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Abstract

We extend an earller plasma=-kinetic model of an inverted-V auroral arc
structure to include, in a phenomenological way, the effects of electrostatic
turbulence with kI/kL €< 1. In the absence of turbulence, a parallel potential
drop is supported by magnetic mirror forces and charge quasi-neutrality, with
energetic auroral lons penetrating to low altitudes; relative to the elec~
trons, the iors' pitch-angle distribution is skewed toward smaller pitch
angles. The electzons energized by the potential drop form a current which
excites electrostatic turbulence; we consider the specific case of the ion
cyclotron mode. The turbulence heats the ions in ’I.‘_L only, thus tendiung to
reduce the differential pitch angle anisotropy between electrons and ions,
which in turn reduces the potential drop - an effect of opposite sign to that
assoclated with anomglous resistivity. In equilibrium the plasma is marginal-
ly stable, with growth rates and diffusiun constants some two orders of magni-
tude below naive estimates. The conventional anomalous resistivity contribu-
tion to the potential drop is very small, because anomalous-resistivity pro-
cesses are far too dissipative to be powered by auroral particles; this is why
growth rates and diffusion constants are so small. Under certain circum-
stances equilibrium may be impossible and relaxation oscillations set in; the

time scale for such pulsating auroras is the ion transit time of 6-10 seconds.



L. INTRODUCTION

Recently many authors have been concerned with plasma-kinetic mechanisms
for explaining auroras associated with inverted-V's (auroral arcs, for brevi-
ty) [Swift, 1975; Kan, 1975; Hudson and Mozer, 1978; Chiu and Schulz, 1978;
Fridman and Lemaire, 1980; Lyons, 1980, Chiu and Cornwall, 1980]. The funda-
mental objective is to set up a parallel potential drop of 1-10 keV along an
auroral field line which will accelerate electrons and precipitate them into
the ionosphere. To this end, three mechanisms are most widely cited: 1)
charge-separation effects (Poisson's equation); 2) anomalous resistivity; 3)
magnetic mirror forces coupled with differential electron-ion pitch-angle
anisotropy. Because of the large (O 104) transverse dielectric constant of
the magnetized auroral plasma, transverse derivatives in Poisson's equation
completely dominate derivatives along the fileld line [Chiu and Cornwall,
1980]. We will therefore not consider unmagnetized double layers (potential
drop ~ keV in a distance ~ 0.1 km along a field line) any further, although
several authors have invoked them for auroral arcs [Block, 1975; Shawhan et
al., 1978]. The remaining effect of Poisson's equation is to couple neighbor-—
ing field lines on a length scale > Ry (R, is the lon Larmor radius) [Swift,
1975; Chiu and Cornwall, 1980]. This sort of coupliig will not be vital for
our present purposes, so we will demand instead that the plasma be quasi-

neutral: Ny = N, everywhere.

Next consider anomalous resistivity. While it may be very important in
some laboratory circumstances, a simple energy-balance argument severely
limits its role in the aurora, at least din the scenario we adopt. In that
scenario, all auroral energy comes from the kinetic energy of plasmasheet
particles, and is likely to be dominated by the ionms. Suppose that turbulence

somehow generates an anomalous collision frequency VA for electrons (of mass



m), so that the current-field relation is
J, o, E, 3 0, = Nozlm v (1)
i I B | ) A

The electron current is of order Jy ™ eNV,, where V, 18 a typical electron
velocity, so that the power dissipated on the auroral field line, integrated

over the region of length % where the turbulence is present is, in order of

magnitude,
2 - 2
] ds Ju/dn ~ % Nm VOV, (2)

This must be less than the input power, which comes from fields and particles
in the plasmasheet. There are several estimates one can make for this, but
none are plmusibly larger rthan the lon energy {lux. (Quasi-neutrality of the
plasmasheet limits the electron energy flux to be of the order of the ilon
energy flux.) For example, one might begin with the power per unit volume
31 . El dissipatéd in MUD flow. We estimate JL ~ cVp/B , EL ~ 1 mV/m, and
multiply the product by a length which we take to be the same as that setting
the scale of the pressare gradient. The result is substantially less than the
ion power v 3 (M is the ion mass; V is a typical fon velocity), and it is
this latter quantity which we use as the input power; it is of the order of a
2

few ergs/cm” sec. In terms of the average plasmasheet electron energy W, and

plasmasheet ilon energy W, we have V?‘/Ve2 = mW/(MW,), so that requiring (2) to

be less than NMV? implies

v, < (w/we)(v/i) (3)
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For typical auroral parameters this amounts to \)A/mpe < 10 ’, considerably

-4

less than the range vA/m w 107" = 10™* found in simulations or laboratory

pe
experiments, which refer to quite different physical circumstances not found

in auroras.

The point, however, is not the absolute size of Vi but rather what sort
of potential drop it can lead to. Anomalous resistivity 1s so dissipative
that if turbalence and heating reash the maximum level allowed by (2), only a
small potential drop is generated (a somewhat similar point was made by

Filthammar ([1977]1). Let us use (2) and (3) in (1), estimating the total

potential drop between the ilonosphere and the equator as A » =% By Une
finds
1/2
m W
edp < W (5 W;') (4)

In the plasmasheet, W/W, ~ 2-4 is typlcal [e.g., Frank et al., 198l] so the
potential drop, scaled in units of ion energy, is perhaps 0.05 - O.1. Note
that this is independent of the length % of the turbulent reglon. In contrast
to the bound (4) on eA¢ maintainable by anomalous resistivity, the theory

outlined below, as well as experimental observatione, suggest that eAd ~ W.

Thus the anomalous-resistivity potential drop is limited severely by the
avallable auroral power, which is why canonical estimates Vo ™ (10"4 -
10'2) wpe are so far off the mark: they refer c¢o circumstances where the

potential drop is maintained by an external battery, which can supply the

power which is necessarily dissipated by anomalous resistivity.

