	17.341
30	69.781
60	155.452
100	271.644
150	417.628

Species Tag: 48003	Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Thioformaldehyde		Author: R. L. Poynter		
Sulfur - 34 isotope H ₂ C ³⁴ S		Min. Int. = 3×10^{-9} nm ² MHz		
Q (Spin-Rot., T = 300K)	= 6084.57	J Max. = 10	Lines Listed = 111	
Dipole Moments/Debye:	$\mu_{a} = 1.647$	μ _b = 0.	$\mu_{c} = 0.$	
Rot. Const./MHz: A =	291660.	8 = 17387.949	C = 16376.922	

D. R. Johnson, F. J. Lovas, and W. H. Kirchhoff, 1972, J. Phys. Chem. Ref. Data 1, 1011.

Other references were taken from this paper.

and the second se

The dipole moment was assumed to be the same as the parent species.

Species Tag: 48004 Page 1 of 1	Version: 1 Date: Jan. 1980		
Species Name: Ozone ground state	Author: R. L. Poynter and H. M. Pickett		
¹⁶ 0 ₃	Min. Int. = 3 x 10 ⁻¹⁰ nm ² 1	1Hz	
Q (Spin-Rot., T = 300K) = 3378.28	J Max. = 40 Lines Listed = 146	5	
Dipole Moments/Debye: $\mu_a = 0$. $\mu_b = 0.5324$ $\mu_c = 0$.			
Rot. Const./MHz: A = 106535.234 B	= 13349.0901 C = 11834.5235		

The catalog of the ozone lines is based on the work of M.J.C. Depannemaecker, B. Duterage, and M. J. Bellet, 1977, J. Quant. Spect. Radiat. Transfer <u>17</u>, 519. Additional lines are cited in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data <u>7</u>, 1445.

•

Species Tag: 48005	Page 1 of 1	Version: 1	Date: Jan. 1981	
Species Name: Ozone, v ₂ vib. state		Author: R. Poynter		
¹⁶ 0 ₃ , (010) state		$\begin{array}{r} 10^{-1} \\ \text{Min. Int.} = 120 \\ 10^{-1} \end{array}$	³ below GHz nm ² MHz ⁵ above 120 GHz	
Q (Spin-Rot., T = 300K) = 3367.8162	J Max. = 30	Lines Listed = 734	
Dipole Moments/Debye:	^µ a ⁼	$\mu_{b} = 0.5324$	^µ c [*]	
Rot. Const./MHz: A =	108137.979	B = 13311.143	C = 11765.222	

The v_2 ozone lines were derived from a fit of the data given by M. J. C. Depannemaecker, B. Duterage, and M. J. Bellet, 1977, J. Quant. Spect. and Radiat. Transfer <u>17</u>, 519. Additional lines are listed in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data., <u>7</u>, 1445.

Additional values of the partition function are:

<u>T</u>	Q
10	20.88
30	107.12
60	302.01
150	1191.47
200	1833.80

The energy origin of this vibrational species is 701 cm^{-1} above the ground state energy origin.

Species Tag: 48006	Page 1 of 1	Version: 1	Date: Dec. 1980	
Species Name: Ozone, 03 excited		Author: H. M.	Pickett	
stretching states v_1 , v_3 or (100) and (001)		Min. Int. = 10	Min. Int. = 10^{-8} nm ² MHz	
Q (Spin-Rot., T - 300	K) = 6828.0	J Max. = 31	Lines Listed = 3686	
Dipole Moments/Debye:	μ _a = 0	$\mu_{\rm b} = 0.5324$	^μ c = 0	
Rot. Const./MHz: A =	106626.6 104943.4	13272.8 B = 13229.8	11763.1 C = 11727.5	

The rotational lines were determined by T. Tanaka and Y. Morino, 1970, J. Mol. Spec. <u>33</u>, 538 and A. Barbe, <u>et al.</u>, 1977, J. Mol. Spec. <u>64</u>, 343. The rotational lines were fit with the Hamiltonian of Barbe, <u>et al.</u>, in which the interaction terms were fixed to the values of Barbe, <u>et al.</u>, but all centrifugal terms (up to sixth power in angular momentum) were fit. The zero of energy is 1042.08 cm^{-1} above the zero of energy for the ground state species. The v states (100) have v = 1 and the v_3 state (001) have v = 3 in the 940 quantum number format in the catalogue.

Species Tag: 50001	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Sulfur Monoxide Sulfur 34 isotope ³ Σ ground state ³⁴ SO		Author: H. M. Pickett		
		Min. Int. = 10^{-6} m^2 MHz		
Q (Spin-Rot., T = 300K) = 866.870	J Max. = 50	Lines Listed = 280	
Dipole Moments/Debye:	^µ a = 1.55	μ ^ρ =	^µ c ⁼	
Rot. Const./MHz: A =	B	21102.72	C =	

The calculational method is described in T. Amano and E. Hirota, 1974, J. Molec. Spectroscopy <u>53</u>, 346. The data used is reported in E. Tiemann, 1974, J. Phys. Chem. Ref. Data <u>3</u>, 259. Both electric dipole and magnetic dipole transitions are listed in the catalogue.

The partition function was determined by a sum over states. Other values are:

<u>T</u>	Q		
10K	17.554		
30	70.654		
60	157.354		
100	274.922		
150	422.629		

Species Tag: 50002	Page 1 of 1		Version: 1		Date: Dec. 1979
Species Name: Sulfur Monoxide Oxygen 18 isotope		Author: H. M. Pickett			
		Min. Int. = 10^{-5} nm ² MHz			
Q (Spin-Rot., T = 300K) = 917,393		J Max. = 50	Li	nes Listed = 179
Dipole Moments/Debye:	^µ a = 1.55		۳۵ =	νc	3
Rot. Const./MHz: A =		B	• 19929.	C	8

The calculational method is described in T. Amano and E. Hirota, 1974, J. Molec. Spectroscopy 53, 346. The value of μ was fixed at -156.51 MHz and $\mu(1)$ was set to zero. Both electric dipole and magnetic dipole transitions are listed in the catalogue. The data used is listed in E. Tiemann, 1974, J. Phys. Chem. Ref. Data. 3, 259.

