NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Wind Speed Statistics for
 Goldstone, California, Anemometer Sites

M. Berg
R. Levy
H. McGinness
D. Strain

April 15, 1981

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Wind Speed Statistics for Goldstone, California, Anemometer Sites

M. Berg
R. Levy
H. McGinness
D. Strain

April 15, 1981

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research tesescribed in this publication was carried out by the Jet Propulsion Laboratory, Culifornia Institute of Technology, under contract with the National Aeronautics and Space Administration.

ABSTRACT

The results of an exploratory wind survey at the JPL Goldstone, California, antenna complex are summarized statistically for possible application to future windmill designs, Data were collected at six locations from a total of ten anemometers. Statistics include means, standard deviations, cubes, pattern factors, correlation coefficients, and exponents for power law profile of wind speed. Curves presented inclus mean monthly wind speeds, moving averages, and diumal variation patterns. Results indicate that three of the locations have suffictently strong winds to justify consideration as candidate windmill sites.

CONTIENTS

I. INTRODUCTION 1
it. plots of monthly wind speed variations 5
iIt. COMPARATIVE SITE STATISTICS 37
IV. INDIVIDUAL SITE STATISTIGS 47
V. diurnal vartations 59
VI. COMPARJSON WTTH EARLTER RESEIMS 65
VIT. Summary 67
Ftgures
1-1 Geographte hogation of the Goldstone Anemometer Sites - - - 3
2-1 Monthly Wind Speeds for Oetober 1974; Sites 1, 2, 4, and 5 6
2-2 Nonthly Wind Speeds for October 1974: Sites 1, 6, 7, 8 , and 10 7
2-3 Nonchly Wind Speeds for November 1974: Sites 1, 2, 3, and 4 8
2-4 Monthiy Wind Speeds for November 1974: Sites 1, 7, 8, and 10 9
2-5 Nonthly Wind Speeds for December 1974: Sites 1, 2, 3, and 4 10
2-6 Nonthly Wind Speeds for December 1974; Sites 1, 6, 7, and 8 11
2-7 Nonthly Wind Speeds for January 1975: Sites 1, 2, 3, and 6 12
2-8 Nonthly Wind Speeds for February 1975: Sites 1, 2, 3, and 4 13
2-9 Monthly Wind Speeds for February 1975: Sites 1, 6, 7, and 10 14
2-10 Nonthly Wind Speeds for Narch 1975: Sites 1, 2, and 3--1. 15
2-11 Montinly Wind Speeds for March 1975: Sites 1, 4, 6,and 1016
2-12 Monthly Wind Speeds for April 1975: Sites 1, 2, 3, and 4 17
2-13 Monthly Wind Speeds for April 1975: Sites 1, 6, 8, 9 , and 10 18
2-14 Monthly Wind Speeds for May 1975: SItes 1, 2, 4, and 6 19
2-1.5 Month1y Wind Speeds for May 1975: Sites 1, 7, 8, 9 , and 10 20
2-16 Monthly Wind Speeds for June 1975: Sites 1, 2, 3, 8 , and 9 21
2-17 Monthly Wind Speeds for July 1975: Sites 1, 2, 3, and 4 22
2-18 Monthly Wind Speeds for July 1975: Sites 1, 6, 8, 9 , and 10 23
2-19 Monthly Wind Speeds for August 1975: Sites 1, 6, and 9 24
2-20 Month1y Wind Speeds for September 1975: Sites 1, 2,6 , and 10 25
2-21 Monthly Wind Speeds for October 1975: Sites 1, 2, 6 , and 10 26
2-22 Monthly Wind Speeds for November 1975: Sites 1, 2, 6 , and 10 27
2-23 Month1y Wind Speeds for December 1975: Sites 1, 2, 6 , and 10 28
2-24 Monthly Wind Speeds for January 1976: Sites 1, 2, 6 , and 10 29
2-25 Monthly Wind Speeds for February 1976: Sites 1, 2, 6 , and 10 30
2-26 Monthly Wind Speeds for March 1976: Sites 1, 2, 6, and 10 31
2-27 Monthiy Wind Speeds for April 1976: Sites 1, 2, 6, and 10 32
2-28 Monthly Wind Speeds for May 1976: Sites 1, 6, and 10 33
2-29 Monthly Wind Speeds for June 1976: Sites 6 and 10 34
2-30 Monthly Wind Speeds for July 1976: Sites 6 and 10 35
2-31 Nonthly Wind Speeds for August 1976: Sites 6 and 10 36
4-1 1975 Mean Nonthly Wind Speed for Sites 1 and 2 49
4-2 1975 Nean Monthly Wind Speed and 3-Month Moving dverage for Site 1 49
5-1 1975 Diurnal Wind Speed Variation for Site 1 60
5-2 1975 Diurnal Wind Speed Varlation for Site 2 61
5-3 1975 Diumnl Wind Speed Vartation for Stee 6 62
5-4 1975 Diurnal Wind Speed Variation for stee 10 63
Tables
1-1 Anemometer Locations 4
3-1 Number of Data Points for Matehins Hours, N ' 40
3-2 Ratio of Means (Site $j /$ Site 1) 41
3-3 Ratio of Cubed Speeds (Site J/Site 1) 42
3-4 Nean Square Speed at Site 1 for Natehing Hours at Sites 2 through 10 43
3-5 Nean Cross-Product for Matching liours at Site 1 44
3-6 Slope of Best Fit lifne Through Origin 45
3-7 Correlation Coefficient 46
4-1 Total Number of Observations at Each Site 50
4-2 Mean Wind Speed--All Observations 51
4-3 Cube Root of Expected Cubed Speed--All Ohservations 52
4-4 Standard Deviation-All Observations 53
4-5 Pattern Factor--All Observations 54
4-6 Nean and Cube Root of Expected Cube (CRFO) Compartisons 55
4-7 Wind Speed Variation With Height 56
4-8 Computed Values of the Power Law Exponent, if 57
6-1 Comparisons of Wind Speed Statistics 66

SECTION I

INT:OODUCTION

This report represents the results of an exploratory wind survey at the JPL Goldstone, Callfornia, antenna complex to determine statistics of wind speed characteristics for possible application to future windmill designs, Goldstone wind speeds were examined previousily for windmill applications in Wind Power Prediction Mode1s, ${ }^{1}$ In that report, Goldstone wind records were taken primarily from sets of data recorded from 1966 to 1968 at the Mars antenna location. Five additional locations were identified for consideration as possible windmill sites, and a few days of wind speed data for these locations were also analyzed (October 1974 through March 1975). This report covers data that were obtained from continuing measurements made in the period from October 1974 through August 1976 at anemometer towers at the same six Locations, shown in Figure 1-1,

The six bower locations are listed below:
(1) The Mars tower (Sites 1 and 2) is near the center of a relatively flat area of several hundred meters (mindmum dimension). The data for the $100-\mathrm{foot}$ anemometer here were chosen as a reference for comparison of wind speeds at other sites because of the substantial amount of winci dala avallable from earlier measurements at this anemometer height. Although this area is readily accessible and could alcommodate a large number of windmills, the anticipated moderate wind speeds and the proximity to the Mars antenna are major disadvantages for using this location as a cadidate windmill atte.
(2) The Billboard Hill tower (Sites 3 and 4) was recommended by personnel who, as the result of several years of observation, believe this to be the windiest place in the complex.
(3) The tower (Sites 5 and 6) is near the center of a broad, flat area which would be suitable logistically for the placement of a large number of windmilys.
(4) The Airport tower (Site 7) is located in an area similar to the WV tower, with equivalent logistical advantages.
(5) The Nestern Ridge tower (Sites 8 and 9) is on a crest thought to be perpendicular to the direction of the stronger locul winds and was selected in anticipation of high wind speeds enhanced by a ridge effect.