This d4ds an example of a theme which will occur several times in the

course of this work: microscopic wave-plasma processes are capable of trans-



ferring encrgy between particle species, or turning this energy into wave
turbulence, at rates which are enormous compared to the input power avail-
able. The plasma processes are analogous to an cnormous pipeline through
which only a trickle of water flows; it is completely wrong to estimate the
water flow from the diameter of the pipe. The overall balance of plasma
processes 1s in large part pgoverncd by macroscopic, not microscopic, para=
meters. (This is true at least for plasma effects in which kl RL > 1, but not

necessarily if k) Ry < 1)

Turn now to the third kinetic process of magnetic mirvor forces. It has
been considered in great detail by Chiu and Schulz [1978] (using nuasi-
neutrality) and Chiu and Cornwall {1980] (who added Poisson's equation and
ionosplieric charge and current conservation, cffects whose preatest importance
is to couple neighboring fileld lines). These aathors (as well as Lyons [1980)
and Fridman and Lemaire [1980]}) pointed out that there is, for magnetic fields
with large mirror ratios, a linear relation between parallel current and

potential drop
- J, = Q¢ (5)

(we drop a term referring to diffuse particle precipitation) with Q »~ Ne2/(m
Vo)e Again by taking Ad = —%E,, one finds by comparing (5) with (1) that the
effective "collision" frequency is simply the inertial frequency Vvt

vy = ve/z (6)

which is larger by roughly the factor (M/m)J‘/2 than v, in (3), and of course

1s consistent with elA¢ =~ MV2, as observed. It is important to note that this



much larger cffective col ision frequency 1s not associated with dissipation
of any sort, and equations such as (2) with vy in place of vV, are meaningless

for the magnetic mirror force process.

Somewhere between the extremes of totally dissipation-free auroral arc
models (e.g., Chiu ond Schulz [1978]) and maximally~diseipative models of
anomalous resistivity lies a middle ground in which there is turbulence and
dissipation, but in an amount limited by the auroral input power. We have
already argued that this limitation implies little or no turbulence contribu-
tion to the parallel potential drop, so we must look elsewhere for the effect
of turbulence. In faet, it turns out that the cffect is precilsely opposikte to
that of anomalous resistivity: electrostatic lon cyclotron turbulence tends
to reduce the parallel potential drop, The argument is that such turbulence
(or similar electrostatic modes with E. <L El) is very efficient at heating
ions, thereby increasing TL/TH for the ions. (At the same time electrons are
slowed down and heated mostly in Tu). As a resuli, the differential pitch~
angle anisotropy between ions and electrons is reducedes In the Chiu-Schulz
kinetic model, precisely this differential anisotropy drives the parallel
potential drop, which - as the detailed calculations oresented below show - is

reduced as TL/TN iacreases.

There are now two effects tending to stabilize the turbulent wave ampli-
tude: 1) the well known (e.g., Palmadesso et al. [1974]) increase in the
electron critical drift velocity V, with increasing TL; 2) a decrease in the
electron drift velocity V because the parallel potential drop has
decreased. As Palmadesso et al, [1974] show, the first effect alone acts to
bring Vp = Vo to a very small value (compared to other characteristic veloci-
ties), and the ion cyclotron mode is essentially marginally stable (the growth

rate Y is linear in Vp - VC). With only the first effect present, we will



show below an exponential decay to marginal stability (y=0). Adding the
second effect may have more dromatic effects: with Vj decreasing at the same
time Vo increases it is possible for y to go negative, with consequent shut-
down and decay of turbulence.  Eventually fresh ions {with TL/TE £ 1) are
injected and restore the initially unstable situation. These ions enter the
system on the ion transit time scale &£/V » 10 sec; slnce this 1s greater than
the time scale for shutting off turbulence, the arc can pulsate at this peri-
ode In the present paper we will not take up this mechanism for pulsating
ares in any detail; however, we note that the observed characteristic peried
of pulsations (both patches and aves) 1s very nearly the ion transit time

[Royrvik and Davis, 1977].

Whether pulsation or decay to marginal stability takes place depends on
initial conditions; eventually some sort of equilibrium will be reached. We
can make some simple estimates of turbulence parameters for the electrostatic
ion cyclotron mode, when a marginally stable equilibrium has set in. First it
is necessary to identify the wave saturation mechanism. Formation of a quasi-
linear plateau on the electron distribution is not favored, because old elec-
trons are rapidly transported out of the region of instability while new ones
are being carried in, and convective losses are slow because of the very low
wave group velocity. It is thus plausible that ion resonance broadening [Dum
and Dupree, 1970] and the rather smaller effect of geometric resonance broa-
dening (ee.g., Schulz [1972]) are the dominant saturation mechanisms. Dum and
Dupree show that, in this case, the RMS wave amplitude is largely independent
of the ion velocity diffusion coefficient; their formulas applied to the
auroral arc problem suggest wave amplitudes of the oxder of tens of mV/m,
which is roughly what 1s observed [Temerin et al., 1981]. The diffusion

coefficient for ion diffusion in VJ is related not to the wave intensities,



but to the linecar growth rate YL:

2
n.g-;.-, K4
Ds ==y, M

ky
where @ 18 the Zon cyclotron frequency. The most unstable modes bave
kl ~ 0/V, and Y, 18 of the order of

12 1o (v o
Y et (v = V), )

where Fl < 0+2, Vp is the electron current velocity along the field line, and
Vey the critical drift velocity, is nominally of order 10 V ~ 0.2 V, [Kindel

and Kennel, 1971}, Thus a nominal value for 1, is of order 0.1 Q; with noni-

nal auroral values of 8 ~ 100 sec™!

3 gec™l.

and vV ~ 108 cm/sec, we estimate D~ 1017
cm

In fact this estimate for D is too lerge by orders of magnitude, for
essentially the same reason as the nominal estimates of anomalous rvesistivity
were wrong: such a D yields too much dissipation to be supplied by the auro-
ral input. As an ilon travels along the field line from equator to ilonosphare,
its perpendicular energy increases by wave turbulence, by an amount roughly
equal to 2M | ds D/Vn. Since the ultimate source of energy for ilon heating
is the ions themselves (that 1s, heating in Tl is a less-than-perfectly

efficient way of transferzing energy from parallel ion motion to perpendicular

ion motion, via a potentlal drop which induces turbulence) this quantity must

certalnly be less than roughly the ion kinetic energy which gives the limit

3
D < %E-~ 1014 cm3 sec ! (v)



(estimating & » 4 R,)» When this upper limit as D is used in (7) to cstimate
T, it is seen that Yy, peales as V/& €< 0.1 92w This means, of course, that

turbulence i generated at very near marginal stability.

