NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NASA-TM-81764) A MHC CHANNEL STUDY FOR THE ETF CONCEPTUAL DESIGN (NASA) HC A02/MF A01

CSCL 201

N81-24927

Unclas G3/75 42467

DOE/NASA/10769-14 NASA TM-81764

Channel An MHD Study for the ETF Conceptual Design

S. Y. Wang, P. J. Staiger, and J. Marlin Smith National Aeronautics and Space Administration Lewis Research Center

Work performed for **U.S. DEPARTMENT OF ENERGY** Fossil Energy Office of Magnetohydrodynamics

Prepared for Nineteenth Symposium on Engineering Aspects of Magnetohydrodynamics Tullahoma, Termessee, June 15-17, 1981

ERRATA

NASA Technical Memorandum 81764 DOE/NASA/10769-14

AN MHD STUDY FOR THE ETF CONCEPTUAL DESIGN

S. Y. Wang, P. J. Staiger, and J. Marlin Smith June 1981

Cover and title page: The title of the report should be An MHD Channel Study for the ETF Conceptual Design.

An MHD Study for the ETF Conceptual Design

S. Y. Wang, P. J. Staiger, and J. Marlin Smith: National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

Performed for
U.S. DEPARTMENT OF ENERGY
Fossil Energy
Office of Magnetohydrodynamics
Washington, D.C. 26545
Under Interagency Agreement DE-AI01-77El*10769

Nineteenth Symposium on Engineering Aspects of Magnetohydrodynamics Tullahoma, Tennessee, June 15-17, 1981

ORIGINAL PAGE IS

AN MID CHANNEL STUDY FOR THE ETF CONCEPTUAL DESIGN

S. Y. Wang, P. J. Staiger, and J. Marlin Smith NASA Lewis Research Center Cleveland, Ohio 44135

Abstract

In this paper, the procedures and computation: used to identify an MiD channel for a 540 mMg ETF-scale plant are presented. Under the assumed constraints of maximum E_X , E_Y , J_Y and θ , our results show the best plant performance is obtained for active length, L=12 M, whereas in the iritial ETF studies 1 , 2 , L=16 M. As MiD changel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MID power output. But the shorter channels result in lower heat losses to the MID channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. In addition to the sensitivity of various channel parameters (B, K, L, Ma, and Pc), the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

Background

Previous studies $^{3-5}$ have considered the optimization of channel performance in terms of the MHD power ($P_{\rm MHD}$) or the net power ($P_{\rm NET}=P_{\rm MHD}=P_{\rm CPR}$, where $P_{\rm CPR}$ denotes the MHD cycle compressor power consumption). These analyses which utilized a modified chemical equilibrium program and a quasi-one-dimensional channel code, have been extended to identify MHD channels that result in the highest overall thermodynamic cycle efficiency of the MHD/steam plant. In addition to the normal constraints considered for determing the best channel performance, we have found that the variation of channel heat loss ($Q_{\rm MHD}$) with channel length and the effects of this heat loss on the thermodynamic efficiency of the steam bottoming plant ($n_{\rm S}$) are important in establishing the proper generalor length.

The value of Q_{NHD} has a direct effect on the value of η_S because the channel is assumed to be cooled with low temperature botler feedwater (<290° F). The channel cooling displaces regenerative feedwater heaters (FWH) which could otherwise be used. For example, when L = 10 m and $Q_{NHD} < 20$ mM, two FWH can be used; when L = 12-15 m and $Q_{MHD} = 20-36$ mM, one FWH can still be used; but when $Q_{MHD} > 40$ mM for longer channels, no FWH can be effectively used. Consequently, the net result is that η_S decreases with increasing Q_{MHD} .

Constraints and Assumptions

The channel is assumed to perform under a common set of 'imiting design constraints4;

1. Axiai electric field, $E_X \leq E_{X,max} = 2.5 \text{ kV/m}$ 2. Transverse electrical field, $E_Y \leq E_{Y,max} = 4.0 \text{ kV/m}$

- 3. Transverse current density, $J_y \leq J_{y,max} = 10 \text{ kA/m}^2$
 - 4. Hall parameter, $s \le s_{max} = 4$

This choice of limiting values approximately represents the current technology's on channel hardware based on limited endurance tests. The electrical stresses due to too high a value of $E_{\rm X}, E_{\rm Y},$ or $J_{\rm Y}$ can cause interelectrode and/or sidewall breakdown. If g is too high, non-uniformities and current leakage paths within the MiD channel can be amplified and degrade the generator performance. In the analysis, the values are maintained within the design constraint limits by varying the B-field and load parameter axial profiles along the channel. The channel is operated in the Faradav mode at nearly constant Mach number.

