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Studies have indicated that the airborne proprller noise trans-

mitted through the aircraft sidewall is one of the important source

path combinations of the sound transmission into an aircraft cabin.

The typical sidewall is a multilavered panel. In this report the

experimental noise attenuation characteristics of flat, general

aviation type, multilavered panels are presented. Experimental

results of stiffened panels, danpin;; tape, honeycomb materials and

sound absorption materials are presented. Single-degree-of-freedom

theoretical models have been developed for sandwich t ype panels with

both shear-resistant and non-shear-resistant core material. The

experimental investigation, performed to test the concept of Iielmholtz

resonators used in conjunction with dual pane windows in increasing

the noise reduction around a small range of frequency, is also de-

scribed. It is concluded that the stiffening of the panels either

by stiffeners or by sandwich construction increases the low frequency

noise reduction. Application of damping materials while damping

out the resonance peaks lowers the fundamental resonance frequency.



The theoretical models, within the constraints of the assumptions

made in deriving them, predict the fundamental resonance frequency

and the low frequency noise reduction fairly accurately. It is also

concluded that the concept of Helmholtz resonators in conjunction

with dual pane windows offers an attractive low cost solution to

increase the noise attenuation of dual pan g: windows around a small

range of frequency.
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CHAPTER 1

INTRODUCTION

The interior noise levels in general aviation aircraft are high

and in many cases exceed acceptable comfort limits (References 1 through

3). The noise sources in a general aviation aircraft include engines,

propellers, auxiliary equipment and airflow over the aircraft. The

interior noise is low-frequency dominant, the propeller and engine

being the major contributors (References 1 through 5). One of the

important source-path combinations is the airborne propeller noise

transmitted through the aircraft sidewall into the cabin. An improved

sidewall noise attenuation will reduce the overall noise level inside

the aircraft.

A normal aircraft sidewall is made of structural panels and

i	 windows. The noise control in the present-day aircraft is based

on an after-the-fact approach. A significant NASA-sponsored research

program to study the transmission of sound through aircraft panel type

structures and windows is being conducted at the Flight Research

Laboratory of the Universit y of Kansas (KU-FRL). The research has

accomplished documentation of experimental noise reduction character-

istics of simple and treated panels (References 6 and 7). However,

a typical actual aircraft sidewall is a multilavered panel. A

review of the existing literature (References 8 through 11) indicates

that the available information is limited to the high frequency region.

It may, therefore, be inappropriate for general aviation aircraft, where

the low frequency noise, especially around the blade passage frequency

and its harmonics, is dominant. The current studies (References 13 and

- 1 -
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13) indicate that stiffening of panels will increase noise reduction

in the low frequency region. Sandwiching of panels is another way

to increase the low frequency noise reduction through increased

stiffness.

Past studies (References 4 and S) have also demonstrated that

sound transmission through windows is another important noise path.

The normal sound proofing techniques cannot be applied to windows,

since they will affect the optical properties of the windows. Use

of double windows is one of the ways to increase noise reduction at

higher frequencies. However, this introduces additional resonance

at lower frequencies and an accom panying decrease in noise reduction.

The concept of double windows with Helmholtz resonators, tuned to

the resonance frequency of a double window, appeared promising in

eliminating this additional resonance frequency.

The purposes of this study then are:

(a) to document the noise reduction characteristics of typical

aircraft multilavered structures,

(b) to investigate the concept of using sandwich-t ype configu-

rations for increased low frequency noise reduction and

(c) to investigate the concept of a double window with

Helmholtz resonators.

The method used is to determine the noise reduction character-

istics experimentally and to develop simple analytical models simul-

taneousl y . The analytical models are then used to explain the

experimental results wherever possible.



The experimental investigation of noise reduction characteristics

was carried out at the KU-FRL acoustic test facility. The maximum panel

size that can be tested is 18 x 18 inch. References (14 and 15) give

the details of the construction and the characteristics of this test

facility. The salient features are excerpted in Appendix A.

The next chapter, Chapter 2, describes the experimental investi-

gation carried out to find the noise reduction characteristics of

multilavered panels. In the same chapter, analytical models are

developed for simple multilavered panels. The noise reduction

values calculated for some of the simpler structures are then com-

pared with the experimental results. In Chapter 3, the noise reduction

characteristics of a double window with Helmholz resonator are described.

Conclusions and recommendations are presented in Chapter 4.

- 3 -



CHAPTER 2	 i

NOISE REDUCTION CHARACTERISTICS OF MULTILAYERED PANELS

2.1 INTRODUCTION

Normally, the aircraft cabin sound proofing consists of a

stiffened outer panel, a combination of fibrous blankets (sound

absorbers), air gaps, impervious sheeting and trim panels. Theoretical

studies have been made to determine the optimum positioning of the

air gaps and the blankets (Reference 10); but in practical cases 	 T
i

the installation is usually determined by other considerations such

as stringer locations, frame depths and other structural details.

Consequently, an actual aircraft sound proofing installation is not

easily amenable to analytical treatments.

The problem was simplified by studying the effect of varying

individual elements upon the noise reduction of a multilavered panel

being investigated. In addition, the number of layers tested was

gradually increased from one to four. The experimental investigation

is described in Section 2.2. Analytical work to determine the noise'

reduction of typical sandwich panels is given in Section 2.3. In

the same section, the applicability of the theoretical results to

the simple experimental panels is discussed.

2.2 EXPERI.MENTAL INVESTIGATION

During this investigation the effects of the following elements

of the multiple layered panel were tested:

I^

- 4 -



(a) Stiffened aluminum panel
with damping material 	

1
p g	 (Subsection 2.2.1)

i
(b) Rigid P.V.C.-based foam 	 (Subsection 2.2.2)

(c) Sound absorption materials

	

	 (Subsection 2.2.3)
i

(	 (d) Rigid foam and sound absorption
f	 material	 (Subsection 2.2.4)

(e) Inner aluminum panel	 (Subsection 2.2.5)

(f) Air gaps	 (Subsection 2.2.6)

(g) Honeycomb panels	 (Subsection 2.2.7)

`	 A schematic of a typical multilayered panel tested is shown in

Figure 2.1. In each panel, neighboring layers were attached to each

other with a strip method. Rigid spacers were used during testing

of the sound absorption and soft core foam materials. These spacers

were placed on the outer edge of the test panels, in between the

outer and inner panels, to take any compressive loads. For the

panel with an air gap, the airspace was maintained by placing on the

outer edge an appropriate thickness of vinyl foam between the outer

and inner panels, to seal the air gap. The stiffened aluminum

panel was stiffened with three "L" stringers placed parallel to

the edges at equal spacing. The stringers were 3/4 x 3/4 x 1/16

inch.

2.2.1 Effect of Stiffened Aluminum Panel with Damping Material

One stiffened aluminum panel was tested with and without Y370

damping material treatment (Figures 2.2 and 2.3). The entire panel

was treated with damping material. The effect of damping material

in the low frequency region is small and is negative. Due to the

- 5 -
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low stiffness-to-mass ratio of the damping material, the stiffness-

to-mass ratio of the treated panel decreases, causing a lowering of

Ifundamental resonance frequency. A drop of as much as 25 Hz is

`	 noticed in the resonance frequency. In this case, the resonance

r	 frequency of the untreated panel is high ( x200 Hz) due to the

stiffening effect of the stiffeners. The damping treatment increases

t:ie noise reduction at the resonance frequency from zero to 10 dB.

iAnother contribution of the damping treatment is the absence of

peaks and dips at higher panel modes.

2.2.2 Effect of Rigid P.V.C.-Based Foam

Rigid P.V.C.-based foam* was one of the four types of sound

jabsorbing materials tested. It is discussed separately because of

its ability to withstand loads. Three different densities (namely

0.107, 0.129 and 0.359 slugs/ft 3 ) of 1/4 inch thick foams were

investigated. Two configurations were tested: (a) foam attached

to a 0.025 inch aluminum panel, and (b) foam sandwiched between

itwo 0.025 inch panels. The noise reduction curves obtained are

1
	 shown in Appendix B (Figures B.1 through B.6). During the tests it

was observed that the rigid foam would become loose from the panel

at locations of maximum amplitude. When such a phenomenon occurs,

both aluminum panel and rigid foam vibrate independently, reducing

I the noise reduction through the panels. In order to ensure proper

I

bonding of adhesive on the rigid foam, a USP 735 Type A glass cloth

was bonded between the P.V.C. foam and the aluminum. This laver

*manufactured by American Klegecell Corporation

^	 I
- 9 -



has an additional advantage in that when an impervious layer is

bonded to a sound absorbing material, an increase in noise reduction

will occur in the low frequency region (Reference 16). Test results

confirmed these observations. An increase in noise reduction of 5 dB

is obtained at 30 Hz. (See Figure 2.4 for the effect or rigid foam

density on the noise reduction values at 30 Hz and 3000 Hz.)

The effect of sandwiching rigid foam is to increase the noise

reduction value by 10 dB over twin layered panels in the low frequency

region. The increase in stiffness-to-mass ratio of the combined

panel is due to the stiffness added by the additional aluminum panel.

Increase in the mass of the panel increased the noise reduction

at high frequencies ( 2 3000 Hz).

The fundamental resonance frequency obtained is also presented

in Figure 2.4.

2.2.3 Effect of Sound Absorption Materials

Three other sound absorption materials investigated are

(a) fibrous sound absorption material made by Conwed Corporation.,

(b) soft ployuretlicne foam, and (c) matte fiberglass.

2.2.3.1 Effect of Fibrous Sound Absorption 'Materials

Three flexible sound absorption materials of different densities--

Conwed 9525, 6198, and 11330*--were tested in conjunction with 0.025

inch aluminum panels. The noise level reduction mechanism of the

sound absorption materials is due to the viscous shear losses that

occur when the vibrating air enters through the porous mate:ial.

*manufactured by Conwed Corporation

- 10 -
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Two types of sound absorption systems were tested: (a) sound
absorption material attached to a 0.025" aluminum panel, and (b)

sound absorption material sandwiched between two 0.025 inch aluminum

IF	 panels. The noise reduction curves are presented in Appendix B

(Figures B.7 through B.12). The noise reduction values obtained at

30 and 3000 Hz are plotted in Figure 2.5 as a function of the density

of the material tested. Also shown in the sane figure is the funda-

mental resonance frequency observed. Increase in sound absorption

material density increased the noise reduction very slightly in both

the low and high frequency ranges (approximately 3 dB for the range

of densit y tested). In general the noise reduction of these panels

is better than that of foam panels, in both the double and triple

layered configurations tested.

Sandwiching the panels increased the noise reduction by 20 dB.

The noise reduction values at 30 Hz, in this configuration, varied

from 35 to 37 dB. The resonance frequency also increased from -60

to "' 107 11Z.

2.2.3.2 Effect of Yolyurethene Foam

Soft polyurethene foam was another sound absorption material

tested. Two thicknesses of the same density (0.0469 slugs/ft')

were investigated. The results are presented in Appendix B (Figures

B.13 through A.16). As in the case of rigid 1'.V.C. foam, the attach-

ment of soft polyurethane foam to a 0.025 inch aluminum panel did

not produce any significant increase in noise reduction eom,^ared to

a bare aluminum panel. Also, an increase in thickness of foam did

C

- 1 -
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not increase the noise reduction. The cross-plot of results is

given in Figure 2.6. Sandwiching the foam between the two alwainum

panels increased the noise reduction by 10 dB.

2.2.3.3 Effect of Matte Fiberglass

Fiberglass batting of one inch thickness was sandwiched between

two 0.020 inch aluminum panels to study the effect of fiberglass.

The density of the fiberglass was 3.5 lbjft 3 . The result is given

in Appendix B (Figure B.17). The result indicates that the minimum

noise reduction is 8 dB at its fundamental resonance frequency.

The noise reduction of a bare aluminum panel is around zero at the

resonance frequency (Reference 6).

2.2.4 Combined Effect of V gid P.V.C. Foam and Sound :Absorption
Material

Sub--subsection 2.2.3.2 showed encouraging results in applying

the concept of sandwiching two aluminum panels with a viscoelastic

core material. In an attempt to produce significant noise reduction

with a relatively light-weight multilayered panel, the rigid P.V.C.

foam and fibrous sound absorption material were combined into a

multiple structire noise reduction system. Specifically, the P.V.C.

foam and sound absorbing material were sandwiched between a 0.0-15

inch outer panel and a 0.016 inch inner panel. The lower inner

panel thickness was chosen to keep the panel weight low. However,

the effect cf inner panel thickness was also investigated and is

discussed in Subsection 2.2.5.

1

- 14 -
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Two different sound absorbing materials and rigid P.V.C. foam

densities were tested. The noise reduction results obtained are

presented in Appendix B (Figures B.18 through B.21) . The cross-plot

of the results is shown in Figure 2.7. Increase in either foam or

sound absorbing material density increased the noise reduction

slightly (2-3 dB). The noise reduction value at aU Hz varied from

42-48 dB for all the materials tested in this configuration.

2.2.5 Effect of Inner Panel Thickness

An attempt was made to determine the effect of reducing the

thickness of the inner _iluninucr panel of a multiple structurc in

order to reduce the overall panel weight.

Three different inner Panel thicknesses--0.016 inch, 0.020 inch,

and 0.025 inch--and two different sound absorption material densities

were tested. The noise reduction te:;L results are given in Appendix B

(Figures 8.22 througti B.27). The cross-plot of results is shown in

Fil;u1-0 2.8. An lncreaso. in noise reduction of only 2-3 dB at low

f regtioncy is observed for an increase is thiekness of 0.009 filch.

This; could iadi,2^au that for t loo.-,e sandwiched panels, the total p:inul

wei ,̀',iL can be reduc,'d uithOUL a su lostantial docri'_aje in low ircqueIlcv

110i,-:e rilductlon, tJV rc(ilic.irg tile' i nner panel tiliekIless .	 In the hig[1

frequency region, w1hic h is mass Conir011od, the decrease in noise

reduction is hi-,;her (7 dli for file reduction of 0.009 inch of inner

a l uminum pa:iel).