In this paper we make quantitatiwe the considerations given above, using
a ochewmatic but adequate reopresentation of clectrostatic turbulence with
kL » k.. The starting point is the Boltzmann equation forx particles in an
inhomogencous magnetie field, with an :pplied DU potentiul drop, and in the
presence of perpendicular velocity~space diffusions The diffusion coefficlent
D 1s independent of veloelty, and is considered as an appropriote average over
the turbulent spectrum. Addition of turbulent diffusion makes the Boltzmann
equation analytieally insoluble, but we show that for an initially bi=-
Maxwellian velocity distribution function £, a good approximation is that
continues to be %7 Maxwellian, but with a temperaturuy Ti’ as well as an effee-
rive electrestatice potential, dependent on field=~line integrals of D weighted
with various functions. (Tu does not change because of D.) That is, the
cffects of diffusion can be well modeled by leaving out the explicit diffusion

operator and renormalizing T, and the parallel potential drop Ad.

This is a great simplification, because it allows us to treat our problem
as a simple modification of the Chiu-Schulz problem (to the extent, at least,
that we ignore coupling of neighboring field lines and the ionosphere, which
is permissible here). We have run the Chiu-Schulz numerical programs for
various values of D (that is, varlous renormalized TL and A$) and find that,
as antlcipated, A¢ is forced to decrease as D increases. At a critical value
of D the solutions either break down or Ad 1s essentially zero; the critical
value of D found in the numerical work is somewhat smaller than given in

(9). This 1is, of course, expected sinece (9) is an upper limit.



Scction II contains a derivation of the approximate oolution of the
Boltzmann equation., Scetion ILIL discupses the physies of cleetrostatic ion
cyclotron tcbulence, and Seetion IV contains numerical results. Seetion V in

a brief recapitulation and statement of work for the future.
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II, BOLTZMANN LQUATION WITH TURBULENCE IN AN INHOMUGEREOUS MAGHETLG FIELD

The Boltzmann cquation for iens sufiering velocity=spaece ditfusion in the

component of veloeity perpendicular to the magnetle field io, after eyelotron

averaging,
0 9 e 9 s 9 1 2 ]
0 m [Sm op Y, S p Y s op V| oot o o e (DY gﬁm)} £ (1v)
{at I 98 ! av. L avl VL avl L EVL
where
v um"viz ey (Lla)
¥ 2B 98 M '
v, Vv
i "1l 9B
V.L & 35" T8 {11lb)

We take D to be independent of velocity and time, and concern oursclves only

with static (8/%t = 0) cases. For D = U, the well known solutien to (lU) is

£ = £ (eyor €10 (12)
M Vu2 M Vl2 BO
M vl2 By

ST JA R e (14)

The subscript 0 labels a particular point on the field line, where s = 0,
B = By, and the electrostatic potential ¢ = ¢0 (see Fig. 1), In the case of

energetic plasmasheet ions, the point 0 will be the equator of an auroral

fiecld linc.

11



If D # 0 it 4is impossible to solve (10) exactly, except in a formal
senses The formal soulution is nonetheless instructive for further develop-

ments, so we glve it here.

First introduce the fundamental quantity

. 1/2
2, o2 B'y , 2 .
Uy(s, 8", ¥, V)) = {vi +vi (1 -5) 4—;fi (4 = ¢} (15)

where B' = B(s'), B = B(s) and analogously for ¢ and ¢', and VN’ VL are the
velocity components at s. We restrict ourselves to regions of space and
velocity space such that U'l is strictly positive, that 1is, no lon mirrors in
the region between s and s'. The general case without this restriction re-
quires very cumbersome notation. In our coordinate system (Fig. 1), Un > 0

refers to downgoing ions, and in the earth's field we take s > s', B > B'.

Clearly, U" is a constant of the motion for D = 0

‘“ b L Y --a-—. Y Cm— g : = =
Luy (v, 5=+ V, ) + v, av") Uy = 05 U (s'=8) = V| (16)

In terms of U", we define the fundamental diffusion variable Q:

1
g=f 452 (17)
0 i
and note that
LQ=1D (18)

and in terms of Q, we define a Green's function for the diffusion operator:

12



L 02 4 12
G“:gq o(.,_Q )exp l- 7g vy +viOl (19)

\ 1 T ,

G » VI § (v, =V, Q>0 (20)
Here IO is a Bessel functlon of imaginary argument. G obeys the Boltzmann
equation (10) up to an error which 1is second order in s, the length of field

line over which the solution applies. That is,

SO S 1 6y -1 aq

L6 - 5= 3y (Dvl 57 =) = 0 [D (Q ) G (21)
L7l L

with the RHS of (21) failing to vanish because aq/avl # 0. But from the

definition (15) of U", it is clear that, in order of magnitude, and for s <<

B/(3B/38) = 8,
e~ U ot~ (22)

so the RHS of (21) is of order DG(s/Vzo)z. A typical term on the LHS is
o(vc/xo), and (as will be clarified later; sece Eq. (9)) since D/V2 < V/RO,
the error in the Green's function solution is ~ (s/zo)z. Choose s to make
this as small as desired; then, to the chosen accuracy, the solution to the
Boltzmann equation which approaches a given boundary value f4 at s = 0 is

= 1 [ '
£= [ Viodv] GV, V) x

2
BO M Vl OJ

x £y [t == (1= 52) + e (=), —5— =2 (23)

13



One may now simply iterate (23) going from s to 28, using f at s as the input
on the RHS, and then to 3s, ... Ns. The exact solution is approached as s +

0 and N » o with Ns fixed.

This formal solution is of little use in general, but one speclal case
will draw our attention: if f in (23) is bi-Maxwellian, the output distribu-
tion function i1s also bi-Maxwellian, except for the velocity dependence of
Q. It will turn out that this velocity dependence is relatively unimportant,
s0 we consider the possibility of an appruximately bi-Maxwellian solution by
direct substitution in the Boltzmann equation. The solution ansatz necessari-
ly involves an overall factor dependent on s, which can be interpreted as a
sort of renormalization of the electrostatic potential. An alternative devel-
opment of an approximate solution to (10) leading to similar solutions below
can be obtained by the method of moments. Since this method may provide
alternative insight into the solution scheme, we give a summary of it in the

Appendix.