To obtain the channel design conditions for a prescribed channel length and an assumed diffuser pressure recovery coefficient (0.46), several iterations are required to meet the prescribed diffuser exit pressure. The correct conditions are reached by adjusting either the combustor pressure and/or the minimum load parameter (Kmin). This gives the performance parameters required for the overall plant calculation; i.e., the total MiD power and the total channel heat loss (QMID). Also calculated are the axial profiles of the plasma conditions and the channel loft. By assuming a polytropic efficiency (0.898) and pressure drop fraction (ap = 0.1), the cycle compressor power consumption is calculated. the specific power of the air separation unit (204 kWh/equivalent ton of pure oxygen), the ASU compressor power is also computed for a fixed level of oxygen enrichment. Finally, the bottoming steam cycle efficiency (ng) and the overall thermodynamic plant efficiency (nTH) are obtained.

Inlet Conditions

The conditions used in these calculations are consistent with those designated for the ETF.3 The plant is sited in Montana (elevation = 3300 ft, ambient pressure = 0.89 atm, and ambient temperature = 42° F). The designated fuel is Montana Rosebud coal dried to 5 percent moisture and the oxidant is oxygen-enriched air preheated to 1100° F. It this study two levels of oxygen enrichment, 30 and 35 percent by volume, were considered. The combustion gas conditions are computed for an oxygen stoichiometric ratio of 0.9, with a combustor-nozzle heat loss of 5 percent of the total thermal input. The seed is injected as K2CO3 with the potassium being 1 percent of the total mass flow rate.

Results

Using the abovementioned constraints, the primary operating parameters $B_{\text{max}},\ \text{Ma, L, O}_2$ percent, $P_{\text{C}},\ \text{and}\ \ K_{\text{min}},\ \text{as well as the axial}$

profiles of 8 and K that yield the highest overall performance are determined. Hundrads of calculations were performed to cover the wide variation of these parameters in order to identify the charants that will result in the best name. Two sets of calculations were performed. In the first set, the axial profile of the magnetic field and load parameter were adjusted to keep the electrical field, current, and Hall parameter constraints within limit. From these calculations an optimum 8-field profile was selected and a preliminary magnet design approximating this profile was obtained. This designed 8-field profile was then fixed for a second set of calculations, the results are summarized in two sets of data: thirteen "designed-8" cases and eighteen "lixed-8" cases, respectively.

"Designed-B" Cases (Computer Generated-B): Tables I to 3

To illustrate the sensitivity of the results about the channels that yield the highest $_{\rm nth}$ (case 1-1), four other sub-crsc (1-2 to 1-5) are also tabulated for common L = .0 m and 0_2 = 30 percent. Both the $P_{\rm C}$ and $K_{\rm min}$ have been varied and the optimum conditions meeting the prescribed exit pressure are shown in Fig. 1. The highest $_{\rm nTH}$ (41.23 percent) occurs at $P_{\rm C}$ = 4.2 atm. For the 10 M channel, $P_{\rm C}$ cannot be increased beyond 4.2 atm without causing a lowering of $K_{\rm min}$ below 0.677 and this in turn will cause $E_{\rm X,max}$ to be exceeded. Typical axial profiles of B, Ex, Ey, Jy, K, B, and $P_{\rm MHD}$ are plotted in Figs. 2-A (L = 10 m) and 2-B (L = 15 m).

Comparing cases 1 to 3 for L = 10, 12, and 15 m with 30 percent- 0_2 , the 12 m channel is found to have the highest $_{\rm NH}$ (41.37 percent), while for 35 percent- 0_2 (cases 4 to 6) the highest $_{\rm NH}$ (41.44 percent) is found for the 10 m channel. The variations of $_{\rm NH}$ NIS, and $_{\rm NEN}$ with channel length are presented in Fig. 3 for the two levels of oxygen enrichment. For shorter channels (L < 15 m), $_{\rm NEN}$ is dropping slowly while $_{\rm NEN}$ is increasing. The effect of less channel heat loss results in the best $_{\rm NH}$ at L $_{\rm TH}$

The dependence of n_{TH} on B_{max} and Ma is shown in Fig. 4. At $B_{max}=6$ Tesla, the highest performance is obtained at a Mach number of 0.9. Lowering B_{max} lowers the overall plant efficiency and shifts the optimum Mach number to supersonic values. These results, as also illustrated in Tables 2 and 3, indicate that the final selection of the final configurations may depend upon a tradeoff study between magnet cost and system efficiency. Other factors which might result in better performance for low B-fields are variations in the gas stream velocity in the channel and the channel length which were not included in this study.