[^0](6) The Echo tower (Site 10) is near the Echo antenna and was selected for the expected combination of rassonably high wind speods and logistic faasiblity for windmill construction.

Except for the Mars site, the towers were at locations where windmills would not interfere with radar beams from existing antennas.

The basic component of the Goldstone wind measuring system, designed and installed by Neteorological Research, Inc. (MRI), includes an MRI Model 1091-3 Chart Recorder and an MRI Model 1022 Wind Set. One or two Wind Sets, which consist of a 3 -cup anemometer and a wind vane, were installed on each townr. Table l-1 lists the anemometer site numbera, the anemometer heights, as well as the tower locat ions and numbers.

For each anemometer, the instantaneous wind speeds recorded on the strip charts were reduced by hand to average hourly wind speed by estimating the mean of a 10 -minute interval centered on each hour. The hourly data were then coded and processed by dirital computer to compute the statistics analyzed in this report.

Figure 1-1. Geographic Location of the Goldstone Anemometer Sites

Table 1-1. Anemometer Locations

Anemometar			Tower	
Number	Halght, fect	Elevation Above Mean Sea Leval, feet	Lucation	Number
$1^{\text {a }}$	150	3280	Mars	1
2	306			
3	33	4108	Blliboard Hill	2
4	100			
5	33	3045	WV	3
6	100			
7	10%	3020	Alrpert	4
8	33	3430	Western Ridge	5
9	100			
10	100	3574	Echo	6

[^1]
plots of monthly wind speed variations

Fach curve in Figures $2-1$ through $2-31$ in the rasult of plotting pertod averages of mean hourly wind gpeed for a given month, lleans of a period, generally 6 -hour Intervalt, were used to "smooth" the curve so that up to flve curves could be plotted on the same graph, For the last 3 months (June through August 1976), only the anemometers at Sites 6 and 10 recorded data; means of 4 -hour intervais, therefore, provided sutixeiently distinct curves, If, during a given interval, there were one or more hours with no observed speed, the mean speed of the remaining hours was uged instead. If no data were avallable during the entire interval, a negativa number was plotted.

The period averages were plotted opposite the first hour of the given Interval; for exnmple, for 6 -hour means, the mean speed af hours 1 through 6 was ploted opposite hour 1 , and the mean of hours 7 through 12 plotted opposite hour 7. The labels on each curve indicate the site number and mark the beginning interval of each day. Since some records included a considerable amount of missing data, only those sites with more than 500 observations (approximately two-thirds of all possible observations In a month) were selected to be plotted. The only exception to this criterion for plotting is Site 1 , which is included in each figure as the reforence anemoneter.

Statisties for each stte are included at the top of each figure. All of the avallable hourly data points (N) at each site were used to calculate mean monthly wind speed, the standard deviation (SIGMA), and the cube root of the expected cubed speed (CREC) glven by:

$$
\begin{equation*}
\operatorname{CREC}=\left(\frac{1}{N} \sum_{1=1}^{N} x_{1}^{3}\right)^{1 / 3} \tag{1}
\end{equation*}
$$

where X_{1} is the mean hourly speed at the site.
The eurves in these figures indicate similar relationships of wind speed versus time between all sites, particularly thoge at the same location. Those sites located on hilltops of ridges have higher monthly means than those at lower elevations, and each site has a large standard deviation relative to the mean.

When comparing curves before January 28, 1976 with those after that date, it is necessary to consider the changes in the upper limit of speeds recorded. Prior to this date, the full range of the strip charts was 50 mph and all offscale speeds were coded as missing data. After that date, the seale was revised to include speeds up to 100 mph . Consequently, peak speeds of the windier months before February 1976 may underestmate true means, particularly at the windier sites,

Figure 2-29. Monthly Kind Speeds for June 1976: Sites 6 and 10

SECIION III

COMPARATIVE SITE STAITISTICS

To relate wind sposds at the various sites, comparative statistics were ralculated using wite 1 as a reference site. Table $3-1$ summarizes the number of hours, N ', during which wind speed was recorded at Site 1 and at each of the remaining sites. The total number of observations for each month at Slte lis given in the right-hand column ("S'te 1 TOTAL"), and summaries for the entire period of record are given in the bottom row ("CUNULATIVE"). These values of N^{\prime} are used in calculating statistics for Tables 3-2 through 3-7. Where less than 100 matching observations were recorded for a given month, N^{\prime} and all corresponding comparative statistics are indicated by asterisks, All available matching observations, however, are included in caiculations of cumulative statisties.

Table 3-2 gives the ratios of the monthly mean at Sites 2 through 10 to the mean at site 1 for matching sets of data. The ratio, R_{j}, was calculated as:

$$
\begin{equation*}
R_{j}=\sum_{i=1}^{N^{\top}} Y_{j 1} / \sum_{i=1}^{N^{\prime}} x_{i} \tag{2}
\end{equation*}
$$

where J is the site number, Y_{ji} is the mean hourly speed at Site $\mathrm{j}, \mathrm{X}_{\mathrm{i}}$ is the speed at Site 1 for that same hour, and N ts the number of hours with data at both sites (from Table 3-1). Ratios of all available matehing data are given in the bottom row. The right-hand column provides monthly mean speeds at Site 1 using all avallable data at that site. Where the number of paired speeds in a given month is the same as all observations at site 1 , the mean at site f can be found by mu1tiplying the mean speed at Site 1 by the appropriate ratio.

Anemometers at approximately the same elevation as Site 1 (Sites 6 and 7) have cumulative ratios of approximately 1.0 . Those anemometers at higher elevations (Sites 3, 4, 8, 9, and 10) have slightly higher cumulative ratios, ranging from 1.34 to 1.43 . Site 5 has relatively low wind speeds during October and the first half of November 1974, but it would be inappropriate to characterize wind speed at Site 5 based on less than 2 months of data.

Site 2, 156 feet above Site 1 , occasionally has a monthly ratio less than Site l, with a particularly small ratio in July. Inspection of the plot of 6 -hour means (Figure 2-17) raises the possibility of errors In data collection. Means at Site 1 for the first 10 days of July are rotghly 10 mph greater than those at the remaining sites, during datly maxima as well as minima. After July 10 , the date when the strip charts were changed, the means of Site 1 more clearly resemble those of Site 2. Additionally, displacement of Site 1 means occurs from the beginning of this particular strip chart, June 26 (Figure 2-16). Removal of the questionable data increases the June ratio from 0.98 to
1.04 and July's ratilo to 0.99 . The possibility of error in the data for these 2 months must be considered when analying the statistics in the following tables.

Table 3-3 sumarizes the ratios of cubed speeds, R_{c}, at Sites 2 through 10 to the cubed speed at Site 1 , where R_{c} for Site J is given by:

$$
\begin{equation*}
R_{c j}=\sum_{i=1}^{N^{\prime}} Y_{j 1}^{3} / \sum_{i=1}^{N^{\prime}} x_{i}^{3} \tag{3}
\end{equation*}
$$

The last column contalns the sube root of the mean cubed speed, CREC, at Site 1 using all avallable data. Where the number of patred observations is equal to all avallable data at Site 1 , the mean cubed speed at Sites 2 through 10 can be calculated by cubing CREC and multiplying it by the appropriate ratio.