The form chosen for f is

—e 2o v2-
fa (e o Vi T O VLT (2e/1) 0y (e -

where Gl, 6" may depend on s, but not on V. When this is substituted in (10)
(with 3/9t = 0) the following equations are required to be satisfied, in

addition to 6" = constant.

? 1 0B 2
Lel+vu<el~e‘l)-§-a—g+4ell)=9 (25)
Ln+46 D=0 (26)

14



where L 18 the differential operator defined in (16). For D = 0, the solu-

tions are n = constant, 8, = constant, and
Gl ] 01(8) ] (OLO - Ol> BO/B + 0“ (27)

Of course, this simply reproduces (12) - (l4) for a bi-Maxwellian.

For D # 0, (25) and (206) are not strictly consistent, because of the non-
trivial appearance of V“. To achieve consistency, we will replace Vll by an
average value ﬁl which is independent of the local velocities V,, V,, but
might depend on s. In order that this approximation make sense, we must
separately consider downgoing (VH > 0) and upgoing 1lons; for the moment we
treat only downgoing ions by taking £ to vanish for Vu < 0. Then U"(s) can
be defined by averaging over this distribution function at various points

along the field line, using the D = 0 solution for f as given by (12) - (l4).

In this approximation, 9ﬁ is still constant and (25) and (26) become

] \ 1 38 2 = -]

-a-g-el r(el e")B-g-s-'*'[{e-LDU" 0 (28)
o Gl
35 + 4 el D Un 0 (29)

These equations appear to be non-linear, but actually they can be linear-
ized. The first step is to multiply (29) by Gl and subtract it from (28); the

result can be rearranged to

3 Ny wp oo 2B
55 (B Gl e ) 9“ e 5% (30)

which allows us to express el in terms of Y= e

15



B
B o (s) = ¥ () [0, fo ds' X(s') §%, + By 9] (31)

Now (29) can be written
Y (32)

and the combination of (31) and (32) gives a linear second-order differential

equation for Y:

B U
] I3y 9B .
75 C7 D s % % 3 ¥ (33)

This could readily be solved numerically, but the approximations made i»
deriving the equation do not justify anything more elaborate than saving terms

of first order in D. (The reason is that we have assumed 6, and n to bhe

L

independent of V. If this assumption is dropped, (25) and (26) could be
solved without the approximation V“ + ﬁ“. But then the equations themselves
would not be quite correct; there would be terms of O(Dz) coming from the

action of the diffusion operator on 9_L and n).

The lowest-order solution for el is

B B'-B
0 0
TtY <"E“>] (34)

]

s TR |
-] ds' (4D o, U, ) (s") [fal0

8,(s) - §l<s> .

il

where, as before, B = B(s) and B' = B(s'). It is useful to phrase the lowest-

order correction to n in terms of a phantom electrostatic potential ¢D

defined by

16



M
oy = ¢ " oo (35)
We find

%-M,?if_ f P ast @8, 5,7 s (30)

eeu 0 L

The RUS of (34) and (35) shows that the smallness parameter of our appro-
ximation is roughly [ ds' DBL/U“ which 1s essentially the ratio of the
perpendicular energy gain of an ilon due to diffusion in a single pass along
the field line (as noted in Sec. I ) to the initial ilon energy. As we have
seen, this cannot be larger than one, or the lons cannot maintain the necessa-
ry differential pitch-angle anisotropy which drives the potential drop which
drives the electron current which drives the turbulence. On the other hand,

the smallness paramcter is not necessarily much Lless than one, so our efforts

here can be considered only semiquantitanivu.

In summary, the primary effect of diffusion xs to leave a bi-Maxwellian a
bi-Maxwellian, but with modified 61 and with an effective electrostatic poten—~
tial ¢D which 1s greater than the true potential drop. The inverse tempera-
ture Bl decreases as diffusion acts, that is, TL is increased as we expect.
The fact that ¢D is greater than ¢ might be interpreted as the presence of

positive phantom charge which tends to keep the protons out of the ionosphere.

The above discussion also holds with but trivial changes for upgoing
ions, whose Tl increases as they move toward the equator. Whether up- or
downgoing, '1‘l heating raises the ion mirror point and diminishes the parallel
potential drop; thus turbulence acts with opposite sign to anomalous resistiv-
ity, and furthermore 1s self-limited by global considerations, not by the

usual local saturation mechanisms.

17



To be complete we ought to look at the Boltzmann equation for eclee=
tronss, As discussed in the next section, clectrons are mostly heated in
T‘ as well as having their field=aligned current velocity slowed down; that
is, the flow motion is thernalized. This acts also to reduce the lop~electron
differential pitch-angle anisotropy and to diminish the parallel potential
drop. In view of some uncertainties in the quantitative description of this
process (see Section IILI), we do not attempt to treat electron heating and
slowing down here, but it is eertainly no more complicated than what we have

done for the lons. We will be content to note that the effects of turbulence

on electrons reinforce those acting on lons.

18



III. GLOBAL PLASMA PHYSICS OF THE ELECTROSTATIC ION CYGLOTRON MODE

So far we have only discussed one=half of the problem: what effect does
a given perpendicular~diffusion constant D have on the ion distribution? The
other half is, of course, how much turbulence and what value of D do the
distribution functions, magnetic field geometry, and boundary conditions

yield?

It turns out that many of the plasma=physical numbers are largely deter=
mined by global scaling laws, having little to do with the local plasma envi-
ronment. For example, the net growth rate y scales as the inertial frequen-
cy V/& which involves £, the length of the field 1line, and D 18 of
order V3/£. The dominance of global over local effects will be an interesting
challenge to experts in computer simulations of plasmas (recent work on ion
cyclotron turbulence is reported by Okuda, Chang and Lee [1981]; Okuda and

Ashour=Abdalla [1981]).

