

DOE/NASA/2593-2 BASA TM-82591

NASA-TM-82591 19810016656

High Temperature Alkali Corrosion in High Velocity Gases

Carl E. Lowell, Steven M. Sidik, and Daniel L. Deadmore National Aeronautics and Space Administration Lewis Research Center

LIBU DA UUDA

May 1981

JUN 25 1981

LIBRARY, NASA

Prepared for U.S. DEPARTMENT OF ENERGY Fossil Energy Office of Coal Utilization

NOTICE

This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Changed 8-13-8/

ERRATA

NASA Technical Memorandum 82591 DOE/NASA/2593-26

HIGH TEMPERATURE ALKALI CORROSION IN HIGH VELOCITY GASES

Carl E. Lowell, Steven M. Sidik, Daniel L. Deadmore May 1981

Cover, title page, and last page: The DOE/NASA report number should be DOE/NASA/2593-28.

`..

_ _ _ _

High Temperature Alkali Corrosion in High Velocity Gases

Carl E. Lowell, Steven M. Sidik, and Daniel L. Deadmore National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

May 1981

Work performed for U.S. DEPARTMENT OF ENERGY Fossil Energy Office of Coal Utilization Washington, D.C. 20545 Under Interagency Agreement EF-77-A-01-2593

N81-25191#

HIGH TEMPERATURE ALKALI CORROSION IN HIGH VELOCITY GASES

by Carl E. Lowell, Steven M. Sidik, and Daniel L. Deadmore

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

The effects of potential impurities in coal-derived liquids such as Na, K, Mg, Ca, and Cl on the accelerated corrosion of IN-100, U-700, IN-792, and Mar-M509 were investigated using a Mach 0.3 burner rig for times to 1000 hours in 1-hour cycles. These impurities were injected in combination as aqueous solutions into the combustor of the burner rig. The experimental matrix utilized was designed statistically. The extent of corrosion was determined by metal recession. The metal recession data were fitted by linear regression to a polynomial expression which allows both interpolation and extrapolation of the data: As anticipated, corrosion increased rapidly with Na and K, and a marked maximum in the temperature response was noted for many conditions. In contrast, corrosion decreased somewhat as the Ca, Mg, and Cl contents increased. Extensive corrosion was observed at concentrations of Na and K as low as 0.1 ppm at long times.

INTRODUCTION

One of the major uncertainties in the use of coal-derived liquids to power gas turbines is the effect of residual impurities in such fuels on the life of the hot parts of the turbine. The effects of some of these impurities are known to be adverse. Much work has been done on the effects of impurities such as sodium (Na), potassium (K), and vanadium (V) (see refs. 1 to 5). Such impurities may react with the sulfur in the fuel during the combustion process forming highly corrosive deposits such as sodium and potassium sulfates, sodium vanadates, etc. These corrosive deposits lead to greatly accelerated attack on the hot airfoils of the turbine, resulting in unacceptably short lives. On the other hand, some impurities are known to act as corrosion inhibitors; for example, Ca and Mg (refs. 4 and 5) are often deliberately added to fuels to reduce corrosion. Finally, there are many impurities whose effects are not known and certainly the effects of the interaction of various impurities are largely unknown.

Two potential approaches to determining the effects of such impurities are fruitful. The first is to test many real fuels. By testing a broad spectrum of such fuels, the effects of the various impurities from the analyses of the fuels combusted can be inferred. The main advantage to this approach is that real fuels are burned and that one obtains data under conditions closely approaching those found in a real gas turbine. The main disadvantage of such tests is that the data obtained are relevant only to the fuels actually tested, and usually the range of impurities available is quite limited. Also, currently there are very few liquid coal-derived fuels that are available in quantities sufficient for such tests. The second approach involves the use of clean fuels doped with impurities of interest in a parametric fashion. The advantage of this approach is that such impurity combinations can be carefully controlled and varied in a systematic fash-

E-8:38

ion. This allows the prediction of attack due to any composition within the range of the impurities studied. The disadvantages to such tests are that they do not burn real fuels under real turbine conditions, and that many tests may be required.

The work described in this report is confined exclusively to the doping approach. The object of this effort is to evaluate the effects of time, temperature and impurity content on corrosion. An earlier report (ref. 6) described such tests. The impurities used in this earlier work were Na, K, Mg, Ca, and Cl, and other variables included in the tests were time, temperature, and fuel-to-air ratio. The temperature range covered in the earlier experiments was from 800° to 1100° C, and the time of the experiments ranged to 200 hours. The concentrations used in these experiments were centered around approximately 0.5 ppm, with variations from 5 to 0.05 ppm, approximately. The parametric additions of the impurities, as well as the other variables, were statistically designed to minimize the number of tests. While weight-change measurements were made, these data cannot be used to satisfactorily evaluate the extent of hot corrosion attack and metal recession measurements (τ) were used in their place. The types of deposits were evaluated by X-ray diffraction.