- 10 -
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2.2.6 Effect of Air GaAs

t

r

,c
j[

f

The effect of an air gap as a layer in the multilayered panel

was investigated for 4 thicknesses (1/16, 3/16 9 3/8, and 3/4 inch).

The results of the tests are presented in Appendix B (Figures B.28

through B.31). The cross-plot of results is shown in Figure 2.9.

During the investigation the air in betwe-n the layers was

sealed along the edges, using vinyl foam strips, preventing any air'

leak. At low frequencies, air gaps did not have any effect on the

noise reduction. This trend is consistent with the results obtained

for the double window tests (References 17 and 18). The panels

vibrate in phase, as the cavity in between is not vented. However,

an additional resonance--of 150 to 250 Hz, depending upon air gap

width--is produced in the interval. This is due to the panel-air-

panel resonance. In the mass-controlled region the least squares

averaged noise reduction is constant because no mass is added.

2.2.7 Honeycomb Panels

Five different honeycomb panels were tested. The effects of

thickness and core material were investigated. Core thicknesses of

0.125, 0.25 and 0.5 inches and core materials of aluminum and Nomex

were tested. In all the tests, the facing sheet was fiberglass.

The results of these five tests are presented in Appendix B

(Figures B.32 through B.36). The cross-plot of results is shown

in Figure 2.10.

The honeycomb panels have very high stiffness-to-mass ratio

and therefore have very good low-frequency noise attenuation charac-

- 19 -



5/8	 3/41/8	 1/4	 3/8	 1/2

Air Gap - 'Inches

40

b 30

0
y

20

am0

10

00

Frequent
Hz

0.025 in aluminum + hard foam +
airgap + 0.025 in aluminum

30 Hz

0--0-1 T	 -4^
-%

.

Figure 2 . 9 : Effect of Airspace Thickness on Noise Reduction ':harac-
teristics of a Multilayered Panel

LJ

[_1

^.I

i

^l

#I

k

i

100
s,

SO

e

	

0 2	 1
A	 0	 1/8	 1/4	 3/8	 1/2

Air Gap - Inches

5/8	 3/4

- 20 -



1/8	 1/4	 3/8	 1/2	 5/8

CORE THICKNESS - Inch

ao 40
b

°o
w

30
v
a^

a^
e

Zo 20

60

50

10

00

30 Hz
3000 Hz

Honeycomb Panels

a) Fiberglass skin

b) Aluminum Hex. Core

Thickness	 Cell Size
(inch)	 (inch)

1/8. 1/4	 1/8
1/2	 1/4

^.
	 r

u

r
l^

^r

s

s

c'

E

Figure 2.10: Effect of Core Thickness on Noise Reduction
Characteristics of a Honeycomb Panel

- 21 -



row	--

4.-
;i

teristics. The resonance frequency is also high due to the same

reason. For the same facing material. the thickness of the core

material appears to be the most important factor. The effect of

core stiffness. or Young's modulus. has no significant effect at

low frequency. In the mass law regiono the effect of thickening

of the core is seen to be small.

2.2.8 Summary

The effects of individual layers and stiffeners have been dis-

cussed in Subsections 2.2.2 through 2.2.6. The results of 30 Hz

are cross-plotted for various panels as a function of mass in Figure

2.11. As can be seen, the noise reduction of sandwiched panels is

in general higher. The study of an individual noise reduction curve

shows an increase in fundamental resonance frequency for these panels.

While the increased stiffness for the honeycomb and stiffened panels

is easily predicted (Subsections 2.3.3 and 2.3.4), the increase in

low frequency noise reduction of P.V.C.-based rigid foam and fibrous

sound absorbing material is not predicted. The increased stiffness

can also be due to the following causes:

(i) The edge conditions may not have been simply

supported for both face plates.

(ii)The clamping of the panel in the Beranek tube may

have introduced some membrane stresses, which could

have increased the stiffness.

(iii)The actual mechaaism of sound transmission may lie

in between shear resistant and non-shear resistant

core.

- 22 -
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In summery,, honeycomb pads offer the best noise reductla
1"J

In the low frequency region. Sandwich panels with fibrous round

absorbing materials offer good noise reduction characteristics in

both low and high frequency regions.

2.3 TS80RSTICAL ANALYSIS

The theoretical analysis of low frequency noise transmission

of multilayered panels is wry complex due to the number of variables

involved. The noise reduction of panels at low frequencies is very

much dependent upon the mounting details (or edge conditions). The

method of attachment between the layers (and heave the ability to

transmit shear stresses) also affects noise reduction to a great

extent in the low frequency region.

In the following two subsections, two extreme cases of attachment

between two layers will be considered. In Subsection 2.3.1 noise

reduction/transmission loss of a sandwich panel in which there is

no sliding between the layers pr'sent will be derived. Tits charac-

teristics of a sandwich panel in which there is perfect sliding (no

shear constraints) will be considered in Subsection 2.3.2. The

results from there two subsections will be used to calculate noise

reduction values to be compared with the experimsntal - ,vwlues obtained

for some of the panels tested.

2.3.1 Shear Resistant Sandwich Panel

In this subsection an analytical expression will be derived for
i
x	 noise reduction through a triple-layered panel in which there is no
i
t

i
s

t
	 - 26 -
t
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sliding between the panels.	 A honeycomb panel is a perfect example

of such a panel.	 The method is based on theoretical considerations

presented in Reference 7.

The dynamic equilibrium of the multilayered panels is used for

writing the governing differential equations of the motion. 	 The
a

sound pressures acting on the structure are sham schematically in

Figure 2.12.

The fc.Llowing assumptions are made:

(a)	 rae deflection of the structure is small so the

small deflection theory can be used.

(b)	 The individual layers are isotropic.

(c)	 Sliding between the layers is prevented.

In this case, the governing differential equation of equilibrium

for layered plates is given by Reference 19:

D*7202w(x.y) = pZ(x,y)	 (2.1)

where:

D* = transformed flexural rigidity

Tw
= lateral displacement of the panel

p 	 M lateral forcing function.

` The transformed flexural rigidity of the layered plate is
F

given by (Ref. 19):

D* _ (AC - 82 )/A	 (2.2)

where:

a` 3	
Ek

A	 I	 (rk - Zk-1)	
(2.3)

k•1 1-vk

-25-
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Shear-Resistant Sandwich Panel
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2 -	 2
t	 -1)2 (ak 	 2$k

8	 (2.4)
k-1	 1-v

2

k

3	
Bk
	

23 - ZZ-1EC	 -	 (	 (2. S)
k-1 1-vk

where:
Zk - Young's modulus of 

kth 
layer

vk - Poisson's ratio of kth layer

f X , '
k-1
 - a coordinates of layers k and k-1,

k  
respectively (see Fig. 2.12)

The transferred flexural rigidity, D*, can be simplified in

case Young's modulus of the core is far less than that of the

facings and also if the facing materials are the same. 	 (See

Section 2.3 for D* of honeycomb panels.)

In the dynamic equilibrium of a plate element, the inertial

forces associated with the translation of the plate element is:

8w2

8t2

For simplicity of analysis, only viscous damping will be

assumed to be present. The structural damping term, which is pro-

portional to the deflection rather than the velocity, is neglected.

y
This assumption is being made because the viscous damping due to

the core material will be greater than the structural damping

of facings.

The forces due to damping then are given by:

-aw

- 21 -
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Extending the differential equation of static equilibrium

by adding force terms due to inertia and damping forces, the dif-

ferential equation of forced, damped motion of the panel is obtained.

2

D*0202w (x . Y• t) + m t2 + a ^_ - p (x . Y. t)	 (2.6)

The lateral forcing function, p(x, y, t), is in this case

time dependent. Under steady state conditions the pressures shown

in Figure 2.12, which are the lateral forcing functions, may be

represented by:

pi (x . Y. z . t) - 
A(x, Y) ej(wt-kz)	

(2.7)

pr (x . Y. z. t) - 
8(x, v) ej(wt+kz)	 (2.8)

P
t (x . Y. z, t) - C(x, Y) eJ(wt-kz)
	

(2.9)

where:

A, 8, C are the steady state sound pressure amplitudes;

k, the wavenumber (-w/c);

W, the angular frequency;

c, the speed of sound.

The time invariant parts of the sound pressure functions in

Equations (2.7) through (2.9) can be represented by a double trigo-

nometric series.

to general,

	

..	 m

	

p (x . Y) - i	 Pmn sin (') sin MY )	 (2.10)
m-1 n-1

where m and n are integers and a and b the panel dimensions.

If the core is considered incompressible, the faces of the

multilayered panel will vibrate in phase, and hence the entire panel

- 28 -
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.

may be assumed to vibrate as a single unit. (The implications of

i
this assumption are discussed later on in this section.) With this

assumption, Navier's method can be used to find the solution to

Equation (2.6).

h'	 In accordance with this method, the solution is to be considered
i

f	 of the form:

a	 CD
is

	

w(x, Y. t) = ej wt 	
Wam sin 

(a- sin ( b )	 (2.11)
[	 m=1 n=1

Substituting Equations (2.10) and (2.11) in Equation (2.6) gives

for a simply supported square panel whose side is a:

iD*W=(a) (m4 + 2m2n2 + n4 ) - MW%n + jawW
UM
 P

mn
	 (2.12)

where:

f

M = 1,

i	 n= 1,

The undamped free panel resonance frequency for the (m, n) mode

of a simply supported square panel is given by:

W 
= (8 ) 

2 
(m2 + n2 ) D* m
	

(2.13)

For the multilayered panel the RHS in Equation (2.12) is given

from Equations (2.7) through (2.9) as:

l Pmn = Affil 
+ Am - Cmn
	 (2.14)

Equations (2.11), (2.12) and (2.13) generate:
I:

Amn + Bmn - Cmn

	

WM. 	 (2.15)
m (w^ w2 ) + jaw2

i,

i

-29-
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Another boundary condition to be satisfied is that the particle

velocity of the air and the panel velocity have to match at the

boundary of air and panel. This results in:

U 

= Pi - Pr 
• 

Pt	
(2.16)	 1

PC	 PC	 i

	or:3w mn 

_ M 
Pc 

IM = pan	
(2.17)	 1

Noise reduction through a multila Bred panel is defined as:g	 Y	 P 

	

P +P ^	 a

NR - 10 log	 iP r
	 (2.18)

t	 ^!

With Equations (2.7) through (2.9) this becomes:
^i

^(A +B ) 2
NR - 10 log	 ma	 mn	 (2.19)

CM

Considering only a single-degree-of-freedom model:

	

2	 I ^
	NR - 10 log ' 

All	
(2.19a)

C 

+ gll

11

Equations (2.15), (2.17) and (2.19a) generate for m = 1, and

n	 1.

m(ww2) 2
NR - 10 log [(1 + 1-i 2 + { CPC
	

} )	 (2.20)
PC

In a single-degree-of-freedom model, with the damping factor

defined as:

	

= 2sw , where wn - Ill	 (2.21)

n

we get:	 !

2mw Z 2	 m(w2 - I2 ) 2	 l

NR = 10 log C{1 + PC10
	
} + { wpc	 }	 (2.22)

- 30 -



I
For this single-degree-of-freedom model, the damped natural

frequency is given by:

	

w 
nD 

0 f1-7 W 	 (2.23)

where:
wn is given by Equation (2.13) for m = 1, n - 1

wnD 
0 damped natural frequency of the SDOF system.

Transmission loss (TL) of this SDOF system is given by:

Pi 2

	

TL a 10 log Ir)	 (2.24)t
From Equations (2.7), (2.8), (2.9), (2.15), (2.17), (2.19), (2.21)

and (2.24) we get:

2	 2 _ 

	

TL = 10 log [(1 + ^^^} + {m( 	
n W2) 

} 2 j	 (2.25)
i

t In deriving Equations (2.22) and (2.25) it had been assumed that

the core is incompressible.	 Such an assumption is not normally valid

for core materials such as foams and honeycomb (References 20 and 21).

Most of the core materials will have a finite value of Young ' s modulus.
i

Therefore, in addition to the flexural modes of vibrations which are

obtained from Equation (2.6) aid in which the faces of a sandwich
i

panel vibrate in phase, dilatational modes, in which the panel can

fno longer be considered as a single unit, occur.	 In this mode the

face plates vibrate independently of each other, amplitudes and

I: frequency being deptadent upon Young ' s modulus of the core.	 When

E
there is a 180° phase difference between the two faces, dilatational

resonances occur. 	 At these resonance frequencies the noise reduction

rbecomes very low.
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once again a single-degree-of-freadom approximation can be

made to model this mode of vibration. The first dilatational reso-

nance in which the faces act as a single mass connected by a springlike

core is given by Reference 8:

1	 4E2	 1/2

f d	
Ih2 (m

l + m3 + 02'3T)
(2.26)

where:

f  is the first dilatational resonance frequency

E2 is the effective Young's modulus in compression

of the core

m1 m2 m3 are the mass per unit areas of the individual

layers 1, 2 and 3.