Let us briefly recapitulate our scenario. Incoming auroral ions have
average mirror points which would be closer to the ilonosphere than those of
the electrons, 1f it were not for the electric fleld which this enforced
charge separation would produce. The parallel potential drop causes the
electrons to have a net flow along the fileld line, which is strong enough to
trigger the electrostatic lon cyclotron mode. The resulting turbulence (for
which EU/E1 << 1) heats the ions in TL’ which raises their mirror points and
reduces the potential drop, thus reducing the electron drift velocity and the
prowth rate. At the same time, ilon heating in Tl acts directly to reduce the
growth rate by increasing the threshold drift velocity (an effect invoked by
Palmadesso et al. [1974]). One of two effects ensues: 1) the plasma reaches

marginal stability in less than the ion inertia time 2/V, with final values

19



of ¥ and D ag estimated above; 2) the electron drift veloeity Vy decreases and
the eritical drift velocity Vi increases in sueh a way that Vp = Vg becomes
negative, the waves are decayed or conveected away, and the turbulence disap-
pears. The initial unstable state will be restored after a time of order

2/V, and the whole structure will undergo relaxation oscillations (observed

as pulsations).

In this section, we discuss the plasma physics of the electrostatic ion
cyclotron mode, dincluding saturation mechanisms (fon resonance broadening,
geometric resonance broadening); heating and slowing-down rates for ilons and
electrons; influence of this heating on growth rates; and dynamics of the
approach either to marginal stab..ity or to a relaxation-oscillation mode
(pulsations). Let us begin with the dispersion relation for drifting bi-
Marwellian distribution functions, thus generalizing Kindel and Keanel
(1971). As 4in earlier secctions, electron quantities are subsciipted, and

quantities without subscripts vefer to lons, except in equatloms (37) - (38).

In a spatially homogencous magnetic field the electrostatic dispersion

relation is

- -l
I (u) [w + NQC(l= T, T )] -
L —bL g ety (37)
Ay ky Yy ky Yy

The sum is over all N from - w to «, and also over gpecies. For each species,

we define
- kl2 Glz 9 Vuz
@) = e ™ L(u), p ==, A B ey
N N 2 o2 DT
1/2 P (38)
= T -
{1 —...L.... 3 -—
Vl,ﬁ [2 M ] y W W kll VD
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We take it that for ions there is no drift, and that (w + NQ) >> kn VI, while
for the dJrifting cleetrons W+ N €< kl Vﬂ. The fastest=growing modes have

p~ 1 (for tons), and kgzlklz << 1. Then the dispersion relation 1s

CHinlk | R S Y RPRFP R (39)
g T
L
Ty Ty -1
t, = 7 1 - ry=w (1 - Po)] (40)
) L
12 Ty kY, g2 o -1
PRI Ll + = ry Lo+ a(r,T,"" = 1)) (41)
TS = 1 ity
te k, V,, k, ¥,

where p = (w-ﬂ)/(kH Vu). The linear growth rate in a homogeneous fileld is

thus

) AR 'y Ty

2
Tl 4

Y, = (42)
In an inhomogeneous field, there is damping from geometric resonance broaden=
ing, that 1is, lon cyclotron resonance 1s lost as the wave propagates along the

field., A straightforward calculation shows that the damping decrement is

- 1/2
B o- (.Y.q. .“2.;53.) . (43)
YorB T s ;

1

this is of order 1 sec = on auroral field lines, and is not insignificant.

The net growth rate 1s vy = YL - YGRB'
For this mode, the group veleccity is small compared to the electron drift
speed, so that fresh electrons are constantly being injected into the region

of instability. This dinhibits quasi-linear saturation by formation of a

plateau on the electron distribution function, so the most important satura-
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tion mechanisms are ion reasonance broadening [Dum and Dupree, 1970) and fon
heating [Palmadesso et al., 1974}, According to Dum and Dupree, the damping

decrement due to ion resonance broadening is

Yipy = 7 I (44)
and equilibrium is rveached when y = YiRrs® Here D is the diffusion cocfficient
for fon diffusion in Vl’ as used in Section IL. As mentioned in Seetion I,
estimates such as Vj = m/k' ~ m/k', or vy~ 0,1 2, yleld estimates of D which

are wuch too large to be furnished by auroral fons.

In addition to fon diffusion (heating in TL)’ the e¢lectrons suffer a
slowing=down of their drift velocity and heating in Tle' These processes arve
non~rasonant (sce the inequalities below (38)), and therefore somewhat diffi-

cult to estimate accurately, but non-resonant quisi=linear theory would sug-

gest
v 2
D . re 2
- { mgm—— b 6, 1% k (45)
ot m‘,' vni K k i

where ¢k is the wave potential. This has been estimated by Dum and Dupree:

5 112
<le ¢k| > < 0.2 Te (46)

With k, = /v, k /%l < 0.1 [Kindel and Kennel, 1971] and T, » 1 keV, (40)

L

indicates an RMS wave amplitude of tens of mV/m (as seen by auroral satel-—

lites; Temerin et al., [1981]) and (45) ylelds a slowing-down time of (l-
10)3—1. This is a lower limit on the e-folding time for ion heating in TL’
which is driven by electron energy losses. It is a very generous lower limit,
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not actualiy approached in taet; it corresponds to sinilar naive estimates of
Y, " V.1 0 or of fon heating rates which o not consider the limitations on
energy transfer proceunes avising fronm global considervations.  The only point
in making these estimates 1o to chow that the rates wi transter trom one

particle speeics to another, or to waves, are far greater than needed, a point

also emphasized by Palmadesso et al. [1974].

shortly we will make estimates of the aetual transfer rates on auroral
field lines, gotting much swaller valuess In this conneetfon 1t is inportant
to reeall that, with ion resonance broadening as a dominant saturation mecha=
niom, the ion diffusion coefficient I is not strongly coupled to l¢kl2; oven
very small values of D are consistent with the Dum=Dupree cstimates of ¢k as

in (40).

Palmadesso et al. [1974] have pointed out that ion heating reduces the
growth rate Y, thue taking the system toward marginal stability, that Is,
Y= Yip? but with reduced values of both ¥y and Yirp® Let us make a quanti-
tative estimate of this effect. Consider a plasma which is unstable to wave
growth, but in which there are no waves to begin with. The condition of
instability requires Vy > V¢, where the critical drift velocity Vi is simply
the minimum drift velocity (over ks kl)' Kindel and Kennel [1971) find the
minimum at k.L V= 2, knlkl # 0,1 for an isotropic plasma with T = Tye With

geometric resovnance broadening added, one finds for this isotroplce case

— ] -
oW 4 Te Vo rl v Te ve g
Vo r V() L = A gl v 0V D)
TV Qlflﬂ

The geometric resonance broadening correction is normally 204 = 304 of the
Kindel=Kennel term. The frequency w depends on TL (sce (39), (40); inserting

this dependence in (47) and differentiating ylelds the estimate
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ok (48)

(somo unimportant terms have been omitted).