This work allowed the estimation of attack over a wide range of impurity concentrations at relatively short times; however, the extrapolation of such data to much lower concentrations and much longer times has limited validity. Therefore, the program was extended as described in the current paper to concentrations as low as 0.01 ppm, and to times as long as 1000 hours. Upon the completion of the experiments, most of the data were combined to be evaluated by multiple linear regression into one model. This model can then be used to estimate the effects of these impurities over a broad range of concentrations, temperatures, and times.

MATERIALS

The compositions of the alloys used in this program are listed in table I. The cobalt-base alloy Mar-M509 is a typical vane material which is generally considered to have good hot corrosion resistance due to its high chromium content. The three nickel-base turbine blade alloys cover a range of hot corrosion resistance: IN-792 has moderately good hot corrosion resistance, while U-700 has somewhat poorer hot corrosion resistance, and IN-100 has the least resistance to such attack. All of the alloys were cast by a commercial vendor into the shape shown in figure 1(a). All samples were grit blasted and cleaned with alcohol. Prior to test, each sample was measured along a diameter in the center of the expected hot zone (see fig. 1(a)) with a bench micrometer to a precision of ± 2 micrometers and weighed to ± 0.2 milligram.

PROCEDURE

A burner rig typical of the four used for these tests is shown in figure 1(b) and has been described in reference 7. Briefly, each rig is a nominal Mach 0.3 type fired with Jet A-1 fuel whose sulfur content was determined to be 0.035±0.014 weight percent over the duration of the tests which was approximately 2 years. The fuel-to-air mass ratio was varied from about 0.035 to 0.055. The dopants were injected into the combustion chamber as aqueous solutions. Eight samples were rotated rapidly in front of the exhaust nozzle and reached the desired temperature in a few minutes. After each 1-hour exposure the burner pivoted away and a forced air cooling nozzle was directed onto the specimens for 3 minutes. Then this cycle was repeated.

At intervals, samples from each alloy were removed and new samples were put in their place. There were several replacement schedules followed during these tests, depending on the total duration of the test. Most of the schedules from the work described in reference 6 resulted in three samples from each alloy at the end of the test: one having been exposed for 40, one for 60, and one for 100 hours. In the later tests, however, where the impurity levels were at their lowest, the samples were scheduled such that at the conclusions of the test specimens were available with exposures of 100, 300, and 400 hours. In a few cases, samples were scheduled resulting in a final evaluation at 100, 400, 500, and 1000 hours.

Regardless of the time of exposure, after each sample was removed from the burner rig it was weighed, washed, and reweighed. Washing consisted of emersion of each sample blade in 300 cm^3 of water at 80° C, followed by a soft brushing in running water, an alcohol rinse and air drying. The samples were then sectioned along the plane shown in figure 1(a), which was the center of the hot zone, and where all temperature measurements were made during the run. The cut sections were mounted metallographically, polished and etched. Thickness measurements were made to determine the final thickness at maximum penetration and to calculate maximum metal loss τ , as shown in figure 2. While both the initial and final thicknesses were measured to a precision of ±2 micrometers, experience has shown (ref. 8) that the resultant change in thickness is only accurate to about ± 20 micrometers at best, and is often as poor as ±200 micrometers, due to the irregularity of attack and other factors outlined in reference 7. At the conclusion of each test, and before washing, the samples of each alloy exposed for the longest time were scraped and the scrapings were submitted for powder diffraction to analyze the deposits. A few milligrams from each sample were obtained in this fashion and analyzed using a Guinier de Wolf camera. This type of focusing camera was necessary because of the complexity of the patterns of the deposits which resulted in many overlapping diffraction lines in the normal powder camera pattern.

RESULTS AND DISCUSSION

Model Choice and Fitting Procedures

In the preceding report (ref. 6) the data were fitted to: $\tau = C_1(Na)C_2(K)C_3(Mg)C_4(Ca)C_5(C1)t^{\beta_1} 10^{\beta_2+\beta_3T+\beta_4T^2+E}$

where each of the functions $C_{i}(X)$ is of the form

$$C_{i}(X) = \Theta_{i1} + (1 - \Theta_{i1}) \exp(-X\Theta_{i2}).$$

This particular model had fit the accumulated data about as well as the best fitting second order polynomial approximation, and had a much clearer interpretation. The added data gathered since then have been for considerably lower dopant concentrations and longer time as mentioned previously. Once the new data were included for fitting, making a total of 322 points per alloy, it became apparent that the simpler nonlinear model did not fit as well as the second order polynomial approximation. The model equation was

then modified to fit a polynomial approximating equation using multiple linear regression techniques. This procedure has the advantage that confidence intervals for estimated coefficients and predicted values are more easily determined (refs. 9 and 10).