The partition function was determined by a sum over states. Other values are:

<u>T</u>	2		
10K	18.370		
30	74.493		
60	166.257		
100	290.728		
150	447.118		

Species Tag: 50003	Page 1 of 1	Version: 1	Date: Feb. 1980	
Species Name: Symmetric ¹⁸ 0 Ozone ground state 16 ₀₋ 18 ₀₋ 16 ₀		Author: H. M. Pickett & R. L. Poynter		
		Min. Int. = 10^{-9} nm ² MHz		
Q (Spin-Rot., T = 300K) = 3525.63	J Max. = 40	Lines Listed = 1568	
Dipole Moments/Debye:	μ _a = 0.	^u b = 0.5324	μ _c = 0.	
Rot. Const./MHz: A =	98646.687 B	= 13352.732	C = 11731.767	

The catalog of symmetric 18 0 ozone is based on the work of J. Depannemaecker and J. Bellet (1977, J. Molo Specty. <u>66</u>, 106). The dipole moment used is the $^{16}O_3$ value.

Species Tag: 50004	Page 1 of 1	Version: 1	Date: Feb. 1980		
Species Name: Asymmetric ¹⁸ 0		Author: H. M. PI	Author: H. M. Pickett & R. L. Poynter		
Ozone 18 ₀₋ 16	0- ¹⁶ 0	Min. Int. = 10 ⁻	-9 nm ² MHz		
Q (Spin-Rot., T = 300K) = 7213.74	J Max. = 40	Lines Listed = 4036		
Dipole Moments/Debye: $\mu_a = 0.0068$ $\mu_b = 0.5324$ $\mu_c = 0.$					
Rot. Const./MHz: A =	104573.161	B = 12591.533	C = 11212.5057		

The catalog of asymmetric 18 O ozone is based on the work of J. Depannemaecker and J. Bellet (1977, J. Mol. Specty. <u>66</u>, 106). The dipole moment used is the ${}^{16}O_3$ value rotated to the inertial axes of asymmetric ${}^{18}O$ ozone (based on the equilibrium structure).

Species Tag: 51001 Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanoacetylene	Author: R. L. Poynter		
HCCCN	Min. Int. = 2	x 10 ⁻⁷ nm ² MHz	
Q (Spin-Rot., T = 300K) = 4123.26	J Max. = 99	Lines Listed = 154	
Dipole Moments/Debye: $\mu_a = 3.599$	¹ ¹ ¹	^µ c ⁼	
Rot. Const./MHz: A = 1	3 = 4549.059	C ='	

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 441.

The dipole moment was remeasured by the above authors as 3.72⁴D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.
Species Tag: 51002	Page 1 of 1	Version: 2	Date: Oct. 1980
Species Name: Chlorine Monoxide		Author: H. M. Pickett	
² л а ³⁵ сео	states V = O	Min. Int. = 10	-10 nm ² MHz
Q (Spin-Rot., T - 300	K) = 3291.80	J Max. = 87.5	Lines Listed = 2610
Dipole Maments/Debye:	μ <mark>a = 1.239</mark>	^μ b =	^μ c [*]
Rot. Const./MHz: A =	8	= 18602.86	C =

The experimental lines below 200 GHz are from R. K. Kakar, E. A. Cohen, and M. Geller, 1978, J. Mol. Spec. <u>70</u>, 243. Lines above 200 GHz were measured at JPL by E. A. Cohen and H. M. Pickett. The lines were fit to a fine structure Hamiltonian which included p_D and q_D terms and centrifugal distortion on B to sixth power in J. The hyperfine terms in the Hamiltonian included all off-diagonal matrix elements for a, b, c, d, n_1 , n_2 , and n_3 . The partition function was determined by a sum over states to F = 86 for both the $\Omega = 1/2$ and $\Omega = 3/2$ states. Other values are:

<u> </u>	<u>_</u>
150	1424.28
100	921.36
60	553.46
30	28 4.09
10	105.25

Species Tag: 52001 Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanoacetylene	Author: R. L.	Author: R. L. Poynter	
carbon - 13 isotope on atom 1 H ¹³ CCN	Min. Int. = 2	x 10 ⁻⁷ nm ² MHz	
Q (Spin-Rot., T = 300K) = 4140.42	J Max. = 99	Lines Listed = 152	
Dipole Moments/Debye: $\mu_a = 3.599$ $\mu_b = \mu_c =$		μc =	
Rot. Const./MHz: A =	B = 4530.198	C ='	

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 441.

The dipole moment was remeasured by the above authors as 3.724D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.

Species Tag: 52002	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanoacetylene		Author: R. L. Poynter		
Carbon - 13 isotope on atom 2 HC ¹³ CCN		Min. Int. ~ 2 x 10 ⁻⁷ nm ² MHz		
Q (Spin-Rot., T = 300K) = 4140.82		J Max. = 99	Lines Listed = 146	
Dipole Moments/Debye: ;	a = 3.599	μ _b =	μ _c =	
Rot. Const./ MHz: A =		B = 4529.76	C =	

The set \mathcal{H} - xperimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 441.

The dipole moment was remeasured by the above authors as 3.724D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.

Species Tag: 52003 Page 1	of 1	Version: 1		Date: Dec, 1979
Species Name: Cyanoacetylene		Author: R. L. Poynter		
Carbon - 13 isotope on.atom H ¹³ CCCN	13	Min. Int. =	2 x 1	o ⁻⁷ nm ² MHz
Q (Spin-Rot., T = 300K) = 425	i4,,j	J Max. = 99	Li	nes Listed = 144
Dipole Moments/Debye: µ _a = 3	. 599	"b =	۴c	
Rot. Const./MHz: A =	В	= 4408.44	C	-

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 441.