We can find the time rate of change of Vi by knowing the ion heating

rate, which is roughly MD per particle as one finds from the Boltamann equa=

3
tion  (l0) by wultiplylng by 1/2 MV, " and integrating. With
D= $92/ki ~ YVi/d, the ion heating rate Lo

TL/TL 5y (49)
and from (48)
VC/VC= Y Tl/TQ ~ Yy (50)

Using (40) = (42), we estimate (setting all temperatures equal)

2 Pl

v
e

y n nt/? (v, = V) (51)

S0 equations (50) = (51) lead to a difierential equation for Ve

Qr
. 1280 }
Vo = : Ve vy VC) (52)
e

Now consider the scenarios where V|, is constant, which is appropriate to
many laboratory experiments and possibly some auroral cases. Equation (52) is
readily solved, showing an exponential approach to equilibrium (Vc = 0). The

characteristic time is
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1

- , B PV N
G YL it e U PR P (53)
v
&

where the value for T stems from the sotimate VD/GQ # U2 plven by Rindel and
Kennel (1971) for T, = T. It follows that the plasma can deviatce substantial=
ly from marginal stability only for times T # V.2 = 2 pec, following sone

initial, unstable disturbance.

Actuully, it is quite unrealistie to suppose that VD renadns censtant as
Ve ehanges. The same cffect = ion heating - which tends to inerease Vi also
tends to reduce the drift velocity, as we now estimate. Begin with an over-
simplified picture of the change in the quasi-neutrality condition, in which
the heating of clectrons in Tuc is ignored. A change GTL in fo0a temperatuce
must be accompanied by a change in the electrostatic potential ¢, in order

that guasi-neutzality can be maintalned:
v Hy ot [
Ni (TL + Gll, i., ¢ + &) Ne <Te’ b+ &) (54)

Originally this equation was satisfied with GTL and 8¢ equal to zero. If the
distribution functions are Maxwellian, and expressed in terms of constants of
the motion as in (12) = (l14), the first-order expansion of (54) is, very
roughly,
6T,
AN, - 0 NQQ-%Q— (55)
(54

i TL i Tl

All we hope to do here is to get the signs right; each term in (55) might be
multiplied by a numerical coefficient somewhat different from unity. With Ny

= Ny, T, ® Ty, (55) yields
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o 8¢ -5 6, (56)

The change in the electron drift veloeity is directly obtained, because 1/2 m

Vlez + uB ~ c¢ is constant and the magnetic moment y 1s unchanged:

e 66 _ arl (57)
m V"a 2m V

§V, = &V

D =

he
le

This shows that V) deereases with an increase in T, but it is not straight-
forward to incorporate (57) into the differential equation (52) for Vge The
reason is that information concerning the changes 8¢, GTL 1s not transmitted
instantancously to the whole auroral field line; instead it must propagate
along the line at a finite velocity. Clearly the characteristic time for
changing a parameter like '1‘_L which characterizes the global ilon distribution
function 1s the inertial time &/V, which 1s several seconds and much larger
than the time it takes to reach marginal equillbrium,%. Thus 1in (52) )
should not be evaluated at the same time t as ie Vg, but rather at a retarded
time. In spite of this iechnical complication, we can appreclate from (52)
that it is possible for Vc to go from positive to negative in a finite time if
Vp is decreasing, rather than simply going asymptotically to zero as in the
constant Vp case. If this does happen, the growth rate becomes negative, and
turbulence originally present is damped away. At this point, ilon heating
stops, to be replaced by ion cooling at a rate TL/TL w - 2/V as new lons are
injected. After roughly an inertial time, the ions will be cool enough
in TL to be unstable once again, and more turbulence is generated. We have,

then, a relaxation oscillator to generate auroral pulsations, with a charac-

teristic time constant V/& ~ 6 = 10 sec.
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A complete discussion of this mechanism = inclvding damping - will be
given elsewhere. lHere we only comment that 1) whether oseillations actually
take place or not depends sensitively on parameters and initial conditions;
and auroras are not required to pulsate; 2) our mechanism and its time scale
are quite different from a recent proposal for auroral flickering [Silevitch,
1980}, but not necessarily incompatible with the Coroniti-Kennel [1970]

pulsation picture.

We conclude this section with some estimates of plasma parameters when
marginal stability has set in. It has already been observed in Section I that
the ion heating in Tl during the inertial (®» quarter-—bounce) time cannot
exceed the initial ion energy, since that is what drives the heating (by
making a parallel pectential drop and an unstable current). This led to the

14

estimate D < V3/(4£) w 10M% ep? sec"a, and (via (7) or (44)) to ¥ = V/%&. When

D reaches this value, ilon heating and cooling (by injection of more ions) are

roughly In balance.

Then (51) yields

1/2

(vD - vc)/vC ~ ?; V/(znvc Py ) & 0,02 (58)

These estlmates are crude at best, but they suggest that the drilft velocity
and the critical velocity are closelv tied together, and a relatively small

change in either one can turn off the turbulence. If, for example, Vp = 2 x

10° em see”!

sec'l, reduces wave growth to zero. OSuch a change might be produced by an

then a change in Vp of 2% of this value, or - 6§V = 4 x 107 cm

upward fluctuation in D from its saturation value of = V3/(42), producing a

net ion heating of roughly
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6T, = 2 [ 5D (59)

L 0

When (59) is used in (57), one finds an upward fluctuation of » 4 x 1013 em

see™d will turn off wave turbulence.

In the next Section, these crude estimates are made somewhat more quanti-

tative by computer calculations.
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IV. DETAILED NUMERICAL ESTIMATES

To do better than the rough guesses of Section III, we need to know two
quantities with some accuracy: 1) the relationship between the total poten—
tial drop ¢ and the perpendicular don temperature Tl; 2) the relationship
between a given D(s) and the change in TL for a single pass of ions between
equator and ilonosphere, as given in equations (28) = (29). Because explicit
diffusion 1is nearly equivalent to a renormalization of ¢ and T_L in the ion
distribution function, the Eirst relation can be found by a straigbhtforward
modification of the Chiu-Schulz (1978) calculations; the second is found by
numerical integration of the differential equations. These calculations are
reported here, and they show that there 1s a maximum diffusion coefficient
above which there is no potential drop. The value of Dyax 1s roughly consis-

tent with our earlier guesses.

