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Abstract

'Wt--extend 4n earlier plasma kinetic model of an inverted-V auroral arc

structure Co include°i-n--e--phenamenologic,alrv&^ , the effects of electrostatic
- a) PT(arl:>OiDe

turbulence tttr} ^kJ.	 In the absence of turbulence, a parallel potential

drop is supported by magnetic mirror forces and charge quasi neutrality, with

energetic auroral ions penetrating to low altitudes; relative to the elec-

trons, the ions' pitch angle distribution is skewed toward smaller pitch

angles, '11h.e electrons energized by the potential drop form a current which

excites electrostatic turbulence;..-.we--cons-i-de-r—tha-r-spedi;f-ie- ,casr,^--of---the -a*-

e^u^u `L4t ee h^aC tie-_ lons'_:in T ro	 thus,--tending j ^6°yr^l-otrorr^°m a-r ^	 fi^Ys"'	 g

re4gae_them.._diHarantial _pit;.h_-.angle---anisotropy "belrween electrons and 'lonsy

y ,,g4,1n turn reduces the =potential dror -ef9f-ect of.,_Qpposite sign to _th"" trG ,­

-a-sso-ci'ared with anomalous resistivitg:---^ In equilibrium the plasma is marginal-

ly stables,, wl h,_,gmwtl,,rates, and ditfns^on , eonst nta some-two- 4brdoxs°°of magn >

t5ude--be16V na1ver estjMgt,O,,, The conventional anomalous resistivity contribu-

tion to the potential drop is very small,,, 	 n anomalous5rresistivity pro-

cesses are far, too dissipative to be powered by auroral particles ;--this---i-s-Qhy;'°-

x,_gr-owth°-rate-s an7a - 31ffusl-on---eons.tarLt.s, are--.so` = smal-'. , Under certain circum-

stances equilibrium may be impossible and relaxation oscillations set in

t-imL` sea.	 the
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Abstract

We extend an earlier plasma-kinetic model of an inverted-V auroral are

structure to include, in a phenomenological way, the effects of electrostatic

turbulence with k,/kl < 1. In the absence of turbulence, a parallel potential

drop is supported by magnetic mirror forces and charge quasi-neutrality, with

energetic auroral ions penetrating to low altitudes; relative to the elec-

trons, the ions' pitch-angle distribution is skewed toward smaller pitch

angles. The elecGucts energized by the potential drop form a current which

excites electrostatic turbulence; we consider the specific case of the ion

cyclotron mode. The turbulence heats the ions in T  only, thus tending to

reduce the differential pitch angle anisotropy between electrons and ions,

which in turn reduces the potential. drop - an effect of opposite sign to that

associated with anomalous resistivity. In equilibrium the plasma is marginal-

ly stable, with growth rates and diffusion constants some two orders of magni-

tude below naive estimates. The conventional anomalous resistivity contribu-

tion to the potential drop is very small, because anomalous-resistivity pro-

cesses are far too dissipative to be powered by auroral particles; this is why

growth rates and diffusion constants are so small.	 Under certain circum-

stances equilibrium may be impossible and relaxation oscillations set in; the

time scale for such pulsating auroras is the ion transit time of 6-10 seconds.
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I.	 INTRODUCTION

Recently many authors have been concerned with plasma-kinetic mechanisms

For explaining auroras associated with inverted-V's (auroral arcs, for brevi-

ty) [Swift, 1975; Kan, 1975; Hudson and Mozer, 1978; Chiu and Schulz, 1978;

Pridman and Lemaire, 1980; Lyons, 1980, Chiu and Cornwall, 1980]. The funda-

mental objective is to set up a parallel potential drop of 1-10 keV along an

auroral field line which will accelerate electrons and precipitate them into

the ionosphere.	 To this end, three mechanisms are most widely cited: 1)

charge-separation effects (Poisson.'s equation); 2) anomalous resistivity; 3)

magnetic mirror forces coupled with differential electron-ion pitch-angle

anisotropy. Because of the large (> 104 ) transverse dielectric constant of

the magnetized auroral plasma, transverse derivatives in Poisson's equation

completely dominate derivatives along the field line [Chin and Cornwall,

19801. We will therefore not consider unmagnetized double layers (potential

drop N keV in a distance N 0.1 km along a field line) any further, although

several authors have invoked them for auroral arcs [Block, 1975; Shawhan et

al., 19781. The remaining effect of Poisson's equation is to couple neighbor-

ing field lines on a length scale > RL (RL is the ion Larmor radius) [Swift,

1975; Chiu and Cornwall, 1980]. This sort of coupling will not be vital for

our present purposes, so we will demand instead that the plasma be quasi-

neutral: Ni = Ne everywhere.

Next consider anomalous resistivity. While it may be very important in

some laboratory circumstances, a simple energy-balance argument severely

limits its role in the aurora, at least in the scenario we adopt. In that

scenario, all auroral energy comes from the kinetic energy of plasmasheet

particles, and is likely to be dominated by the ions. Suppose that turbulence

somehow generates an anomalous collision frequency 
V  

for electrons (of mass

2
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m), so that the current-Meld relation is

j  
.o 

0  G N ; a  IN Ne2/m V 
	 (1)

The electron current is of order J N a e NVe , where V. is a typical electron

velocity, so that the power dissipated on the auroral Meld line, integrated

over the region of length R where the turbulence is present: is, in order of

magnitude,

f ds JN/a w R NM V V 
	

(2)

This must be less than the input power, which comes from .Melds and particles,

in the plasmasheet. There are several estimates one can make for this, but

none are plausibly larger than the ion energy ,:lux. (Quasi-neutrality of the

plasmasheet limits the electron energy flux to be of the order of the ion

energy flux.) For example, one might begin with the power per unit volume

I1 • tl dissipated in MID flow. We estimate J  N cVp/B , E  N 1 mV/m, and

multiply the product by a length which we take to be the same as that setting;

the scale of the pressare gradient. The result is substantially less than the

ion power NMV 3 (M is the ion mass; V is a typical ion velocity), and it is

this latter quantity which we use as the input power; it is of the order of a

few ergs/cm2 sec. In terms of the average plasmasheet electron energy W e and

plasmasheet ion energy W, we have V2/Ve2 '. mW/(MW e ), so that requiring (2) to

be less than NMV3 implies

V  < (W/We)wV )	 (3)

3
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For typical auroral parameters this amounts to vA/wpo < 10-'5 , considerably

less than the range v A/wpe ft 10-4 - 10-2 found in simulations or laboratory

experiments, which refer to quite different physical circumstances not found

in auroras.

The point, however, is not the absolute size of v A , but rather what Sort

of potential drop it can lead to.	 Anomalous resistivity is so dissa,pative

that if turbulence and heating rea p h the maximum level allowed by (2), only a

small potential drop is generated (a somewhat similar point was made by

Va"lthammar [19771).	 Let us use (2) and (3) in (1), estimating the total

potential drop between the ionosphere and the equator as A^ a -9 L'	 One

finds

111 /?.

eA^ < W ^Ti W J	 (4)
e

In the plasmasheet, W/We a 2-4 is typical [e.g., Frank et al., 1981] so the

potential drop, scaled in units of ion energy, is perhaps 0.0,E - 0.1. Note

that this is independent of the length k of the turbulent region. In contrast

to the bound (4) on eA¢ maintainable by anomalous resistivity, the theory

outlined below, as well as experimental observatione, suggest that eA¢ M 14.