As in Table 3-2, the cumulative cubed speeds at sites 6 and 7 are approximately the same as at Site 1 , although there can be considerable vartability in the monthly ratios. Gubed speds at site 2 are consistenty higher than those at Site 1 . The remaining sites have eubed speeds about 2.5 times greater than those at Site 1 ; monthly ratios of these stres exhibit great fluctuntions, as exempliffed by the range of ratios at site $10,1.79$ to 5.43.

Tables 3-4 and 3-5, showing the mean square speed at Site 1 and the mean cross-product of speeds at Site 1 and Sites 2 through 10 , provide the terms for the denominator and numerator of the slope, B, of the best fit 1 ine passing through the arigin. The slope, B, for site f is computed as:

$$
\begin{equation*}
B_{j}=\sum_{i=1}^{N^{\prime}} x_{i} x_{j i} / \sum_{i=1}^{N^{\prime}} x_{i}^{2} \tag{4}
\end{equation*}
$$

The mean square crossmpeduct is obtained by dividing the numerator of Eq. (4) by N^{\prime}, fithe mean square speed is similarly obtained from the denominator. Slopes of the best fit line, shown in Table 3-6, are approximately 1.0 at lower anemometer heights and 1.25 at higher heighte. The slopos are similar to, although almost always smaller than, the corresponding ratios of means.

Table 3-7 gives the correlation coefficiont, r, which is calculated for slte j as follows:

$$
\begin{equation*}
r_{j}=N_{j} / D_{j} \tag{5}
\end{equation*}
$$

where

$$
N_{j}=\left(\frac{1}{N}, \sum_{i=1}^{N^{\prime}} x_{i} Y_{j i}\right)-\left(\frac{1}{N^{\prime}} \sum_{i=1}^{N^{\prime}} x_{i}\right)\left(\frac{1}{N^{\prime}}, \sum_{i=1}^{N^{\prime}} Y_{j i}\right)
$$

and

$$
D_{j}=\left[\frac{1}{N^{\prime}} \sum_{i=1}^{N^{\prime}} x_{i}^{2}-\left(\frac{1}{N^{\prime}}, \sum_{i=1}^{N^{\prime}} x_{i}\right)^{2}\right]^{1 / 2}\left[\frac{1}{N^{\prime}} \sum_{i=1}^{N^{\prime}} Y_{j i}^{2}-\left(\frac{1}{N^{\prime}} \sum_{i=1}^{N^{\prime}} Y_{j i}\right)^{2}\right]^{1 / 2}
$$

The weak correlations of all sites in July increase after removing the questionable 2-week period in July from all data sets; the correlation coefficient for Site 2, for example, increases from 0.45 to 0.91 . The strongest correlation with Site 1 is at Site 2 (156 feet above Site 1 on the same tower). Correlations with the remaining sites decrease with increasing distance from Site 1 . At locations with two anemometers, correlation with Site 1 is strongest for the lower anemometer.
Table 3－1．Number of Data Points for Matching Hours，N＇

S11t	2	3	4	5	6	7	8	9	10	$\begin{aligned} & \text { SITE } 1 \\ & \text { TOTAL } \end{aligned}$
1974										
UC1	667	412	543	565	640	655	624	359	667	675
NOV	618	611	499	295	470	559	599	朿禹もあ	541	619
DEC	735	717	732		634	637	669	418		137
1975										
JAN	674	486	373	戠戠事事	503	347	165	202	200	689
FEH	623	605	474	戠事事事	595	619	\＃\＃\＃\＃\＃	283	518	623
HAR	657	572	644	戠車事事	627	102	143	135	368	0.59
APH	703	703	700	戠事事事	702	340	101	696	698	703
HAY	695	354	622	事事事韦	695	695	613	656	60%	696
JUA	116	580	422	戠事事事	429	聿事事事	582	706	285	116
JUL	744	654	711	戠事も丰	739	韦事事事	744	629	743	744
AUG	344	330	193	車車事事事	480	事事事事	105	505	428	583
SEP	695	事も事事	事束事事事	車車事象事	685	車事事事	事事事事戠		680	697
OCT	560		車事事事象		556	事事事事事			552	557
NOV	457			中禹中禹	460			草事戠戠	416	461
DEC	650	中韦中戠	事事事事	中事事事	651	車戠事事	＊	事事事事	636	652
1916										
IAN	741	＊＊あ事事	事事事事	事事事革	740	事事韦事	韦事事事	戠事聿も	734	14？
FEG	694	もあもあも			694	事事事事			692	695
MAK	644	事事車事戠		戠事事戠	714	束本事戠事	戠事事事戠	戠事事事事	737	743
APK	716	事韦事事	事事事事事	事事事事	716	＊も戠も		戠事事事	716	719
MAY			䒠事事事		137		＊もも戠も		137	137
Cumill ative										
	12391	6024	5915	6to	12667	4000	4940	4624	10416	12847

Table 3－2．Ratio of Means（Site j／Site 1）

SITE	2	5	4	3	6	7	E	9	10	$\begin{aligned} & \text { SITE } 1 \\ & \text { WEAA } \end{aligned}$
1914										
DCT	． 94	1.23	1.21	． 69	.75	.81	． 91	1.11	1.30	11.26
NUV	1.09	1.35	1.50	． 56	.70	.78	1.20		1.35	0.21
DEC	1.25	1.50	1.64		－ 80	.85	1.26	1.57		9.00
1915										
JAP4	1.12	1.61	1．A0	＊＊＊＊	1.02	1.08	1.57	1.51	1.71	7.88
FEs	1.16	1.611	1.58	＊＊＊＊＊	1.00	1.10	＊ F\％$^{\text {\％}}$	1.67	1.45	9.55
mak	1.14	1.51	1.60	＊＊＊＊＊	1.07	.97	1.36	1．6．7	5.52	12.95
APh	1.02	1.39	1.45	＊＊＊＊	1.01	.99	1.30	1.33	1.47	13.11
siar	1.13	1.36	1.51		1.019	1.02	1.32	1.44	1.62	10．50
Jun	． 9 H	1.14	1.32	＊$*$ \＃＊＊	． 95	F\＃\＃\＃${ }^{\text {\％}}$	1.24	1.33	1.36	13.41
JILL	． 89	1.12	1.019	＊＊＊＊＊	－ 82	－＊＊＊	1.04	1.05	1.10	14.31
AUS	1.05	1．3n	1.43		． 89		1.25	1.40	1.57	11.49
SEP	1.36	＊＊＊＊	＊＊＊＊＊	＊＊＊F＊	1.16			＊＊＊＊	1.56	5.31
OCT	1.14		＊＊＊＊＊	＊＊＊	.91	＊＊＊${ }^{\text {\％}}$		＊＊＊＊	1.56	10.50
HOV	1.15	\＃\＃\＃＊	＊＊＊＊＊		． 98			＊＊＊＊	1.52	10.76
DEC	1.17	＊＊＊＊	＊＊＊＊＊	＊＊＊＊＊	． 95	＊F＊＊	＊＊＊＊＊＊		1.46	8.78
1916										
JAP	1.12	＊＊＊＊	\＃\＃\＃\＃＊	＊＊＊＊＊	.77				1.42	7.70
FEH	1.06	＊＊＊${ }^{\text {F }}$	＊＊＊＊\＃		.89		＊+ ＊＊＊		1.38	12.04
MAH	1.03		＊＊＊＊＊	＊＊＊＊＊	1.01	＊＊＊＊＊			1.66	81.15
$A P R$	． 93		\＃＊＊\＃\＃	\＃\＃\＃\＃\＃				－${ }^{\text {本車戠 }}$	1.49	11.03
MAY	＊＊＊＊＊	＊＊＊＊＊	＊＊＊＊＊	＊＊＊F\％	.97		＊＊＊＊＊	－＊＊＊＊	1.33	82.73
chemilative										
	1.00	1.56	1.45	． 65	． 94	． 90	1.19	1.34	1.43	10．56