To achieve the above two objectives, we need to obtain a direct non-
linear differential equation for el in the variable B since the Chiu-Schulz
calculations are best expressed in the magnetic f£field variable. With a
straightforward, but slightly different set of manipulations from that follow—

ing (28) and (29), we obtain

d
a5 (80 =@,

(%) B 8 (60)
—— (ag) 8 ¢,

T, (4)
where (ds/dB) for a dipole field can be numerically expressed as a function of
B to very high accuracy. For a given ¢(B), the heated ion temperature Tl =
(M/2 Gl) can be found by solving (60) with a highly accurate Runge-Kutta
routine. But ¢(B) must be obtained through the Chiu-Schulz quasi-neutrality

solution, thus ideally el(B) and ¢(B) should be obtained by simultaneous

solution of (60) and quasi-neutrality. However, the accuracy to which (60) is



derived (first order in D) does not justify such an elaborate and expensive
procedure. We have decoupled (60) from the quasi-neutrality calculation by

assuming for ¢ in ﬁu of (60)
$(B) = Ad [B-BO]/[B,Q,_BO] (61)

where A¢ is the initial potential drop. Since GU is dominated by the magneto-
spheric ion thermal energy (~ 10 keV), the use of (61), in which ed$ ~ 1 keV,
is not a significant source of error. The boundary conditions of (w0) for
downgoing and upgoing ions must be carefully distinguished. For a downgoing
ion, the plasmasheet ion temperature determines the boundary value elo, but
for an upgoing ion of magnetospheric origin, the boundary temperature at
s=f is elz determined in its previous downward trajectory. Theoretically, a
mirroring ion can keep on heating up to higher and higher temperatures by
virtue of its bounce motion; however, we note that the eslectrostatic potential
is supported on the bounce time scale [Chiu and Cornwall, 1980] so there 1s no
reason to assume magnetospheric lons to be trapped for more than a couple of
bounces. The diffusion coefficient D in (60) is in general an unknown £func-
tion of s or B. We adopt a simple model such that D is a nonzero constant
throughout the field line. The constant value of D is varied to determine the
effect of cyclotron turbulence on the potential ¢. Constant turbulence along
the whole field line is not necessarily realistilc, but it will serve for this
initial inquiry. Note that the le term in (60) 1is always positive in the
direction of particle motion and Bl « l/Tl so the nature of the solution, by
virtue of the negative sign preceding the GLZ term, is that 61 decreases from

a starting Dboundary value elO or elz in the direction of motion;

thus, Tl increases from the boundary value. However, the decrease in el can-
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not be unbounded, for if D is too large, 61 can go through a zero at some B,
Such a solution is unphysical and serves as an upper bound on D, although this
upper bound is not yet Dyax because the effects of heat diffusion upon ¢ needs
to be determined by solving the quasineutrality portion of the problem. For
reasonable values of the diffusion constant (D < 1013 cmzlsec3), Ol usually
does not go through zero; hence Dyax may be determined by whether a quasineu-

tra%l solution of particle and field equilibrium can be supported.

To motivate the detailed calculations of ilon heating effects on the
auroral acceleration potential, let us 4illustrate the basic dependence of
magnetospheric ilon density distribution as function of potential drop and
temperature anisotropy. Figure 2 shows the densities Ny of down-going and
up—going magnetospheric ions at the midpoint of the L=8.4 field line. The
equi-density contours are shown as functions of the parallel potential drop
and the perpendicular temperature; since the parallel temperature 1s held
fixed at 3 keV, the variation of perpendicular temperature is equivalent to
variation of anisotropy. We note that, for fixed potential drop, the higher
the anisotropy (T¢/TI) the lower the density of magnetospheric ilons at the
midpoint of the field line because the ion mirror shrinks towards the equator,
as qualitatively expressed in (60). Similarly, as we would expect, magneto~
spheric ilons are repelled towards the equator by higher auroral parallel
potential drops which accelerate electrons downwards. Now quasi-neutrality
requires a certain number of ions to be present to balance against the density
of clectrons; thus, for a given electron density distribution, heating of ilons
would require the potentil drop to decrease accordingly in order to maintain
the lon density along one of the equi-density contours of Figure 2. This is
the hasic effect investigated in detail below, although the resulis of Figure

2 is not directly applicable because the effects of a potential decrease upon
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the distribution of electrons must be taken into account alsv. To illustrate
this point further, we have ilnvestigated the dependence of the potential drop
upon the lon anisotropy by obtaining solutions of a Chiu-Schuls kinetic model
for Le8.4 with the following fixed parameters: T, = 7 keVy T, e
3, nop = 70 em™ and Ny = 5 em™,  Figure 3 shows the

= 3 keV, T
3 keV, ny- = 0.0 em-
result of a search of the acceptable potential drop in the above kinetic model
as the magnetospheric ion anisotropy i1s varied by varying the constant
temperature TL while all other parameters are held fixed. We note that the
potential drop maintainable by the clectron temperature anisotropy does
decrease as the ilon anisotropy approaches the electron value. The stippled
area shows the uncertainty in our solution search due to our not using a

special high-accuracy computational routine, which is expensive to run.

The illustratious above are based on arbitrary variations of the constant
ion perpendicular temperature; therefore, they cannot be directly related to
the effeets of lon cyclotron heating. To do so, we need to solve (60) to
obtain the perpendlcular ion temperature in the form of (M/2BL) as functions
of the heat diffusion coefficient D and magnetic field ratio B/Bjy. The solu-
tions of (60) for D = 104 cn?/secd for downgoing (arrows pointing away from
the equator, B/By = 1) and upgoing (arrows pointing towards the equator) ions
are shown in Figure 4. The solutions are obtained for an initial magneto-
spheric  dlon distribution with TL = 3 keV and T, = 1.5 keV, whieh
vields (M/EBL) given by the dashed curve (with D=0) in Figure 4. The initial
state for the upgoing lons is assumed to be the heated state at B£/B0. Since
the heating effect is prominent primarily in the upgoing magnetospheric ilons,
only about one half of the ion density divtributilion i1s severely affected by

the potential-drop-reducing effects discussed in Figures 2 and 3. Thug, we

would expect the potential drop to vary fairly slowly with increasing D until
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the solution of (oU) is sufficlently close to 91 s 0, near which no quasi-

neutral solution can be obtained.

