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AN MMD CHANNEL STUDY FOR THE ETF CONCEPTUAL DESIGN

S. Y. Wang, P, J, Staiger, and J. Marlin Smith
NASA Lewis Research Center
Cleveland, Ohio 44138

Abstract

In thiz paper, the procedures and computation:
used to identify an MD channel for a 540 rly
ETF-scale plant are presented. Under the assumed
constraints of maximum €,, €y, Jy ond o,
our resu.ts show the best plc“t Yxrformunco is
obtained for active length, L ~ 12 M, whereas in
the fritie) ETF studiesls2, ( - 16 M, As M0
chanie)l length is reduced from 16 M, the channel
enthalpy extraction falls off, slowly, This tends
to reduce the Mi0D power output, But the shorter
channels result in lower heat losses to the MiD
channe! cooling water which allows for the incor-
poration of more low pressure boiler feedwater
heaters into the system and an increase in steam
plant efficiency, In addition to the sensitivity
of varfous channe! parameters (B, K, L, Ma, and
Pc), the trade-offs between the level of oxygen
enrichment and the electrical stress on Lhe chan-
nel are also discussed,

Background

Previous studies3-5 have considered the
optimization of channe! performance in terms of
the MMD power (Ppyp) or the net power
(PneY = Pm? ~ PcpR, where Pcpp denctes
the MiD cycle compressor power consumption),

These analyses which utilized a modified chenical
equilibrium grogram® and & quasi-one-dimensional
channe! code™, have been extended to identify

MiD channels that result in the highest overall
thermodynamic cycle efficivmy of the MiD/steam
plant, In addition to the normal constraints con-
sidered for determing the best channel perfor-
mance, we have found that the variation of channel
heat loss (Q‘ro) with channel length and the
effects of this heat loss on the thermodynamic
efficiency of the steam bottoming plant (ng' are
important in establishing the proper genera.or
length,

The value of Qmyp has a direct effect on
the value of ng because the channel is assumed
to be_ccoled u‘?h low temperature boiler feedwater
(<290" F). The channel cooling displaces re-
geénerative feedwater heaters (FWd) which could
otherwise be used, For example, when L « 10 m
and Onfg < 20 mM, two FWH can be used; when
L e« 12-15m and Qmqp = 20-36 mW, one FWH can
still be used; but ugen Qmip > 40 mi for longer
channels, no FWH can be effectively used. Con-
sequently, the net result {s that ng decreases
with increasing Qwp.

Constraints and Assumptions

The channel is assumed to perform under a com-
mon set of ‘wmiting design constraintsé:

1. Axtal elentric field, Ex < Ex max = 2.5 kV/m
2. Transverse electrical field, y < By max =
4.0 kV/m

3. ;rcnsvorse current density, Jy < Jy,max =
10 kA/m
4, Hal) parameter, 8 < Smgx = ¢

This choice o’ Yimiting values ,psrouimctoly re-
presents the current technology/+% on channel
hardware based on limited endurarce tests, The
elactrical stresses due to too high & value of

Exs Ey, Or Jy can cause interelectrode

cnolo¥ |!coun¥l breakdown, If ¢ is too high,
non-uniformit ies and current leakage paths within
the MD channel can de amplified and degrede the
generator performance. In the analysis, the val-
ues are maintained within the design constraint
limits by varylng the B-field and load parameter
axial profiles® along the channel. The channe)

ts operated in the faradav mode at nearly constant
Mach number,

To obtain the channe) detign conditions for a
prescribed channr.! length and an assumed diffuser
pressure recovery coefficient (0.46), several
iterations are required to meet the prescribed
diffuser exit pressure. The correct conditions
are reached by adJust\n? either the combustor
pressure and/or the minimum load parameter
(Kmin). This gives the performance parameters
required for the overall plant calculation; i.e.,
the total MiD power and the total channel heat
loss (Qmyp). Also calculated are the axial pro-
files of ghe plasma conditions and the channel
loft. By assuming a polytropic efficiency (0.898)
and pressure drop fraction (ap « 0.1), the cycle
compressor power consumption is calculated. Using
the specific power of the air separation unit
(204 kWwh/equivalent ton of pure oxygen), the ASU
compressor power {s also computed for a fixed
leve) of oxygen snrichment. Finally, the bottom-
ing steam cycle efficiency (ng) and the nverall
thermodynamic plant efficiency (nyy) arr
obtained.