Table 2.1 gives the effect of varying Young's Modulus of the

core on the first dilatational frequency for the type of sandwich

constructions tested. These frequencies are calculated using

Equations (2.13) and (2.26). As the table indicates, even with

a low Young's modulus, the dilatational frequency is higher

than the range of frequency of our interest.	 •

2.3.2 Panel with Non-Shear-Resistant Core

In the second limiting case considered, no mechanical coupling

between the faces is assumed. Under these conditions the core is

free to slide between the faces. In order to analyze this case,

the following model is proposed:
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Table 2.1 Effect of Young's Modulus of the Core
on First Dilatational Frequency

Sandwich Panel

Skin: 0.025 Inch Aluminum

Density - 0 1 - 0 3 - 2700 kg/m3

Young's Modulus - 1.05 x 10 7 x 6895 N/m2

Core

Thickness, t2 - 0.5 x 0.0254 m

Density, p 2 - 67.5 kg/m3

Young's Modulus - Ec 2 - Varied

1	 4Ec2
First Dilatational Frequency - 2T t2 (ml + m3 + m2

/3) (Equation 2.26)

where: mi - 0 1 * ti

Young's Modulus
of the Core (psi)

10

100

200

500

1000

5000

(1 psi - 6895 N/m2]

Calculated Dilatational
Frequency (Hz)

384

1217

1721

2721

3848

8605

r
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(a) The sandwiched panel can be considered as a flexible double

wall with the core acting as a (porous) medium transmitting

acoustic energy.

(b) There is no resistance offered by the core to the movements

of the face plates.

(c) There is no mechanical transrort of acoustic energy between

the faces. This means that the sound transmission. through

structures (structure borne flanking path) is neglected.

The analytical approach is based on References 7 and 22. A

typical sandwich panel and the pressure forces acting it, under the

above assumptions, are given in Figure 2.13. In addition, the

following assumptions will be made:

(a) The thickness of the face is small compared to the thickness

of the core.

(b) The deflections are small.

Along the lines of Subsection 2.3.1 the homogeneous biharmonic

differential equation of the individual face of a sandwich panel

is given by:

DI7202wi(x. Y) - P(xf Y)

where:

Di a flexural rigidity of the face, i

w  n lateral displacement of the face, i

p - lateral forcing function

i - subscript denoting face 1 or 2.

t	 The dynamic equilibrium of the individual faces can be written

in a similar way as:
i

i
r
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(pi)I

(pr) I

(pt)III

Figure 2.13: Geometry of Sound Pressure Forces Acting on a
Non-Shear-Resistant Sandwich Panel

C
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i
i

J,

aerial

Div2v2wi (x 9 Y. t) + mi b2+ saw
ael	

i - P(x. Y. t)

where:

a  is the sass per unit area of face i

j - ^
a  is the structural damping factor of face i

(proportional to displacement) (Reference 19)

Both displacement w  and the lateral forcing function, p,

are time dependent. Rader steady state conditions the pressures

shown in Figure 2.13, which form the forcing functions, may be

expressed as:

(Pi) I (x. Y. Z. t) - A(x. 
Y)ej(wt - kIz)

(Pr ) I (x. Y. z, t) - B(x. Y)ej(Wt + kiz)

Qt)it(x• Y. z . t) - C(x. Y)ej(wt - k2z)

(Pr)11(x. Y. z, t) - D(x, y)eJ1wt + k2(z-h2))

(P)t III (x. Y. z, t) - E(x. 
y)ejjwt - k3(z-h2))

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

where:

A, B, C, D and E are the steady state sound pressure

amplitudes

I t II and III are subscripts referring to regions depicted

in Figure 2.13.

z is the coordinate perpendicular to the plane of the

panel



kl , k2 , k3 are the wave numbers in mediums i, 11 1, and III

(ki - *-)
1

cis c29 c3 are the speed of sound in the mediums I, ii. and III

w is the angular frequency.

The time invariant parts of the sound pressure functions in

Equations (2.29) through (2.33) can be represented by:

i

	

p(:c, y) • i 	 Pum sin _ sin -°xY	 (2.34)
Sal nwl

i	 where:

m, a are integers;

at b are panel dimensions.

In accordance with Navier ' s method (Reference 19), the solution
is to be considered of the form:

jW
• w

w (x, y, t) " e t 2 7, W sin _ sin n^	 (2.35)
i	 awl n-1 an 	 a	 b

Substituting Equations (2.34) and (2.35) in (2.28) gives. for a
simply supported square face at z - 09

DLWMn
 () (m'' + 2m2n2 + a4 ) - miwZWmn 

+ jaiWmn - Pum	 (2.35)i	 !	 !

where:

m a 1, 2 9 	-
a 0 1, 2 9	 -

For face it from Figure 2.13, the time invariant part of the forcing

function is written as:

-j h
2

mal
P	 - Amn +8mn -Cma - Dma a	

(2.37)
^ 
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z
The panel comma" frequency for the (so a) sods of a simply

supported square panel is `Ivan by Reference 23.

Win
• (^) 2 (ml + 02)47Z	 (2.38)

f
Equations (2.36), (2 . 37) and (2.38) generate:

^a + Ban - Can - 
Dan -Jk2h2

(2.39)Wang •	

ml(0. - W2) 

+'a

For aluminum, the structural damping a is of the order of 0.02

(References 7 and 22). Although structural damping is theoretically

present in all plate vibrationsp it will be ignored in further treat-

ment of this problem. Then:

Amn + Ban - Can - 
Dane-

ik2h2

W	 ^	 -----------	 (2.39a)
°m1	 m1

N22 - w2)

One other boundary condition that has to be satisfied is that

the particle velocity of the core and the velocity of the panel have

to match at the boundary of air and core at z • 0.

•
(P di

(pr) I 	(pt) II	 (pr)SIu
1	 zl	 z2	

( 2.60)

where:

ul is the particle velocity at z • 0

z l is the impedance of the air (• Pc)

a is the density of air

c is the velocity of sound

z2 is the impedance of the core.

fie.'
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The impedance of an absorptive porous core will, in general, be

complex and will be discussed in detail later in this section.

From Equations (2.29) through (2.32) and (2.40) we get, at

a^0:

^	 im^i np C^ - Die ^ ^z_z

	

^ ^
	 pc	 Z	

(2.41)

	

1	 2

Equations (2.39x) and (2 . 41) yield:

A^ + B^ = {1 - j (Z ) ql}C. + {1 + j (^ ) gl) DMne jkA	 (2.42)

	

2	 2

Amn i {1 + (ic) - j (Z ) gl )Cmn + {1 - (&--) + J(Z ) g l) D 
a j__2h2

2	 2	 2	 2j

where:
m(w22 - w2)

mn

qi =	 wpc	 i - 1, 2	 (2.43a)

The same approach is used to determine the pressure amplitudes

for the second face of the sandwich panel at h2 . The time dependent

lateral panel deflection is given by:

w2 (x . Y. t) - W2 
(x. Y)ej(wt - f)	 (2.44)

where f is the phase difference between the vibrations of face 1 and

face 2.

Analogous to Equation (2.39a) at z - h2:

W -j f - C
mne-j k2h2 + Dmn - E

	e 	 (2.45)
mn2	

m2(w;2n - w2)
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Equating the particle velocity and plate velocity at a • h2:

U2 
a (0t ) IIZ( pr) II a (Pd ill	 (2.46)

2	 3

where:

Z3 is the impedance of air	 Z1 pc)

	

or:	 'jk2h2

- D	 E
jw W e ^^ a 

C 
mn 
e 

Z	 a p^	 (2.47)
2	 2

and

E 1WOCW^ a-i0	 (2.48)
	an	 2

Equations (2.45), (2.46) and (2.47) generate:

jk2h2 	 Z
Cmn . e 

2 (1 - jq 2 + (per)} 
Emn	 (2.49)

Z
D - 2 t I - j q2 - (p^)} E	 (2.50)

an

Substituting Equations (2.49) and (2.50) into Equations (2.42) and

(2.43), we get:

	

A + B	 jkThT's►— 	 f{1 - J(Z )ql }{1 - J4= + ( '"+ {1 + j(^)a }{1	 Z2 -^ kTb2 (2.51)

	

mu	 2	 Oc	 g2 1	 J92 - (pC)}e	 }

,} k A
A^ .	 2 T 

{{1 + (91) • J(JM)q )(1 14 + (ZT )) + {1 - (^) + j(^)q ){1 - Jq }^ jhT } (2.52)
H	 4	 ZT	 Z2 1	 T	 oC	 l2	 t2 1	 2• C

By definition:

(pi I + (Pr)I 2

	

Noise Reduction	 10 log	 '
(p	

(2.53)

t)III

4
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O

m 
(A+ BM) 2

NR - 10 log I
'n- l
	 (2 .54)

m, 1 $mn

For a single-degree-of-freedom model:

NR - 10 log I A
ll g+ B 111	

(2.54a)
11

Substituting (2.51) in (2.54a):

- h

M - 10 lob 1 [(1 - i(t )qi){1 - iqZ « ) +ik2h2 + {1 41.i(^)91}{1 -i a= - ^}a ik2 ICl2	
(2.55)

Similarly, transmission loss of a SDOF system is given by:

TL - 10 log Jg 
1'

11
(2.56)

Substitution of (2.52) in (2.56) results in:

rt • 10 lotlat(1 + (
z 	 «^	 z	 i	 2Z2) - itZ )al } ( 1 - iqZ « (oc)}•	 h2 + {1 - (Z2) + j( 2)41 }(1 - jq2 - oc)a	 11

(2.57)

Equations (2.55) and (2.57) represent the noise attenuation

equations for a multilayered panel. In general, the value of the

impedance of the core and the wave number k 2 of the core will be

complex. The method of calculation of these two quantities is

given in Reference (8). They depend upon the frequency, flow re-

sistivity, porosity, and effective gas density of the core material.

Appendix C gives the method to calculate the values based on Reference

8. Table 2.2 gives the values of the impedance for a typical fibrous

core material at different frequencies. The propagation constant, b,

can be written as:
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Table 2.2 Calculation of Complex Impedance of P7105 Material
(Based on Reference 8)

Bulk density - pm - 9.6 kg/m3

Gas in material, air, density - p 0 - 1.18 kg/m3

Fiber diameter - d - 1.0 micron

Porosity - P - 0.99

Structures factor - s - 1.0

Flow resistivity - 4.1 x 104 MKS Rayls/m

Frequency 100 300 600 1000 3000 5000

fl 67.5 83.9 2.8 1.67 1.07 1.03

f2 608 68.4 17.9 7.07 1.67 1.24

a dB/m 3.0 27.3 79.5 156 367 446
am m .99 .347 .195 .138 .074 .053

R2 MKS Rayls 1055 1030 943 821 542 466

R2 MKS Rayls -112 -162 -268 -325 -269 -202

IZ2 1 MKS Rayls 1057 1042 981 882 605 508

8 deg -3.1 -8.9 -15.9 -21.6 -26.4 -23.44

fl , f2 	defined in Appendix C

a	 attenuation constant, dB/m

am	 wavelength in the material, m

R2 	real part of complex impedance, MKS Rayls

X2	imaginary part of complex impedance, MKS Rayls

IZ21	 absolute value of complex impedance, MKS Rayls

8	 phase of Z2 , degrees
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t

b ' jk2 ' a + j s	 (2.58)

As can be seen from Appendix C and Table 2.2, at very low frequencies

attenuation constant a is small for the range of thickness used

04.05 m). Hence the wave number k2 may be assumed to be real. With

this assumption Equations (2.55) and (2.57) can be simplified as:

NR - 10 1051{coo k2h2	 sie k2h2 
.122 12

 
(12 

- g2X2)els k2h2 } +

R2

	 y2 e
« {-(4 + g2)eo. k2h2 + oc ale k

2h2 - I 	 (R2g2+12).ink2bl)"(2.59)

1	 oC 12 X2 q ql e° Z + (ql + g2)OCR2 $in
	} +TL 10 log^Z{ {cos k2h2 + ( 1Z I2 - oe - 

'Z21 2 	
(Z I2	 k2h2

2	 2	 2

R2 0CR2 	4020CK2 N + g2)OC12
+{-(gl « gz )^o. k2h2 + (oc 

+ IZ=	 Iz2I=i2 - 	 -

	
12 212) .

in k2h2 }11 2 (2.60)

The noise reduction and transmission loss characteristics of a

twin layered panel, in which a sound absorbing material is attached

to an aluminum panel, can be derived from the above analysis. A

typical twin layered panel and the pressure forces acting on it under

the same assumptions as for three-layered panels are given in Figure

2.14. The equations may also be developed along the same lines as

a sandwich panel. Equation (2.29) through (2.43) are still applicable

for the twin layered case also.

At the boundary between sound absorption material and air, the

pressure forces acting are as shown in Figure 2.14. The boundary

conditions that need to be satisfied are: (a) at the boundary, the

pressure forces should be the same on both sides, and (b) the particle

velocities should be the same on the boundary. This gives:
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absorbing
arial

(pt) III

(Pi),

(pr)I

Figure 2.14: Geometry of Sound Pressure Forces Acting on a
Twin Layered Panel
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(pt ) II + (pr) II = (P dill

(pt) II (pr) II (Pty) III_

l	

Z2	 pc

i	 Substituting (2.31) through (2.33) in (2.61) and (2.62):

(2.61)

(2.62)

at z = h2

ce 2 2 + D = E	 (2.63)

-jk2h2 	Z2
Ce	 - D = ( c-)E	 (2.64)

Equations (2.63) and (2.64) generate:

+jk2h2 	 z
C =e-- Z -{1 + pC}E	 (2.65)

i

Z

D = 2 {1 - 2)E
	 (2.66)

PC

Substituting Equations (2.65) and (2.66) into (2.42) and (2.43),

we get:

jk2h2	 z	 Z -j2k hA 
B 

8 ' e 
2	 [{1 - j(Z )ql}{1 + p1}+{1 + j(i )ql}{1 - 2)e 	 2 2]

2	 2
(2.67)

h

E	 j e 
2 2 (^1 + x(Z ) - j(i^)}{1 + Z2)+{1- (- )+ j ( - ) ql }{1 - Z _c}e j2 h2]

2	 2	
oc	

2	 2	
0

(2.68)

The noise reduction and transmission loss are calculated using

Equations (2.54a) and (2.58). This results in (for low frequencies):

R2
NR = 10 logl{cos k2h2 - 2 sin k2h2 gloc+

	

	 R2 sin k2h2 } +
IZ212

R2	
!Iti 	 j{-glcos k2 h2+ oc sin k2h2 - 	

2 X
2sin k2h2}`2

`Z2`

1-:1
:	 - 45 -

j

(2.69)



!J
1	 p^2	 X2 g1PCR2TL a 10 losil2cos k2 h2 + (1Z ..+ + 1 )sin k2 h2+

2	 2

R2 PcR2 glPCX2 	 i

j{-glcos k2 h2 + (pc + --- -	 )sin k2h2 }j12
122 1 2	 1 22 1 2	 (2.70)

The theoretical noise reduction characteristics of a triple

layered panel with 0 .025 inch aluminum skins and PF105 (Reference 8)

fiberglass 1 inch thick was calculated using Equation 2 . 55 s8 8 g ( ). For

this purpose Equation (2.55) was programed into a Honeywell 66/60

series computer using time sharing Fortran. The low frequency

approximation (Equation 2.59) was programmed into an Apple 11 micro-	 .

computer using Applesoft language. The calculated values are plotted

in Figure 2.15. The noise reduction value at 20 Hz is nearly zero,

as the fundamental resonance frequency of 0.025 inch aluminum is

ti17 Hz. There is one more resonance frequency at 460 Hz due to the

skin-core-skin resonance. Because Equation (2.59) is complicated,

this value of resonance cannot be found explicitly (as has been done

i._

in Section 3.1 for air gaps). The value was found by trial and

error method. At high frequency, the noise reduction values are

higher than the mass law due to absorption in the core (a) and due

to reflection losses at the interfaces of surfaces.