SITE	2	3	4	5	6	7	0	9	10	$\begin{aligned} & \text { extE } \\ & \text { MEAN } \end{aligned}$
1974										
DCT	.98	2.10	1．85	． 53	.77	． 83	1.22	1.94	2.41	14．07
HOV	1.21	2.10	2.63	－39	.61	． 69	8.63		2.03	10.90
DEC	1.52	2.61	2.49		.92	.87	1．5A	2.66		13.94
1985										
J4．	1.47	3.53	4.00	禹事事年	1.41	1.46	3.04	2．86	5.63	12．56
PEH	1.45	3.42	3.09	実事事事	8.37	1.60		3.99	3.28	14．31
MAF	1．25	2.78	3.11		1.16	.93	2.02	3.07	2.67	18．89
APH	10.06	2.45	2.70		8.14	1.03	2.36	2.48	2.91	16.92
may	1.24	2． 15	2.95	舟車戠事事	1.19	1.04	2．24	2.92	3.26	15.23
Jur	1.00	1.85	2.35		.91		2.25	2.54	2.61	16．58
JUL．	．54	1.54	1.51		－62		1.35	1．38	1.79	16.57
AUT	1.09	2.53	2.86	䒠戠事事	.75		2.21	2.55	3.11	14．40
SEr	1.55			事車車事	1.24				3.44	8.89
DCT	1.20			言事中車	－99	＊＊＊事事	\＃\＃\＃\＃\％		3.12	15．80
HCIV	1.22		－${ }^{\text {F\％}}$	＊車車事草	1.09	束事禹事			2.56	16.60
DEC	1．2e	－年車事半	审事事婁		1.18	事事車戠			2.64	13.71
1916										
J4t	1．26				． 71	＊ \％$_{\text {\％}}$			3.01	12．04
FEG	1.94				.93 .03				2.11	10.15
MAK	－99	＊ \％$_{\text {\％}}$	禹事事戠		1．22	禹事事事			2.85	16.59
APN	－87				1．96	事事事事事	車事聿事事戠戠		3.28 3.07	15.75 14.40
CUHLIL ATIV										
	1.11	2.39	2.56	－61	1．01	1.07	1.92	2.45	2.73	15.13

Table 3－4．Mean Square Speed at Site 1 for Matching Hours at Sites 2 through 10

SITE	2	3	4	5	6	7	8	9	10	OITE 1
1974										
OCT	161.99	134．01	154.14	157.07	155．04	163.72	166．0．d	207.79	154．42	160.22
NOV	91．14	91．96	103.97	H5．30	108.66	97.76	9i．59	杽事事事	91.24	91.10
DES	135.2 A	129.15	155.62	－事事事事束	145.17	153.46	139.07	100.32	車事事戠	135.20
1915										
Jar	106． 10	107.32	126．48		114，05	142.17	169．03	202．13	106.26	105.23
FEF	146.44	129.37	126．25		147.24	142.80	事平平事事	165.76	119.14	146.44
Hak	246.41	241.67	272．36		246.95	11A．nA	309．0s	259.76	281.15	249.95
A以孚	2.29 .12	229．12	224.93		229.30	229.47	226．16	223．10	227.92	229.12
Hay	164.44	164．64	153.80	事事聿戠平	167.33	167.67	161.46	141．04	159．95	167．65
JyN	229.20	220．45	234.76		2，34．62	事事戠事事爯	229．03	219.05	253.19	229．20
JUL	242．30	237.90	2a7．01		241.55		242.30	249．85	242054	242.30
AUG	182.12	149.12	145.72		178．58	戠事戠車車戠	74.86	174．79	148．62	171.02
SEP	40.60		事事事戠事		47.35	本平戠事事事	事事新事事	事数戠新	16.39	18.80
UCT	181.63		本禹事縺事	本事事事戠	181.63		事事事事要豆		176．90	181.32
foy	184．14		－ F $^{\text {F }}$		195.03	咅事事事丰丰	車戠事事事事		197.74	194.63
DEC	223．10			\％本戠事事禹	125．36	本車車事事事			107.01	120.14
1916										
JAn						F事事新戠	戠戠事事事事		93.62	90．99
Fth	230.52		車本事事事事	車車聿戠部事	230.48				230.86	230.43
HAK	209.75	\＃事真事事			186.00				196.97	195.42
	$1+9.20$				185.25		害事事事事	事事事部委	189.49	189.91
f1ar	車事事戠末丰	年事产戠戠		审車事車事平	184.91	¢車本車禹戠	炜事事事事事		184.91	884091
Cumul ative										
	164，32	170.11	176.15	133.01	169.67	153.50	182.55	201.60	166.07	168．90

Table 3－5．Hean Cross－Product for Matching Hours at Site 1

SITE	2	3	4	5	6	7	B	9	10
1914									
OCT	156．39	162．39	176．47	214．02	121.41	156.55	154．46	227.95	192.63
NOV	95，82	181．86	137.11	51．83	78．90	75．61	101.05		114.55
UEC	156．36	171.05	1月0．33		130.50	133.38	153．84	231．33	
1915									
JAn	116.02	152．10	192．18	車事平豈平雨	111.02	141．86	251.78	274．11	162.76
FEb	163.50	136.45	177.55	本車事事事事	851.95	158．33		251.33	154．29
HAR	261．34	327，40	313．17	事事事事事戠	245.34	107．62	337.44	320．90	367.11
	230.45	302．48	307.06	事事事車禹	228.18	216.52	284.25	287.51	309．31
MAY	175．04	206．6n	213.61	朿事平事新本	170．34	160.31	198．59	188．21	222．91
JUN	222．83	249．92	247.63		211 e31		277．01	274．67	296．99
JUL	170．20	243．8h	245．71		179．84	事事事事事	230.35	236．56	257.09
AUR	1月6．56	195．63	198．59		147．62	戠事事事戠	98.27	228． 1	204．73
SEP	51.75		本事事数事	¢事事事戠戠	42.89	－事事事事支		－$⿻$ ¢ ${ }^{\text {ctict }}$	49.89
OCT	190.32		車事事丰事	事事事严事	161.02		事橡数	（1）	244．90
NOV	197．79		ㅎㅜㅜㅜㅜㅜㅜㅜㅎ	事事事事本事	184．3n		炜事事事安末		251．89
DEC	134.62		車戠車草事事		117.80				$13: .54$
1916									
JAN	106．51				19．17		＊\＃\＃3ty	事事事突	118．35
FEH	257.27	－年車事姩		車禹事事禹	210.98		후훟훟		282，36
MAN	209.75	車車事戠事	年申車車車戠		185.75				262.62
APR	169.76	事事事事事		事事車事戠	169．f6			車事事戠	264．67
fay	事事事聿戠			車事戠戠戠	173.53			－	240.30
cursil．	$\begin{aligned} & V E \\ & 169.54 \end{aligned}$	213．61	226.94	92.69	154．55	141．21	203.62	248．at	212．93