Thus the anomalous-resistivity potential drop is limited severely by the

available auroral power, which is why canonical e6timatas V  N (10 -4 -

10-2 ) wpe are so far off the mark: they refer Go circumstances where the

potential drop is maintained by an external battery, which can supply the

power which is necessarily dissipated by anomalous resistivity.

This is an example of a theme which will. occur several times in the

course of this work: microscopic wave-plasma processes are capable of trans-

4
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(erring energy between particle species, or turning this energy into wave

turbulence, at rates which are enormous compared to the input power avail-
l

able.	 The plasma processes are analogous to an enormous pipeline through

which only a trickle of water g lows; it is completely wrong to estimate the

water flow from the diameter of the pipe.	 The overall balance of plasma

processes is in large part governed by macroscopic, not microscopic, Para-

meters. (This is true at least for plasma effects in which It it  > 1, but not

necessarily if k  ItI, < 1.)

Turn now to the third kinetic process of magnetic mirror forces. It has

been	 considered in great detail by	 Chiu and Schulz [19781 (using	 juasi-•

neutral:tty)	 and Chiu and Cornwall [1980] (who added Poisson's equation and

ionospheric charge and current conservation, effects whose greatest importance

is to couple neighboring field lines). These authors (as well as Lyons [1980)

and Fridman and Lemaire [19801) pointed out that there is, for magnetic ;fields

with large mirror ratios, a linear relation between parallel current and

potential drop

	

- J, = QA^
	

(5)

(we drop a term referring to diffuse particle precipitation) with Q m Net/(m

Ve ). Again by taking e^ m -ZE,, one finds by comparing (5) with (1) that the

effective "collision" Frequency is simply the inertial frequency vI:

	

VI a Ve /P.	 (6)

which is larger by roughly the factor (AS /m) 1/2 than V  in (3), and of course

is consistent with ed^ m DIV 2 , as observed. It is important to note that this

5
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much larger effective col•ioioa frequency is not associated with dissipation

of any sort, and equations Ruch as (2) with v I in place of v  are meaningless

for the magnetic mirror force process.

Somewhere between the extremes of totally dissipation-free auroral are

models (e.g., Chiu and Schulz (19781) and maxima lly-disai.pative models of

anomalous resistivity lies a middle ground In which there is turbulence and

dissipation, but in an amount limited by the auroral input power. We have

already argued that this limitation implies little or no turbulence contribu-

tion to the parallel potential drop ) so we must look elsewhere for the effect

of turbulence. In fact, it turns out that the effect is precisely opposite to

that of anomalous resistivity: electrostatic ion cyclotron turbulence tends

to reduce the parallel potential. drop, The argument is that such turbulence

(or similar electrostatic modes with H  « EI ) is very efficient at heating

ions, thereby increasing TI/T I for the ions. (tit the same time electrons are

slowed down and heated mostly in T a ). As a result, the differential pitch-

angle anisotropy between ions and electrons is reduced. In the Chiu-Schulz

kinetic model, precisely this differential anisotropy drives the parallel

potential drop, which - as the detailed calculations Presented below show - is

reduced as TI/T q i,screases.

There are now two effects tending to stabilize the turbulent wave ampli-

tude:	 1) the well known (e.g., Palmadesso et al. [1974]) increase in the

electron critical drift velocity V c with increasing TI; 2) a decrease in the

electron drift velocity Vv because the parallel potential drop has

decreased. As Palmadesso et al. [1974] show, the first effect alone acts to

bring VD - VC to a very small value (compared to other characteristic veloci-

ties), and the ion cyclotron mode is essentially marginally stable (the growth

rate Y is linear in VD - VC ). With only the first effect present, we will

6



show below an exponential decay to marginal stability (Y-U). Adding the

second effect may have more dramatic offects: with V D deereauing at the same

time VO increases it is passible for Y to go negatillre, with conacquent shut-

down and decay	 of turbulence.	 Eventually fresh	 ions (with Ti
/TP

^C- 	 1) are

injected and restore the initially unstable situation. These ions enter tile

system on the ion transit time scale k/V 0 10 sec; since this is gre ater than

the time scale for shutting off turbulence, the are can pulsate at this peri-

od. In the present paper we will not ta pe up this mechanism for pulsating

area in any detail.; however, we note	 that the observederved characteristic period

of	 pulsations	 (both patches and area)	 is very nearly the	 ion	 transit	 time

[Royrvik and Davis, 19771.

Whether pulsation or decay to marginal stability takes place depends on

initial conditions; evei:.tual.l.y some sort of equilibrium will be reached. We

can make some simple estimates of turbulence parameters for the electrostatic

ion cyclotron mode, when a marginally stable equilibrium has set in. first it

is necessary to identify the wave saturation mechanismo Formation of a quasi-

linear plateau on the electron distribution is not favored, because old elee-

Irons are rapidly transported out of the region of instability while new ones

are being carried in, and convective losses are slow because of the very low

wave group velocity. It is thus plausible that ion resonance broadening [Dum

and .Dupree, 19701 and the rattier smaller effect of geometric resonance broa-

dening (e.g., Schulz [19721) are the dominant saturation mechanisms. Dum and

Dupree show that, in this case, the RMS wave amplitude is largely independent

of the ion velocity diffusion coefficient; their formulas applied to the

auroral are problem suggest gave amplitudes of the order of tens of mV/m,

which is roughly what is observed [Temerin et al., 19811. 	 The diffusion

coefficient for ion diffusion in V l^ is related not to the wave intensities,

I 
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but to the linear growth rate. YL:

n
	

(7)

.l.

where $1 is the ion cyclotron frequency.
	

The most unstable modes have

k  w S2/V, and 'YL is of the order of

YL p 11 1/2 r 1St (V°l - VC)/Voe 	 (te)

where C 1 < 0.2, VD is the electron current velocity along the field line, and

VOy the critical drift velocity, is nominally of order 10 V , 0.2 V. [Kindal.

and Kennel., 19711, Thus a nominal value for 
y  

is of order 0.1 0; with uoini-

nal auroral values of n N 100 sec-1 and V a 108 cm/sec, we estimate D N 101'

em3 sec-1.

In .fact this estimate for D is too large by orders of magnitude, for

essentially the same reason as the nominal estimates of anomalous 'resistivity

were wrong: such a D yields too much dissipation to be supplied by the a%sro-

ral input. As an ion travels along the field line from equator to ionosphere,

its perpendicular energy increases by wave turbulence, by an amount roughly

equal to 2M j ds D/V q .	 Since the ultimate source of energy for ion heating

is the ions themselves (that is, heating in Ti is a less-than-perfectly

efficient way of transferring energy from jarallel ion motion to perpendicular

ion motion, via a potential drop which induces turbulence) this quantity must

certainly be less than roughly the ion kinetic energy which gives the limit

D < V 3X N 10 14 cm  sec-1
	

(y)
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(estimating £ H 4 Itu ). When thin upper limit as D is uacd in (7) to estimate

y , it is aeon that Y acales as VIR << C•1 0. Thio meant, of course ) that

turbulence io generated at vary ne:or Par lnal stability.