The dipole moment was remeasured by the above authors as 3.724D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.

Species Tag: 52004	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanoacetylene Nitrogen - 15 isotope. HCCC ¹⁵ N		Author: R. L. P	Author: R. L. Poynter	
		Min. Int. = 4×10^{-6} nm ² MHz		
Q (Spin-Rot., T = 300K) = 1415.581	J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye:	¹¹ a = 3.599	"b =	^µ c ⁼	
Rot. Const./MHz: A =		B = 4416.75	C =	

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 441.

The dipole moment was remeasured by the above authors as 3.724D. An old value, 3.599D, was used in the present calculations, so the intensities should be multiplied by a factor of 1.071.

ţ

ŝ

Species Tag: 52005 Page 1 of	1 Version: 1	Date: Dec. 1979
Species Name: Cyanoacetylene	Author: R. L.	Poynter
Deuterium Isotope DCCCN	Min. Int. = 10	-7 nm ² MHz
Q (Spin-Rot., T = 300K) = 4443.03	J Max. = 99	Lines Listed = 156
Dipole Moments/Debye: $\mu_a = 3.724$	^μ b ⁼	^μ c ⁼
Rot. Const./MHz: A =	B = 4221.58	C =

The set of experimental lines used in the calculation was obtained from the references in W. J. Lafferty and F. J. Lovas, 1979, J. Phys. Chem. Ref. Data, $\underline{7}$, 441.

Species Tag: 52006 Page 1 of	Version: 1 Date: Jan. 1981
Species Name: Hypochlorous acid,	Author: R. Poynter
HO ³⁵ Cl	1.0×10^{-8} Min. Int. = below 120 GHz, nm ² MHz 10^{-5} mm ² MHz above this frequency
Q (Spin-Rot., T = 300K) = 9481.708	J Max. = 20 Lines Listed = 671
Dipole Moments/Debye: µ _a = 1.3	$\mu_{\rm b} = 0.367 \ \mu_{\rm c} =$
Rot. Const./MHz: A = 613481.8	B = 15118.415 C = 14724.188

Because experimental data reported by M. Suzuki and A. Guarnieri, 1975, Z. Naturforsch. <u>30a</u>, 497, and A. Mirri, F. Scappini, and G. Cazzoli, 1971, J. Mol. Spect. <u>38</u>, 218, were not adequate to determine the A constant the spectral lines of this molecule were computed from ground state constants and covariance reported in the IR study of J. S. Wells, R. L. Sams, and W. J. Lafferty, 1979, J. Mol. Spect. <u>77</u>, 349. The dipole moment was reported by D. G. Lister and D. J. Millen, 1971, Trans. Far. Soc. <u>67</u>, 601. The quadrupole coupling constants were from Mirri, et.al. Quadrupole splittings were only calculated through J = 5, to reduce the total number of lines generated.

Other values of the partition function are:

<u>T</u>	Q
10	59.08
30	302.20
60	851.44
150	3357.56
200	5167.28

Species Tag: 53001	Page 1 of 1	Version: 1	Date: Jan, 1980
Species Name: Acrylonitrile		Author: R. L.	Poynter
C ₂ H ₃ CN		Min. Int. = 10	-9 nm ² MHz
Q (Spin-Rot., T = 300K) = 26198.1		J Max. = 40	Lines Listed = 3697
Dipole Moments/Debye: µ _a = 3.68		μ _b = 1.25	μ _c = 0.
Rot. Const./MHz: A =	49850.712	B = 4971.0849	C = 4513.8005

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 777.
M. C. L. Gerry and G. Winnewisser, 1973, J. Mol. Spect. <u>48</u>, 1.
M. C. L. Gerry, K. Yamada, and G. Winnewisser, 1979, J. Phys. Chem. Ref. Data <u>8</u>, 107.

The dipole moment was measured by W. W. Wilcox, J. H. Goldstein, and J. W. Simmons, 1954, J. Chem. Phys. <u>22</u>, 516.

Species Tag: 53002	Page 1 of 1	Version: 2	Date: Oct. 1980	
Species Name: Chlorine Monoxide		Author: H. M. P	Author: H. M. Pickett	
$\frac{2}{11} \text{ states Chlorine} - 37 \text{ isotope}$ $\frac{37}{10} \text{ clo } v = 0$		Min. Int. = 10 ⁻¹⁰ nm ² MHz		
Q (Spin-Rot., T - 300	K) = 3348.0	J Max. = 83	Lines Listed = 2645	
Dipole Maments/Debye:	$\mu_a = 1.239$	^μ b =	^μ c ⁼	
Rot. Const./MHz: A =		B = 1828.70	C =	

The experimental lines below 200 GHz are from R. K. Kakar, E. A. Cohen, and M. Geller, 1978, J. Mol. Spec. 70, 243. Lines above 200 GHz were measured at JPL by E. A. Cohen and H. M. Pickett. The lines were fit to a fine structure Hamiltonian which included p_D and q_D terms and centrifugal distortion on B to sixth power in J. The hyperfine terms in the Hamiltonian included all off-diagonal matrix elements for a, b, c, d, n_1 , n_2 , and n_3 . The partition function was determined by a sum over states to F = 86 for both the $\Omega = 1/2$ and $\Omega = 3/2$ states. Other values are:

<u> </u>	<u>Q</u>
150	1448.48
100	936.93
60	562.72
30	288.72
10	106.79

Species Tag: 54001	Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Acrylonitrile		Author: R. L. Poynter		
Carbon - 13 isotope CH ₂ CH ¹³ CN	on atom 1	Min. Int. = 4 x	10 ⁻⁹ nm ² MHz	
Q (Spin-Rot.,T = 300K)	= 26333.	J Max. = 10 L	ines Listed = 118	
Dipole Moments/Debye:	μ = 3.68	μ = 1.25 μ	c = 0	
Rot. Const./MHz: A =	49781.	B = 4948.153	C = 4494.485	

The methods used on this species were the same as for the parent species, given in tag #53001. The measurements were taken from C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 77.