Table II presents the raw data accumulated throughout the program; included are the X-ray diffraction results. The total range of dopant concentrations are shown schematically in figure 3. The first column of table II provides an identifier for the particular treatment combination, and the second column indicates the rig on which the test was run. The next five columns give the dopant concentrations in ppm, and the eighth column gives the test temperature in degrees C. These data consititute the test conditions. The corrosion products were subjected to X-ray diffraction analysis to identify compounds present. The five columns labeled phase strength provide such X-ray diffraction data as were available. That is, for each compound the strength of observed diffraction lines for any species indicated as being present was designated as weak, medium, strong, or dash for not observed. The next series of columns provide the time for which a specimen was exposed and the corresponding attack, τ . These data except for the 1000-hour values were fitted to a polynomial regression equation using the multiple linear regression analysis techniques as indicated above (refs. 9 and 10). The tentative models chosen were identified partly by using a basic second order polynomial in almost all the variables, that is, time, Na, K, Mg, Ca, Cl, and temperature. The interactions between time and chlorine and temperature were not included in the model because the experiment was somewhat unbalanced with respect to these factors. The 1000-hour data were not included because the combination of long time at very low dopant levels caused these tests to be at the extreme boundaries of the test conditions.

Examination of the data indicated that several three-factor interactions among some of the variables were likely. These were Na-Mg-Ca, K-Mg-Ca, Cl-Mg-Ca, temperature-Mg-Ca, Na-Cl-Mg, and K-Cl-Mg which were included in the model.

Table III presents all the terms of the polynomial considered and the results of the least squares regression. The final model was chosen by examining all the subset regressions using the Mallows Cp statistic as a criterion (ref. 10). Next the value of each estimated coefficient is given with its standard error in parenthesis. It must be pointed out that the scaling indicated in table III was required for each variable in order to achieve a reasonable degree of orthogonality among the terms of the model. Also included in table III are the coefficient of determination (R^2), the mean square error (s^2), the estimate of s, and the number of data points.

The nonlinear model of reference 6 was fitted to these data also, but the lack of its ability to accommodate various interactions caused its fit to be significantly poorer than the polynomial model.

The center point data analysis was presented previously (ref. 6). As mentioned there, the estimate, s^2 , from those data should establish a criterion of comparison because all the variables are held as constant as possible so that the error represents the replication error and does not include any component due to a misspecified model equation. These estimates and estimates from other models are given in table IV.

As shown, the s² values using the nonlinear model and all data reported previously for IN-100, U-700, IN-792 are considerably larger than the center point values, while the Mar-M509 is only a little larger. Refitting a smaller data set to the same nonlinear model yields much smaller s² val-

ues for all alloys. In fact, only IN-100 remains much larger than the center point estimate. After including the low-dopant long-time data of this report, the nonlinear model turned out to be considerably poorer. The s² values listed in table IV for the polynomial models indicate that there is still some serious deficiency with respect to IN-100 (i.e., lack of fit with respect to the model), a less serious deficiency with respect to U-700 and IN-792, and that the s² for Mar-M509 is clearly not significantly different than the center point estimate. It is believed (ref. 11) that a large part of the discrepancy is due to the true shape of the τ against time curve that is shown in figure 4. This shape can be only approximated by the necessarily infrequent metal consumption measurements. Thus, using a simple term such as log_{10} (time) in the model is a serious oversimplification.