In this paper we make quantitative the considerations given above, using

a ochematie but adequate representation of electrostatic turbulence w th

k 
	 >> k N .	 The starting point is the ,Boltzmann equation for particles in an

inhomogeneous magnetic	 field, with an applied UC potential drop,	 and in the

presence of perpendicular velocity-space diffusion. The difiuolon coefficient

D is independent of velocity, and is considered as an appropriate average over

the turbulent spectrum. Addition of turbulent diffusion makes the Boltzmann

equation analytically insoluble, but we show that for an initially bi-

Maxwellian velocity distribution function f, a good approximation is that f

continues to be 1V :Muxwellian, but with a temperature Tl , as well as act effec-

tive elec trostatice ,	 Pepe potent ial, c.G,rcridvnt uit Cl.e d^Line integrals of I) weighte d

with various	 functions. (T I does	 not change because of D.)	 That	 is,,	 the

effects of diffusion cAn be well modeled by leaving out the explicit diffusion

operator and renormalizing T, and the parallel potential, chap A^,

This is a great simplification, because it allows us to treat our problem

as a simple modification of the Chiu-Schulz problem (to the extent, at least,

that we ignore coupling of neighboring field lanes and the ionosphere, which

is permissible here).	 We have :run the Chiu-Schulz rumerical programs for

various values of D (that is, various renormalized T  and A^) and .find that,

as anticipated, A^ is forced to decrease as D increases. At a critical value

of D the solutions either break down or A¢ is essentially zero; the critical

value of D found in the numerical work is somewhat smaller than given in

(9). This is, of course, expected sines: (9) is an upper limit.

9
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Section 11 containa a derivation of the approximate nolution of the

Boltzmann equation, Section III diacuoueo tile phynie% of clectrootatic ion

cyclotron t^.,,bulenca, and Section IV containu numerical reoulo, Section V it

a brief recapitulation and otatement of work for the future.
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II. BOLTZHANN EQUATION WITH TURBULE /t IN AN INHOHUf^laE^t OUS' ^i^#LC UIC FIELD4?k)	 ==cs^.^

Tile Boltzmann equation for iono outiering velocity°rapac e diltutlion in tile

component of velocity perpendicular to the magnetic field	 ire, after cyclotron

averaging,

o = {	 + v	 + v	 v	 (DV- )}	 ( l ei)
at	 M ^s	 N av	 1 ^V L 	V  OVA	 i av

where

v^ -;+ B	 (lla)

V .L ^ VMLt3i 8 s"	
(ll^a)

We take D Lo be independent of velocity and time, and concern ournelven only

with static O/Wt - U) cases. For U 'a U, the well known solution to (10) io

	

f - f  (e00, V.
	

lw)

M V 
2	

2.1 V
e00	 2 +	 (l - ^ Û ) + e (^	 $ U )	 (1:3)

tlU 	 2 --- B
Pi Vl2 by	

(14)

The subscript U labels a particular point on the field line, where s - U,

B - BU , and the electrostatic potential ^ ¢ ^U (see Fig. 1). In the case of

energetic plasmasheet ions, the point Q will be the equator of an auroral

field line.

11



If U 0 0 it is impossible to solve (10) exactly, except in a formal

sense. The formal silution is nonetheless instructive for further develop-

menu, so we give it here,

First introduce the fundamental quantity

I3'
U

1
 (s, a l l V N , Vi ) . {V q

2
 + V

2
i (1 - 13 ) + M

2e	 1/2
(,	 - ^ 1 ))	 (la)

where B I - b(s'), h - A(s) and analogously for ^ and ^', and V p , Vl are the

velocity components at a.	 We restrict ourselves to regions of space and

velocity space such that U N is strictly positive, that is, no ion mirrors in

the region between s and s'. The general case without this restriction re-

quires very cumbersome notation. In our noordinate system (Fig. 1), U 11	 >	 U

refers to downgoin,g ions, and in the earth's field we take s >	 a', B > B1.

Clearly, U N is a constant of the motion for D e 0:

L UN `' ^ V N 8s + Vl 2Vl + ^ BY N ) U N -^ 0' U
N
( s

I -s) - 
V N	 (16)

In terms of U N , we define the fundamental diffusion variable Q*.

f s 
ds' U	

(17)
v	 U N

and note that

L	 U	 (18)

and in terms of Q, we define a Green's function for the diffusion operator:

12



(20)

r—

k

G to	 I0 (	 , exp [" V1	 + vy2 > J

G +	 b (VI - Vy),	 a 0
l

Here l0 is a Beasel function of imaginary argument. G obeys the Boltzmann

equation (10) up to an error which is pecond order in s, the length of field

line over which the solution applies. That is,

y

TAG V 8V ( UVI G	 0 [ U (Q-1 a^-) G)	 (21)
L	 1	 .l	 I

with the RUS of (21) failing to vanish because 8Q/8V
1
 0 0.	 But from the

definition (15) of U,, it is clear that-, in order of magnitude, and for s <<

B/ ( 813/ 8 s ) ^ 9,01

-1 8Q N U-1 auu N s

8V1.
	 I 8Vi VRO
	

(22)

so the RHS of (21) is of order DG(s/VR 0 ) 2 . A typical term on the MIS is

O(VG/R0 ), and (as will be clarified later; see Eq. (9)) since D/V 2 < V/90,

the error in the Green's function solution is N (s/Y. 0 ) 2 	Choose s to make

this as small as desired; then, to the chosen accuracy, the solution to the

Boltzmann equation which approaches a given boundary value f 0 at s = 0 is

00

f = j	 VI dVy G(Vi , VI) x
0

M Vu M Vi2	 B0	 M Vl2 E0	
(23)

T
,P
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1

One may now simply iterate (23) going from s to 2s, using f at s as the input

on the KtIS, and then to 3s, ... Ns. The exact solution is approached as s * 	 J

0 and N * - with Ns ,fixed.

This .formal solution is of little use in general., but one special case

will, draw our attention: if f 0 in (23) is bi-Maxwellian, the output distribu-

	

tion function is also bi-Naxwell.ian, except for the velocity dependence of 	 , a

Q. It will turn out that this velocity dependence is relatively unimportant,

so we consider the possibility of an approximately bi-Maxwellian solution by

direct substitution in the Boltzmann equation. The solution ansatz necessari-

ly involves an overall factor dependent on s, which can be interpreted as a

sort of renormalization of the electrostatic potential. An alternative devel-

opment of an approximate solution to (10) leading to similar solutions below

can be obtained by the method of moments. 	 Since this method may provide

alternative insight into the solution scheme, we give a summary of it in the

Appendix.

The form chosen for f is

f a en(s) 
e— ® u V2 — 

S1 
V2 — (2e/M) 0ii ^( s )	

(24)

where 8 1 , 6 p may depend on s, but not on V. When this is substituted in (10)

(with Vat	 0) the following equations are required to be satisfied, in

addition to 0 0 = constant.