Species Tag: 54002	Page 1 of 1	Version: 1	Date: Jan. 1980	
Species Name: Acrylonitrile carbon - 13 isotope on atom 2 CH ₂ ¹³ CHCN		Author: R. L. Poynter		
		Min. Int. = 3×10^{-9} nm ² MHz		
Q (Spin-Rot., T = 300K) = 26665.		J Max. = 10 L	ines Listed = 117	
Dipole Moments/Debye: $\mu_a = 3.68$ $\mu_b = 1.25$ $\mu_c = 0$		c = 0		
Rot. Const./MHz: A = 48645. B		= 4948.700	C = 4485.145	

·__

The methods used on this species were the same as for the parent species, given in tag #53001. The measurements were taken from C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 77.

Species Tag: 54003	Page 1 of 1	Version: 1	Date: Jan. 1980
Species Name: Acryloni	trile	Author: R. L.	Poynter
Carbon - 13 isotope ¹³ CH ₂ CHCN	on atom 3	Min. Int. = 3	x 10 ⁻⁹ nm ² MHz
Q (Spin-Rot., T = 300K)	= 27087.5	J Max. = 10	Lines Listed =
Dipole Moments/Debye:	μ <mark>= 3.68</mark>	μ _b = 1.25	μ _c = 0
Rot. Const./MHz: A =	49180.	B = 4837.34	C = 4398.07

And a state of the second state of the second

The methods used on this species were the same as for the parent species, given in tag #53001. The measurements were taken from C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 77.

Species Tag: 54004 Page 1 of 1	Version: 1 Date: Jan. 1980
Species Name: Acrylonitrile	Author: R. L. Poynter
Deuterium isotope on atom 2 CH ₂ CDCN	Min. Int. = 9×10^{-10} nm ² MHz
Q (Spin-Rot., 1 - 300K) = 29697.8	J Max. = 10 Lines Listed = 322
Dipole Moments/Debye: n _a = 3.68	$\mu_{b} = 1.25 \mu_{c} = 0$
Rot. Const./MHz: A = 40198.6	B = 4934.35 C = 4388.41

The methods used on this species were the same as for the parent species, given in tag #53001. The measurements were taken from C. C. Costain and B. P. Stoicheff, 1959, J. Chem. Phys. <u>30</u>, 77.

The dipole moment was assumed to be the same as the parent species.

ŗ

ŗ

ŗ

ł

Species Tag: 54005	Page 1 of 1	Version: 1	Date: Jan. 1981
Species Name: Hypochlorous acid,		Author: R. Poynter	
H0 ³⁷ Cl		10^{-8} Min. Int. = below 10^{-5} mm ² MHz above	v 120 GHz; nm ² MHz this frequency
Q (Spin-Rot., T = 300K) = 9657.239	J Max. = 20 L	ines Listed = 673
Dipole Moments/Debye:	$\mu_a = 1.3$	μ _b = .367 μ	c *
Rot. Const./MHz: A =	61 34 55. 020 B	= 14851.929	C = 14471.418

The comments made for $HO^{35}Cl$ (Tag 52006) also apply here, except as follows: The quadrupole coupling constants were refitted, using rotational constants and covariance frozen to those determined by Wells, et. al., 1979, J. Mol. Spect. <u>77</u>, 349. The dipole moment was assumed the same as in $HO^{35}Cl$. Quadrupole splittings were only computed up through J = 5, as for $HO^{35}Cl$.

Other values of the partition function are:

<u>T</u>	Q
10	60.16
30	307.52
60	866.44
150	3417.00
200	5258.76

Species Tag: 55001	Page 1 of 1	Version: 2	Date: Jan. 1981
Species Name: Ethyl C	yanide	Author: R. L. I	Poynter
C2H5CN		$\frac{10^{-9} \text{ nm}^2 \text{MHz below}}{\text{Min. Int.} = \frac{160 \text{ GHz}}{10^{-5} \text{ above 160 GHz}}$	
Q (Spin-Rot., T = 300K) = 11848.1	J Max. = 21	Lines Listed = 3684
Dipole Moments/Debye:	$\mu_a = 3.850$	$\mu_{b} = 1.23$	^µ c = ⁰ .
Rot. Const./MHz: A =	27663.66	B = 4714.144	C = 4235.041

- J. Burie, J. Demaison, A. Dubrille, and D. Boucher, 1978, J. Mol. Spect. <u>72</u>, 275.
- D. R. Johnson, F. J. Lovas, C. A. Gottlieb, E. W. Gottlieb, M. M. Litvak, M. Guelin, and P. Thaddeus, 1977, Ap. J. <u>218</u>, 370.

H. Mader, H. M. Heise, and H. Dreizler, 1973, Z. Naturforsch. 29a, 164.

The dipole moment was taken from H. M. Heise, H. Lutz, and H. Dreizler, 1974, Z. Naturforsch. <u>29a</u>, 1345.

Additional values of the partition function are:

Ţ	Q
10	685.2
30	3544.2
60	10013.2
150	39553.3
200	60889.3

Species Tag: 5600L	Page 1 of 1	Version: 2	Dete: Jan. 1981
Species Name: Ethyl Cyanide carbon - 13 isotope on atom 1 CH ₃ CH ₂ ¹³ CN		Author: R. L. Poynter Min. Int. = $\frac{10^{-9} \text{ below 160 GHz}}{10^{-5} \text{ above 160 GHz}}$	
Dipole Moments/Debye: μ_a = 3.840		$\mu_{b} = 1.370$	^µ c = 0
Rot. Const./MHz: A = 27634.94 B		- 4689.805	C = 4214.746

H. M. Heise, H. Lutz, and H. Driezler, 1973, Z. Naturforsch. 29a, 1345.

The dipole moment was assumed the same as in the parent spacies, tag #55001.