Implications of the Model

The models of table III are rather difficult to interpret in any direct examination of terms and coefficients. To facilitate understanding of the resulting equations, a series of parametric plots of attack are shown. Figures 5 to 8 illustrate the property that Na and K induce increased corrosion while Mg and Ca act as inhibitors. In figures 5 and 6, we hold K, Cl, temperature and time at constant values as listed, and plot predicted attack as a function of Na concentration for each of the four alloys. Indications of the reliability of the predictive regression equations are provided by representative two standard error limits on the estimated regression function. In figure 5, Mg and Ca are set at 0.1 ppm. In figure 6, we provide a similar plot of au against Na, except that Mg and Ca are now at the 1 ppm level. Comparing these two plots shows a general reduction in attack for all alloys for the greater concentrations of Mg and Ca. The reduction is minimal for Mar-M509; it is substantial for IN-100 and U-700. Figures 7 and 8 provide similar plots to indicate the effects of Mg and Ca on K attack. Figure 7 shows the effect of K on attack with Mg and Ca held at 0.1 ppm, while for figure 8 with Mg and Ca set to 1 ppm. Figure 7 shows an increase in attack with K at the lower levels of Mg and Ca, but figure 8 shows little dependence of attack on K. The attack at high levels of K is greatly reduced at the higher levels of Mg and Ca. Figure 9 shows the effect of temperature on attack with all other variables held at their nominal center point values, that is, Na and K at 0.9 ppm, Ca and Mg at 0.47 ppm, Cl at 2.93 ppm, and time held at 100 hours. In general, for all the alloys, there is a maximum in the attack as a function of temperature or such a maximum can be inferred. At times the maximum is either at too low a temperature or too high a temperature to be seen over the range of the test conditions. It is, in general, considered (see ref. 1) to result from hot corrosion being confined to a temperature range in which the corrosive deposits are in their liquid phase. Therefore, at temperatures above the dew point or below the melting point, corrosion should be slight while in the intermediate temperature range, corrosion should be accelerated. However, the fact that the maxima differ with alloy indicates a pronounced alloy chemistry effect.

ł

Figures 10 and 11 are used to illustrate the effects of Cl. In figure 10, Mg, Ca, temperature, and time are held constant with Na and K at 0.1 ppm, while figure 11 is for Na and K held at 1 ppm. These show that increasing Cl decreases attack for both conditions of Na and K. This probably results from the tendency for Cl to decrease the dew points of sodium and potassium sulfates.

mitter and an

. . . .

One of the most significant interactions indicated in table III is that between temperature and Ca. This interaction is illustrated for each alloy in figures 12 to 15. In each of these figures, Na, K, Mg, Cl, and time are held constant. There are three curves of attack as a function of temperature for three levels of Ca. In figures 12 to 15, there is some indication that the level of Ca affects location of the maximum attack. Higher levels of Ca shift the maximum to higher temperature for the Ni-base alloys IN-100, U-700, and IN-792. However, for Mar-M509, the interaction is seen to be entirely inhibition at low levels of Ca, but accelerating at high Ca levels. As an indication of longer time predictability figures 16(a) and (b) plots the observed and predicted 400 hour data for IN-792 and Mar-M509 respectively. These plots indicate approximately $\pm 2X$ agreement between calculated and predicted values. This agreement seems to hold for U-700, IN-792, and Mar-M509 1000-hour results from LT21 run, but not for the LT22 run. The results are:

	<u>IN-</u>	100	<u>U-</u> 2	700	IN-	792	<u>Mar-I</u>	1509
Observed: Predicted:		LT22 208 1960	LT21 2184 2041	LT22 217 1564	LT21 1082 793	LT22 297 614	LT21 384 471	LT22 134 445

It should be noted that the LT21 run combines both a very long time and very low dopant concentrations. Likewise the LT22 run combines the most extreme time and lowest concentrations of all dopants.

Deposit Identification

As a result of the many test conditions on the four alloys over the broad range of concentrations in temperature, there is a plethora of X-ray diffraction data. These data are presented in table II. In general, the dopants tended to form the same types of deposits regardless of concentration or the combination with other elements. Mq in the combustion products tended to deposit as MgO. Calcium, on the other hand, reacted with sulfur in the fuel to form primarily CaSO₄. Both of these phases can be predicted using the chemical equilibrium computer program of Gordon and McBride (ref. 12). This program has been used successfully for such complex systems (refs. 13 and 14). As expected, Na and K also deposited as sulfates. In the case of Na, sodium sulfate was the primary phase; however, it was found in three separate crystallographic modifications (types 1, III, and V). K, when present in appreciable quantities, was found as potassium sulfate and also combined with sodium sulfate to form a mixed sodium, potassium sulfate. As noted in the previous work (ref. 6), a phase determined to be Na, K, Ca, Mg sulfate, with the formula Na₈K₂Ca(SO₄)₆, was found for many of the conditions. In a few cases, a sodium calcium sulfate glauberite was found and a few weak lines which were never identifed were seen in a few of the patterns. The presence of these phases presented few surprises, as such sulfates formed during reactions have generally been found in these types of tests and usually led to accelerated corrosion (ref. 1). However, because the melting and dew points of several phases, (e.g., Na₈K₂Ca(SO₄)₆), are unknown, the temperature range of maximum corrosive attack can only be estimated.