Is

L et + V q ( e1 - 6) g as 
+ 4 0, D = 0	 (25)

L n + 4 0 
1 

D = 0	 (25)

14



A
where h is the differential operator defined in (16). For D A 0 0 the volu-

tions are n K constant, 0, a constant, and

A

01 a 0 1 (s)	 (0 10 - 0 N ) B0/B + 0 1	 (27)

Of course, this simply reproduces (12) - (14) for a bi-Maxwellian•

For D * 0 0 (25) and (26) are not strictly consistent, because of the non-

trivial appearance of V q . To achieve consistency, we will replace V 11 by an

average value U1 which is independent of the local velocities V b , V1 , but

might depend on s.	 In order that this approximation, make sense, we must

separately consider downgoing (V I > 0) and upgoing ions; for the moment we

treat only downgoing ions by taking f to vanish for V 	 0. Then U I1
(s) can

be defined by averaging over this distribution function at various points

along the field line, using the D - 0 solution for f as given by (12) -- (14).

In this approximation, 0. is still constant and (25) and (26) become

as 01 
+ 

(0 1 - 0 0 ) ' 
B + 4 02 D U^^

-1
 . 0	 (28)

as 
+ 4 01 D U q -1 0	 (29)

These equations appear to be non-linear, but actually they can be linear-

ized. The first step is to multiply (29) by 0 1 and subtract it from (28); the

result can be rearranged to

as (B 01 ern) 
s 0

11 a-n j s
	

(30)

which allows us to express 0 1 in terms of Y ; e-n.

15



B 0
1
 (a) - Y-1( s

) 10, f 

s 
ds' Y(s') ag, + Ba 91U ]	 (31)

Now (29) can be written

as
	 D 01 U11-1 X	 (32)

and the combination of (31) and (32) gives a linear second-order differential

equation for Y:

a	 B D U aX	 a 
as ( 4 D as 	

6
0 as 

Y

This could readily be solved numerically, but the approximations made i

deriving the equation do not ,justify anything more elaborate than saving terms

of first order in D.	 (The reason is that we have assumed 61 and n to he

independent of V.	 If this assumption is dropped, (25) and (26) could be

solved without the approximation V 9 + U11. But then the equations themselves

would not be quite correct; there would be terms of 0(D 2 ) coming from the

action of the diffusion operator on 6 1 and n).

The lowest-order solution for 8 1 is

6 1(s) - 8 1(s) = - ^U	
1

ds' (4 D 6 1 Uu- ) (s') (610 B
	 B+611 ( B80)]	 (34)

where, as before, B = B(s) and B' = B(s'). It is useful to phrase the lowest-

order correction to n in terms of a phantom electrostatic potential ^D

defined by

I
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A

U	 - 
tin
	 (35)

h

We Find

¢U	 ^ . e^	
f s do' (U 91 Uq-^) (s')	 (36)

	N 	 U

The MIS of	 (34) and (35) shows that the smallness parameter of our appro-

ximation	 is roughly j do'	 DO1/UI which is essentially	 the	 ratio	 of	 the

perpendicular energy gain of an ion due to diffusion in a single pass along;

the field line (as noted in See. I ) to the initial ion energy. As we have

seen, this cannot be larger than one, or the ions cannot maintain the necessa-

ry differential pitch-angle anisotropy which drives the potential drop which

drives the electron current which drives the turbulence. On the other hand,

the smallness parameter is not necessarily much less than one, so our efforts

here can be considered only setniquantitat:ivo.

In summary, the primary effect of diffusion is to leave a bi-Maxwellian a

bi-Maxwellian, but with modified 61 and with an effective electrostatic poten-

tial ^D which is greater than the true potential drop. The inverse tempera-

ture 
91 

decreases as diffusion acts, that is, Ti is increased as we expect.

The fact that $ll is greater than $ might be interpreted as the presence of

positive phantom charge which tends to keep the protons out of the ionosphere.

The above discussion also holds with but trivial changes for upgoing

ions, whose T1 increases as they move toward the equator. Whether up- or

downgoing, T1 heating raises the ion mirror point and diminishes the parallel

potential drop; thus turbulence acts with opposite sign to anomalous resistiv-

ity, and furthermore is self-limited by alobal considerations, not by the

usual local saturation mechanisms.
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To be complete we ought to look at the Boltzmann equation for elec-

trons.	 As discussed 
in 

the next section, e1ectrono are mostly heated in

T N as well as having their field-aligued current velocity slowed (town; that

is ) the flow motion is therialized. This ► cts also to reduce the iov--electron

differential pitch-angle anisotropy and to diminish the parallel potential

drop. 
In view of some uncertainties in the quantitative description of this

process (see Section
	
III),	 We do	 not attempt to	 treat electron heating and

slowing down here,	 but it
	
is certainly no more complicated than What We have

done for the ions.	 We will be content to note that the effects of turbulence

on electrons reinforce those acting on ions.

M
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III. GLOBAL PLASMA PHYSICS OF Till, 1`41AXTROSTATIC ION CYCLOTRON tip

So .far we have only discussed one -half of they problem: what effect does

a given perpendicular-diffusion conotant 1) have on the ion distribution? The

other half is, of course, how much turbulence and what value of 1) do the

distribution functions, magnetic field geometry, and boundary conditions

yield?

It turns out that many of the plat; ma°physical. numbers are largely deter-

mined by ZLbal scaling laws, having little to do with the local plasma envi-

ronment - For example ) the net growth rate y scales as the inertial. frequen-

cy V/R which involves R, the length of the field line, and 1) is of

order V3/R. The dominance of global over local effects will be an interesting

challenge to experts in computer simulations of plasmas (recent work on ion

cyclotron turbulence is reported by Okuda, Chang and Lee [1901); Okuda and

Ashour-Abdalla [19811).

Let	 us	 briefly	 _recapitulate	 our scenario.	 Incoming	 auroral :tons	 have

average mirror points which would be closer to the ionosphere than those of

the	 electrons,	 if	 it were	 not	 for the	 electric	 field	 which	 this enforced

charge	 separation	 would	 produce.	 The parallel	 potential drop	 causes	 the

electrons	 to have a net flow along the field line, which is strong enough to

trigger the electrostatic ion cyclotron mode. The resulting turbulence (for

which L/Ll C	 1)	 heats	 the ions in Tl , which raises their mirror points and

reduces the potential drop,	 thus reducing the electron drift velocity and the

growth rate. At the same time, ion heating in T l acts directly to reduce the

growth rate by increasing the threshold drift velocity (ran effect invoked by

Palmadesso et al. [19741). One of two effects ensues: 1) the plasma reaches

marginal stability in less than the ion inertia time X/V, with final, values

t
I

I
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of Y and 0 ae estimated above; 2) the electron drift velocity* V U decreases and

tlae critical drift velocity VO increases in suer a way that V D	 VC becomes

negative, the waves are decayed or convected away, and the turbulence disap-

pears. The initial unstable state will be restored after a time of order

R/V, and the whole structure will undergo relaxation oscillations (observed

as pulsations).

In this section, we discuss the plasma physics of the electrostatic ion

cyclotron mode, including saturation mechanisms (ion resonance broadening,

geometric resonance broadening); heating and slowing-down rates for ions and

electrons; influence of this heating on growth rates; and dynamics of the

approach either to marginal stab.,.ity or to a relaxation-oscillation mode

(pulsations).	 Let us begin with the dispersion relation for drifting bi-

Maxwellian distribution functions, thus generalizing Kindel and Kennel.

[1971].	 As in earlier sections, electron quantities are subsc.:ipted, and

qua:iatitieN :.^it:aout -7 0cripts refer I. ions, except in e^uatloaab (37)	 (30).