Additional values of the partition function are:

I	2
10	688.98
30	3563.76
60	10068.39
150	39771.69
200	61225.53

.

Species Tag: 56002	Page 1 of 1	Version: 2	Date: Jan. 1981
Species Name: Ethyl Cyanide Carbon - 13 isotope on atom 2 CH ₃ ¹³ CH ₂ CN		Author: R. L. Poynter	
		10 Min. Int. = 10	⁻⁹ below 160 GHz nm ² MHz ⁻⁵ above 160 GHz
Q (Spin-Rot., T = 300K) = 113691.5	J Max. = 10	Lines Listed = 1252
Dipole Moments/Debye:	μ _a = 3.840	μ <mark>b</mark> = 1.370	^μ c ^{= 0} .
Rot. Const./MHz: A =	27045.40 9	= 4697.868	C = 4207.046

H. M. Heise, H. Lutz, and H. Driezler, 1973, Z. Naturforsch. 29a, 1345.

The dipole moment was assumed the same as in the parent species, tag #55001.

Additional values of the partition function are:

<u>T</u>	2
10	696.5
30	3602.6
60	10178.1
150	40205.2
200	61892.8

Species Tag: 56003	Page 1 of 1	Version: 2	Date: Jan. 1981	
Species Name: Ethyl Cyanide		Author: R. L. Poynter		
Carbon - 13 isotope on atom 3 ¹³ CH ₃ CH ₂ CN		Min. Int. = $\frac{10^{-9} \text{ below } 160 \text{ GHz}}{10^{-5} \text{ above } 160 \text{ GHz}}$		
Q (Spin-Rot., T = 300K) = 115303.9		J Max. = 10	ines Listed = 1183	
Dipole Moments/Debye:	$\mu_a = 3.840$	μ _b = 1.370 μ	¹ c ²	
Rot. Const./MHz: A =	27342.174 B	= 4597.939	C = 4133.707	

H. M. Heise, H. Lutz, and H. Driezler, 1973, Z. Naturforsch. 29a, 1345.

The dipole moment was assumed the same as in the parent species, tag #55001.

Additional values of the partition function are:

<u>T</u>	Q
10	706.3
30	3653.6
60	10322.3
150	40775.2
200	62770.5

Species Tag: 56004	Page 1 of 1	Version: 1	Date: Jan. 1980		
Species Name: Ethyl Cyanide Nitrogen - 15 - isotope CH ₃ CH ₂ C ¹⁵ N		Author: R. L.	Author: R. L. Poynter		
		Min. Int. = 2×10^{-9} nm ² MHz			
Q (Spin-Rot., T = 300K) = 38458.		J Max. = 20	Lines Listed = 1621		
Dipole Moments/Debye: µ _a = 3.840		μ _b = 1.370	μ _c = 0.		
Rot. Const./MHz: A = 27541.953 B		B = 4574.771	C = 4119.4300		

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

H. M. Heise, H. Mader, and H. Dreizler, 1976, Z. Naturforsch. 31a, 1228.

The dipole moment was assumed the same as in the parent species, tag #55001.

ORIGINAL PAGE IS OF POOR QUALITY

Species Tag: 56005	Page 1 of 1	Version: 2	Date: Jan. 1981	
Species Name: Ethyl Cyanide		Author: R. L. Poynter		
Deuterium isotope on methyl carbon atom trans to CN group CH ₂ D CH ₂ CN - S		$10^{-9} \text{ below 160 GHz } 2$ Min. Int. = $10^{-5} \text{ above 160 Ghz}$		
Q (Spin-Rot., T = 300K) = 118802.0		J Max. = 10 L	ines Listed = 1166	
Dipole Moments/Debye: $\mu_a = 3.840$ $\mu_b = 1.370$ $\mu_c = 0$		c = 0		
Rot. Const./MHz: A =	27650.795 B	4425.061	C = 4000.763	

t

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333 and W. H. Kirchhoff and D. R. Johnson, 1973, J. Mol. Spect. <u>45</u>, 159. The measurements were taken from the following papers:

H. Mader, H. M. Heise, and H. Dreizler, 1973, Z. Naturforsch. 29a, 164.

The dipole moment was assumed to be the same as the parent species.

Additional values of the partition function are:

<u>T</u>	2
10	727.56
30	3765.16
6 0	10635.15
150	42011.94
200	64674.63

Species Tag: 56006	Page 1 of 1	Version: 2	Date: Jan. 1981	
Species Name: Ethyl Cyanide Deuterium Isotope on methyl carbon gauche to CN group CH ₂ DCH ₂ CN-a		Author: R. L. Poynter		
		10 ⁻⁹ below 160 GHz 2 Min. Int. 10 ⁻⁵ above 160 GHz		
Q (Spin-Rot., T = 300K) = 121064.4		J Max. = 10	Lines Listed = 1286	
Dipole Moments/Debye: $\mu_a = 3.840$		μ _b = 1.370	'c = 0	
Rot. Const./MHz: A = 25022.568 B		= 4583.422	C = 4110.245	

H. Mader, H. M. Heise, and H. Dreizler, 1973, Z. Naturforsch. 29a, 164.

The dipole moment was assumed to be the same as the parent species.

Additional values of the partition function are:

<u>T</u>	Q
10	741.5
30	3836.0
60	10837.9
L 50	42812.2
200	65906.4

Species Tag: 60001	Page 1 of 1	Version: 2	Date: Jan. 1981		
Species Name: OCS Carbonyl sulfide		Author: R. L	Author: R. L. Poynter		
		Min. Int. =	4 x 10 ⁻⁷ nm ² MHz		
Q (Spin-Rot., T = 300K) = 1028.17		J Max. = 99	Lines Listed = 99		
Dipole Moments/Debye: µ _a =		μ _b = .715	^μ c ⁼		
Rot. Const./MHz: A =		B = 6081.4921	C =		

The measurements were taken from the data sets given in A. Dubrulle, J. Demaison, J. Burie, and D. Boucher, 1980, Z. Naturforsch, <u>35a</u>, 471, and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

The dipole moment has been remeasured by J.M.L.J. Reinartz and A. Dymanus, 1974, Chem. Phys. Lett., 24, 346.