CONCLUDING REMARKS

An attempt has been made to study the corrosive attack of turbine airfoil alloys as a function of Na, K, Ca, Mg, Cl, temperature, and time utilizing a statistically designed burner rig program. The attack model which was developed from these results seems to account for most of the important first order effects. The model is sufficiently inclusive to allow predictions for concentrations from 0.01 to nearly 10 ppm, and for times from 40 to over 500 hours, and a temperature range of 800° to 1100° C. Most of the first order effects, and a few of the interactions, can be accounted for. The major limitation of the data, and hence the model which is drawn from it, is the inherent inaccuracy of the thickness measurements upon which all of the conclusions are based. A secondary problem is the possibility of a lack of fit in the model. In order for a more precise rendering of attack models with a better definition of the interactions of these attacks to be determined, a more precise method for evaluating the extent of hot corrosion attack must be developed. In spite of these limitations, the level of predictive capability developed here should be sufficient for qualitative estimations of the degree of severity of many future synthetic fuels.

REFERENCES

- 1. Stringer, J. F., "Hot Corrosion in Gas Turbines," MCIC-72-08, Battelle Columbus Labs., Columbus, Ohio, June 1972.
- Stringer, J. F., "High Temperature Corrosion of Aerospace Alloys," AGARD-AG-200, Advisory Group for Aerospace Research and Development, Paris, 1975.
- 3. Lunt, H. E., "Hot Corrosion in Gas Turbines," ASME Paper No. 77-WU/FU-3, Nov. 1977.
- Lee, S. Y., Young, W. E., and Vermes, G., "Evaluation of Additives for Prevention of High Temperature Corrosion of Superalloys in Gas Turbines," ASME Paper No. 73-GT-1, Apr. 1973.
- 5. Zetlmeisl, M. J., May, W. R., and Annond, R. R., "Corrosion Inhibitor for Vanadium-Containing Fuels," U.S. Patent 3,926,577, Dec. 1975.
- 6. Lowell, C. E., Sidik, S. M., and Deadmore, D. L., "Effect of Sodium, Potassium, Magnesium, Calcium and Chlorine on the High Temperature Corrosion of IN-100, U-700, IN-792 and Mar-M509," ASME Paper 80-GT-150, March 1980.
- 7. Lowell, C. E. and Deadmore, D. L., "Effect of a Chromium-Containing Fuel Additive on Hot Corrosion," <u>Corrosion Science</u>, Vol. 18, 1978, pp. 747-763.
- Lowell, C. E. and Probst, H. B., "Effects of Composition and Testing Conditions on Oxidation Behavior of Four Cast Commerical Nickel-Base Superalloys," NASA TN D-7705, 1974.
- 9. Draper, N. R. and Smith, H., Applied Regression Analysis, John Wiley and Sons, Inc., NY, NY, 1966.
- Neter, J. and Wasserman, W., Applied Linear Statistical Models, 1974, Richard D. Irwin, Inc., Homewood, IL.
- 11. Deadmore, D. L. and Lowell, C. E., "Nondestructive Evaluation of the Kinetics of High Gas Velocity Hot Corrosion," in preparation.

- 12. Gordon, S. and McBride, B. J., "Computer Program for Calculation of Com plex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouget Detonations," NASA SP-273, 1971.
- 13. Material Response From Mach 0.3 Burner Rig Combusion of a Coal-Oil Mix ture by G. J. Santoro, F. D. Calfo and F. J. Kohl. NASA TM-81686, December 1980.
- 14. Deposition and Material Response From Mach 0.3 Burner Rig Combustion of SRC-II Fuels by G. J. Santoro, F. J. Kohl, C. A. Stearns, G. C. Fryburg and J. R. Johnston. NASA TM-81634, October 1980.

TABLE I. - COMPOSITION OF ALLOYS

[All values are weight percent.]

• • •	Element	Mar-M509	IN-792	U-700	IN-100
	· ·	· · ·			,
	Cr	23	12.7	14.2	. 10
•	Ni	10	Balance	Balance	Balance
	Со	Balance	9.0	15.5	. 15
	A1	ہیں جب ہے ہیں کہ جن ہے	3.2	4.2	5.5
·	Ti	0.2	4.2	3.3	4.7
•••	Mo	منهن بيان الله الله الله الله	2.0	4.4	3.0
· · · ·	W	7	3.9	میں ہیں خلک شکر میں میں ا	
	Ta	3.5	3.9		منه جي جه خبر خبر بند
•	Nb		0.9	******* * **	
	V				1.0
• .	Mn	میں ہیں کا ایک کر میں میں میں ا		<0.01	سن هي ري ملة خج خطيق
	Fe			. 0.1	
, · · . ,	Si	و معن الله الله وي بين الله .	******	<0.1	ختند سے ہیں طہ سیا جم بھی
	Zr	0.5	0.1	<0.01	0.06
·	В		0.02	0.02	0.014
<u>`</u>	`.C	0.6	0.2	0.06	0.18