The magnet sizes $(\nabla B^2, m^3T^2)$ are estimated to be 636, 764, and 968 for L=10, 12, and 15 m respectively $(0_2=30 \text{ percent})$; and be 508, 644, and 782, respectively $(0_2=30 \text{ percent})$. The savings due to the reduction in length are thus significant.

"Fixed-B" Cases (National Magnet Laboratory-B): Table 4

The previous cases provided simple magnetic field profiles designed from the channel performance point of view. To ether with the channel loft they provided the basic requirements for a detailed magnet design. These detailed designs were supplied by the National Magnet Lab and their B-field profiles are shown in Fig. 5, for active lengths of 10, 12, and 15 m. The channel performance was then recalculated, in terms of nTH, using these fixed-B profiles and oxygen enrichment levels of 30 percent (cases 14 to 22) and 35 percent (cases 23 to 31) by volume. The results are given in Table 4.

The decrease in $_{\rm NTH}$ as compared to the previous designed-B cases is within 0.32-0.85 of a point. The small change in $_{\rm NTH}$ is a result of the local optimization process which is capable of maximizing power by shifting load.

The effect of variations in $E_{x,max}$ on n_{TM} was also investigated and the results are shown in Figs. 6 and 7 for $0_2=30$ and 35 percent, respectively. From the design point of view, the 35 percent- 0_2 channel is preferred over the 30 percent- 0_2 channel because the best performance is obtained at lower values of $E_{x,max}$. Furthermore, the Hall electrical field doer not reach the critical value until much later in the channel for the higher enrichment case, as shown in Fig. 8. This means reduced stress level for the channel. However, a larger ASU is required for the higher level 0_2 case.

Concluding Remarks

The initial design parameters (B-field, Combustor Pressure, Length, Load Parameter, Mach Number, and Oxygen Enrichment) of the 540 mWT ETF channel have been identified with respect to the overall plant efficiency. The results are:

- 1. The basic design conditions (B_{max} = 6 Tesla, M_a = 0.9, L = 12 m, 0_2 = 30-35 percent by volume) yield an overall plant efficiency, n_{TH} ~ 41 percent.
- 2. Recalculation using the fixed-B profiles has shown little change in $_{\rm NTH}$ from the original designed-B channels.
- 3. Lower B_{max} results in higher M_a for the best performance, but results in lower n_{TM} for the same channel length.
- 4. Higher oxygen enrichment results in a shorter channel and lower $E_{x,max}$, but requires a larger air separation plant. Consequently, the selection of Ω_2 level still depends upon further study of the air separation plant, especially on the economy of size.
- 5. Results have shown that when the effect of channel heat loss on bottom cycle efficiency is taken into account, the best performance is obtained at significantly shorter channel lengths than were previously thought necessary. This is primarily due to the recovery of the MHD generator heat loss as low grade heat by the steam plant which is an important feature considered in this paper.

ORIGINAL I OF POOR QUALITY

Nomenc lature:

В	Magnetic field, tesla (or T)
Ē	Electric field, kV/m
J	Electrical current density, kA/m2
K	Foreday load parameter or factor
L	Active channel length, m
Ma	Mach number
0 ₂	Oxygen enrichment, percent by volume
P"	Electrical power, mW
р	Pressura, atm
ΔP	(PCPR - PC)/PCPR Heat loss in the channel, all
Q	Heat loss in the channel, wil
	Magnet warm dore volume, m
u	Velocity, km/s
8	Hall parameter
n	Efficiency, percent

Subscript:

ASU	Air separation unit
C	Combustor
CPR	MHD cycle compressor
EN	Enthalpy extraction
15	I sentropic
MAX	Naximum; critical
MIN	Mininum
NET	Net
S	Steam thermodynamic bottoming cycle
TH	Overall cycle of MiD/steam plant
X	Axial
٧	Transverse

References

- 1. Avco Everett Research Lab., Inc., "Engineering Test Facility Conceptual Design," Final Report UOE/FE/2614-3, February 1980.