Other values of the partition function are:

<u>T</u>	2
10	34.60
30	103.12
60	205.90
150	514.25
200	685.56

Species Tag: 60002 Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Silicon Monosulfide	Author: R. L.	Author: R. L. Poynter		
28 _{S1} ³² S	Min. Int. = 9 x	Min. Int. = 9×10^{-6} nm ² MHz		
Q (Spin-Rot., T = 300K) = 688.940	J Max. = 97	Lines Listed = 97		
Dipole Moments/Debye: $\mu_a = 1.730$	^μ b ⁼	μc [±]		
Rot. Const./MHz: A =	B = 9077.45	C =		

The experimental measurements are summarized in E. Tiemann, 1976, J. Phys. Chem. Ref. Data, <u>5</u>, 1147.

The dipole moment was measured by J. Hoeft, F. J. Lovas, E. Tiemann, and T. Törring, 1969, Z. Naturforsch. <u>24a</u>, 1422.

• •

Species Tag: 61001	Page 1 of 1	Version:	2	Date: Jan. 1981
Species Name: 0 ¹³ CS Carbonyl sulfide, Carbon ⁻¹³ isotopic species		Author: R. L. Poynter		
		Min. Int. = 4×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) = 1031.491		J Max. = 99	Li	nes Listed = 99
Dipole Moments/Debye:	^u a =	μ _b = 0.715	۲	3
Rot. Const./MHz: A =	B	= 6061.9240	C	2

The measurements were taken from the data sets given in A. Dubrulle, J. Demaison, J. Burie, and D. Boucher, 1980, Z. Naturforsch, <u>35a</u>, 471 and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

The dipole moment was assumed to be the same as the parent species.

Other values of the partition function are:

<u> </u>	<u>_</u> Q
10	34.71
30	103,45
60	206.57
150	515.91
200	687.91

Species Tag: 61002	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Silicon Monosulfide		Author: R. L	Author: R. L. Poynter	
Silicon - 29 isotope ²⁹ Si ³² S		Min. Int. =	9 x 10 ⁻⁶ nm ² MHz	
Q (Spin-Rot., T = 300K) = 701.830		J Max. = 98	Lines Listed = 98	
Dipole Moments/Debye: µ _a = 1.730		^µ b ⁼	^µ c ⁼	
- Rot. Const./MHz: A =		B = 8910.66	C =	

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 1445.

Species Tag: 62001	Page 1 of 1	Version: 2	Date: Jan. 1981	
Species Name: OC ³⁴ S, Carbonyl Sulfide		Author: R. L. Poynter		
³⁴ S isotope species		Min. Int. = 4×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) = 1053.928		J Max. = 99 Lt	nes Listed = 99	
Dipole Moments/Debye:	μ _a =	μ <mark>b⁼.715 μ</mark> α	3	
Rot. Const./MHz: A =	B	= 5932.8338 (; =	

The measurements were taken from the data sets given in A. Dubrulle, J. Demaison, J. Burie, and D. Boucher, 1980, Z. Naturforsch, <u>35a</u>, 471, and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

The dipole moment was assumed to be the same as the parent species.

Other values of the partition function are:

Salar and the second seco

<u> </u>	<u>Q</u>
10	35.46
30	105.69
60	211.05
150	527.13
200	702.73

Species Tag: 62002	Page 1 of 1	Version: 2	Date: Jan. 1981
Species Name: ¹⁸ ocs,	species Name: 180CS, Carbonyl Sulfide Author: R. L. Poynter		ynter
180 isotopic modification		Min. Int. = 4 3	10 ⁻⁷ m ² MHz
Q (Spin-Rot., T = 300K) = 1096.031	J Max. = 99 L	ines Listed = 99
Dipole Moments/Debye:	μ _a =	μ _b = .715 μ	c *
Rot. Const./MHz: A =	8	5704.8574	C =

The measurements were taken from the data sets given in A. Dubrulle, J. Demaison, J. Burie, and D. Boucher, 1980, Z. Naturforsch, <u>35a</u>, 471, and F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, <u>7</u>, 1445.

The dipole moment was assumed to be the same as the parent species.

Other values of the partition function are:

<u> </u>	<u>_Q</u>	
10	36.86	
30	109.90	
60	219.47	
150	548.18	
200	730.80	

Species Tag: 62003 Page 1 of 1	Version: 1	Date: Dec. 1979
Species Name: Silicon Monosulfide	Author: R. L.	Poynter
Silicon - 30 isotope 30 _{S1} ³² S	Min. Int. = 8:	к 10 ⁻⁶ nm ² MHz
Q (Spin-Rot., T = 300K) = 714.275	J Max. = 99	Lines Listed = 99
Dipole Moments/Debye: µ _a = 1.730	ν _b =	^µ c ⁼
Rot. Const./MHz: A = B	= 8755.33	C =

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 1445.

Species Tag: 62004 Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Silicon Monosulfide	Author: R. L. I	Author: R. L. Poynter	
Sulfur - 34 - isotope 28 _{Si} ³⁴ S	Min. Int. = 9 x 10 ⁻⁶ nm ² NHz		
Q (Spin-Rot., T = 300K) = 708.329	J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye: µ _a = 1.730	^µ b ⁼	^µ c ⁼	
Rot. Const./MHz: A =	B = 8828.86	C ='	

The measurements were taken from the data set given in F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, $\underline{7}$, 1445.