¥			DOPANT	(PPM)			TEMP		PHAS	E S	TRE	NGTH	TIME	ATTACK	MICRO	IETERS)
× × ID ×	RIG	NA 	ĸ	MG	CA	CL	(C)	A -	B	C -	D _	E	(HR)	IN190	U700	IN792	MM509
¥ CPO	1	0.90	0.90	0.45	0.45	3.21	950	W	-	M		S	40 60 80 100	317 554 420 639	294 444 737 708	142 148 161 254	154 73 103 227
CPO	2	0.90	0.90	•		3.21	950	W	-	M		5	40 60 80 100	268 328 362 433	359 641 637 757	168 202 172 257	103 125 117 113
CPO	3	0.90	0.90	0.45		3.21	·950	W	-	M		5	40 60 80 100	105 224 413 222	113 116 571 132	108 199 141 169	87 76 91 181
CPO	4	0.90	0.90	0.45		3.21	950	W	-	M	m	S	40 60 80 100	285 359 319 363	433 669 583 594	156 170 118 209	178 98 78 213
BCEFG	1		1.20	-		5.90	1000	-	-		5	S 	40 60 100	94 126 258	89 176 291	83 98 133	138 105 166
CDEF	2	0.40	2.00	1.00	1.00	5.90 3.39	900 1000	- M	- W	-	5	5	40 60 100	77 74 67	54 88 69	27 48 62	44 77 130
ACG CDEG	3 4	0.40		1.00		4.49	1000	-	m	-	M	M	40 60 100	32 121 140	83 135 150	104 63 124	81 206
ADE	1		-		0.20	4.99	900	M	M	-	W	5	40 60 100 40	97 128 186 171	98 99 121 95	85 91 108 61	126 94 251 58
ABCD	2	2.00	2.00	0.20	0.20	3.39	900	S	5	W	-	W	60 100 40	913 1310 764	162 239 284	189 201 180	209 225 209
BCE	3	1.20	1.20	1.00	0.20	4.49	900	м	W	-	-	S	60 100 40	1299 2490 339	723 130 <u>5</u> 39	230 691 103	242 317 124
CP1	4	0.90	0.90	0.45	0.45	3.21	. 950	М	-	M	M	S	60 100 40 60	696 1417 240 270	107 404 130 138	150 311 . 93 . 93 . 93 . 173	135 217 83 95

TABLE II. - SUMMARY OF RUN CONDITIONS, XRD RESULTS, AND METAL RECESSION

ŧ.

1

	×			DOPANT	(PPM)				-	PHAS	E' STR	ENGTH		ATTACK	MICRO	1ETERS])
	× × ID ×	RIG	NA	K -	MG	CA	CL	TEMP (C)	A	BC 	C D	E	TIME (HR)	IN100	U700	IN792	MM509
	ČP2	1.	0.90	0,90	0.45	0.45	3.21	950	W	-	MM	Ś	40 60	376 387	278 354	92 134	39 135 112
	BDG	2	1.20	1.20	0.20	0.20	1.43	1000	S	W	- W	-	100 40 60 100	838 527 540 1102	1109 661 923 1527	184 380 450 739	189 194 402
	ACF	3	1.20	1.20	0.20	1.00	4.80	900	5	-	- M	M	40 60 100	356 793 1312	68 115 156	73 75 42 247	36 58 83
	BDF	4	1.20	1.20	0.20	1.00	2.84	900	S	-	- S	5	40 60 100	486 791 1384	110 88 148		64 72 162
	FG	1	0.40	0.40	0.20	1.00	2.84	1000	-	-	- 5	5	40 60 100	98 151 203	120 143 236	93 83 157	126 87 93
	CP 3	2	0.90	0.90	0.45	0.45	3.21	950	W	-	MM	5	40 60 100	226 244 373	242 403 749		98 116 143
	ABEG	3	2.00	0.40	1.00	0.20	4.99	1000	M	-		5	40 60 100	133 121 132	129 227 217	128 93 199	121 150 169
	ABEF	4	2.00	0.40	1.00	1.00	6.41	900	-	. =	- M	5	40 60 100	84 437 839	73 55 79	66 58 70	52 44 96
	ABCDFG	1	2.00	2.00	0.20	1.00	4.80	1000	5	-		-	40 60: 100	591 1324 1365	632 994 1495	345 490 1005	127 262 328
	(1) 私	2	0.40	0.40	0.20	0.20	1.43	900	-	M		5	40 60 100	288 461 233	67 63 106		74 99 134
	CP4	3	0.90	0.90	0.45	0.45	3.21	950	W	-	MM	5	40 60 100	185 156 346	181 87 303	42 96 215	85 117 190
:	ADEFG	4	1.20	1.20	1.00	1.00	6.41	1000	-	-	- 5	S	40 60 100	144 164 280	146 229 292	108 134 181	94 149 163
	BCF	1	1.20	1.20	0.20	1.00	3.57	900	-	W	55	5	40 60 100	412 568 1192	136 133 156	66 88 90	98 74 150

-TABLE II. - Continued.