Table 3－6．Slope of Best Fit Line Through Origin

SIIE	2	3	4	5	6	7	－	φ	10
1914									
OCT	.97	1.21	1.16	.72	.78	． 03	－90	1.10	1.25
HOL	1.05	1.22	1.32	.61	.73	.77	1.10	＊${ }^{\text {¢ }}$	1.26
OEC	1.16	1.32	1.33	－ ¢ $_{\text {車事事 }}$.911	.87	1.11	1.32	＊＊t
1915									
JAN	1.10	1.42	1．52	束事事事草	.97	1.00	1.36	1.36	1.53
CEb	1.12	1.44	1.41	－ 車事事戠 $^{\text {a }}$	1.05	1.06	あ事事事事	1.52	1.31
MAR	i．0．06	1．35	1.41		.99	.91	1.09	1.27	1.31
\triangle AF	1.01	1.32	1.37		1.00	.94	1.26	1.28	1.36
HAY	1.06	1.25	1.39		1.02	． 96	1.23	1.33	1.48
J $\square^{1 / 4}$.97	1.13	8.27		． 90	－ ¢ $_{\text {¢ }}$	1.28	1.28	2.17
JUL	.74	2.03	． 99	本倬禹	． 74		－95	． 95	2.06
AUG	1.02	1．31	1.36	事事数	.03	후ㅎㅜㅜㅜ	1.22	1.31	1.38
SEP	1.06	戠事事事			.91		戠事事事	事事事	1.08
IIC．T	1.05	妌車事戠事	\＃象舟事		.89		\＃\＃\＃${ }^{\text {F }}$		1.38
HOV	1.07	戠秉戠戠		－ ¢ $_{\text {車 }}$.45	（titay	－ B $^{\text {¢ }}$		1.30
DEC	1.04	戠事事気		事車事安	.94	－			8.23
1916									
Jat	1.07	本事束事事			． 80	車戠戠事		＊＊＊＊	1.26
Fty	1.03	炜事事平	＊＊${ }^{\text {F\％}}$		－92		車事事䒠	－車事事	8.22
HAF	1.06			聿戠事娄	1.00			－ －$^{\text {（t）}}$	1.33
$A{ }^{\text {A }}$	． 90		車事事事	束事事事	． 92		＊ ¢ $^{\text {t }}$		1.40
PiAY					． 94			－${ }_{\text {¢ }}^{\text {車戠 }}$	1.30
CIMIIL ATIVE									
	1.01	8.26	1.29	.70	． 91	.42	1.12	1.23	1.29

Table 3－7．Correlation Coefficient

SITE	2	3	4	5	6	7	8	φ	10
1974									
UC1	.97	． 85	． 75	． 65	． 78	.82	－nh	． 68	． 73
HIOV	.95	.70	.62	． 80	.76	.70	.65		064
DEC．	.95	.80	.75	韦朿事事事	.86	.62	$\cdot 80$	． 69	4 ${ }^{\text {ctict }}$
1975									
JAN	． 94	． 70	.79	禹ももあも	.77	.75	． 76	.77	． 73
Frt	． 95	$\bigcirc 3$.83	禹戠事戠	.85	． 88		－ 82	.76
NAR	.90	． 89	.77		.80	.77	－46	－ 4 A	． 71
$A P R$.96	． 86	． 86		.85	－81	． 02	－ 88	.73
HAY	.93	． 65	． 85	戠車事事	.85	－83	－13	.78	． 72
JUN	． 91	－ 10	． 80	＊${ }^{\text {\％}}$.78	戠事事事	.78	.76	－ 22
JIL	.45	－4a	． 30	車束平朿	． 35	あ乗事事原	． 35	－ 32	－ 32
All	． 91	－83	－63		． 66	辛事事ㅎㅜㅜ	－A2	.75	－ 01
SEP	.69	事事至事	事产事事		.58	事秉戠事	＊ F3 $^{\text {¢ }}$		－ 30
OCT	． 92				.82		－	t후훛	－ 80
NOV	． 93	車事聿事禹	＂事事禹車		.85				.77
DEC	.96	－舟雨戠			． 83		－	－ \＃3 $^{\text {a }}$	－64
1976									
JAN	.97	＊ \＃$_{\text {\％}}^{\text {\％}}$	＊韦末事	事事事事	． 85	戠事事戠	束事事数	（t）${ }^{\text {B }}$.71
FEG	－98	戠戠禹事		戠事事事	.92		本事事事事	to	.79
HAK	.97	車車事事	－ F $_{\text {束 }}$		0.67		＊	＋1984	－78
$A P R$	$.54$			－事事事事	.83	事書事辛	東事事草		.75
3 3¢			事事車事戠	車車平聿	.58	車車戠戠			.60
cuinil ative									
	． 91	． 78	.74	． 85	． 88	.79	.71	069	． 71

SECTION IV

INDIVIDUAL, SITE STATISTICS

Tables $4-1$ through $4-5$ provide the Individual site gtatisicies using all avallable data. These tables bumartze the following information: number of observations at each olte (Table 4-1), mean monchly speed (Table $4-2$), cube root of the expected cubed speed (Table $4-3$), standard deviation (Table 4-4), and pattern factor (Table 4-5), As in Tables 3-1 through 3-7, if less than 100 observations occurred in a given month, asterisks indicate that corresponding statisties were omitted. Again, all avallable observations were included in the cumatative statibties given in the bottomi row of each table.

As shown in table 4-2, mean wind speeds for the pertod of reenrd were about 10 mph For Stees $1,2,6$, and 7 , and about 15 mph at the remaining sites. With the exception of Stce 7 , the means were highest In March 1975 at Sites 2 through 10. After deleting the suspect June and July data of Site 1 , the miximum monthly mean shifted from July to April, the same month as the maximum for site 7. Stie 9 had the highest monthly mean (22.64 mph in Mareh 1975) as well an the highest cumulative mean (16.53 mph).

The eube fonts of the expectad eubed speods (CREO), as shown in Table 4-3, vary from 15 mph for the lower alevation anemometers (Sites 1 , 2. 6, and 7) to 20.5 at Sitos 3, 4, 8, 9, and 10. In addition to the highest mean speeds, Site 9 has the highest values of crec: 27.5 mph In Mareh 1975 and 21.62 mph werall.

In order to fdentily possible seasomal patterns of wind speeds, mean monthly speeds at Sttes 1 and 2 were plotted and are shown in Figure 4-1. The great variability of speeds throughout this brief pertod of record makes to diffieult to define any seasonal pattern for these sites. There are nether pronoused maxima nor readily distingutahable seasons of low speeds. Frequently, moving averages can be used to "smooth" an otherwlse erratie curve to a point where a pattern is distinguishable, In Figure $4-2$, a 3 nonth moving average (plotted at the middle month) is presented, along with mean speeds of site 1 . The smoothed curve suggests higher speeds between March and July, with a secondary maximum in November.

This very general pattirn is also suggested when comparing the monthly means and CRECs of all sites to their respective record values (Table 4-6). Of those sites with 100 or more observations in a given month, more than half have monthly means greater than the respective record mean between February and August (except May) and in October. The monthly CRECs are greater than the record CRECs during a slightly longer period from January through July, and in Oetober.

The standard deviations in Table $4-4$ are about the same magnitude as the corresponding mean. Random processes with standard deviations as large as these relative to thefr means are statistically considered as being erratic and having large variability.

Table $4-5$ whows the pattern factor, K_{e}, wheh ts calculated as

$$
\begin{equation*}
K_{e}=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{3} /\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right)^{3} \tag{6}
\end{equation*}
$$

where X_{f} is the mean hourly wind speed at any given aite. For Sites 1 , 2,6 , and 10 , the four atoe with at least 20 monthe of data, the sumer: monthes (ruly through August) have smaller values of K_{0} than during the remainder of the year; maximum values of K_{0} oceur between Detober and January. The larger pattern factors aro assoclated with lower elevations, Indienting that the cube of the mean at lower uleyations does not increase as rapidy relative to the mean of eubed speeds as does the cubed mean at higher elevations.