 2. General Electric Company, "MND-ETF Program Final Report," DOE/FE/2613-6, Vols. 1 thru 4E, February 1980.

 3. Bercam, R. W. and G. R. Seikel, "Engineering Test Facility Design Pefinition," NASA TM-81499, DOE/NASA/2674-11, 1980.

 4. Pian, C. C. P., Seikel, G. R., and Smith, J. N., "Performance Optimization of an MND Generator with Physical Constraints," NASA TM-79172, DOE/NASA/2674-79/5, 1979.

 5. Pian, C. C. P., Staiger, P. J., and Seikel, G. R., "MND Performance Calculations with G. yeen Enrichment," NASA TM-79140, DOE/NASA/2674-79/4, 1979.

 6. McBride, B. J. and Gordon, S., "Computer Pro-
- McBride, B. J. and Gordon, S., "Computer Pro-gram for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouquet Detonations, "NASA SP-273,
- 1976, Rev.
 7. Kessler, R., "Open-Cycle MID Generator Channel Development," Energy to the 21st Century; 15th Intersociety Energy Conversion Engineering Conference, American Institute of Agronautics and Astronautics, Inc., New York,
- 1980, Vol. 1, pp. 170-178. 8. 7th International Conference MHD Electrical Power Generation Symposium, Cambridge, MA, June 16-20, 1980, Vol. I, Sessions D and E. 9. Private communication with National Magnet Lab,
- MIT, Cambridge, Massachusetts, 1980.

ORIGINAL PAGE IS OF POOR QUALITY

(PERCENT-VAL)	The Cyc off.	22222222
	ž.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Cyc cost input, inf	53.55 53.55 53.55 53.55
- 30, 35	Sta cyc setter.	232322222 23232222222
): AND 02	Sta cyc eff percent	*********
12, 15 (4	Bottes cycle ispet.	25.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.
L - 10.	200	11.62
CASES FOR BHAX = 6 (TESLA); Ha-0.9; L = 10, 12, 15 (m); AMB 02 = 30, 35 (PERCENT-WRL)	Cycle compres power,	22.22 20.62 20.62 20.62 20.63
	Chamel ht loss,	17.32 17.32 17.55 17.56 17.56 17.56 17.56 18.58 18.58 18.58 18.58 18.58 18.58 18.58 18.58 18.58
	Power.	88.21 87.28 87.28 87.39 87.59 87.50 102.56
	Combustor pressure, atm	444 W W 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MERATED-8	Channel length,	10.090 10.010 10.010 10.040 12.090 15.040 9.970 14.330
TABLE 1 COMPUTER GENERATED-B CASES FOR	Oxidant mass flow, kg/s	110.50
	Final product mass flow, kg/s	161.10 145.57 145.57 145.57
	Product mass flow, kg/s	133.0
	vol. percent 0 ₂	30.0 30.0 35.0 35.0
	Case no.	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1


	S é	882: 6-i-
ML); AM Ms = 0.95-1.15	Ners Lyc off, percent	8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1
	ž įų	228.5
	R # #	539.R
	02 Settem Str. cyc Stm.cyc (Cyc. cos) wress ac Therm Pinch s compres cycle eff., entpat, ispat, percent safe saff safe percent safe safe second	136.05 136.28 136.61
HCENT-NO	Str cyc eff	8.28 8.27 8.27
. 30 (PERC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8:55 8:55 8:55
20 :(=) 2	CO COMPTES	n.e2
COPUTER GENERATED-8 CASES FOR BINX = 5 (TESLA); L = 12 (m); O2 = 30 (PENCENT-NL); AND N3 = 0.95-1.15	Cycle Compre Poser	22.56
	Channel Mr loss,	21.66 20.13 19.15
		8.8 8.5 8.5 12.8
	Channel Combustor MHO Channel length, pressure, power, Mt loss, m etm alic mill	777
	Channel length,	11.990 11.990 12.040
	Oxidant mass flow, tg/s	110.50
MALE 2 COMPUTE	Final (product mass flow, kg/s	01.191
_	Prodect mass flow, kg/s	133.0
	Vol. percent 02	30.0
	Case no.	~ @ 6