.

,

•

1 1

· · · · · ·

, ,

• •

1

... **H**

· .

TABLE II. - Continued.

E			DOPANT	(PPM)			TEMP		PHAS	ES	TRE	NGTH	TIME	ATTACK	MICRON	1ETERS)
ID	RIG	NA 	ĸ	MG	CA	CL	(C)	<u>A</u>	B 	c	D _	E	(HR)	IN100	U700	IN792	MM50
CG	2	1.20	1.20	0.20	0.20	2.15	1000	M	W	-	-	-	40 60 100	990 1788 2040	551 944 1464	307 282 647	111 184 309
BCDEG	3	2.00	2.00	1.00	0.20	5.72	1000	M	M	-	-	5	40 60 100	357 641 912	468 606 789	215 277 626	13 13 18
DEFG	4	-	1.20		1.00	5.17	1000	-	-	-	5	5	40 60 100	167 280 439	194 149 498	97 154 193	3(6) 28;
D	1	0.40	2.00	0.20	0.20	2.15	900	-	5	-	-	5	40 60 100	697 983 1661	130 217 431	300 336 541	13 21 36
BFG	2	2.00		-	1.00	4.08	1000	-		2	5		40 60 100	328 344 538	265 682 709	112 308 494	14 13 18
DFG	3	0.40					900	M	- 	_	-	5	40 60 100	124 118 174	132 162 207	104 115 136	15 20 24
CE	4			•	0.20	5.72	900	n W		_	_	5	40 60 100	76 286 1134	65 137 227	116 144 220	8 12 18
DE	1			1.00	0.20	3.76		м	M	5	e	S	40 60 100	457 875 1634	58 190 576	164 172 197	11 16 24
DF	2		1.20				900	-	-	2	5 e	5	40 60 100	368 671 1393	54 109 170	64 73 137	6 6 10
G .	3	0.40	0.40			3.76	- 1000	-	-	_	5	S N	40 60 100	74 58 113	76 93 142	- 81 96 129	3 12
DG	4		1.20		0.20	2.66	1000	M	M _	-		M	40 60 100	96 130 208	.73 145 203	92 143 252	23
B	1	2.00	0.40	0.20	0.20	2.66	900	3	_	5	5	S	40 60 100	6 55 1011 1771	237 149 437	241 239 482	- 5 5
BCDEF	2	2.00	2.00	1.00	1.00	7.13	900	-	-	3	3	J	40 60 100	295 397 1004	: 72 [.] 62 149	、41 74 95	4 5 7

12

۱e

,

I

.

TABL	E	11	Ι.	-	Cont	Inved	١.
------	---	----	----	---	------	-------	----

						TA	BLE II.	- Con	ntinu	eđ.						
¥			DOPANT	(PPM)		-		,	PHAS	E STRE	NGTH		ATTACK(MICRO	TETERS	;
* * ID *	RIG	NA	ĸ	MG	CA	CL	TEMP (C)	 A	B	C D	E	TIME (HR)	IN100		IN792	- •
¥ EF	3	0.40	0.40	1.00	1.00	5.17	900	-	-	~ S	S	40 60	47 57	57 131	29 24	
ACEFG	4	1.20	1.20	1.00	1.00	7.13	1000	M	-	- 5	5	100 40 60 100	59 120 109 214	81 128 160 213	15 65 111 132	
CPEND	1	0.90	0.90	0.45	0.45	3.21	950	W	-	MM	5	40 60 100	297 424 653	150 192 909	86 88 227	
CPEND	2	0.90	0.90	0.45	0.45	3.21	950	W	-	MM	5	200 40 60	1009 175 298	2066 97 246	531 80 172 224	
CPEND	3	0.90	0.90	0.45	0.45	3.21	950	ы	-	MM	5	100 200 40 60	745 1023 73 172	751 1150 95 95	403 73 92	
CPEND .	4	0.90	0.90	0.45	0.45	3.21	950	ម	-	MM	5 -	100 200 40 60	363 544 204 204	362 779 84 480	148 275 83 99	
A+	4	5.40	090	0.45	0.45	10.15	950	S	-		м	100 200 40	321 702 1191 1656	777 928 592	153 366 296 368	
F+	4	0.90	0.90	0.45	4.95	11.17	950	-	-	- 5	W	60 100 40	2861	956 1474 99	368 709 26 95	
]∂. E †	3	0.90	0.90	4.95	0.45	16.33	950	-	-	- M	5	60 100 40	85 276 78	113 142 103	95 131 68 90	
CPSTAR1	3	0.90	0.90	0.45	0.45	3.21	950	W	-	MM	5	60 100 40 60	127 133 86 93	107 124 68 110	111 83 106	
B-	3	0.49	0.90	0.45	0.45	3.21	950	-	-	- 5	M	100 40 60	230 88 96 121	105 59 108 138	_ 128 62 50 79	
C+	4	0.90	5.40	0.45	0.45	7.29	950	-	5		5	100 40 60 100	121 272 355 686	138 361 539 652		