Comparisons of data from anemometers at different hetghts in the same location were made and cumulative statisties for these comparisons are summarized in Thble $4-7$. As expected, the lower anemometer of each tower (the flrst bite listed in each column) hat the lower speed and lower cubed speed in all cases. Sltes 5 and 6 are omitted from the above takle because of the small amount of matehing data avallahte.

The ratios of means from tifis series of eomputations can be used to evaluate s, the power han exponent of the theoretteal ratio of speods at two different heights:

$$
\begin{equation*}
\frac{x_{i}}{x_{0}}=\left(\frac{z_{0}}{z_{0}}\right)^{s} \tag{7}
\end{equation*}
$$

where $X_{\text {a }}$ is the speed at height Z_{a} and X_{0} is the speed at height 7_{0}, Usually ${ }^{\text {a }}$ this exponent is expected to rango from $1 / 7$ for $11 a t$, open country to $1 / 2,5$ for urban areas. The computed values of x, shown in Table $4-8$, are considerably maller than the expeeted $1 / 7$. Cumulative valuss range between $1 / 12$ to $1 / 18$ with monthly values ranging from $1 / 2.2$ to 1/35 (September 1975 and April 1975 for Sites 1 and 2).

The eumulative value of for the Mars site (Sites 1 and 2), 0.0841 , can be compared to the value found in JPL TM 33-802, 0.1405. Although the latter value is closer to the theoretical value for this type of terrain, $1 / 7$, the ratio of means as evaluated from the right half of Eq. (7), 1.10, is not much different than that for the 1975 data, 1.06 .

Figure 4-1. 1975 Meat Monthly Wind Speed for Sites 1 and 2

Figure 4-2. 1975 Mean Monthly Wind Speed and 3 -Month Moving Average for Site 1
Table 4－1．Total Number of Observations at Each Site

SITE	2	5	4	5	6	7	d	9	10	SITE
1974										
nCt	671	443	547	596	670	723	649	317	674	675
Hilv	655	640	524	295	491	574	656	戠事事衰	570	619
DEC	742	724	739	\＃\＃＊${ }^{\text {F }}$	639	639	676	411	戠事事事	737
JAT	725	533	375		554	350	166	202	200	649
FEH	667	638	507	＊＊事事事	642	666	事事事事	314	556	623
MAR	740	649	72%	戠事戠事	112	102	165	157	430	659
$\triangle P^{\text {a }}$	120	720	717	丰事事事	719	350	718	713	716	703
liay	135	394	663	事事事戠	739	740	656	698	652	696
Junt	716	5月1	423		430	束事事戠	583	707	286	716
JUL．	744	654	111	車車事年戠	739		744	629	743	784
A11S	346	332	195	韦事事事	480	戠事戠禹	105	511	432	583
SEP	－18	韦事事衰	事事事事		686	事事事戠	車戠事事事		682	697
$0 ¢ 1$	742	あますもあ	事事事実		745		本事事事戠	事事事事事	736	557
Hov	715		戠事事冓	戠車事事	716	事車事事	事事事事	＊	670	461
HEC	734	事事禹事	事事事事		142	禹事事事	車戠事事戠	戠戠事事	726	652
1916										
JAt	742	事も聿聿		事事事事	141	禹事事も	戠事事事	事事事事	136	742
FEW	695				694		本事事事戠	戠事事事	693	695
HAK	645	予車事事事	戠事事事事	事事事事	715	＊事事事	車事事事事		736	743
$\triangle \mathrm{PF}$	716	＊${ }_{\text {車事 }}$	戠戠事事		717	＊	車事事車事	戠事事	717	117
tify		事事事中	事事事产	戠事束車戠	744	＊＊＊${ }^{\text {\％}}$	事事菫戠	韦事事戠	743	137
CIMmill ATIVE										
	15230	－3080	6171	891	13315	4230	5121	4773	18763	12847

Table 4-2. Mean Wind Speed--Ail Observations

SITE	2	3	4	5	6	1	a	9	10	AITE 1
1914										
OC1	10.65	12.74	13.61	7.83	8.45	9.23	10.39	14.23	14.44	11.26
40 V	8.78	10.98	13.10	4.68	6.19	6.66	9.75	*****	10.91	-. 21
LEC	11.30	13.30	14.86		A. 26	0.66	11.42	17.20		9.00
1915										
Jath	9.12	13.01	15.40	\#\#***	0.72	10.03	16.25	17.73	13.34	1.88
FEA	12.22	15.28	15.07	*** ${ }^{\text {F }}$	11.40	11.46		18.82	13.36	9.55
mar	15.54	20.45	20.66		14.75	8.90	20.62	22.64	21.44	12.95
APM	13.30	18.21	10.67	*FF**	13.22	12.54	17.01	17.40	19.40	13.18
hay	11.60	14.07	15.45	** ${ }^{\text {F\% }}$	11.39	10.75	13.55	13.99	16.64	10.50
Juri	13.20	14.95	17.97		12.99	*****	16.57	17.48	19.53	13.41
JILL	11.35	15.79	15.93	*****	11.75		14.95	15.22	16.09	84.31
All	12.51	14.62	14.33	** ${ }^{\text {\% }}$ +	10.51		9.51	16.33	16.68	18.49
SEP	7.52		* ${ }^{\text {F** }}$	* ${ }^{\text {+ }}$	6.06	- F $^{\text {F\% }}$		*****	8.06	5.31
HE1	11.74	*****	**\#**		9.18		****		15.51	10.58
HUV	10.33	* * $_{\text {F\% }}$		*****	0.57			*****	13.36	10.76
DEC	9.63	* + + ${ }^{\text {F\% }}$	*****	****	7.86				11.39	0.78
1915										
IA it	8.62	7\#***	* \ddagger F\% ${ }^{\text {F }}$	\#** ${ }^{\text {\% }}$	5.96	* $*$ * \ddagger \%	* \% $^{\text {F }}$ * ${ }^{\text {F }}$	****	10.67	7.70
HEM	12.42	本***		* $*$ \# ${ }^{\text {F }}$	10.69	*****		*****	16.62	12.04
HAK	12.10		*	****	10.95	\#\#***		- ${ }_{\text {+ }}$	86.38	11.15
APR	10.93	\#****	***F\%	*****	10.96	\#\#\#\#			17.62	11.63
hay	\#****	- 7 \% $*$ \%		*****	12.01	*****	** F\% $^{\text {\% }}$	-4***	17.96	12.73
cumulative										
	11.14	15.03	16.17	6.79	10.01	9.E0	13.64	16.53	15.10	10.56