Species Tag: 63001	Page 1 of 1	Version: 1	Date: Sept, 1980
Species Name: Nitric acid		Author: R. Poynter	
HNO3		Min. Int. = 10 ⁻⁸ nm ² MHz	
Q (Spin-Rot., T - 300K) = 27912.921		J Max. = 40	Lines Listed = 7259
Dipole Maments/Debye:	μ _a = 1.986	μ <mark>= .882</mark>	μ _c = 0
Rot. Const./MHz: A =	13010.9867 3	= 12099.9025	C = 6260.6680

The data set used in this fit includes all lines with $J \leq 40$ as reported by G. Cazzoli and F. C. DeLucia, (1979), J. Mol. Spectrosc. <u>76</u>, 131. (We omit 8 out of 132 observed lines with J > 40). The dipole moment was taken from the remeasurements reported by A. P. Cox and J. M. Riveros, (1965), J. Chem. Phys. <u>42</u>, 3106. Very small quadrupole splittings were resolvable for only the J = 1 + 0 transitions at dry ice temperatures. Because of the extremely large number of lines for this molecule, these splittings were not included. Information on these quadrupole splittings can be found in D. J. Millen and J. R. Morton, (1960), J. Chem. Soc., 1523.

The partition function was determined by a sum over states to J = 40. Other values are:

<u>T</u>	2	
10	171.79	
30	885.76	
60	2500.47	
150	9872.52	
200	15196.81	

Species Tag: 64001 Page 1 of 1	Version: 1	Date: Oct. 1979
Species Name: Diatomic Sulfur	Author: H. M. Pickett	
$v = 0, \frac{3z_g}{g}$ ground state	Min. Int. = 4.0 x 10 ⁻⁹ nm ² MHz	
Q (Spin-Rot., T = 300K) = 965.37	J Mex. = 35	Lines Listed = 34
Dipole Moments/Debye: µ _a =	ub = magnetic	^µ c ⁼
Rot. Const./MHz: A = B	* 8831.2	Ç =

The experimentally measured lines are given in H. M. Pickett and T. L. Boyd, 1979, J. Mol. Specty. <u>75</u>, 53. The calculational method used is from T. Amano and E. Hirota, 1974, J. Mol. Specty. <u>53</u>, 346. For S₂, the parameter μ (1) is assumed to be zero. Only transitions between states with J = N and J = N - 1 are listed because the energies of the J = N + 1 states are uncertain by more than 1 GHz. All the neglected transitions from J = N + 1 states lie above 450 GHz for J < 35.

The intensities of the magnetic dipole allowed transition: were calculated using the g values given in Pickett and Boyd. Hund's case (b) nomenclature is used even though the states are closer to Hund's case (a) for low J. The J = N + 1 states correlate with $\Sigma = 0$ and the J = N - 1 and J = N states correlate with $\Sigma = \pm 1$ states of $p = \pm (-1)^{J}$ inversion parity, respectively.

The value of Q is determined from a sum over states to J = 50.

Species Tag: 64002	Page 1 of ₁	Version: 1	Date: _{Jan} , 1980
Species Name: Sulfur Dioxide		Author: R. L. Poynter	
so ₂		Min. Int. = 5×10^{-9} nm ² MHz	
Q (Spin-Rot., T = 300K) = 5898.91		J Max. = 40	Lines Listed = 1902
Dipole Moments/Deby	"a = 0.	^µ b = 1.633	"c [¯] 0.
Rot. Const./MHz: A = 60778.558 B =		= 10317.913	C = 8799.652

The experimental measurements were analyzed using the methods described in W. H. Kirchhoff, 1972, J. Mol. Spect. <u>41</u>, 333. The measurements were taken from the following papers:

F. J. Lovas, 1978, J. Phys. Chem. Ref. Data, 7, 1445. (A complete summary and references to all available data).

The dipole moment was taken from D. Patel, D. Margolese, and T. R. Dyke, 1979, J. Chem. Phys. <u>70</u>, 2740.

Species Tag: 75001	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanodiacetylene		Author: R. L. Poynter		
HC ₅ N		Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) = 4695.48		J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye: µ = 4.330 a		μ,	μ _c =	
Rot. Const./MHz: A =		B = 1331.33	C =	

The dipole moment was measured by the same authors.

Species Tag: 76001	Page 1 of 1		Version: 1	Date: Dec. 1979	
Species Name: Cyanodiacetylene Carbon - 13 isotope on atom 1 HCCCC ¹³ CN		Author: R. L. Poynter			
		Min. Int. = 2×10^{-7} nm ² MHz			
Q (Spin-Rot., T = 300K) = 4742.326		J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye: _{µa} = 4.330			"b =	^µ c ⁼	
Rot. Const./MHz: A =		B	= 1318.18	C =	

The dipole moment was assumed to be the same as the parent species.

national and the second second

Species Tag: 76002	Page 1 of 1	Version: 1	Date: Dec. 1979		
Species Name: Cyanodiacetylene		Author: R. L. Poynter			
Carbon - 13 isotope on atom 2 HCCC ¹³ CCN		Min. Int. = 2 x 10 ⁻⁷ nm ² MHz			
Q (Spin-Rot., T = 300K) = 4699.78		J Max. = 99	Lines Listed = 99		
Dipole Moments/ Debye: $\mu_a = 4.329$		μ_ = b	μ _c =		
Rot. Const./MHz: A =		B = 1.330.11 C =			

Species Tag: 76003	Page 1 of 1	Version:	1	Date: Dec. 1979
Species Name: Cyanodiacetylene		Author: R. L. Poynter		
Carbon - 13 isotope on atom 3				
HCC ¹³ CCCN		Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) = 4700.345		J Max. =	99	Lines Listed = 99
Dipole Moments/Debye: $\mu_a = 4.329$		μ _b =		μ _c =
Rot. Const./MHz: A =	В	= 1329.95	5	C =

The dipole moment was assumed to be the same as the parent species.