2.3.3 Analysis of Results

2.3.3.1 Stiffened Aluminum Panel with Damping Material

For the analysis of the stiffened aluminum panel, the following

assumptions will be made:

- 46 -

i

z^



N
I

}
U
z
W

O
W
t
IL

a	 0!	 !	 !11	 !0	 S	 •

SP	 NOIionmw 3SION

Figure 2.15: Theoretical Noise Reduction Curve of Sandwich Panel
Constructed of 0.025 Inch Aluminum Skins and PI P 105
Fiberglass Core
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.,..

(a) panel is simply supported;	 i

b	 1 deflection theory is applicable;
I^

( ) small	 rY	 PP	 s

(c) single degree of freedom will only be considered;

(d) the additional stiffness due to the stringers can

	 LIbe assumed to be "smeared" over the length of the	 1

panel.

Under the above assumptions the panel may be considered to be

an orthotropic panel with different stiffness in X and Y directions.

Equation (2.22) can still be applicable with the natural frequency

being replaced with the fundamental resonance frequency of the 	 ^.1

stiffened panel. This is similar to the approach used by Getline

..l
(Reference 12).

Reference 23 gives the fundamental resonance frequency of the

square orthotropic panel as:

fn	 v	 DX + H + DY 	(2.71)
2&2r

C
where:

a is the side of the panel

m is the mass per unit area of the plate

DjX

Dy are orthotropic elastic constants.

H

For a panel with equidistant stiffeners, these elastic constants

are approximated by Reference 24. 	 4
i

1

	

DX . H . t3	 (2.72)	 9

12(1 - v2)
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Dl. - - t3	 + Ell	 (2.73)
12(1 - v2)

where:

E is Young's t:^odulus of the sheet

V is Poisson's ratio of the sheet

E' is Young's modulus of the stiffener

I is the moment of inertia of the stiffener cross

section with respect to the middle surface of the

sheet

S'is the spacing between the centerlines of the stiffeners

t is the thickness of the sheet.

The calculation of the resonance frequency of the stiffened panel

tested in Subsection 2.2.1 is presented in Table 2.3. The cross

section of the panel is sketched in Figure 2.16. The elastic constants

for the panel are found using Equations (2.72) and (2.73). The mass

of the panel is assumed to be the combined skin and stringer mass.

The value of the resonance frequency calculated is 180 Hz, which

compares well with the measured values (between 180 and 190 Hz).

The theoretical noise reduction was calculated using Equation (2.22)

with damping assumed to be zero (Figure 2.2). For frequencies well

above the fundamental resonance frequencies, two cases are considered.

In the first case the mass of the stringers is assumed to be smeared

over the skin, and in the second case only skin mass in considered.

The results are in reasonable agreement in the low frequency region.

iHowever, at high frequencies the single-degree-of-freedom model is

no longer valid, as higher panel and cavity modes dominate. The
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Table 2.3 Calculation of Resonanca Frequency
of a Stiffened Panel

Stiffener characteristics: =XX - 0.00409 * .02544 (m4)

	

$	 - 0.2705 * .0254	 (m)

Area - 0.0863 * .0254 2 (m2)

Moment of inertia of the stiffener } 0.0114 * .0254 4 (m4)about the centerline of sheet

Length of the panel • a - 18 x .0254 (m)

Running moment of inertia 	3I
per mit length	 } a •0019 * .0254 3 (m=)

Young's Modulus of the sheet,
Stiffener	 } • 7.24 x 10 10 IN/m2)

Sheet thickness t • 0.04 x .0254 (a)

Elastic constant • DX - Et33 - 6.95 (Nm)
12(1 - v2)

Elastic constant - H • 	 Et3	 - 6.95 (Nm)
12(1 - v2)

Elastic constant • D • — 90 	 E(31) - 2261 (Nm)
Y 12(1 - v2)	 a

Total mass of the panel .8272 (kg) (measured)

Mass per unit area - m • 3.9573 (kg/m2)

Resonance frequency - 
n	 + H + DY

2a2rm x
(2.71)



noise reduction value obtained with only the skin is closer to the

experimental least squares line above 1000 Rae Between 200 and 1000

Ra t the smeared as" approximation is closer to experimental results.

In cariclusion, the resonance frequency is well predicted.

In this case, the cavity effects of the Beranek tube are found

to be negligible. The theory predicts low frequency noise reduction	 ^ ►

reasonably well. In the high frequency region,, approximation of panel

with only skin mass is closer to CM least square line obtained 	 II

during experimental investigation. In the mid-frequency region 	
1

(just above the resonance frequency) the agreement is better when 	 !^

smeared mass approximation is used.	 j

In order to model the stiffened panel with damping material,

in addition to the above assumptions the damping material is assumed

to add only the damping and asse t and no stiffening, in the entire

frequency region. This assumption was made, as the damping material

has been covered over the entire panel. The resonance frequency

is reduced, since the mass is increased without any change in the

stiffness. One other unknown was the damping ratio of the damping

material. hence the theoretical noise reduction curve could not be

calculated without soma input from the rest results. This input

was the damping ratio of the material. The damping ratio was

calculated frog► the noise reduction value at the resonance frequency.

At w - Wn Equation (2.22) becomes:

ZaW ^ Z

AIR	 - lO 1,- 1 + =^	 (2.74)
n

For the panel tested (Subsection 2.2.1), the damping ratio 
was

calculated from the damped natural frequency measured from Figure 2.3.
W . 21
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Equation (2.23) was used to calculate the natural frequency from

the damped natural frequency. An interative procedure is needed

to calculate the natural frequency. For the panel tested the

damping ratio was observed to be 0.04.

Table 2.4 gives the calculation of noise reduction of the panel

tested (same as in Subsection 2.2.1) with damping material Y-370.

The decrease in the frequency at which the noise reduction is minimum

is due to two factors: (a) increase in mass, and (b) increase in

damping. As the stiffness remains the same and the mass increases,

the natural frequency decreases. (For the test case it decreases

from 180 to 156.0.) The difference between natural frequency and

damped natural frequency is negligible for a damping ratio of 0.04.

The value of the fundamental resonance frequency calculated from

the experimental results differs from theoretical prediction only

by ti5 Hz. The theoretical noise reduction value calculated f.r

damping ratio of 0.04 is also plotted in Figure 2.3, demonstrating

once again that at low frequency region the theory is in reasonable

agreement with the results, and the additional stiffness due to the

cavity effects of the Beranek tube is negligible when the panel is

"stiffer." The effect of damping is to reduce the resonance peaks

and dips,as can be seen from Figures 2.2 and 2.3.

2.3.3.2 Fiberglass Material Sandwiched between Two 0.020 Inch
Aluminum Panels

The theoretical noise reduction values for this panel were

calculated using Equation (2.55). The values of resistivity and

porosity are taken from Reference 7. The values of complex impedance

I^

l^

t

_sl
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Table 2 .4 Calculation of the Resonance Frequency
of a Stiffened Panel with Damping Material

DR 	= 6.95 [NM I (Table 2.3)

H	 = 6.95 [NM I (Table 2.3)

Dy	 = 2261 [Nm] (Table 2.3)

Total mass of the panel = 1.125 [kg] 	[measured]

Mass per unit area m = 5.3843 [kg /m2]

Length of the panel a - 18 x .0254 (m)

Resonance frequency	
n	

DX + H + Dy
2a2^

= 154.4 Hz.

Damping ratio calculated based on Equation (2.74) = 0.04.

c¢^

,

z

i,

E

i!

^I

f.'

t,

^r

1
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were calculated based on Subsection 2.2.2 and Appendix C. The values

of impedance are shown in Table 2.5. The resulting noise reduction

values are plotted in Figure 2.17, along with the experimental values.

As can be seen, the agreement is very poor, especially in the low

frequency region. This may be due to the cavity effects of the

Beranek tube and the boundary conditions of the panel. This effect

is predominant for this panel (Reference 7). The observed value of

the first resonance frequency is aroung 90 Hz, while the calculated

value is only 17 Hz. As discussed in Appendix A, the effect of the

Beranek tube is to increase the stiffness of the panel, thereby

increasing fundamental resonance frequency. Since the math model

developed in Subsection 2.2.2 does not account for cavity effects,

this can be overcome by using the observed value of the resonance

frequency in the calculation of the noise reduction values. This

has also been done and is shown in Figure 2.17 as a dotted line.

With this assumption, the agreement between the theoretical value

and the observed value is better. While skin-core-skin resonance

frequency of 500 Hz is well predicted, the calculated values of

noise reduction are still very much lower in the low frequency region.

While part of it may be due to the deficiency of the model used, like

neglecting the damping, etc., some of it may also be due to the

average values of the resistivity, porosity, etc., used in the

calculation. At high frequency the average noise reduction values

seem to agree. The higher panel modes introduce peaks and dips,

which are not modeled in the simple case considered. The very

high values of noise reduction observed in the high frequency region

are due to (a) mass effect (increase of 6 dB for doubling of frequency),
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Table 2.5 Calculation of the Complex Impedance of the Core
(Based on Reference 8)

DATA

Bulk density of the fiberglass - 49.0 kg/m3

Density of gas in the core 	 - 1.18 m/sec

Resistivity of the material 	 - 20000 MKS Rayls /m (Reference 7)

Porosity	 - 0.9	 (assumed)

Structures factor 	 - 1.4	 (Reference 8)

Thickness	 - 1 * .0254 m	 (Measured)

Frequency 100	 300 600 1000 2000 3000 5000

1.61	 1.07 1.02 1.01 1.00 1.00 1.00fl

f2 19.57	 3.06 1.52 1.19 1.05 1.01 1.00
i

F,

a 37.5	 94.45 134 163 194 207 209 i

Am .67	 .39 .276 .204 .125 .069 .0569 c+

R2 1730	 1030 761 634 537 502 497

X2 -801	 -702 -518 -387 -238 -133 -108

(Z2 1 1905	 1250 .921 734 588 519 509

92 (deg)	 -24.9	 -34.2 -34.3 -31.4 -23.9 -14.8 -12.3 +

defined in Appendix C{
"T

fl , f2

a attenuation constant dB/m ..

a,n wavelength in material m/sec

R2 real part of complex impedance MKS Rayls j}

X2 imaginary part of complex impedance MKS Rayls

IZ 2 ^ absolute value of Z 2 It

9 phase of Z2 (degrees)
ii

3f
I^
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Figure 2.17: Theoretical and Experimental Noise Reduction Curve of
Sandwich Panel Made of 0.020 Inch Aluminum Skins and
1 Inch Fiberglass Core
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(b) the additional attenuation in the sound absorption material
i,

(contribution from a), and (c) reflection losses which change the

slope of the noise reduction curves (Reference 8). In conclusion,

the agreement is poor in the low frequency region unless the cavity

effects are taken into account. The agreement is reasonable in 	 1.1

the high frequency region. The theory reasonably predicts the trends

of the experimental noise reduction curve.

2.3.3.3 Honeycomb Sandwich Panels

The honeycomb type sandwich panels are ideal examples for

the shear resistant model. Equations (2.2), (2.13), and (2.22)

will be used to calculate the noise reduction values. Equation

(2.2) for the transformed flexural rigidity D* can be simplified

if the Young's modulus of the facing sheet is far higher than that

of the core material, which is normally the case.

In order to simplify Equations (2.2) through (2.5), the following

assumptions will be made.

(a) The multilayered panel is made of three layers:

two facing sheets and a core.

(b) The facing sheets are made of the same material

(E3 = E1)•

(c) The core has a low Young's modulus, compared to the

facing sheet, and hence can be neglected (E 2
 << E1)'

Then Equations (2.3) through (2.5) simplify to:
1

r..	 A =	 E 2 {zl + z 3 - z 2 }	 (2.75)
i.	 1	 v

H
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B == (	 + a3 - z2 )	 (2.76)
2(1 - v2)

1

r C =	 E	 (zl + a3 - z2)(2.77)
8• 3(1 - v2)

From Figure 2.18:

z1 = hl 	( 2.78)
f

t
C $2 • hl + h2 	 (2.79)

L
z3 • hl + h2 + h3 	 (2.80)

I
- where:

` h	 h	 h	 thickness of la ers 1	 2	 3	 respectively.
1'	 2 •	3	 Y	 .	 .