In a spatially homogeneous magnetic field the electrostatic dispersion

relation is

	

k2	
I'N(u)	 [w + NQ(1- TgTy-1)]	 - + NS2

a r;q	 kN V a	 ku Vp

The sum is over all N from — m to -, and also over species. For each species,

we define

1c2V2	 V2
rN0)	

e_p 
1N (u), to = i	 t , x2q 

	 d 

L:2 S2 	 2W
p

1/2

Vl 
N	

[2 R ! ]	 , w - w - k I Vv
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R	 r

We take it that for ions there is no drift, and that (w + N'R) >J k i VN , while

for the drifting electrons w + NO << It s V0 . The faBtestderuwing nodes have

p M 1 (for ions), and It 1 2 AJ. 2 << 1. Then the dispoesion relation is

r T

F 1: M' ( ^ +ia) '^1 	(39)

+ 1M (1 _ r 1 ° p~1 (1 - ro)l	 (40)
M e	 .t

2

X = ,^1/2 N ^ w-k 1 V 11 ) + nit2 e,"p	
r 1 (w + O(T^Ty^ 1 - 1)J	 (41)

le k  
V le	 k  VI

where p - (w-Q)/(k I V I ). The linear growth rata in a homogeneous field it;

thus

xsir1Ty

	

YL	
T^ ^

In an inhomogeneous field, there is damping from geometric resonance broaden-

ing, that is, ion cyclotron resonance is lost as the wave propagates along the

field. A straightforward calculation shows that the damping decrement is

1/2
V II	 a^

Y f^I33	 ^ir 8s	 '

this is of order 1 sec -1 on auroral field lines, and is not insignificant.

The net growth rate is Y - YL ` 'YGRB'

For this mode, the group velocity is small compared to the electron drift

speed, so that fresh electrons are constantly being injected into the region

of instability.	 This inhibits quasi-linear saturation by formation of a

plateau on the electron distribution function, so the most important satura-
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- :fit zAk *,A, ...	 _ i	 - 

i
1

J

Lion mecl.anismo are ion retionance broadening (Oum and Dupree t 1970) and ion

heating; [11almadesso et al., 1974). According; to Dum and Dupree, the damping

decrement Clue to ion resonance broadening is

k^ U

IRB	
x3

and equilibrium is reached when Y 3 YIRB• Here U is the diffusion coefficient

for ion diffusion in Vl, as used in Section II. As mentioned in Section I,

estimates such as Vu - w/k i 
if w/k,, or y b 0.1 Il, yield estimates of U which

are ouch too large to be Furnished by auroral ions.

In addition to ion diffusion (beating, in T I), the electrons suffer a

slowing-down of their drift velocity and beating, in T Me .	 These processes are

non-resonant (see the inequalities below (38)), and therefore somewhat diifi-

cult co estimate accurately, but non-resonant qu. L;i-linear theory would sug -

gest

OV

IttO 	 2 S ^^^) ^ ku

m a V qe k

Where ^k is the wave potential. This has been estimated by I)um and Dupree:

1/2

<l e 
^ki2 >
	 < 0.2 T 

Willi lcl p a/V, k q !''1 < 0.1 (Kindel and kennel, 1971)  and 'Te p 1 keV, (46)

indicates an MIS wave amplitude of tells of mV/m (as seen by auroral satel-

lites; Temerin at al., (19811) and (45) yields a slowing-down time of (1-

10)SI -1 . This is a lower limit on the e-folding time for ion heating, in TV

which is driven by electron energy losses. It is a very generous lower limit,
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not avtuaUy appruaebod 
in Liet; it correapondti to similar naive eutimatev of

YL a 0#1 0 or 
of 

ton heating rateswhich do not con vider the limitations Oil

energy transfer proectinet) artaing from t ,Jobal conuiderationus `rho only point
fi

ill in,,11ting these ej;tipjAt(,b is to arbor.* that the ratvr; tit Lrantiter trori one

particle species to another, or to w,,,ivvs, are far greater than 
needed, a point

also emphasized by ViAmadeuvo et al. 119741.

Shortly we will make estimates of the actual trantifer rates 
on 

auroral

field lines, 9 ,Ating much smaller values. In 
this 

e0lltleetiOn it it important

to recall that ) with ion rcoonance broadening as a dominant saturation mecha-

nism, the ion diffusion Coefficient I is not strongly Coupled 
to	

even

very small values of 0 are consistent with the Dum-Dupree estimates ')I	 it a 1)

in (44).

Vialmadesso et al. (1974) have pointod out: that 
ion 

heating reduCen the

growth rate Y L' thus taking the system toward marginal staMlity ) On ia)

Y 1:3 YTRII) 
trait with reduced values of 

both 
y and y jIta

•
 Let us make a quanti-

LatiVC estimate of this effect. Consider a plasma which is unstable to wave

growth, but in which there 
are 

no waves to begin with. The condition of

instability requires VD > VC , where the critical drift velocity VC is simply

the minimum drift velocity (over k j , k .L ). Kindel and I^enncl (1971) find the

minimum 
at It I V - il l k 

0 
/k I n 0.1 for an isotropic plasma with T , To o With

geol'W-Lric resonance broadening added, one finds for this isotropic case

2 T	 r 1/2 
T V

_
V . V (-I-) [.Zn	

T	

j	

QTr IT 
1/2 

ly
GR11	

I - 10 V	 (47)
C	 W-	

V	
B

The geometric resonance broadening correction is normally '"N' - 30Z of the

Kindel-Kennel term. The frequency w depends on TI (see (39), (W); inserting

this dependence in (47) and differentiating yields the estimate
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C (t%

6 V 0 V 
^'- 41.
	

(48)
C	 C T 

e

(some unimportant terms have been omitted).

We can find the time rate of clmns ,,s of VC by %nowinj,,,, the ion heating

rate, which is roughly MD per particle ar, one Cinch from 
the 

11oltZmann equa-

tion	 (10)	 by	 multiplying	 by	 1/2	 It V	 and
	 inLegrating.	 With

D w Y11 A 
2	

I
a YV2 1,4 , the ion heating rate is
I 

	

II
/T1  0 Y	 (49)

and from (48)

0 /v
e in Y TI/T e - Y	 (50)

Using (40) — (42), we estimate (netting all temperatureo equal)

'ff l) 
F 2 $1 r

Y	 i 
(V	 V`)

V

So equations (50) — (51) lead to a difterential equation for VC:

1`
VO	 7r 

1/2 

V 

1 
VG (VU — VC)

a

Now consider the scenarios where % is constant, which is appropriate to

many laboratory experiments and possibly some auroral cases. Equation (52) is

readily solved, showing an exponential approach to equilibrium (V
0 = 0). The

characteristic time is
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T	 20
A	 1/2 gar , v ,)	

N	 I
	

(53)

wi ►ere the value for T stems from the -uLirriatc Vj)/V (I W" 1-,iven by Kindel and

Kennel (1971) for T. m T. It followa that the plaama can deviate substantial-

4ly from marginal stability only for timvt3 < T u 0.2 - 2 see, following nor-le

initial, unstable disturbance.