An 1illustration c¢f the complete scenario described in this paper is
obtained by combining the solution of (60), such as shown on Figure 4, with a
simultancous scarch for the consistent auroral potential drop as we vary the
ion diffusion coefficient D. The initial conditions for the computation are
the same as that of VFigure 3 except that the iu tial potential drop is set at
2.20 keV (to increase the sensitivity of the quasi-neutrality solution to
parameter changes). The dependence of the auroral potential drop on the lon
diffusion coefficient D in the range (1012 - 3 x 1014) cm?‘/sec3 is shown on
Figure 5. As we have expected, the potential drop decreases slowly with in-
creasing D until D ~ 1014 cmzlsec3, at which point the upgoing ilon heating
effects (Figure 4) become prominent. Above D = 3 x 1014 cmzlsec3, the solu-
tion to (60) breaks down; while above ~ 2.5 x 1014 cmzlsec3 the quasineutral
solution is no longer smoothly varying., so we leave it indeterminate. Thus,
we estimate Dysy to be ~ 3 x 1014 cmz/secz. Again, as in Figure 3, we have

not used the high-accuracy mode of the Chiu-Schulz model in order to save

computation time; this results in some uncertainty indicated by the stippling.

By investigating the properties of the Chiu-Schulz kinetic model of the
auroral potential drop, we have demonstrated that fon heating leads to a
decrease of the auroral potential drop, with concomitant effects as discussed

elsawhere.
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Ve  SUMMARY AND CONCLUSIONS

We have glven a semi~quantitative picture of self~-consistent ion
eyclotron turbulence on auroral £ield 2ines, with the following major

conclusions:

1. Unless plasmashect ions are very much more energetic than the elec~
trons, anomalous resistivity is not a large contributor to parallel electro-
static potential drops; supporting the kind of potential drop actually
observed requires too much dissipation of energy to be provided by iiput from

the plasmasheet.

2, Nonetheless, wave turbulence can be present; the ion cyclotron
turbulence levels suggested by the lon-resonance-broadening saturation mecha-
nism of Dum and Dupree are comparable to those observed on auroral field

lines.

3. The diffusion coefficlent D and net growth rate ¥ are very much
smaller than estimates based solely on local plasma properties; instead they
are scaled with global parameters: D ~ V3/£, Y ~ V/% where V is a typical ion
velocity and & the length of the portion of the fleld line on which there is
turbulence. Crude estimates of these effects are supported by calculations
based on the Chiu-Schulz quasi-neutrality model, with TL augmented because of
diffusive heating of ifons in VL'

4, The underlying reason for this limit on D and Y is that heating in

’I;“L must be supported by ion kinetic energy, so the effect is one of transfer
of parallel energy to perpendicular energy (with losses to electron heating
and wave generation). This necessarily inhibits formation of a potential drop
as the ions gain anisotropy and mirror higher along the line; eventually the

potential is too small to maintain sufficient electron current to drive the
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instability. Thus turbulence deercases the auroval potential drop, which is

opposite to the effect of anomalous resistivity.

5. Depending on initial and boundary conditions, an unstable auroral
system may evolve in less than a few seconds to marginally stable equilibrium,
with turbulence levels, D, and Yy as estimated above. Or it may underpgo relax-
ation oscillations as lon heating dnereases the eritical drift veloeity Vi at
the same time it reduces the actual drift veloclty V) (by lowering the poten-
tial drop). There are generally two chavacteristic times for these relaxation
oscillations, the larger of which 4s the fon inertial time &/V which is the
time it takes to restore an unstable situation from one in which V) = Vi has
turned negative. This time is of order J3-10 seconds, which is observed to be
the dominant period of aurcral pulsations. In another work we will consider
the pulsation problem in more detaill, contrasting our mechanism with ecarlier

proposals [Coroniti and Kennel, 1970; sileviteh, 1980].
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Appendix

In this appendix we give an alternative development of an approximate
solution to (lU) which ytelds cssentially the same results as in Section IL.

Since this development is based upon different arguments, we offer it here for
alternative insight.

Substitution of the chosen form (24) into (lU) yields

oy 2eBy
{- Vi w8y Yyt Abe } vV, ¢

(AL)
0, v v .
my oA 8B BB e Yy 3
Vst S tae 0 - ettt e

where v(s) B = n{s) + (Ze/H) 5, ¢{8) and b, is tacitly assumed constant.

Now
we take the nt" moment of (Al) in V

s ntl w3
1+ Stmee [ av v, PTE and [ oav, v "
cannot maintain a unique ratio to each other for all n, we conclude that (24)
satisfies (l0) only if

2el

(v, 3L~ Lo, v ka0 } £ (A2)
(- vu-g-:-i+%l§§<ou-ol)-anel"'}fmu (A3)
Elimination of the D-associated terms in (A2) and (A3) yields
{-%+%§§<°.-01>*9L%§} v, £=0 (A4)
{vu-g-g-+ 4o} £ =0 (AS)



In (A4), the spatial and velocity operators on £ have been separated into
product form; therefore, the curly bracket must itself be zero. The solution
to (A4) is just (31). Equation (A5) is the cquivalent of (29). Its solution
is non-trivial because the operator mixes space and velocity space funce-
tions., The solution ansatz to (29) is therefore equivalent to replacing the
velocity space variable V“ by the spatial variable ﬁ“, in which case the curly

bracket in (AS5) is itself zero.
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Figure Captions

Figure 1l: The coordinate system and dipole geometry assumed in this paper.

Figure 2: Constant density contours of upgoing and downgoing magnetospheric

iong at the midpoint of the L=8.4 field line.

Figure 3: Auroral potential drop as function of lon temperature anisotropy in

the Chiu-Schulz kinetic model.
Figure 4: Perpendicular ifon temperatures M/ZB_L on the L=8.4 field line as

indicated by the ratio of the local magnetic f£ield B to the equa-

torial magnetic field Bj.

Figure 5. Auroral potential drop as function of ion diffusion coefficient.
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