ORIGINAL PAGE IS OF POOR QUALITY

1 4	1.15 1.25 1.35 1.35
Thera Cyc eff, percent	***
Sass ac Page,	213.0 213.2 212.5
Cyc coal ignet.	20.00 20.00
Sta cyc	15.55 15.25 15.20
Sta cyc eff percent	3.5 3.5 3.6
Bottes Cycle ispet,	441.91 442.27 444.15
	3.11 3.11 3.11
_	20.42 29.82 19.59
Chamel Mt loss,	19.88 17.79 16.00
RED POMET.	72.05 72.09 68.99
Combustor pressure, atm	4.0 4.1 3.8
Channel length,	12.000 12.070 12.170
Oxidant mass flow, kg/s	110.50 110.50 110.50
Final product mass flow, kg/s	161.10 261.10 161.10
Product mass flow, kg/s	133.0 1.3.0 133.0
Vol. percent O2	30.0 30.0 30.0
Case no.	122
	Vol. Product Final percent mass product 02 flow, mass flow,

	12	2.5	2.5	2.0	2.5	2.0	5.5	2.7 1.5	5.5	- S-	2.5	2.5	'n
), 35 (PERCENT-ML)	CA CA	2 2 2 2	THE REAL PROPERTY.		-	-						****	40.0
	£ 14	23.8	217.6	22.2	2	22.3	5	26.5	23.9	25.2	215.5	213.6	21.0
	Ch Ca Land Ch Land Ch	539.R				-	539.19		-				-
- 20	N. C. W. C. W.	137.08 139.96	143.98 133.51	1X.23	13.0	12.85 28.23 28.23	123.X	135.0	126.25	127.13	121.0	122.86	125.71
15 (a); /	Sta cyc eff percent	X X	33.58	2. E	8	88	25	39.52	2.8		36.11	38.31	35° 26
. 10, 12,	Cycle figure,	429.35 430.84	435.18	427.61	427.19	23.72	27.03	22.65	628.33	38	23.23	\$5.2	423.28
. 0.9; L	200	11.62				-	15.37					(>
TABLE 4 NATIONAL PAGNET LABORATORY-8 CASES FOR BANA = 6 (TESLA); Ma = 0.9; L = 10, 12, 15 (m); AMB 02 = 30, 35 (PERCENT-ME.)	Cycle Compress Power,	20.42 18.30	15.93 22.36	20.01	24.13	19.17	22.22	17.82	3.6	19.73	2.6	2.73	27.72
	Channel ht loss,	17.60	21.33	20.25 20.25	28.23	3 R 3 R	3.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55	8 :8:	23 :33	2 S	36.E	¥.3	8.8
	7 2 3 A	94. 61	8.3 8.53	8.8	90.49	8.8. 8.0.	3.5	17.98	3.3	8 %	2.59	8.72	96.27
	Combustor pressure, atm	4. 0 3.5		6, M	5.0	3.7		Ţ	0,0		7.2	6.5	s.
	Channel length.	9.896 10.000	10.360	11.990	22.53	15.180	8.6	10.070	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	12.000	14.660	14.70	14.830
	Oxidant mass flow, kg/s	05.011				-	95.37			10 to 44 1	10 April 10	***	_
	Final product mass flow, kg/s	161.10				-	145.57						>
	Product mass flow, kg/s	133.0				-	117.5					*****	-
	Vol. percent O ₂	30.0		. ****			35.0		4-2101		****	(>
	Case no.	72	22	85	ຂ:	28	22	S	28	38	53	8	F

 $\begin{array}{lll} B_{max} = 6 \text{ (T),} & E_{X, \; max} = 2.5 \text{ (kV/m)} \\ L = 10 \text{ (m),} & E_{y, \; max} = 4.0 \text{ (kV/m)} \\ Me = 0.9, & J_{y, \; max} = 10.0 \text{ (kA/m}^2) \\ O_2 = 30 \text{ (vol %),} & \beta_{max} = 4.0 \end{array}$

¥.

Figure 1. - Plant efficiency vs. channel inlet stagnation pressure and minimum load parameter for a 10-meter (m) channel.

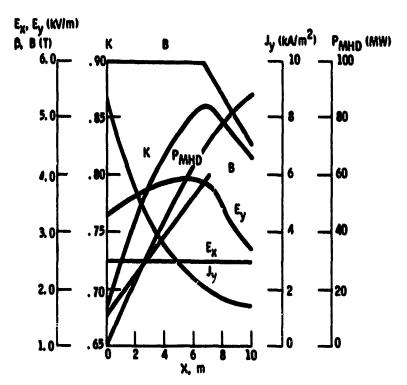


Figure 2(a). - Typical axial variations of B, K, E $_{\rm H}$, E $_{\rm H}$, B, and P $_{\rm MHD}$ of the 10-meter (m) channel (design case 1-1: O_2 = 30 %, Ma = 0.9, $\rho_{\rm C}$ = 4.2 atm).