Table 4－3．Cube Root of Expected Cubed Speed－－All Observations

SITE	2	3	4	5	6	7	8	9	10	8ITE゙ 1
1919										
nct	14.00	16． HI_{1}	17．24	11.60	12.95	13．39	15．27	19．27	10．42	14．07
HIJV	11.49	13．46	15.72	7.34	9．83	9.84	13.28	＊舟事戠	15．18	10.90
DEC	15.96		18．n5		13.97	15.95	16.45	21.47	戠事事事	13.94
1975										
JAH	14.72	19．35	21.44		15.37	16.56	21.97	22.99	21．81	12．56
FEr	18.02	21.19	21．09		17.74	17.99	＊${ }_{\text {F }}^{\text {香事 }}$	24．60	20．81	14．31
MAR	20.41	25．5h	25．54	\＃\＃\％\＃\％	20.16	11.65	25．01	27.51	27.12	10.19
APM	17.30	22．47	23.34		17.69	17.50	22.42	22.69	24．2n	16.92
HAY	16.04	18.75	20.33		16.30	15．66	19.50	19.60	21.58	15．23
Jut	16.59	19．80	22．06	事事事邫	16.05	戠戠韦事	21.79	21.99	23.36	16．58
JUL	13．81	18．97	19.20	䒠禹事実	14.05		18．31	18．75	20.12	16．57
AIIG	15．31）	18．44	19.17	事事事事	13.25	朿事も事	12．50	19．n3	19.66	14．40
SEP	10.06				A．6．7			事事事事	12.05	0.19
IIC．T	16.44	禹事韦も事			14.46		禹事事戠	事事韦戠	22.05	15．00
islo	15.66	車車事事事	\＃事戠も草		15.18				19．88	16.60
HEC	13.91	本种事韦			13.93	禹事事聿	聿事䒠事		16.19	13．71
1916										
JAN	13．00		ももあもも	䒠あ車韦も	10.73		＊＊\＃車	車事も事	16．85	12．04
FEG	1月．64			中戠聿聿	17.72	禹戠事戠	－		23.29	18.15
IIAR	17.10			車事事事	17．34		事事事車戠		23.57	16．59
$A P H$	15．12		＊		15.18	事事事事	产事事も		23.36	15.75
MAY		－¢ ¢ ¢ ¢	戠事事も	禹禹事事	14．60	革も申戠も	朿事戠事	車戠戠戠	22.26	84.40
CIIHIJLATIVE										
	15．81	20.24	20.88	10.55	15．\＄4	15.14	10．96	21.62	20.97	15.13

Table 4－4．Standard Deviation－－All Observations

SITE	2	3	4	5	6	7	©	9	10	SITE	
1914											
IIC：	6.27	7.45	7.32	5.65	6.81	6.67	7.47	A．91	9.93	5.79	
ativ	4.95	5.50	6.06	4.113	5.35	5.14	6． 04	＊＊＊＊	7.09	4.87	
	7.67	9．20	8． 21		0.05	7． $\mathrm{BC}^{\text {c }}$	日．ja	9.09		7.27	
1915											
IAH	1．45	4.79	10．34	もあももあ	0.63	9.16	10.43	10.72	12.10	6.56	
FEH	9.33	111.42	10.44	束事事事	9.59	9.81	象戠平	13.84	11.11	7.44	
$\\| A N$	9.41	11．19	10．90	－	9.03	5.80	10.15	11.52	12.22	9.07	
APK	7.76	9.82	9.75	－${ }_{\text {本事事事 }}$	H． 39	8.53	10.30	10.37	10.51	7.56	
finy	7.59	4.53	9.16	本事事平草	8.01	7.73	9.60	9.40	9.54	7.50	
Jun	7.13	9.66	9.27		6.79	韦韦事事	10.83	9.67	9.35	7.04	
JUI.	5.67	7．42	7.71		5.62		7.54	7.76	7.86	6.12	
$A \cup O$	6.57	7.44	6．54		5.76		5.61	0.19	7.45	6.25	
stp	4.56				4.35	戠事事事	韦事平平事		6．08	4.54	
ICT	4.03				4.08			－ FF $^{\text {c }}$	11，06	A．33	
$\begin{aligned} & \text { RUV } \\ & \text { ロEC } \end{aligned}$	$\begin{aligned} & 8.11 \\ & 6.76 \end{aligned}$	事事事平戠			$\begin{aligned} & 8.57 \\ & 7.63 \end{aligned}$		戠事事事事	戠戠事戠	10.34 7.82	$\begin{aligned} & 4.88 \\ & 7.85 \end{aligned}$	
ИEC	6.76	禹事車事戠	¢車を車年		7.63	＊	車事車車事		7．82	7.15	
1816											
14녹			\＃聿戠車				事事車も	事事平戠	0.72		
rrb	9.16		車事事事		9.67		本戠車車	－ 4 戠事 ${ }^{\text {a }}$	11.16	9.24	
$.1 A N$	9．29				4.33	車本中事事		－ ¢ $_{\text {＋}}$	11.97	$\text { n. } 43$	
$\triangle P N$	6.83			事事事丰	7.17		本車事事事	事事种番	10.61	7.07	
biAY		車車車平		戠事戠戠	6.20	車事事妾	戠禹禹	車中种車	9.46	4.78	
CIHHINATIVE											
	7.66	9.45	9.29	5.52	8.00	7.97	9.16	4.90	10.20	1.54	

Table 4－5．Pattern Factor－All Observations

SITE	2	3	4	5	6	7	8	9	10	SITE 1
1414										
OCT	2.26	2.30	2.05	S． 25	3.61	3.06	3.17	2.48	2.08	1.95
sidv	2.24	2.01	1.75	3.85	4.00	3.22	2．47	4＊＊＊＊	2.69	2.34
）EC	2.43	2.77	2.04	＊舟戠事	4.44	4.19	2.99	1.95	戠戠戠戠	3.62
1915										
JAN	4.20	3．p9	2.70	事事事事	5．44	a． 50	2.47	2．18	4.37	0.04
FEH	5.21	2.6 .7	2.74	事事事戠	3.71	3.87		2．A2	3.78	3.37
SAR	2.27	1.95	1.89	事事事事	¢． 55	2.36	1.76	1.79	2.02	2.77
APR	2.20	1．9n	1.89	戠事事事	2.40	2.72	2.29	2.22	1.96	2.15
IIAY	2．64	2．37	2.29		2.93	3.09	2.98	2.75	2.18	3.06
JIIN	1.98	2.35	1.85	禹事事事	1.89	本本事事	2.27	1.99	1.71	1.89
J川	1． 10	1.74	1.78	事事事事事	1.72	克事事常事	1.74	1.97	1.69	1.55
All6	1．92	2.01	2.16	車事事事	2.00	辛本戠事事	2.27	1.79	1.64	1.97
SEP	2． 39		䒠事事事	車戠事事	2.92	車事事事	事事事事		3.32	3.65
5 C 1	2.75	＊${ }_{\text {＋}}^{\text {事事車 }}$			4.33	戠事事事爯		禹事戠事	2.84	3.33
lity	3.48			車車神車事	5.55		直車車事事		3.29	3.67
1）E゙C	3.01		＊事事韦	禹車車車戠	5．56		韦事草事		2.87	3.81
1976										
JArt	3.43	＊＊＊${ }_{\text {＊}}$		事事事＂	5．4 4	聿車事事		戠戠事事	3.94	3．92
FEH	3．0．5	＊ ¢ $_{\text {\％}}^{\text {¢ }}$	\＃韦ち事		4.55	事事事事丰	朿事事事		2.75	5.41
HAN	2．82	＊${ }_{\text {＊}}$	戠戠事	戠事事事	3.96		事事事事戠		2.98	5.29
AFK	2．59	＊ 4 \＃ F\％$^{\text {\％}}$	（事事事事		2.65	串事事戠	本事木事事		2.33	2.36
May			朿聿戠		1.85	車車車事䒠			1.90	1.45
Cunul．ative										
	$2=3$	2.42	2.15	3.76	3.60	3.68	2.68	2.24	2.68	2.94

Table 4-6. Mean and Cube Root of Expected Cube (CREC) Comparisons

$\begin{aligned} & \text { Month, } \\ & 1975 \end{aligned}$	No. of Sites With Means Greater Than Respective Record Means	No. of Sites With More Than 100 Observations	No. of Sites With CREC Greater Than Record CREC
January	3	9	6
February	5	8	6
March	8	9	8
April.	9	9	9
May	4	9	6
June	7	8	7
July	6	8	1
August	4	8	0
September	0	3	0
October	3	4	3
November	1	4	1
December	0	4	0