Actually, it 
is quite unrealistic to suppose that V I) remains constant aa

VC changes.	 The same effect - ion heating - which tends to inereane V C; also

tends to reduce the drift velocity, as we now estimate. Begin with
an over-

simplified picture of the change in the quasi-neutrality condition, 
in which

the heating of electrons in Tge Is ignored., A change 6`1'1 In i0a tolaperatuee

must be accompanied by a change in the electrostatic potential d) 
in order

that quaiii-acutra lity car, be ma inta ined .

Ni (TI + 6T1$ T j s $ + 6^) - lit. (Tel ^ +	 5 4I

Originally this equation was satisfied with 6T I and 6^ equal to zero. If the

distribution functions are Maxwellian, and expressed in terms of constants of

the motion 
as in (12) - ,14) $ the first-order expansion of (54) is, very

roughly)

	

N ---=— - 14	
+ N

I T.L	
I

ST 16
	

(55)

All we hope to eo here is to get the signs right; each term in (55) might be

multiplied by a numerical coefficient somewhat different from unit-.y. With Ni

Ix tj e) TI m Te) (55) yields
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e	 ^ 6T i 	(56)

The change in the electron drift velocity is directly obtained, because 1/2 in

V le2 + p1l - et is constant and the magnetic moment 1i is unchanged:

6T
6V0 - 6V le, + 

e	 a -	 1	 (57)
m Vile	

2m VOe

This shows that VIA decreases with an increase in Tl , but it is not straight-

forward to incorporate (57) into the differential equation (52) for V G . The

reason is that information concerning the changes 6¢, 6T  is not transmitted

instantaneously to the whole auroral field line; instead it must propagate

along the line at a finite velocity.	 Clearly the characteristic time for

changing a parameter like Ti which characterizes the global ion distribution

function is the inertial time VV, which is several seconds and much larger

i
than the time it takes to reach marginal equilibrium,T. 	 Thus in (52) Vu

should not be evaluated at the same time t as is V C , but rather at a retarded

time 	 In spite of this ieehnical complication, we can appreciate from (52)

that it is possible for VG to go from positive to negative in a finite time if

V0 is decreasing, rather than simply going asymptotically to zero as in the

constant VD case. If this does happen, the growth rate becomes negative, and

turbulence originally present is damped away. 	 At this point, ion heating

stores, to be replaced by ion cooling at a rate xi/Ti rd - Z/V as new ions are

injected.	 After roughly are inertial time, the ions will be cool, enough

in Ti to be unstable once again, and more turbulence is generated. We have,

then, a relaxation oscillator to generate auroral pulsations, with a charac-

teristic time constant VA * 6 - 10 sec.

I
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A complete discussion of this mechanism - including damping - will be

given elsewhere. Here we only comment that 1) whether oscillations actually

take place or not depends sensitively on parameters and initial conditions;

and auroras are not required to pulsate; .9) our mechanism and its time scale

are quite different from a recent proposal for auroral flickering (Silevitch,

19801, but not necessarily incompatible with the Coroniti-Kennel (1970)

pulsation picture.

We conclude this section with some estimates of plasma parameters when

marginal stability has set in. It has already been observed in Section I that

the ion heating in T  during the inertial ( p quarter-bounce) time cannot

exceed the initial ion energy, since that is what drives the heating (by

making a parallel potential drop and an unstable current). This led to the

estimate D < V 3 /(44) m 10 14 cml sec-3, and (via (7) or (44)) to Y = V/k. When

D reaches this value, ion heating and cooling (by injection of more ions) are

roughly in balance.

Then (51) yields

( VD - VC)/VC a Ve V/(RSIVC P 1 n 1/2 ) - 0.02
	

(58)

These estimates are crude at best, but they suggest that the drift velocity

and the critical velocity are closely tied together, and a relatively small

change in either one caa turn off the turbulence. If, for example, VC = 2 x

109 cm sec-1 then a change in VD of 2% of this value, or - 6V D = 4 x 10 7 cm

sec-1 , reduces wave growth to zero. Such a change might be produced by an

upward fluctuation in D from its saturation value of r, V3 /(4k), producing a

net ion heating of roughly
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amp^2Hjvs v
b

When (59) is used in (57), one finds an upward fluctuation of N 4 x 1013 em2

sec-3 will turn off wave turbulence.

In the next Section, these crude estimates are made somewhat more quanti -

tative by computer calculations.

(59)
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IV. DETAILED NUMERICAL ESTMATES

'to do better than the rough guesses of Section III, we need to know two

quantities with some accuracy; 1) the relationship between the total poten-

tial drop $ and the perpendicular ion temperature T 1 ; 2) the relationship

between a given D(s) and the change in T 1 for a single pass of ions between

equator and ionosphere, as given in equations (28) - (29). Because explicit

diffusion is nearly equivalent to a renormalization of $ and T 1 in the ion

distribution £unction, the first relation can be found by a straightforward

modification of the Chiu-Schulz (1978) calculations; the second is found by

numerical integration of the differential equations. These calculations are

reported here, and they show that there is a maximum diffusion coefficient

above which there is no potential drop. The value of DMAX is roughly consis-

tent with our earlier guesses.

To achieve the above two objectives, we need to obtain a direct non-

linear differential equation for 8 1 in the variable B since the Chiu-Schulz

calculations are best expressed in the magnetic field variable. 	 With a

straightforward, but slightly different set of manipulations from that follow-

ing (28) and (29), we obtain

dB (B81)	 811	 u /+(^> (dB) B 9
12	(60)

n

where (ds/dB) for a dipole field can be numerically expressed as a function of

B to very high accuracy. For a given ^(B), the heated ion temperature T 1 =_

(M/2 91 ) can be found by solving (60) With a highly accurate Runge-Kutta

routine. But ¢(B) must be obtained through the Chiu-Schulz quasi-neutrality

solution, thus ideally 9 1(B) and ^(B) should be obtained by simultaneous

solution of (60) and quasi-neutrality. However, the accuracy to which (60) is
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derived (first order in D) does not ,justify such an elaborate and expensive

procedure. We have decoupled (60) from the quasi-neutrality calculation by

assuming for ^ in U q of (60)

$( b ) ° A^ [8-801/[88-801	 (61)

where At is the initial potential drop. Since 
U11 

is dominated by the magneto-

spheric ion thermal energy ( N 10 keV), the use of (61), in which eA¢ N 1 keV,

is not a significant source of error. The boundary conditions of (U0) for

downgoing and upgoing ions must be carefully distinguished. For a downgoing

ion, the plasmasheet ion temperature determines the boundary value 0 10 , but

for an upgoing ion of magnetospheric origin, the boundary temperature at

s-k is 
0 
I determined in its previous downward trajectory. Theoretically, a

mirroring ion can keep on heating up to higher and higher temperatures by

virtue of its bounce motion; however, we note that the electrostatic potential

is supported on the bounce time scale [Chiu and Cornwall, 19801 so there is no

reason to assume magnetospheric ions to be trapped for more than a couple of

bounces. The diffusion coefficient D in (60) is in general an unknown func-

tion of s or B. We adopt a simple model such that D is a nonzero constant

throughout the field line. The constant value of D is varied to determine the

effect of cyclotron turbulence on the potential ¢. Constant turbulence along

the whole field line is not necessarily realistic, but it will serve for this

initial inquiry. Note that the 6 12 term in (60) is always positive in the

direction of particle motion and 6 1 a 1/T1 so the nature of the solution, by

virtue of the negative sign preceding the 6 12 term, is that 6 1 decreases from

a starting boundary value	 910 or 
0 
I in the direction of motion:

thus, T 1 increases from the boundary value. However, the decrease in 6 1 can-
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not be unbounded, for if D is too large, 0 1 call 	 through a zero at some B.