From Equations (2.2) and (2.75) through (2.80) we obtain:

I
h 3	h3	h h	 h	 h

1 Ev2D* X 12 + 12 + hll+3h3 { 2 + 2	 + h2}2)	 (2.81)1

This equation is similar to the equation for stiffness obtained

by Barton (Reference 25).	 At this juncture it is pertinent to recall

f

1 that one of the assumptions made in Subsection 2.3.2 is that the core

is incompressible, which means that Young's modulus is extremely high.

In practice, however, it can be seen from the sample calculations of

dilatational frequency that even very small values of Young's modulus

t

of the core are sufficient to satisfy the above conditions.	 And

A compared forto the Young's modulus of the facing sheet	 aluminum

(,,1.05 x 166 psi), the Young's modulus of the honeycomb core (,,60000

` L
psi) is very small, but enough to produce a very high dilatational

frequency (Equation 2.26) for both the assumptions to be valid.
f
a

This apparent contradiction thus does not exist in practical cases.

{
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Figure 2.18: Typical Cross-Section of a Honeycomb Panel
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14.
a addition to the five honeycomb panels tested, the results

cch are presented in Appendix B, the experiments were also

cd out with two more panels. The noise reduction character-

j of these panels are presented in Figures 2.19 and 2.20. The

fental resonance frequency has been calculated with the stiffness

cated from either Equation (2.2) or Equation (2.81). The details

c panel and the calculation are given in Table 2.6. The noise

%ion values are calculated using single-degree-of-freedom model

cion 2.22) and are plotted in Figures 2.19 and 2.20 along with

tperimental results. The calculated fundamental resomance fre-

v agrees well with the observed frequency for the honeycomb panel

aluminum skin, whose material characteristics are well defined.

Aation of 10 Hz between the calculated and observed frequencies

(honeycomb panel with fiberglass facing was observed. For this

on average value for the material characteristics was uaed.

Ar frequencies the noise reduction values are comparable. The

Ate value of tha noise reduction matches reasonably well. The

dad peaks in the high frequency range are not predicted. The

c modes and higher panel modes may also mask any dilatational

mf transmission.

able 2.7 gives the resonance frequencies calculated and

ohd for the five honeycomb panels whose noise reduction

tWare presented in Appendix B. As can be seen, the results

atreasonable agreement.
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fTable 2.6 Calculation of Resonance Frequency and Noise Reduction
Values of Honeycomb Panels

Panel 1 (Figure 2.19):

Skin	 -	 0.016 inch thick aluminum

Core	 -	 1/4 inch cell, 1/2 inch thick aluminum

Young's Modulus of the Skin - 7.24 x 10 10 N/22

Density of the Skin - 2700 kg/m3

Thickness - 0.016 x 0.0254 m

Young ' s Modulus of the Core - 90000 * 6.895 x 10 3 N/m2 (Reference 26)

Density of the Core - 3.4 x 16 . 08 kg/m3 (Reference 26)

Thickness of the Core - 0.5 x 0.0254 m

Mass of the Panel - 0.7577 kg (measured]

Panel Width - 18 x 0.0254 m [measured]

Panel Resonance Frequency - 425 Hz (Equation 2.13;
M - 1, n - 1)

First Dilatational Frequency - %45000 Hz (Equation 2.26)

Panel 2 (Figure 2.20):

Skin	 -	 USP-735 TYPE C Fiberglass

Core	 -	 1/8 inch cell, 1/4 inch thick aluminum

Young ' s Modulus of the Skin - 2.4 x 10 10 N/m2

Density of the Skin - 1600 kg/m3

Young ' s Modulus of the Core - 75000 * 6.895 x 103 N/m2 (Reference 26)

Density of the Core. - 3.1 x 16.08 kg/m3 (Reference 26)

Thickness of the Core - 0.25 x 0.0254 m

Mass of the Panel - 0.293 kg [measured]

Panel Width - 18 x 0.0254 m [measured]

Panel Resonance Frequency - 187 Hz (Equation 2.13;
m-1, n -1)

First Dilatational Frequency - ti80000 Hz (Equation 2.26)

^_ l
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Table 2.7 Comparison of Calculated and Measured,
Resonance Frequencies of Honeycomb Panels

L.

Resonance Frequency (Hs)

Serial Measured from
Number Core Calculated Noise Reduction Curve

1 0.125 inch aluminum 102 117

2 0.25 inch aluminum 182 191

r,
t	 ( 3 0.5 inch aluminum 311 290

4 0.125 inch Nomex 103 117

I

1.

I:

5 0.25 inch Nomex 180 186

[I

C

C
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Figure 2.19: Noise Reduction Characteristics of Honeycomb Panel
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CNAPTrA 3

HEUGOLTZ RESONATORS FOR DOUMS WI1^S

3.1 INTRODUCTION

The noise attenuation characteristics of existing single pane

windows in general aviation aircraft are poor, especially at low

frequencies, where the general aviation aircraft noise dominates.

The use of double windows is one attempt to rowdy this situation.

However, the noise attenuation of conventional double windows is

still low at low frequencies. Also, an additional resonance

frequency due to pane-air-pane vibration is introduced at low

frequencies, decreasing low frequency noise reduction. To increase

the low frequency noise attenuation of conventional double windows,

the concept of depressurization was investigated at the KU-FRL

acoustic test facility (References 17 and 18). Due to the stiffening

effect of depressurization, the fundamental resonance frequencies of

the panes increase. This results in increased low frequency noise

reduction. However, a depressurization system will, in practice,

be costly and complex. The high values of deflections of the

pane observed at pressure differentials greater than 1.5 to 2 psi

may also limit its practical application (References 17 and 18).

Another concept that can be used to increase low frequency noise

reduction around a very small frequency range is Helmholtz resonators.

These resonators may be tuned to any selected frequency. The low

noise reduction observed at the pane-air-pane resonance frequency

can be eliminated by tuning the resonator to this frequency.
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I I
Helmholtz resonators can be constructed without much additional

cost and complexity. In aircraft, the volume between the double

windows and the adjacent frames and stringers may be used as the

	

•	 resonator volume. Figure 3.1 gives a schematic diagram of Helmholtz

resonator installation in an aircraft.

	

r	 The details of design and construction of a Helmholtz resonator

1
for testing at the ICU-FRL acoustic test facility are ,resented in

f-

i_
Section 3.2. The results of the tests are analyzed and presented

in Section 3.3.

3.2 DESIGN AND CONSTRUCTION OF HEUIHOLTZ RESONATOR

The low frequency noise reduction characteristics of a con-

ventional double window obtained at the KU-FRL acoustic test

facility are given in Figure 3.2. As can be seen, two resonance

frequencies exist in the frequency range considered. They correspond

t	 to the fundamental resonance frequency of the pane and the pane-air-

pane of the window.

Equation (2.5) of Section 2.3 can be simplified to model a

double window. In the present case, the core material is replaced

-	 by an air gap. The impedance Z 2 contains only the real term (-pc).

in Equation (2.59), letting R 2 - pc and X2 - 0:

NR - 10 logl{coskt + g lsinkk} + j{-( ql + g2)coski + sinki - g lg2sinklZ}I Z

.	 (3.1)

One of the resonance frequencies occurs when q l or q2 is

equal to zero. This corresponds to the pane fundamental resonance

frequency, since

-67-
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Figure 3.1: Schematic Diagram of the Helmholtz Resonator in an
Aircraft
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mi (W2 - W2)
qi =	 i = 1, 2 (3.2)	 !..;Wpc

In the particular case of two panes of similar mass, material,

and edge conditions, Equation (3.1) reduces to:

NR - 10 logl{coski + gsinki} + J{-2gcoskl + (1 -g 2 )sinkl)1 2 (3.3)

where q = q1 = q2 . (3.4)	 ^}

The resonant condition is given by:
f

NR - 0 (3.5)

or:!

(cos k-t + q sin kt) + j{-2q cos kl + (1 - g 2 ) sin kR}1 2	1 (3.6)

This reduces to:
t

4g2 (cos kR + 2 sin ki ) 2 - 2q sin kl (cos kX + 2 sin U) - 0 (3.7)

The condition for second resonance (pane-air-pane) is then:

tan ki = - q. (3.8)

At values w > wn q is negative; and at low frequencies

tan kR = k£.	 The lowest resonance frequency due to mass -air-mass

is obtained from substituting (3.2) in (3.8).

W1	2Xwlpc
kit=— R= - (3.9)

c	
m(W22- W2)

where c is the speed of sound.

This yields:

1
Y	 fl	 2-,r ( mt + (2af

n ) 2 ) 2	(3.10)	
o

f

F

This, when the stiffness effects of the pane are neglected,
I

equals:
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2 1
fl - ^ ( m, )^	 (3.11)

Equation (3.11) is identical to the equation given in Reference 9.

The theoretically calculated value of resonance frequency for the

double window tested (Figure 3.2) was 127 Hz when small angle

assumption was made (Equation 3.10) and 156 Hz when exact values

were used (Equation 3.8). The experimental value was 135 Ha.

i

A Helmholtz resonator was designed for the dual pane window

1•	 whose characteristics are given in Figure 3.2. A schematic sketch

of the Helmholtz resonator is shown in Figure 11.3. The design was

based on the method given in Reference 8. Equation (12.6) of

Reference 8 gives the transmission loss of a volume resonator as:

TL - 10 log [l +	
a + 0.25	 1	 (3.12)l0 02 + 82 (f/f0 - f0/f)2

where:

a - resonator resistance (dimensionless) - S1Rs/Aopc
r-

S - resonator reactance (dimensionless) - S1c/2nfOV

S1 = area of double window, m2

Rs = flow resistance in resonator tubes, MKS Rayls

V volume of resonator, m3

+:	 3 -A0 total aperture  area, m2 - Aft

0

fO - resonance frequency, Hz

p	 - density of gas, kg/m3

Z
c	 - speed of sound, m/sec

A - area of single resonator tube, m2

n	 - number of resonator tubes

k
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Sl = Duct Area

AD - Total Resonator Tube Area

a - Number of Tubes

t - Tube Length

V - Volume of the Resonator

Figure 3.3: Schematic Diagram of a Helmholtz Resonator

a
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The resonance frequency of a Helmholtz resonator is (Reference 8):

f0
 " 2^r	 (3.13)

where:

t' - the equivalent resonator tube length s t + 0.8

t - the resonator tube length.

To test the concept of Helmholtz resonator, the same double

window whose noise reduction characteristics are presented in

Figure 3.2 was used. Equations (3.12) and (3.13) were programmed

into an Apple II computer to check the effect of individual variables

in those two equations on the theoretical transmission loss character-

istics. Due to the restriction of size of the existing double window

test specimens (15 x 15 inch) and the size limitation of the Beranek

tube (13 x 18 inch), there was a severe restriction on the available

resonator volume. The resonator volume was built all around the

dual pane window, as shown in Figure 3.4. The only way the resonator

volume could be increased was by increasing the spacing. Of the

available spacings for a double window available at the KU-FRL

acoustic test facility (i.e., 1, 2, or 4 inches), four inch spacing

was chosen to have the maximum volume for the resonator (201 inch3).

This allowed the resonance frequency to be reduced to the desired

value. Another constraint was the lack of space for the resonator

tube length. Thi., was overcome either by having no neck length

(= 0.1 inch) or having the resonator tube projecting into the

resonator volume, as shown in Figure 3.4. Even though this may

not be the best solution, it was considered that this offered a
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workable solution. The hole size, the number of holes, the neck

length, and the resistivity were varied to observe the additional

noise reduction at the second resonance frequency.

3.3 EVERIMENTAL INVESTIGATION

The noise reduction test procedure for testing the double

windows with the Helmholtz resonator was essentially similar to

the tests described in Chapter 2. Since the frequency range of

interest is very low, an additional sweep of frequency from 20 to

200 Hz was carried out. Narrow band width analysis using a band

width of 0.6 Hz was performed and the noise reduction was plotted.

The listing of the program used for the analysis of the microphone

signals is given in Appendix D.

During the experimental investigation, the effects of hole

sizes (i.e., aperture areas), the number of holes, neck length,

and the resistivity on the minimum noise reduction value around

135 Hz (pane-air-pane resonance frequency) were checked. Even

though a change of the hole size or the number of holes would

change the resonance frequency of the Helmholtz resonator with

constant resonator volume, this was still done, as the volume of

the resonator could not be changed without changing the spacing

and hence the pane-air-pane resonance frequency. So instead of

tuning the resonance frequency of the resonator to that of the

window, it was allowed to vary. The only justification for this

approach is that in case such a resouator were to be installed

in an aircraft, samilar problems would be present. All the tests
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were performed at lease twice, as even a very minor Imperfection

In the preparation of the double window caused a significant change

in the noise reduction values obtained.•

Table 3.1 gives the details of the tests carried out, the value

of minimum noise reduction around 135 Hz, and the increase in noise

reduction over the window without the resonator. A maximum of 8 dB

Increase was observed. The individual noise reduction curves ob-

tained are presented in Figures 3.5 through 3.12.

Initial tests with four 7/64 inch diameter tubes (holes), which

had a theoretical resonance frequency of 80 Hz, did not show any

increase in noise reduction at either 80 Hz or around 135 Hz. Tests

with twelve 7/64 inch diameter holes (theoretical resonance frequency

= 115 Hz) gave an increased noise reduction of 5 dB. When the

diameter was increased to 3/16 inch (the theoretical resonance fre-

quency 160 Hz), the noise reduction remained the same (Table 3.1).

It is likely that due to the method of construction of the resonator,

the calculated and the actual resonance frequencies of the resonator

do not match. From the noise reduction curves it was difficult to

judge the resonance frequency of the Helmholtz resonator. The

resonator noise reduction characteristics could not be separated

frcKm the window noise reduction characteristics.