いたいとないないたちものものであるとなっていないいというないないである」は、「ないないないです」
Species Tag: 76004	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanodiacetylene		Author: R. L. Poynter		
Carbon - 13 isotope on atom 4 CH ¹³ CCCCN		Min. Int. =	2 x 10 ⁻⁷ nm ² MHz	
Q (Spin-Rot., T = 300K) = 4744.09		J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye:	μ _a = 4.329	μ _b =	μ _c =	
Rot. Const./MHz: A =		B = 1317.689	C =	

The experimental measurements were taken from A. J. Alexander, H. W. Kroto, and D. R. M. Walton, 1976, J. Mol. Spect. <u>62</u>, 175.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 76005	Page 1 of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanodiacetylene		Author: R. L. Poynter		
Carbon - 13 isotope on atom 5 H ¹³ CCCCCN		Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) = 4820.96		J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye: µ	4 .329	μ	μ _c	
Rot. Const./MHz: A =	B	3 = 1296.68	C =	

The experimental measurements were taken from A. J. Alexander, H. W. Kroto, and D. R. M. Walton, 1976, J. Mol. Spect. <u>62</u>, 175.

And the second se

The dipole moment was assumed to be the same as the parent species.

Species Tag: 76006	Page 1 of 1	Version: 1	Date: D	ec. 1979
Species Name: Cyanodiacetylene		Author: R. L. Poynter		
Nitrogen - 15 isotope HC ₅ ¹⁵ N		Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K)) = 4813.68	J Max. = 99	Lines Listed	= 99
Dipole Moments/Debye:	μ = 4.329	μ _b	μ _c =	
Rot. Const./MHz: A =		B = 1298.639	C =	

The experimental measurements were taken from A. J. Alexander, H. W. Kroto, and D. R. M. Walton, 1976, J. Mol. Spect. <u>62</u>, 175.

The dipole moment was measured by the same authors.

Species Tag: 76007	Page l of 1	Version: 1	Date: Dec. 1979	
Species Name: Cyanodiacetylene Deuterium isotope DC ₅ N		Author: R. L. Poynter		
		Min. Int. = 2×10^{-7} nm ² MHz		
Q (Spin-Rot., T = 300K) = 4918.13		J Max. = 99	Lines Listed = 99	
Dipole Moments/Debye: µ = 4.329		μ _b =	μ _c =	
Rot. Const./MHz: A =	<u>, , , , , , , , , , , , , , , , , , , </u>	B = 1271.056	C =	

The experimental measurements were taken from A. J. Alexauder, H. W. Kroto, and D. R. M. Walton, 1976, J. Mol. Spect. <u>62</u>, 175.

The dipole moment was assumed to be the same as the parent species.

Species Tag: 80001	Page 1 of 1	Version: 1	Date: Feb. 1980		
Species Name: Hydrogen Bromide Bromine - 79 isotope H ⁷⁹ Br		Author:R. L. Poyr	Author:R. L. Poynter & H. M. Pickett		
		-3 2			
		Min. Int. = 7 x	<u>10 - nm-MH2</u>		
Q (Spin-Rot., T = 300K) = 101.214		J Max. ≠ L	ines Listed = 19		
Dipole Moments/Debye: µ _a = 0.828		ⁿ p = ⁿ	c ⁼		
Rot. Const./MHz: A =		B = 250357.6	C =		

The experimental data were taken from F. A. Van Dijk and A. Dymanus, 1969, Chem. Phys. Lett. 4, 170.

The dipole moment was also reported by these same authors in a later publication, and updated in F. A. Van Dijk and A. Dymanus, 1971, 26th Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, R12, p. 80.

Species Tag: 82001	Page 1 of	1	Version: 1		Date: Feb. 1980
Species Name: Hydrogen Bromide Bromine - 81 isotope H ⁸¹ Br			Author: R. L. Poynter & H. M. Pickett		
		Min. Int. = 7×10^{-3} nm ² MHz			
Q (Spin-Rot., T = 300K) = 101.257		J Max. =	Li	nes Listed = 19
Dipole Moments/Debye:	$\mu_{a} = 0.828$	مــــــ	'b ⁼	^µ c	1
Rot. Const./MHz: A =		8 =	= 250250.2	С	2

Ľ

The experimental data were taken from F. A. Van Dijk and A. Dymanus, 1969, Chem. Phys. Lett. <u>4</u>, 170.

The dipole moment was also reported by these same authors in a later publication, and updated in F. A. Van Dijk and A. Dymanus, 1971, 26th Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, R12, p. 80.

Species Tag: 95001	Page 1 of 1	Version: 1	Date: Feb. 1980	
Species Name: Bromine Monoxide Bromine - 79 isotope ²ⁿ 3/2 state 79 BrO		Author: H. M. Pickett		
		Min. Int. = 10 ⁻⁹ nm ² MHz		
Q (Spin-Rot., T = 300K) = 3897.60		J Max. = 49	Lines Listed = 850	
Dipole Moments/Debye: µ _a = 1.765 ;		"b =	"c ⁼	
Rot. Const./MHz: A =	8	= 12830.4	C =	

The 63 GHz spectrum of BrO is referenced in F. J. Lovas and E. Tiemann, 1974, J. Phys. Chem. Ref. Data <u>3</u>, 653. The other lines were measured at JPL by E. A. Cohen and H. M. Pickett, and a new fit was made which included these lines.

Species Tag: 97001	Page 1 of 1	Version: 1	Date: Feb. 1980	
Species Name: Bromine Monoxide Bromine - 81 isotope		Author: H. M. Pickett		
Q (Spin-Rot., T = 300K) = 3913.9		J Max. = 49	Lines Listed * 850	
Dipole Moments/Debye: µ = 1.794		μ _b =	μ _c -	
Rot. Const./MHz: A =		B = 12777.08	C =	

The 63 GHz spectrum of BrO is referenced in F. J. Lovas and E. Tiemann, 1974, J. Phys. Chem. Ref. Data <u>3</u>, 653. The other lines were measured at JPL by E. A. Cohen and H. M. Pickett, and a new fit was made which included these lines.

Carlon Strate in the