Such a solution is unphysical and serves as an upper bound oil 	 although this

upper bound is not yet DMAX because the effects of heat diffusion upon ^ needs

to be determined by solving the quasineutrali ty portion of the problem. For

reasonable values of the diffusion constant (D < 1U 13 01112/sec3), 
0  

usually

does not go through zero; hence DMAX may be determined by whether a quasineu-

tral solution of particle and field equilibrium can be supported.

To motivate the detailed calculations of ion heating effects on the

auroral acceleration potential, let us illustrate the basic dependence of

magnetospheric ion density distribution as function of potential drop and

temperature anisotropy. Figure 2 shows the densities n tj+ of down-going and

up-going magnetospheric ions at the midpoint of the L=8.4 field line. The

equi-density contours are shown as functions of the parallel potential drop

and the perpendicular temperature; since the parallel temperature is held

fixed at 3 keV ; the variation of perpendicular temperature is equivalent to

variation of anisotropy. We note that, for fixed potential drop, the higher

the	 anisotropy (Tl/T P ) the lower the density of magnetospheric ions	 at	 the

midpoint of the field line because the ion mirror shrinks towards the equator,

as qualitatively expressed in (60). Similarly, as we would expect, magneto-

spheric ions are repelled towards the equator by higher auroral parallel

potential drops which accelerate electrons downwards. Now quasi-neutrality

requires a certain number of ions to be present to balance against the density

of electrons; thus, for a given electron density distribution, heating of ions

would require the potentil drop to decrease accordingly in order to maintain

the ion density along one of the equi-density contours of Figure 2. This is

the basic effect investigated in detail below, although the results of Figure

is not directly applicable because the effects of a potential decrease upon
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the distribution of electrons must be taken into aceoutlt also. To illustrate

this point further, we have investigated the dependence of the potential drop

upon the ion anisotropy by obtaining volutions of a Chin-sehulz kinetic model.

for L-8.4 with the following tined parameters; TI- a 7 keV, TI- M 3 keV, T 11	 a

3 keV,	 nm- ° 0.0 CM-3 , no+ =	 70	 eat-3 and	 nllj, _ 5 CIR-3 ,
	 Figure	 3 shown the

result of a search of the acceptable potential drop in the above kinetic model

as the magnetosplierie ion anisotropy is varied by varying the constant

temperature TI while all other parameters are held taxed. We note that the

potential drop maintainable by the electron temperature :nisoLropy sloes

decrease as the ion anisotropy approaches the electron value. The stippled

area shows the uncertainty in our solution search due to our not using a

special high-accuracy computational routine, which is expensive to run.

The illustrations above are based oil arbitrary variations of the constant

ion perpendicular temperature; therefore, they cannot be directly related to

the effects of ion cyclotron Beating. To do so, we need to solve (60) to

obtain the perpendicular ion temperature in the form of	 (M/20 1 ) as functions

of the heat diffusion coefficient U and magnetic field ratio B/B 0 . The solu-

tions of	 (60)	 for U = :10 14 cm 2 /sec3 for downgoing (arrows pointing away from

the equator, B/B 0 = 1) and upgoing (arrows pointing towards the equator) ions

are shown in figure 4. The solutions are obtained for an initial tttagneto-

spheric ion distribution with Ti = 3 keV and T  = 1.5 keV, which

yields (Pt/20 1 ) given by the dashed curve (with D=O) in figure 4. The initial

rttato for the upgoing ions is assumed to be the heated state at B /B since

the heating effect is prominent primarily in the upgoing magnetospheric ions,

only about one half of the ion density distribution is severely affected by

the potential-drop-reducing effects discussed in Figures 2 and 3. Thus, we

would expect the potential drop to vary fairly slowly with increasing D until.

. --*	 fA, -t d a1 J
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the solutions Of (GU) is sufficiently close Lo El i ^ 0, near which no quasi-

neutral solution can be obtai.nted

An illustration of the complete scenario described in this paper is

obtained by combining ttte solution of (60), such as shown on Figure 4, with a

simultaneous search for the consistent auroral potential drop as we vary the

ion diffusion coefficient D. The initial conditions for the computation are

the same as that of Figure 3 except Lhat the iti Lial potential drop is set at

2.20 keV (to increase the sensitivity of the quasi-neutrality solution to

parameter changes). The dependence of the auroral potential drop on the ion

diffusion coefficient D in the range (10 12 - 3 x 10 14 ) cm2/sec 3 is shown on

Figure 5. As we have expected, the potential drop decreases slowly with in-

creasing D until	 N 1014 cnt2/see 3, at which point the upgoing ion heating

effects (Fiquin 4) become prominent. Above D m 3 x 10 14 cut
2 /sec 3 , ttte solu-

tion to (60) breaks down; while above N 2.5 x 10 14 cml/sec3 the quasineutral

solution is no longer smoothly varying, 	 so we leave it indeterminate- Thus;

we estimate DPLAX to be - 3 x 10 14 cm2 /sec 2 .	 Again, as in Figure 3, we have

not	 used	 the high-accuracy mode of	 the Chiu-Schulz model	 in order	 Lo save

computation tame; this results in some uncertainty indicated by the stippling.

By investigating the properties of the Chiu-Schulz kinetic model of the

auroral potential drop, we have demonstrated that ion heating leads to a

decrease of the auroral potential drop, with concomitant effects as discussed

elsewhere.
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V. SUMARY AND CONCLUSIONS

We have	 given a	 semi-quantitative picture	 of self-consistent	 ion

cyclotron turbulence on	 auroral	 field lines,	 with the	 following	 major

conclusions:

1. Unless plasmasheet ions are very much more energetic than the elec-

trons, anomalous resistivity is not a large contributor to parallel electro-

static potential drops; supporting the kind of potential drop actually

observed requires too much dissipation of energy to be provided by iiput from

the plasmasheet.

2. Nonetheless, wave turbulence can be present; the ion cyclotron

turbulence levels suggested by the ion-resonance-broadening saturation mecha-

nism of Dum and Dupree are comparable to those observed on auroral field

lines.

3. The diffusion coefficient D ancL net growth rate Y are very ffiucah

smaller than estimates based solely on local plasma properties; instead they

are scaled with global param f-ters: D N V3 /!Z, Y N V/R where V is a typical ion

velocity and R the length of the portion of the field line on which there is

turbulence. Crude estimates of these effects are supported by calculations

based on the Chiu-Schulz quasi-neutrality model, with T  augmented because of

diffusive heating of ions in Vi.

4. The underlying reason for this limit on D and Y is that heating in

Ti must be supported by ion kinetic energy, so the effect is one of transfer

of parallel energy to perpendicular energy (with losses to electron heating

and wave generation). This necessarily inhibits formation of a potential drop

as the ions gain anisotropy and mirror higher along the line; eventually the

potential is too small to maintain sufficient electron current to drive the
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in;;tability. 'Thus turbulence deem the auroral potential drop, which is

opposite to the effect of anomalous resintivity.