Inlet Conditiecns

The conditions used in these calculations are
consistent with those designated for the ETF,3
The plant is sited in Montana (elevation =
3300 ft, ambient pressure = 0.89 atm, and ambient
temperature « 42 F). The designated fuel is
Montana Rosebud coal dried to 5 percent moisture
and the oxidant {s oxygen-enriched air preheated
to 1100° F. In this study two levels of oxygen
enrichment, 30 and 35 percent by volume, were con-
sidered. The combus\ion gas conditions are com-
puted for an oxygen stoichiometric ratio of 0.9,
with a combustor-nozzle heat loss of 5 percent of
the total thermal input. The seed is injected as
KzCOg with the potassium being 1 percent of
the total mass flow rate.

Results
Using the abovementioned constraints, the pri-

mary operating parameters Bmax, Ma, L, 0%
sercent, P., and Xpin, as well as the axial
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profiles of 8 and K that yleld the highest
oversll performance are determined. Mundreds of
cslculations were performed to cover the wide
variation of these parameters in order to {dentify
the che-~>ls that will rejult in the best nry.
Two sevs of calculations were oerformed., I[n the
first set, the axigl profile ot the magnetic field
and load paraneter were adjusted to keep the elec-
trical fiold, current, snd Hall paramster con-
straints within limit, From these calculations an
optimum B-field p-ofile wes selected and a pre-
liminary magnet design approximat!n? this profile
was obtainedd. This designed B-field profile

was then fixeu for a second set of calculatiuns,
the results are summarized in two sets of data:
thirteen “designed-8" cases and eighteen -, ixed-B8*
cases, respectively,

“Designed-8" Lases (Coputer Generated-8):
Tables 1 to J

To 11lustrate the sensitivity of the results
about the channels that yield the highest ngp
(case 1-1), four other sub-cese: (1-2 to x-sf are
also tadulated for common L =« .0 m and 07 = 30
percent., Both the /2. and Kmin have been
varied and the optimum conditions meeting the pre-
scribed exit pressure are shown in Fig, 1. The
highest nyy (41.23 percent) occurs at Pc »

4.2 atm, Eor the 10 M channel, P. cannct be
increased beyond 4.2 atm without causing a lower-
ing of Kmin below 0.677 and this in turn will
cause Ex max to be exceeced, Typical axial
profiles of B, Ex, €y, Jy, K, 8, and

Pmyp are plotted in yigs. 2-A (L = 10m) and

2-8 (L = 15 m),

Comparing cases 1 to J for L « !0, 12, and
15 m with 30 percent-02, the 12 m channe) iy
found to have the highest nyy (41,37 percent),
while for 35 percent-02 (cases 4 to 6) the high-
est N‘n (41.44 percent) is found for the 10 m
channel. The variations of nTH, njs, and
ngN with channel length are presented in Fig. 3
for the two levels of oxygen enrichment, For
shorter channels (L < 15 m), ngNy 1t dropping
slowly while njg s increasin?. The effect of
Tess ch;nnel heag loss results in the best nry
at L -~ 12 m,

The dependence of nry on Bpax and Ma
is shown in Fig, 4. At Bpax = 6 Tesla, the
highest performance is obta?ned at a Mach number
of 0.9, Lowering Bmax lowers the overall
plant efficiency and shifts the optimum Mach num-
ber to supersonic values. These results, as also
illustrated in Tables 2 and 3, indicate that the
final selection of the final configurations may
depend upon a tradeoff study between magnet cost
and system efficiency. Other factors which might
result in better performance for low B-fields are
variations in the ?as stream velocity in the chan-
nel and the channel length which were not included
in this study.