In order to avoid the ringing of the resonator, the resistivity

of the resonator was changed. This was achieved in three ways:

(a) resistive material (fiberglass) was placed inside the resonator
;M

volume, (b) the tube opening was covered with gauze (cloth screen),

or (c) both of the above were done. When the volume of the resonator 	 j

E
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Figure 3.10: Low Frequency Noise Reduction Characteristics of a Dual Pane
Window with Helmholtz Resonator; Tube Diameter 3/16 Inch,
Number of Tubes 12, and Neck Length 0.1 Inch; Gauze (Cloth
Screen) at the Tube Opening
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was filled with the resistive fiberglass (density 6 lb/ft'), a

maximum noise reduction of 8 dB was obtained. But the additional

weight increase was 0.6 lb. Covering the hole with the gauze

(cloth screen) did not increase weight; but the increase in noise
r

reduction was also very small, 1 dB, which is within the experimental

scatter. When the volume of the resonator and the tube were filled

with fiberglass and the tube opening; was covered with gauze,

there was a decrease in noise reduction, compared with the case

where there was no resistive material. Increasing the tube length

to 0.375 inches as shown in Figure 3.4 did not significantl y change

the minimum noise reduction around 135 iiz.

It can be concluded from the experimental investigation that

even within the constraints of the test facility and resonator volume

restriction it is possible to increase the noise reduction of a dual

pane window in a small frequenc y region by the use of the Helmholtz

resonator concept, at low cost and com p lexit y . Use of resistive

materials tends to increase the range of frequenc y over which the

resonator is effective, and the resistive material inside the

resonator cavit y gave the nest increase of 3 dB around 135 iiz.
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CHAPTER 4

CONCLUSIONS AND RECOMENDATIONS

In this report the experimental noise attenuation characteristics

of flat general aviation aircraft type multilayered panels are presented.

Also single-degree-of-freedom theoretical models have been developed

for sandwich panels with both shear-resistant and non-shear-resistant

core material. The experimental investigation, performed to test the
s

4	 ^

concept of Helmholtz resonators used in conjunction with dual pane

p	 windows in increasing the noise reduction around a small range of

frequency, is also described.

From the experimental investigation it can be concluded that

stiffening of the panels either by stiffeners or by sandwich con-

struction increases the noise attenuation characteristics, in the

{	 low frequency region. Application of damping materials, while

damping out the resonance peaks and dips in the high frequency region,

lowers the fundamental resonance frequency. This results in decreased

low frequency noise reduction. Of the materials tested, honeycomb

♦ 	 sandwich panels produced the highest low frequency noise reduction

for the given weight due to their high stiffness-to-mass ratio.

Multilayered panels with ,:.)und absorbing materials showed increased

s

noise reduction when sandwiched between two aluminum panels. This

increase was achieved at a relatively high weight compared to honey-

comb panels. They also produced increased high frequency noise

reduction. The air gaps in the panel did not have any additional

benefits in the frequency range of interest.

t
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The theoretical models, within the constraints of the assumptions

made in deriving them, predict the fundamental resonance frequency and

the low frequency noise reduction fairly accurately, if the panel is

inherently stiff. In such cases the effect of the cavity of the KU-FRL

acoustic test facility is less pronounced. The prediction methods

give reasonable results for stiffened panels and honeycomb panels.

Modeling of damping materials to have only mass and damping is seen

to agree well with the experimental results. The prediction method

for non-shear-resistant core agrees with the earlier prediction

methods (References 9 and 10), when the stiffness of the skin is

neglected. The experimental results and the results of the present

predictions show poor resemblance in the low frequency region. This,

however, must be partly due to the cavity effects and unknown edge

conditions of the skins of the panels. Even while accounting for

the discrepancy of the fundamental resonance frequency, the predicted

values are still conservative. This needs further investigation.

At high frequency range the values predicted agree well with the

average values obtained. The calculation of the complex impedances

of the sound absorbing materials is still approximate and could have

contributed to the inconsistencies.

From the experimental investigation carried out it can be con-

cluded that the concept of Helmholtz resonators in conjunction with

the dual par.a windows offers an attractive low cost solution to in-

crease the noise attenuation around a small range of frequency.

These resonators can be tuned to the frequencies at which the pane

or panel resonances occur. The prediction method presented gives

reasonably accurate value of such frequencies.
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t
In this report experimental investigation was limited to flat

multilayered panels. It is recommended that this be extended to

curved multilayered panels to determine their sound transmission

characteristics.

Second, the experimental investigation was performed in labora-

tory conditions using 18 x 18 inch panels. It is recommended that

the effect of such treatments on the overall interior noise be

^.	 determined either analytically or experimentally.

Third, the prediction of noise reduction values of sound ab-

sorbing materials was limited to sandwich panels with fibrous

materials. This can be extended to semi-rigid materials.

Fourth, the tests with Helmholtz resonators were limited by

the volume of the resonator. It is recommended that further

investigation be done to check the effe.:t of the volume in in-

creasing the effectiveness of these resonators*

r
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APPENDIX A

DETAILS AND CHARACTERISTICS OF THE KU-FRL ACOUSTIC TEST FACILITY

The design and construction of she FU-FRL acoustic test facility

have been described in Reference 14. Reference 15 describes the

investigation carried out to determine the characteristics of the

t ,r.st facility.

A.1 DESIGN AND CONSTRUCTION OF THE KU-FRL ACOUSTIC TEST FACILITY
(BERANEK TUBE)

The test panel is mounted between two chambers: the source

chamber and the receiver chamber. The source r.hamber, consisting

of a massive brick wall, concrete collar and a steel box, contains

nine evenly spaced loudspeakers. This chamber can be considered

to be a speaker box. Its purpose is to support the speakers and

to prevent radiation of sound to the rear and the sides. It con-

tains sound absorbing materials to minimize standing waves. These

can induce undesired speaker-sound radiation characteristics. A

z,."11 distance, about one inch, separates the test panel from the

front side of the speaker baffle. This arrangement prevents standing

waves between the baffle and the test panel at frequencies in the

range of interest, 20-5,000 Hz. Other standing waves, parallel to

the panel and the speaker baffle, could disturb the desired uni-

formity of excitation at the panel surface. The strength of these

standing waves, however, is reduced by sound absorbing; material,

which nearly fills all the space between the baffle and the test

panel.
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The receiving chamber is an acoustic termination, which absorbs

almost all the acoustic energy. To facilitate the installation of

test specimens between this termination and the speaker box, the

r
	

receiving chamber is mounted on wheels and rests on a steel table.

Figures A.1 and A.2 show the details of the test facility.

The loudspeakers can be driven by the amplified signal of a

pure-tone generator, a white-noise generator, or a tape recording

of in-flight boundary layer fluctuations (Figure A.3). An equalizer

is included in this noise generating system to obtain a reasonably

flat frequency spectrum. The noise measuring system includes two

microphones, one on each side of the test panel. The output signals

of the microphones are fed into a real-time analyzer. The resulting

I

	

	
spectra are plotted by an X-Y recorder. Next, these curves are put

into a desk-top computer, having, curve digitizing capabilities,

which subtracts one spectrum from the other, applies corrections

and plots final test results. To test the effect of pressurization

on the sound transmission loss of a panel, a depressurization system

has been installed. With this system the pressure in the source

chamber can be reduced, while in the receiver chamber the atmospheric

e	 pressure exists.

i
	

A.2 CHAMCTERISTICS OF THE KU-FRL ACOUSTIC TEST FACILITY

Based on the investigations carried out to determine the charac-

teristics of the test facility, the following conclusions were reached

(References 7 and 15).

1. Although all the walls have been covered very carefully

with high quality absorption material, standing waves in
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Receiver
Micro chone

Source %licrophone
0

Brick Wall
/ Concrete and Steel Collar

Absorptive Material in Speaker Box
Baffle Plate

/, 9-Altec Loudspeakers
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1*
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Figure A.2: KU-FRL Acoustic Test Facility
Showing FlacemenL Of Test Specimun
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between and reflections off the walls and absorption

wedges cannot be prevented.

2. In addition, inside the Beranek Tube, behind the test

panel, standing waves occur and reflections from the

side walls influence the signal measured by the receiver

microphone.

3. Energy dissipation by absorption material, walls and test

panel is not negligible.

4. The plane wave approximation is only justified below a

frequency of 800 Hz at short distances from the speaker

baffle.	 It is also justified over the entire frequency

range (20 Hz-5000 Hz) if the distance from the source is

at least 34 inches.

5. The use of a pure tone generator as a sound source,

instead of white noise or real aircraft noise, appeared

to be a satisfactory substitute to measure sound trans-

mission through aircraft structures.

6. The microphone position (Section 3.5) has its greatest

influence on the measured sound pressure level in the

frequency range between, roughly, 150 Hz and 800 Hz.

7. Each of the nine loudspeakers has its own frequency

- response characteristics.

i8. Possible reflections off the back panel of the Beranek

a
tube are not measured by the receiver microphone. 	 Since

the same sound pressure levels are measured with and

without a back panel, the absorption material reduces the

reflecting sound energy to non-measurable levels.

• t
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9. Above the frequency of 60 Hz the effect of removing the

speaker back panel is minor. Below this frequency a change

in sound Pressure level is measured by the microphone.

Because of the large wavelength in this low frequency

region, it is assumed that this is due to reflections

off the laboratory room walls.

10. The air in a closed cavity backing a flexible panel acts

as an additional stiffness, raising the fundamental panel

resonance frequency. The analytical model gives a pretty

accurate prediction (withih 5% accuracy) of this cavity

effect.

11. The air in a cavity between the test panel and the speaker

baffle acts as a "virtual mass," decreasing the fundamental

panel resonance frequency by an averane of 3 Hz for the

test cases considered.

12. The properties of the KU-FRL acoustic panel test facility

are hard to define. Edge conditions of the test panels

are somewhere between clamped and simply supported. The

absorption material absorbs quite a lot of the sound energy,

but not all the sound energy is absorbed. It is not known

how much sound reflects from the panel, the walls and the

sound absorption materials (at higher frequencies). This

complicates any comparison of measured sound transmission

with theoretical predictions.
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APPENDIX B

EXPERIMENTAL NOISE REDUCTION DATA FOR
MULTILAYERED PANELS
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(a) yarrow Band Analysis

Figure 8.1: Noise Reduction Characteristics of a Multilavered Panel with
Rigid P.V.C.-Based Foam of Density 0.1073 Slugs/ft' attached
to a 0.025 Inch Aluminum Panel
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(a) Narrow Band Analysis

Figure B.2: Noise Reduction Characteristics of a `tultilayered Panel with

Rigid P.V.C.-Based Foam of Density 0.1287 Slugs/ft' attached
to 0.025 Inch Aluminum Panel
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(a) 'farrow Bard Analysis

Figure B.3: Eloise Reduction Characteristics of a 'tultilavered Panel with

Rigid P.V.C.-B3sed Foam of Density 0.3594 Slugs/ft 3 Attached
to 0.025 Inch Aluminum Panel
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(a) ;Narrow Band Analysis

Figure B.w: Noise Reduction Characteristics of a Kultilayered Panel with
Rigid P.V.C.-Based Foam of Densitti 0.1073 Slu93/ft 3 when
Sandwiched between Two 0.025 Inch Uuminum Panels
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(a) Narrow: Band Analysis

Figure B.5 : Noise Reduction Characteristics of a `lultilavered Panel
with Rigid P.V.C.-Bases Foam of Density 0.1237 S1uRslfO
when Sandwiched betwren 0.025 Inch Aluminum Panels
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(a) Narrow Band Analysis

Figure B.b. Noise Reduction Characteristics of a `lultilavered Panel
with Rigid P.V.C.-Based Fcam ',! DEnsity 0.3594 Slugs/ft3
when Sandwiched between 0.025 Inch Alumiaum Panels
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(a) ;farrow sand analysis

Figure B.7 : Noise Reduction. Characteristics of a Multilavered Panel
with Sound Absorption Material of Density 0.082 Slugs/ft3
when attached to 0.025 Inch Aluminum Panel
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(a) Narrow Band Analysis

Figure B.8: Noise Reduction Characteristics of a Multilayered Panel
with Sound Absorption Material of Densitv 0.091 slugs/ft3
when Attached to 0.025 Inch Aluminum Panel
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(a) Narrow Band analysis

Figure B.9: Noise reduction Characteristics of a Kultilavered Panel
with Sound absorption Material of Density 0.114 Slugs/ft'
when attached to 0.025 Inch aluminum Panel
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(a) Narrow Band Analysis

Figure B.10: Noise Reduction Characteristics of a Multila yered Panel with
Sound Absorption Material of Densit y 0.092 Slugs/f& when
Sandwiched between 0.025 Inch A.luminim Panels
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(a) Narrow Band Analysis

Figure 8.11: Noise Reduction Characteristizs of a Multilavered Panel
with Sound Absorption Material of Densit y O.091 Slugs/ft'
when Sandwiched between 0.025 Inch Aluminum Panels
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(a) Narrow Band Analysis

Figure B.12: Noise Reduction Characteristics of a Multilavered Panel with
Sound absorption Material of Densit y 0.114 Slugs/ft' when
Sandwiched between 0.025 Inch Aluminum Panels
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(a) Narrow Band Analysis

Figure B.13: Noise Reduction Charactoristics of a Multilavered Panel with
0.25 Inch Thick Soft Pol:•urethere Foam Attached to 0.025 Inch
Aluminum Panel
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(a) Narrow Band Analysis

FiSure B.14: :Noise Reductio4 Characteristics or a Kultilayered Panel with
0.5 Inch Thick Soft Polyurethene Foam Attached to 0.025 Inch
Aluminum Panel
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(a) Narrow Band Analysis

Figure B.15: Noise Reduction Characteristics of a Multilavered Panel with
0.25 Inch Thick Foam Sandwiched between Two 0.025 Inch
Aluminum Panels
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(a) Marrow Band analysis

Figure B.16: Noise Reduction Characteristics of a `fultilavered Panel with
0.5 Inch Thick Foam Sandwiched between Two 0.025 Inch
Aluminum Panels — 
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(a) Narrow Band Analysis