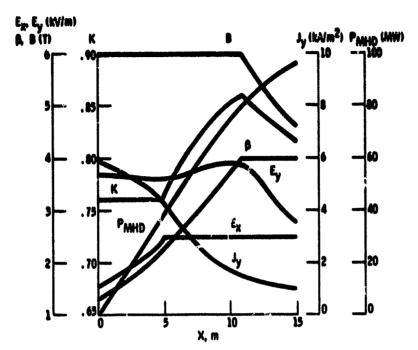


Figure 2(b). - Axial variations of 8, K, E,. E,. J,. B, and PANAD of 15-m channel (design case 3: O_2 = 30 %, Me = 0.9, ρ_c = 5.1 atm).

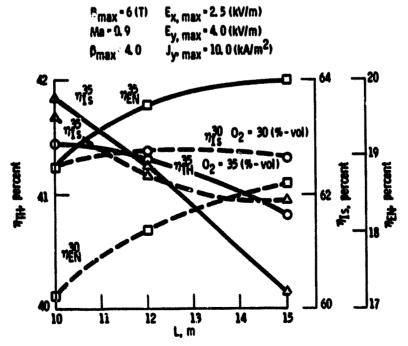


Figure 3. – $\eta_{TH},~\eta_{TS}$ and η_{EN} for different channel lengths and oxygen enrichments.

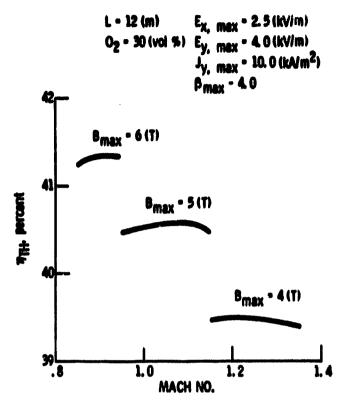


Figure 4. - Peak plant efficiency for B_{max} = 4, 5, and 6 Tesia (Y) at a range of channel Mach no. under common constraints.

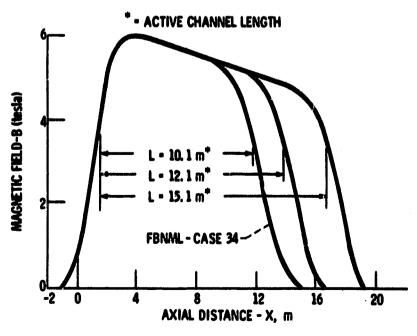
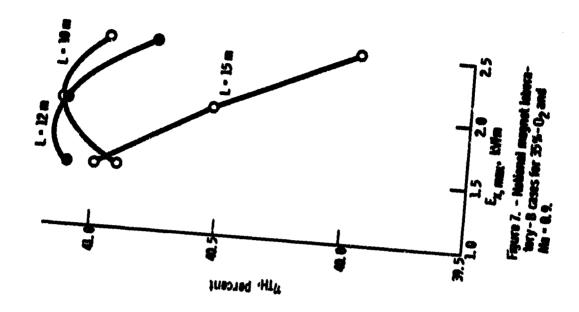
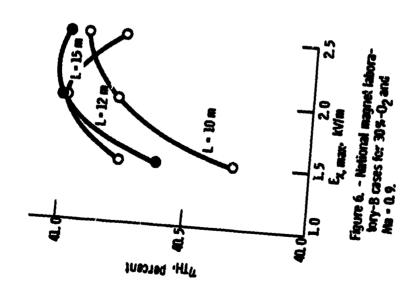




Figure 5. - National magnet laboratory axial profiles of B-field.

ORIGINAL PASS IS OF POOR QUALITY

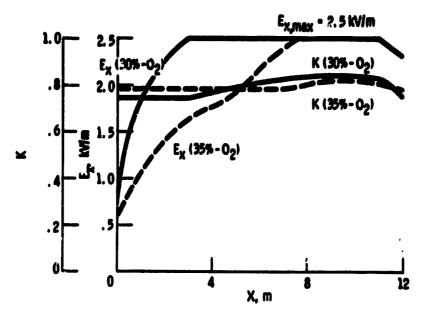


Figure 8. - Axial development of half electric field E $_{\rm X}$ and loading K (for national magnet laboratory -B, O $_2$ = 30, 35%, and L = 12 m).