The magnet sizes (782, m3T2) are estimated
to be 636, 764, and 968 for L = 10, 12, and 15 m
retpectively (02 » 30 percent); and be 508, 644,
and 782, respectively (07 = 3> peicent), The
savings due to the reduction in length are thus
significant,

*F {xed-B Cases (National Magnet Laboratory-8):
.

The previous cases provided simple magnetic
field profiles designed from the channel perfor-
mance point of view, Toyuther with the channe)
loft they provided the dasic requirements for a
detailed magnet design, Thcse detailed aostgns
were supplied by the Netional Magnet Lab” and
their B-field profiles are shown in Fig. 5, for
active lengths of 10, 12, and 15 w, The channel
performance was then recalculated, in terms of
ntn, using these fixed-B profiles and oxygen
enrichment levels of 30 percent (cases 14 to 22)
and 35 percent (cases 23 to 31) by volume., The
results are given in Table 4,

The cecrease in nyy a3 compared to the
previous designed-B cases is within 0,32-0.85 of a
puint, Yhe small change in nyy 1s & result of
the local optimization process which is capable of
maximizing power by shifting load.

The effect cf variations in Eyx max O
nTH was also investigated and the results are
shown in Figs. 6 and 7 for 02 = 30 and 35 per-
cent, respectively., From the design point of
view, the 35 percent-02 channel is preferred
over the 30 percent-02 channel because the best
performance is cbtained at lower values of
Ex,max. Furthermove, the Hall electrical field
doe” not reach the critical value until much later
in the channel for the higher enrichment case, as
shown in Fig. 8. This means reduced stréss level
for the channel. However, a larger ASU s re-
quired for the higher level 07 cave.

Concluding Remarks

The initial design parameters (B-field, Com-
bustor Pressure, Length, Load Parameter, Mach Num-
ber, and Oxygen Enrichment) of the 540 mWy ETF
channel have been identified with respect to the
overall plant efficiency. The results are:

1. The basic design conditions (Bpax =
6 Tesla, My = 0.9, L &« 12 m, 02 = 30-35 per-
cent by vo?ume) yield an overall plant efficiency,
nTH ~ 41 percent.

2. Recalculation using the fixed-B profiles
has 3hown little change in nyy from the orig-
inal desiyned-8 channels,

3. Lower Bpax results in higher My for
the best performance, but results in lower naty
for the same channel length,

4, Higher oxyger enrichment results in a
shorter channel ard lower Ey max, but requires
a larger air separation plant, Consequently, the
selection of Og level stil) depends upon further
study of the air separation plant, especially on
the economy of size.

S. Results have shown that when the effect of
channel heat loss on bottom cycle efficiency is
taken into account, the best performance is ob-
tained at significantly shorter channel lengths
than were previously thought necessary. This is
primarily due to the recovery of the M0 generator
heat loss as low grade heat by the steam plant
which is an important feature considered in this
paper,
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Nomenc lature:
8 Magnetic field, tesla (or T)
3 Electric field, kV/m
J Electrical current dencity, kA/md
K Feoraday load parameter or factor
L Active channel length, m
Ma Mach number
0, Oxygen enrichment, percent by volume
P £'ectrical power, m
pp runun. atm
4 PCPR - pC)/
Q Heat loucznpim channel, r
v mvmt warm bore volume, m
u velocity, km/s
(] nall parsmeter
n Efficiency, percent
Subscript:
ASU Afr separa.inn unit
C Combustor
CPR MHD cycle compressor
EN Enthalpy extraction
1S I sentropic
MAX Maximm; critical
MIN Mininum
NET Net
S Steam thermodynamic bottoﬂn‘ cycle
™ Overall cycle of MiD/steam plant
x Axial
y Transverse

l.

~
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Figure 5. - Nationa! magnet laboratory axial profiles of B-field.
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