Figure B.17: Noise Reduction Characteristics of Fiberglass (1 Inch
Thick and 3.5 lb/ft Density) Sandwiched between Two
0.020 Inch Aluminum Panels
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(a) Narrow Band Analvsis

Figure B.18: Noise Reduction Characteristics of a `iultiiayered Panel
Built of 0.025 Inch aluminum Panel, 1/4 Inch P.V.C.-Based
Foam of Density 0.253 Slugs!it.'-, 1 I,-.ch Thick Sounl
Absorption Material of Density 0.082 Slugs / ft . and 0.16
Inch aluminum Panel
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(a) Narrow Band Analysis

Figure B.19: Noise Reduction Characteristics of a Multilayered Panel Built
of 0.025 Inch Aluminum Panel, 1/4 Inch P.V.C.-Based Foam of
Density 0.2253 Slugs/ft 3 , 1 Inch Thick Sound Absorption
Material of Density 0.114 Slugs/ft 3 and 0.016 Inch aluminum
r4nel	 - 110 -
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(a) Marrow Band Analysis

Figure B.20: Noise Reduction Characteristics of a Multilavered Panel Built
of 0.025 Inch Aluminum Panel. 1/4 Inch P.V.C.-Based Foam of
Density 0.3594 Slugs/ft', 1 Inch ;hick Sound .absorption
Material of Density 0.082 Slugs/ft = and 0.016 Inch aluminum
Panel	 - 121 -



in

N

m

A

m
N

^, I

U
Z
W

N Q
W
Cr

W

m

f^

N

qp

N

ss	 N
M	 M	 N	 m

8P . NO I ionc3N 3S I ON

(a) Narrow Band Analysis

Figure 3.21: Noise Reduction Characteristics of a Multilavered Panel Built
of 0.025 Inch Aluminum Panel, 1;4 Inch P.V.C.-Based Fonm of
Density 0.2253 Slugs/ft' and 0.016 Inch Aluminum Panel
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(a) Narrow Band Analysis

Figure B.22: Noise Reduction Characteristics of a Multilayered Panel, Built
of 0.025 Inch aluminum Panel, 1/4 Inch Rigid Foam of Density
0.03594 Slugs/ft 3 , 1 Inch Thick Sound absorption Material of
Density 0.082 Slugs/ft 3 and 0.016 Inch Aluminum Panel
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(a) Narrow Band Analysis

Figure 3.23: Noise Reduction Characteristics of a Multilavered Panel Built
of 0.025 Inch Aluminum Panel, 1/4 ;..ch Rigid Foam of Density
0.3594 Slugs/ft', 1 Inch Thick Sound Absorption Material of
Density 0.082 Slugs/ft 3 and 0.020 Inch Aluminum Panel
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(a) Narrow Band Analysis

Figure B.-14: Noise Reduction Characteristics of a 'Iultilavered Panel Built
of 0.025 Inch Aluminum Panel, 1/4 Inch Rigid Foam of Density
0.3594 Slugs/ft 3 , 1 Inch Thick Sound absorption Material of
Density 0.082 Slugs/rt 3 and 0.025 Inch Aluminum Panel
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(a) Narrow Band Analysis

Figure R.25: Noise Reduction Characteristics of a Multilavered Panel Built
of 0.025 Inch Aluminum Panel, 1/4 Inch Rigid Fuam of Density
0.3544 Slugs/ft', 1 Inch Thick Sound Absorption Material of

Density 0.114 Slugs/ft 3 and 0.016 Inch Aluminum Panel
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(a) yarrow Band Analysis

Figure 8.26: Noise Reduction Characteristics of a Multilavered Panel Built
of 0.025 Inch Aluminum Panel, 1/4 Inch Rigid Foam of Density
0.3594 Slugs/ft = , 1 Inch Thick Sound absorption Material of
Density 0.114 Slugs/ft , and 0.020 Inch aluminum Panel
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(a) Narrow Band analysis

Figure B.27: Noise Reduction Characteristics of a Kultilavered Panel Built
of 0.025 Inch :"luminum Panel, 1/4 Inch Rigid Foar. ► of Density
0.3594 Slugs/ft 3 , I Inch Thick Sound absorption Material of
Density 0.114 Slugs/ft 3 and 0.025 Inch aluminum Panel
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(a) Narrow Band Analysis

Noise Reduction Characteristics of a Multilavered Panel Built
of 0.025 Inch Aluminum Panel + Rigid P.V.C. Foam + 1/16 Inch
Airspace + 0.025 Inch Aluminum Panel
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(a) Narrow Band analysis

Figure B.29; Noise Reduction Characteristics of a Multilayered Panel Built
of 0.025 Inch aluminum Panel + Rigid P.V.C. Foam + 3/16 Inch
Airspace + 0.025 Inch Aluminum Panel
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(a) yarrow Band Analysis

Figure B.30: Noise Reduction Characteristics of a `fultilavered Panel Built
of 0.025 Inch aluminum Panel + Rigid P.V.C. Foam + 3/8 Inch

`	 Airspace + 0.025 Inch Aluminum Panel
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(a) Narrow Band Malysis

Figure B.31: Noise Reduction Characteristics of a 4ultilayered Panel Built
of 0.025 Inch Aluminum Panel + Rigid P.V.C. Foam + 3/4 inch
Airspace + 0.025 Inch Aluminum Panel
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(a) Marrow Band Analvsis

Figure B.32: Noise Reduction Characteristics of Honeycomb Panel with
Aluminum Core (1;8 Inch Thick) and Fiberglass Facings
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(a) :farrow Band Analysis

Figure B.33: Noise Reduction Characteristics of Hone ycomb Panel
with Aluminum Core (1/4 Inch Thick) and Fiberglass
Facings
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U) Marrow Band Analys'.s

Figure B.34: Noise Reduction Characteristics of Honeycomb Panel with
Aluminum Core (112 Inch Thick) and Fiberglass Facings
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(a) Narrow Band Analysis

Figure B.35: Noise Reduction Characteristics of Honeycomb Panel with
Nomex Core (1/8 Inch Thick) and Fiberglass Facings
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(a) Narrow Band Analysis

Figure B.36: Noise Reduction Characteristics of Hone ycomb Panel with
Nomes Core (1/4 Inch Thick) and Fiberglass Facings
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APPENDIX C

CALCULATION OF COMPLEX IMPEDANCE AND PROPAGATION CONSTANT
OF POROUS MATERIAL

Reference 8 presents a method to calculate the complex impedance

and propagation constant of porous material, given its material prop-

erties. In general, both the impedance and propatation constants are

complex and are functions of the frequency. The method given in

Reference 8 depends upon whether the material is semirigid or porous.

C.1 CALCULATION OF CHARACTERISTIC IMPEDANCE AND PROPAGATION CONSTANT
OF SEMIRIGID MATERIALS BASED ON EMPIRICAL. DATA (::EFERENCE 3)

Values of the characteristic impedance Z  and propagation constant

b may be presented as universal functions of the dimensionless parameter

of/R1 where a is the gas density , f is the frequency, and R1 is the

flow resistivity. A summary of the principal results valid for semi-

rigid materials is given in Table C.1.

Table C.1	 Emp irical Power Law Approximations for
the Complex Characteristic Impedance '0

and Complex Propagation Constant b of
Semirigid Materials

Characteristic Impedance

Zl) = 
R + jX

R = oc(1 + 0.0571kof/R1)-0.7541

X - -pc(0.0870(Pf/R1)-0.732

Propagation Constant

b ° 3 + J (27 / X^ t) _	 + J6i
a = (w/c) [0.189(. f/izl)-0.5951

d - (w/c)[1 + 0.0978(af/R1)-0.'00I

0.01 . of/R 1 _ I
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C.2 CALCULATION OF CHARACTERISTIC I;M EDANCE AND PROPAGATION CONSTANT
OF SOFT FIBROUS N<1TERIAL

Reference 8 gives the following method (pages 245-26 U ) to

calculate the characteristic impedance and propagation constant,

given the flow resistivit y , fiber diameter, porosity , :nd gas

density in the material.

1. Calculate the resistivit y R1 of the material.

The relationship between the flow resistivity vs

bulk density showing the parametric dependence on the

fiber diameter is given in Figure 10.4 of Reference 8.

2. Calculate the structures factor s of the •material.

The approximate relation between porosit y P and

the structures factor s fo- homogeneous materials of

fibers and granules with interconnecting pores and few

blind alle ys is given in Figure 10.5 of Reference 8.

3. Calculate effective gas compressibility K.

The effective gas compressibilit y is a function

of frequency and in general is complex. However, the

phase angle is small and can be neglected. The magnitude

of R is obtained from Figure lO.b of Reference 8, given

frequency f and resistivit y R1.

4. Calculate effective as densit y o'.

1

where:

R,
i 
1	

1 + (=)	 (C.2)
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f	 p2 = 1 + (P + -"r) ( R2 2)	 (C.3)Ps pmw

Pm = bulk density of the porous material, kg/m3

p density of the gas in the material, kg/m3

P = porosity dimensionless

s = structures factor

w = frequency radians/sec (= 21rf)

R2 = approximately 1.2 times the flow resistivity, Rl.

5. Calculate propagation constant, b.

b = Jm
K 	(C.4)

Also:

b	 u +	
2a	

(C.5)
IN

m

where:

a = attenuation constant, nepers/m (to convert

nepers into decibels, multiply nepers by 3.69)

1m = wavelength in material

6. Calculate characteristic impedance Z.

Z = -j b
	

(C.6)
WP

and	 Z = R + J X

where:

R = real part of Z in MKS Rayls

X = Imaginary part of Z in MKS Rayls.
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APPENDIX D

LISTING OF COMPUTER PROGRAMS

rw-

This appendix gives the listing of programs used in the prediction

methods and in data reduction. Most of the programs are in the Applesoft

language and written on Apple II plus microcomputer.

D.1 LISTING OF SDOF NOISE REDUCTION

This program calculates the noise reduction values at specified

frequencies, given mass per unit area (kg/m 2 ), the resonance frequency

(Hz), and the damping ratio (^). This program is in Applesaft

language.

16	 )IF

E OF Fh—EED'̂ ; ri

1 ;,_,	 !i.1,:AAJ i;A

I	 ii AD F1

1	 J1	 2	
P

20 i i
25 iF F	 i I G OT 0 "J

0 1	 P	 F

4-) ;ii,	 LOG	 1 + 2

	

43	 2	 (.1
2 W1	 2)	 2"

LOJ (
50 P IT 1:	 P R

J	 ja i

m FM

D

2•

	

Oil:',	 2,

25

I V'-	 ri.Z.
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D.2 LISTING OF DARING RATIO CALCULATION

Given the values of damped resonance frequency (Hz), noise

reduction at the damped resonance frequency, and the mass per unit

area of the panel (kg/m2 ), this program calculates the damping ratio.

This program is Written in Applesoft language.

DA.iPla V UEAL :`ct;:^U ;CY
. 1 -15(

2 1.)	 P.i i117	 U.1,'tp: L' OATUitnif V.3^Q"
hhmii iD

.'.; ,-4 ll = 2 * il l * F L`
4	 Pit_ ►+: ",:R A- yA„P^;J :,'W2 JhAL r,

^:1	 Ptt T.f _ ltti
50 PH 1,'4 '1  "r ek60 P ':h U i I	 ^1:^EA (KV

f, J iJ ^ = .i U

10 A = 10 " (: j :•?	 201 -

P_1

12	 14 1 = (!' * (.J1	 ^ - l;J	 ^^ /

1 ^).. .i+:lr =	 1^
^J	 ,i1	 1L'	 a ( ^	 ,^

Z1.)	 Yit1if. "1'1 = "•.;1

I
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D.3 LISTING OF NOISE REDUCTION OF SAP7DWICH PANELS WITH SHEAR-RESISTANT
CORE

Given the panel size (inch), the number of layers, the density

(kg/m 3 ), thickness (inch), and Young's Modulus (N/m2 ) of the individual

layers and the mass per unit area of the panel (kg/m 2 ), this program

calculates the fundamental flexural resonance frequency, first dilata-

tional resonance frequency, and the noise reduction values at the

specified frequencies. This program is written in Applesoft language.

u
0

i

i-	 i

i:I FAiiLL:3 '.11^_11	 Ht:....

rtiI; 	 C 0 R E

I L., y ;:R*:D F.11.,

TO	 put';	 .r ;i 	 P 1:.i 1!	 _' t;:: A

c .^i = = 1 '^	 .r

. r	 a. .. •	 t	 i

12.E ':1i •, t) _ : ;: 	 . i	 * .:. 2 5., -

.j .(	 I =	 ,t	 j r	 . 1

1

i^	 c 1 1	 »

	

R	
^ I	 L

. 1	 •	 ^
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1 ^ RE t K /A' 2= ; ..- 2027'1;2
52J p= 1 r.C2-t2'7•-)2 * ;'QH ( D	 RC

350 P'IIli i "RES F-REQUE;+CY=" ; k'
,^40 PHI?!: "!i G^+L" ; lt2, " ► : (yH'UkLD
";xu
50 N 1 = 2 * PI * F

.. 2 * i^u

^I rt .1.i * Rv

0 r:l :i1 il7i	 .)d 47
ii + k" )2	

/ 4-DD 6 " 2

423 CA = 2 * PI * PR

4.06 " 2

(1c)
4 5 0 PP.IN. FR; TAB( 1 s) ;:^R
.1 h0 JGT0

)
(2 ` DE'1) * T!I(1 ) + D_(2)
1H ( 2)	 (2	 PI)
4,30	 P Iri':' ")''D—" • FD
4 ')'0	 Eli D

5 1 3 DAiA
520 DAr'A 7. 6246
530	 DA.,,.	 27:;0, .'J1	 i.2,;. I
543 DATA U7 -'j, • 5.6.25 E "'
5 .',0 DATA	 27	 .. C? 16 7.24 X10
5uD D,i'2A 1J, 20,..0, 40 5^,6v, 70,s

;0,KD
,22G, 24D.2u , `,2.30
77:	 DA 'iit	 jUJ, ii?J.:'► 'J.:

J, 1 JtjU, 2'J I. J, 6`v^'v.4v.)V.