5.	 Depending on initial and boundary condi-tions, an unstable auroral

system may evolve in leas than a few seconds to marp;ivally stable equilibrium,

with turbulence levels, u, and Y as estimated above. Or it may undergo relax-

ation oscillations as ion heating increases the critical drift velocity Vc at

the same time it reduces the actual drift velocity V D (by lowering the potett-

tial drop). There are generally two characteristie times for these relaxation

oscillations, the larger of which is the ion inertial time R./V which is thr

time it takes to restore 
all
	 situation from one in which VD - VC has

turned negative. This time i;; of order 3-10 seconds, which 1.9 observed to be

the dominant period of auroral. pulsations. In another work we will consicivr

the pulsation problem in more detail, contrasting our mechanism with earlier

proposals [Coroniti and Kennel, 197U, 5ilevitch, 1960) .

rl

35

i



RI:FLUNCLS

Block, L. P. (1970:	 : )uble ,layers, in P! sieg of tile, Not Plasma in the
E iannetosph^ pp. 229-249, edited by K Hultgvivt and L. Sieni::lo, Ilenum
Pre€^s, No Y.

Chiu, Y. T., and J. t1. Cornwall. (1980): 	 Electrostatic model of a quiet
auroral. are, J. Geophys. Res., t3a, 543.

Chiu, Y. T., and It. Schulz (1978): f>elf bconsistent particle and parallel
electrostatic field distributions in tl:e mag,netospheric-ionospheric
auroral, region, J Geophys. Res., 8J, 629.

Coroniti, F, V., and C. F. Kennel. (1970): Auroral micropulsation instability,
J. Geophys. Res., 7a, 1863.

Dum, G. T., and T o H. Dupree (1970): Nonlinear stabilization of high frequen-
cy instabilities in a magnetic field, 1je l s. Fluids, 13 22064#

Fulthammar,	 (1977): Macroscopic electric fields in the magnetosphere.,
Rev. Geophys. Space Phys., 15 0 457.

Frank, L. A., Et, L. McPherson, R. J. DeCoster, B. G. Burek, K. L. Ackerson,
and C. T. Russell (1981): Field-aligned currents in the Earth's magneto-
tail, J. Geophys. Res., E6, 687.

Fridman, M., and J. Lemaire (1980): 	 Relationship between auroral, electron
a

	

	 fluxes and field-aligned electric potential, difference, J. Geophys. Res.,
L5, 664.

I

Hudson, M. K., and F.S. Mozer (1978): 	 Electrostatic shocks, double layers,
and anomalous resistivity in the magnetosphere, Geophys. Res. Lett., 5,

131.

r
Kan, J. R. (1975): Energization of auroral electrons by electrostatic shock

waves, J. Geophys. Res., 80, 2089.

'	 Kindel, J. M., and C. F. Kennel (1971): 	 Topside current instabilities, J.
t	 Geophys._ Res., 76, 3055.	

.^.

Lyons, L. R. (1980): Generation of large-scale regions of auroral currents,
electric potentials, and precipitation by the divergence of the convec-
tion electric field, J. Geoeys. Res., 85, 17.

Okuda, EE., and M. Ashour-Abdalla (1981): Formation of a conical distribution
and intense ion heating in the presence of Hydrogen cyclotron waves (UCLA
preprint).

Okuda, Ei., C. Z. Chang, and W. W. Lee (1981): Anomalous diffusion and ion
heating in the presence of electrostatic hydrogen cyclotron instabili-
ties, Phys. Rev. Lett., 46, 427.

i

k

36



Palnadeot;o, P. J., T. P, Coffey, S. i.• OfJoaltow, and R. Papadopoulot; (197 +);
Topside ionosphere heating; due to elecrontatic for cyclotron turbulence,

t;eo li t3. Ites. Lett., 1, 105,

Royrvik, 0., and T. N. Davis (1971);	 Puloatinp, aurora-,	 local and global
morphology ) J GeUI, It . 0 1)2,  4 720.

Schulz, M. (1972); Intrinsic bandwidth of cyclotron reuc ance in the 13e0111ag'-
neti,c field, ! s. !-juido, 115, 2448.

Shawllan, S. 1). 0 C. — G. 1'althammar, and L. P. Block (19713); On the natures of

large auroral zone electric fields at I—Rls' altitude, J.^ taco 1^^. ttes.,
L33 ) 1049.

Si.levitct► , u. 13. (1980): On a theory of temporal flue tuationt: in the raleCLro—
static potential structures associated with auroral arca (submitted to J._

GeophYs. Rea.).

Swift, D. W. (1975); On the formatiael of auroral area and acceleration of
auroxal. electre;1;, J. Geo l; s. Ites.^, t32., 2096.

Temeri.n, kl., C. Cattell, R. Lysak, M. lludoon, R. Torbert, F. S. dozer, lt. 1).
Sharp, P. V. Nizera, and P. It. Kintner (1951): Tae small scale s tructelre
of electrostatic shocks (submitted to J. Geophys. Rea.).

37



The authnrn benefited from dineuonionc with M. Sebuiz,



AV^Ltldix

In this appendix we give 
an 

alternative dev(-loprient of an approximate

solution to (10) which yieldo essentially the same results as in Seetion 11.

Since this development is based upon different arguments, We Offer it here for

alternative insight.

Substitution Of the chosen form (24) into (10) yields

V as- !!" . V + 4DO	 V f
r. 	 M	 I	 I

(Al)

	

+ I- V ad L + VI L"	 _V0 ^ -I'	 wo	 3 f - 0
0 Do	 B as 0	 B as s I	 IL	 I

where y(s)	 i(s) + (2c/H) U, ^(s) and 0 0 is tacitly assumed constant. Now

we take the nth. moment of (Al) in V,. * Since f dV 
I 

V I n+1 f and f dV 
I 

V 
L n+3 

f

cannot maintain a unique ratio to each other for all n, we conclude that ("14)

satisfies (1U) only if

V
0 a

V
0 
+ 00 1 1 f - 0	 (A;)

rt

V !
0 1 V B— + — L (0	 01) - 06 ,L) f- - 0

U as	 B as

Elimination of the D-associated terms in (A2) kind (A3) yields

ao I	 I aB	 an

	

-̂.— + -ff T.- (1	 0 .0 + I a s I

V 
an + 0611 f - 0	 (A5)
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^t

In (Ak), the spatial and velocity operators on f have been separated into

product Farm; therefore, the curly bracket most itself be zero. The solution

to (M) is ;dust (31). Equation (A5) is the equivalent of (29). Its solution

is non-trivial because the operator mixes space and velocity space f unc-

ti.ons. The solution ansatz to (29) is therefore equivalent to replacing; the

velocity space variable V  by the spatial variable U,, in which case the curly

bracket in (A5) is itself zero.
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Figure Captions

a

if	 Figure 1 The coordinate system and dipole geometry assumed in this paper.

r	 Figure 2: Constant density contours of upgoing and downgoing magnetospheriv

ions at the midpoint of Ghe L=8.4 Field lane.

Figure 3: Auroral potential drop as function of ion temperature anisotropy in

the Chiu-Schulz kinetic: model.

Figure 4: Perpendicular ion temperatures M/28 1 on the La8.4 field line as

indicated by the ratio of the local magnetic field h to the equa-

torial magnetic field BO.

Figure 5. Auroral potential drop as function of ion diffusion coefficient.
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