Table 4-7. Wind Speed Variation With Height

Comparative Statisties	Sites		
	1 and 2	3 and 4	8 and 9
Ratio of means	0.93	0.94	0.93
Ratio of eubes	0.86	0.91	0.83
Slope	0.96	0.95	0.92
Correlation of coefftetent, r	0.936	0.965	0.952
Range of r	$\begin{aligned} & 0.910 \text { to } \\ & 0.982 \end{aligned}$	$\begin{aligned} & 0.913 \text { to } \\ & 0.991 \end{aligned}$	$\begin{aligned} & 0.706 \text { to } \\ & 0.889 \end{aligned}$

Table 4-8. Computed Values of the Power Law Exponent, ix

Year	Month	sites		
		1 and 2	3 and 4	8 and 9
1974	October	-0.09	0.0752	0.0091
	November	0.12	--	0.12
	December	0.32	0.19	0.09
1975	January	0.16	-0.02	0.09
	February	0.21	---	0.04
	March	0.19	0.15	0.04
	April	0.03	0.03	0.04
	May	0.18	0.07	0.06
	June	-0.03	0.06	0.07
	July	-0.34	0.04	0.04
	August	0.04	0.07	0.03
	September	0.46	--	--
	October	0.19	--	--
	November	0.18	--	m"
	December	0.23	--	--
;976	January	0.16	--	--
	February	0.08	--	--
	March	0.07	--	--
	April	-0.10	--	--
	May	--	--	--
Cumulative		0.0841	0.0655	0.0558

SECTION V

DIURNAL VARIATYONS

Figures 5-1 through 5-4 show curves for the data of Sites 1, 2, 6, and 10 (those with the longest records) categorized and plotted according to hour and frequency of occurrence. With the exception of wind speeds greater than 30 mph , which are 1 ikely to occur anytime during the day, the overall pattern for Site 1 is one with higher wind speeds during the afternoon.

While Sites 2 and 6 have diurnal patterns similar to those of Site 1 (Figures 5-2 and 5-3), the patterns for site 10 differ considerably (Figure 5-4). Wind speeds less than 10 mph and those greater than 29 mph occurred with relatively uniform frequencies at any hour of the day. Wind speeds between 10 and 1.9 mph are less frequent between 6 PM and midnight, which is the period of maximum frequency for the $20-$ to 29 mph class. This pattern of higher wind speeds at night more closely resembles that of free alr.

Also shown in Figures 5-1 through 5-4 is wind speed frequency for 1975. At Sites 1, 2, and 6, the distributions are quite similar: speeds less than 10 mph occurred about one-half of the time, and speeds between 10 and 20 mph occurred about one-third of the time. At site 10 , however, speeds ranging from to to 20 mph are almost as frequent as those less than 10 mph , and wind speeds greater than 20 mph occurred almost 30 percent of the time.

preceoing page blantizior meimio

Figure 5-1. 1975 Diurnal Wind Speed Vartation for Site 1: (a) Percent of Time Wind Speed Less Than Given Speed, and (b) Annual Frequency of Occurrence

Figure 5-2. 1975 Diurnal Wind Speed Vartation For Site 2:
(a) Percent of Time Wind Speed Less Than Given Speed, and (b) Annual Frequency of Occurrence

Figure 5-3. 1975 Diurnal Wind Speed Variation for Site 6:
(a) Percent of Time Wind 色peed Less Than Given Speed, and (b) Annual Frequency of Occurrence

Figure 5-4. 1975 Diurnal Wind Speed Variation for Site 10 : (a) Percent of Time Wind Speed Less Than Given Speed, and (b) Annual Frequency of Occurrence

In Table 6-1, some of the statistics of this report are compared with those of the earlier study of winds at Goldstone (Wind Power Prediction Models, Technical Memorandum 33-802, Jet Propulsion Laboratory, Pasadena, Calif., Nov. 15, 1976). Extended data collection during 1966 to 1967 was restricted to the anemometers near the Mars site. Means of Sites 1 and 2 data recorded in 1966 to 1967 are approximately the same as those for 1975. The means of the earlier data fell well within one standard deviation of the later means (standard deviation at Site 1 is 7.54 mph).

Limited sampling was performed at five other locations during 2 days in October (1974), 8 days in November, 5 days in February, and 1 day in March. Despite this relatively small sample, the ratios of means for Sites 4, 9, and 10 are reasonable approximations of the ratios calculated in this report. For Sites 6 and 7, the ratios in the earlier report indicate lower speeds than those at Site 1 , whereas the ratios computed in this report indicate speeds of about the same order.

Table 6-1. Comparison of Wind Speed Statistics

Site Number	Mean Wind Speed, mph (Number of Observations)	
	Jan. I'hrough Dec. 1975	t. 1966 Through Aug. 1
1	$\begin{array}{r} 10.75 \\ (7780) \end{array}$	$\begin{array}{r} 9.97 \\ (3387) \end{array}$
2	$\begin{aligned} & 11.45 \\ & (8307) \end{aligned}$	$\begin{array}{r} 10.94 \\ (3480) \end{array}$
	Ratio of Mean Wind Speed to Site 1 (Number of Observations)	
	All Data, 1975	16 Days, October 1974 Through March 1975
4	$\begin{array}{r} 1.43 \\ (5913) \end{array}$	$\begin{array}{r} 1.52 \\ (384) \end{array}$
6	$\begin{array}{r} 0.94 \\ (11867) \end{array}$	$\begin{aligned} & 0.739 \\ & (360) \end{aligned}$
7	$\begin{array}{r} 0.94 \\ (4040) \end{array}$	$\begin{aligned} & 0.846 \\ & (384) \end{aligned}$
9	$\begin{array}{r} 1.34 \\ (10416) \end{array}$	$\begin{gathered} 1.24 \\ (312) \end{gathered}$
10	$\begin{array}{r} 1.43 \\ (12847) \end{array}$	$\begin{array}{r} 1.47 \\ (360) \end{array}$
${ }^{\text {Reported earlier in }}$ TM 33-802		

SECTION VII

SUMMARY

The following points sumarize the results of this report:
(1) Sites at lower elevations (1, 2, 6, anci have mean and cubed speeds of roughly the same magnitude, while Sites 3 , $4,8,9$, and 10 have higher speeds. Site 9 has the highest cumulative means and cubed speeds.
(2) The monthly variation of wind is similar at all sites. Correlation with Site 1 decreases with increasing distance. At a given location, the correlation of the lower anemoneter with Site 1 is stronger than that of the upper anemoneter.
(3) Decause of the short period of record, only a general description of any seasonal pattern can be made. Higher mean speeds occurred between Vebruary and May, and cubed speeds were higher between January and July. Mean and cubed speeds were also relatively high in October.
(4) Diurnal paterns apparently vary with elevation. Sites 1, 2, and 6 have higher speeds in the afternoon, whereas Site 10 an? presumably the other higher elevation sites have higher speeds at night.
(5) For Sites 1, 2, and 6, wind speeds of 10 mph and less occurred more than 50 percent of the time. At a windier location such as Site 10, the frequency of these lower speeds is reduced to about 36 percent.
(6) General agreement of the ratio of means with Site 1 and the ratios given 14 , JPL IM 33-802, despite the small sample size of the earlifer data, tends to eliminate the need for further sampling to det amine available wind energy at Goldstone.
(7) Because of larger mean and cubed speeds and because of accessibility, the three locations of fites 3, 4, 8, 9, and 10 are considered to be the best possibilities for a demonstration windmill project.

[^0]: ${ }^{1}$ Wind Power Prediction Models, Teahnical Memorandum 33-802, Jet Propulsion Laboratory, Pasadena, Calif., Nov. 15, 1976.

[^1]: ${ }^{\text {a }}$ Reference anemometer.