7!:J	 %E.	 CALCULA : it1II FUiiL:., ;':i1y

7	 .'U P , ) R TI .D PLA'.' :,

^2:: ;I(I)	 D1: I 1 * _' : ' r _
( 	 2 * p T 	 2

TJ

ju'j 1:P = . i
^ 70 Y: = .1
^6c- R^ = 2

;J0 I? Fh =
41J ::N = t4

u
u

u'
ri

i

u
r^

v

ri

r'
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D.4 LISTING OF NOISE REDUCTION OF SANDWICH PANELS WITH NON-SHEAR-
RESISTANT CORE

ID.4.1 Fortran IV Time Sharing Program

fThis program calculates the first flexural resonance frequencies

of the skins and the noise reduction values at various frequencies,

given panel size (inch), density (kg/m 3 ), and Young's Modulus (N/m2)

of the skin and bulk density (kg/m 3 ), density of air in the core

(kg/m 3 ), resistivity (MKS rayls). porosity, structures factor, and

thickness (inch) of the core.

I	 10C NOL3E RMUCTION 01 YAM W1'21 :1 N';.i,S^EAR R^ jM' Ai CJRE
20 PI=3.1415962

30 DIPd:%OIJN D^("5 ),Y^'I(^) ,iEi(?), X (15).Y(15)
I	 35 DIPE13IJPI :i(3),ciFlTl(j),^(3)

37 REAL K1-.0D
40 CUAK"a CV , n, L2. AKL, .U, 3IKL

I	 45 CO,-TL -t '^2,C:^,C4,C5,C^.C'7,C^,C9,C1J,C11
5U Pi IXT, "PAi.LL :+IDTH Ira
W i(EAD, 6L)L

t	 7U :iIJ:.:--6i-BZ*.0254
►1U Do 1	 = 1 .3, 2
85 K
^l ire( 1.	 3) K=2
c^ Pi11JT."D!2t61.Y IN &Uh1**3,YOAJP1G8 MCA)ULU:i Li 	 I.UEZ?"
1J0 :READ, DE(I),Y:•1(I),M(1)
110 PH::ei, DE(I),Y.^(I).` i(1)

1	 120 1 WiiMUE
1,0 PRI:1:, "'ULK D::aL4 IiY, D:-?i3i:'Y Or GA; 11 TIL

LE CUFCE JL iISTIVI Y I:1 NKS it ITO"
140 READ .DE(2),W,R1
150PRIN ,Di;(2),DG,i?1
io0

rtin
PRli

r P.J.'-
d:."P.iR0

++^

5I_'Y.:^^_i?UC^.UN'_"; FAC^UR,THICKij^7S 114 INCcLm"
17v :t .h(2)
1EOPR-;ii ,P.0,TH(2)
190 DO, 21=1,;

2010 2 _H(i)='Zi(i)*.':254
2 1 .JC CAIAC A ICI "1 7 1-TP : XZV
22CC C-UMIA:13h OF -FF—EC^.1VL CC'.IPIRE S3iB:_ TY

f	 230 Y(1)=.GU'

2-r.ix ( 2 ) — . X32
256X(:;) = . X5
26 X(4)=.11
2 7Qik5)=•,,2
cC7li1MM.:;5
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f
310 n(`+) = •5	 -
j2C X(1v)=1.

330Y(1)=1.J2i5

340Y(2)= 1.0^E5
350Y(5)=1.J5L5
36UY(4)=1.J75L5
37UY (5)=1.11 E5
3d0Y (o) =1 .165E5
39UY(7) =1.2lE5

395 Y(3) =1 .26F5
400Y(9)=l . -)2Z5
41C Y(10)=1 .'5E'5
420 DC > I=1,1 0
00 X(I)=ALWl 0(X(l))

440 3 CONT I1 NE
49J 11_20
492 ICOLNNTL=0
492 PHL T, "FREW 3:CY	 110IO:: REDUCTIUN"
494 I1=20
490 I2=5,:C,
498 I:;=2J
5W 15 W 4 I=I1, I2,I3
510 F=i *1.
52U 0,L-)GA=2*PI*F
550 IrL .LP--AIW10(1•'/H1 }
540 IF((F/ril ) .Li. 0.001) O '=05
5-70 W 6II=1,9
50'U IF (TY.IP.trE.X(II) .Atoll. lr IP.Li.:^(II+1)) :iGi'J7

570 l; CW TA.JUE
58U PHIAT, "l: FACM.3 THrr LU-1I .̂ V"
590 GGTu lOW
6Ucj '1 iliil:i)= (Y(11+1 )—Y(!I))/(X(1I +1 )-:C (Ii))*(T::1P—x(I:) ) +Y(II)

610 GJ'20 d
o2U 5 4-I0D=1 .U1 .05
650 d CONTL UE
640 r1 =1 +(1.2*kl/(D5(2) *C;i.rvA })**2
d5G i•'2=1+;P+JE(2)/l^*^))*(1.2*c^1/(llE(2)*0;I^;A))**2
660 Al =P*iXr*2*F21 (F l *i:10D)
67%"d' 31 =—P*R1 *1 . '/ (Fl *0101A*K-hil) )
6o0 GV=ClZ X(Al,B1)
647 E<ChiPLX (G, Ol :aiA) * Qi (CV }
7CG .:2=^'l,P?.:i(0.,(—^G• ►CD/0,•^G:,!P))*3
702 ALP .A=:i^!kL (B) *t^. 69
70 j ALr,:•' Aw 2 . *P: / (AI;•!Av (B) )
71v AiZz'IH(2)*3
1120 DC.I=CZXF (A.Ki )

74CC CAi,V TI.ATIJit OF Q'% I)  ACID Q(2)

750 DU 11 Lx 
76U K=L
770 IF (L.EQ.j)	 2
730 ri(tl)=i;:;(L)* M(L)

H
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7 0 DS'riFF=Yi^ (j,1+r1^'•.)ww^ /(12.*.^1 )
6UU UII11( iC)=2*Pi**Z/SiD:.*"2*^'1(D31'II•^'/^•!(i{))

61U Q(K)= ► (K)*(;,`t'4J(x)**2-C,^^'X;ti**2)/(U^^(rA*400.)
X20 11 CUNTL14UE

855 Cj=1.-C2
84U C4=(0., -1.)wQ(2)+x.2/400.
j5U 05=1.+C4

660 l:b=C3*C5*E{i,
670 C 7 1 . +C2
EWC5= (0.,-1)*Q(2)-Z2/400.
E3w C 1.+C6

9u0 C10=C7*C^^*Er1kZ
910 C11	 (C6+C10)
920 ANN=10.*ALpG1)(ABS C11 )**2)
930'.IFdTE (6,501)
935 501 FJFi1.;AT (5X , I4 , l0X, ^b . 2 )
940 4 MiTINUE
1360 ICOUNTrICOUIJT+1
960 1F(1CCUNT .NE. 1 ) G920 12
c;r7O i 1 =550
[9yW 12=1vJu
170 1.,=50

i ObU 12 w;+ i WE
1 062 U(ICOUIaT .,a. 2) GOT0 1UU0
1 W 11=15W

1 Cow I2-^W
1 Uu l I:^=7.?J
I OW CrjCO 15
1 C• /U 1 UDO CDi4TL i E
1 Uc3U JTCP
1 C jJ L: D

D.4.2 Low Frequency Approximation in Applesoft Language

Given the same inputs as in D.4.1, this program calculates the

noise reduction values up to 300 Hz.
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1 ;:.C, 	i'.I rV 1 ^, S	 ^j1 J r .l 1 ^	 L^^j

rs	 Ui^: QH (1 5 ) , YFi(1
1	 Rte,.	 t^c3.:;L it^'llU:: ^'JIt U: ::AIJDU
ACA PAiir.LS

►• • iry C'aks'

t)	 PhI.J'^' "	 :;^ t^hUtJCTi7r1 ^^' .;u
L,%Y--,(.ED PANLLS"

l.ti "PN1tliL vlu:r^t (:.^y.^)/1
16	 0

E:O	 rtr:td	 :J^U vt;i:'A R K2:,I::'1',1!J. CORE

'70
ti,^

FOR !:
Ifi K

s	 1	 ;(`	 j	 ^^c	 2
10.0 1GJ

yv ^	 =	 1;
1CG iRl'!T "Dh,'.J".I^Y(l;G3!1.^),''II:C::':
::S- (INCiI

tt
) . Y:UN G' 	:;r;nc^LU4;

1 	 ^ pitAL "D^(t^) ;ti p	)	 ::^'")

J .. r.\	 1.
1 +J
-

PRSt:^. "	 "'CK'	 tda^_'rH'_;,L	 Yii ;̂ P£h+•r.^9/

Y	 (rbVi:;l,

0 hi-AD
11J P:iIi:: DL(2),'-,A(2),It
160
COi3,L:,,;;i:Y

N IA
1 yV li:iAll	 ?,, Uir
20o
2C5 Gj:,Ub 1 '.vU
210 ? ',j R	 1 1	 TO	 3

y
2 : :J l 	 '
24

J K:':^t	 COI ...:JL
2^ •'[	 :^

G"O 45 n0 p r	 .	 r.
1 ^ JJ.'v:.' +)pit,

FOR 1 = 1 :0 2

ul

u
a

fi

n— 148 —



r: t

r

L

F

r

r;

n

P,

^Vv	 Hr., ♦ ^

.!1(2)

T^ )

^^)J ^^ L 4R (R2	 2 + }:2
4 0^) ICE

-

X2 * ^riL i:^^

KL / :.1	 + fie
.1 ^)6
42 aR n t„ * L 	 +

G (i^^	 ,,	 ..
2 1	 Luv '1^	 ^' 	 i..

4.4 p1 %': P','.^R
44^, G^•:Q 270

4 6^ DA	 1 ?
470 Jn.'.1 270 ,:N	 ^25 '' 1421;.

4)0 DA T A 1p

•J2

I11 ATA L1..2 ^V.2'.	 24") 25G,263
I^ v,L^. • y J.. ^NJ,.J

117.	 1 F1.r.'1	 Vf^^I1r U .r/.a^Ult 1• U1^ ^,J J`• ♦ i f•i i lly
CP SIiIP

1 1 J rJR	 _	 o	 :'^_^' 2

5:^	 ._	 I

 OF + 'PEDA.
Al I'D P "P. • un'Cltt,! CG:IITAWTf {f t	 ..t	 =	 :... L^ r ^' ^	 ''1
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6 2 3 F0	 = 1 TC 11
')	 is (:'? >	 _ XR( I ) A iD	 1 ! :i

R(t + 1)) '_'ilE'i	 GJ^C 6 0'
" NE Ym r

tip()	 P'i1!-T "K r	 DS '^j. i r - T^-n
^.UP

b 40 HD = 1)F *	 * F2 / F l - XD = -
1.2*R/ (r'1 *'.t}
NO RD = RD * P % K :::D = ;L * P
K
7 10 SR = :,Qit (:iD	 ;' + XD	 2 :0

^:.:y ("D /	 %. ItD )

RS:i * C0 (C2)* "
74'0' R2 = :-t )R * COS (02) * K / P:
::2 = R R * SI'_1 (J2) * K / P

` , ^)C. 	:'-r(	 C.ALCULA`:G:: ;.'i' 	 K
TG 1 0

102C	 R ;:D :iIt(I;.X:i(I) =	 LG(S

v	 v it i1^.^-	 ..,i,J Ya ^ . )

D.5 LISTING OF DUAL PANE WINDOW

Given the pane size (inch), Density (kg/m 3 ), thickness (inch),

and Young's Modulus (N/m2 ) of the panes and the spacing (inch), this

program calculates the funcamental resonance frequencies of the panes

and the first pane-air-pane resonance frequency and the noise reduction

values at the specified frequency values. This program is in the

Applesoft language.
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D.6 LISTING OF HEL'HOLTZ RESONATOR

This program was developed to study the effects of the various

S^
1

11

parameters of the type of Helmholtz resonator tested at the KU-FRL

acoustic test facility. Given the spacing (inch), width (inch),
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G

resonator length (inch), number of tubes, alpha (defined in Chapter 3),

and the resonance frequency (Hz), this program calculates the resonator

tube diameter and the increase in noise reduction due to the Helmholtz

resonator. It also allows the effects of the variation of different

parameters to be studied. This program is in Applesoft language.
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I^	 D.7 LISTING OF HELMHOLTZ DATA REDUCTION

This program reduces the data from the real time analyzer and

plots the noise reduction values in the frequency region 20-200 Hz.

This program is in Applesoft language.
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D.5 LISTING OF DUAL PANE WINDOW

Given the pane size (inch), Density (kg/m 3 ), thickness (inch),	 1

and Young's Modulus (N/m 2 ) of the panes and the spacing (inch), this

program calculates the funcamental resonance frequencies of the panes

and the first pane-air-pane resonance frequency and the noise reduction

values at the specified frequency values. This program is in the

Applesoft language.f
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D.6 LISTING OF HELMHOLTZ RESONATOR

This program was developed to study the effects of the various

parameters of the type of Helmholtz resonator tested at the K'J-FRL

acoustic test facility. Given the spacing (inch), width (inch),
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r.
resonator length (inch), number of tubes, alpha (defined in Chapter 3),

1 C	 and the resonance frequency (Hz), this program calculates the resonator

tube diameter and the increase in noise reduction due to the Helmholtz

resonator. It also allows the effects of the variation of different

parameters to be studied. This program is in Applesoft language.
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1).7 LISTING OF HELMHOLTZ DATA REDUCTION

This program reduces the data from the real time analyzer and

plots the noise reduction values in the frequency region 20-200 Hz.

This program is in Applesoft language.
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