.

13

2

TABLE II. - Continued.

×	•		DOPANT	(PPM)			*	1	PHAS	E STR	RENGTH	- TIME	ATTACK	MICRO	METERS)
* * ID *	RIG	NA	ĸ	MG	ÇA	CL	TEMP (C)	A	B _	<u>c</u>) E 	(HR)	IN100	U700	IN792	MM509
¥ F-	3	0.90	0.90	0.45	0.04	2.48	950	S	-		-	40 60 100	177 386 478	95 338 551	47 121 130	125 115 233
G-	3	0.90	0.90	0.45	0.45	3.21	800	-	-	5 -	5	40 60 100	168 272 859	17 23 29	21 32 27	27 46 106
G+	4	0.90	0.90	0.45	0.45	3.21	1100	-	-	s -	5	40 60 100	206 270 344	243 257 453	162 183 255	189 172 336
CPSTAR2	4	0.90	0.90	0.45	0.45	3.21	950	W	-	MM	5	40 60 100	88 215 578	95 198 565	65 95 215	116 95 125
D+	3	0.90	5.40	0.45	0.45	3.21	950	-	5 		5	40 60 100	1379 1105 3522	866 1105 2149	278 383 1010	352 351 682
E-	4	0.90	0.90	0.04	0,45	2.01	950	-	-	5 -	-	40 60 100	123 513 335	131 583 472	79 213 305	97 99 123
A	3	0.49	0.90	0.45	0.45	2.58	950	-	-	- 5	M	40 60 100	116 114 164	85 68 73	66 75 110	66 125 162
C-	4	0.90	0.49	0.45	0.45	2.84	950	-	-	SM	S	40 60 100	255 227 383	130 140 312	78 82 145	97 108 82
B+	4	5.40	0.90	0.45	0.45	3.21	950	5	-		M	40 60 100	1299 2309 3290	1529 2399 3950	304 664 981	103 302 420
D-	3	0.90	0.49	0.45	0.45	3.21	950	-	-	55	5	40 60 100	143 146 207	72 74 122	58 89 124	87 113 101
ADE-2	3	1.20	1.20	1.00	0.20	4.99	900	5	-		5	40 60 100	298 641 1397	54 105 329	63 167 200	129 171 227
ACE-2	4	1.20	1.20	1.00	0.20	5.72	900	-	M	M -	5	40 60 100	195 630 1125	125 155 348	135 235 272	
מ	3	0.40	1.20	0.20	0.20	1.43	900	-	5	<u>M</u> -	5	40 60 100	546 916 1577	80 101 299	121 164 410	139 142 263

14

:

a,

٠

-

1

1

1 S. S. Marine

I

t

1

۴

TABLE II. - Continued.

E			DOPANT				TEMP	·				GTH COR	TIME			METERS	
ID	RIG	. NA	<u>к</u> -	MG	CA	: CL 	(C)	∕ <u>A</u> _	B _	с -	D	E) f	(HR)	·IN100	U700	IN792	MM50
CDF	4	1.20	2.00	0.20	1.00	4.80	900			5 -		5	40 60 100	252 596 1105	132 121 142	73 77 221	4 67 8
: \F	3	0.40	1.20		0.20		: 900 . 900		.5	M - 5 N		5	40 60 100	449 840 1414	80 93 291	105 235 293	8 16 25
Ē	3		0.40				900	, S	-	5 r 5 -	• •	5	40 60 100	129 393 1223	70 78 105	58 46 30	4 2 9
BCEF	4		1.20				900	-	-	5.6	: .	5	40 60 100	282 530 1545	85 50 109	72 135 241	18 16 21
BDFG	3	2.00	1.20		1.00	4.08	1000	м	_	s -		-	40 60 100	88 349 950	53 92 - 84	54 52 87	6 5 9
	4		2.00			2.15	1000	 	5		. 1	J	40 60 100	584 920 1177	636 943 1541	285 334 681	10 13 23
P(EL5)1		0.90	0.90	0.45	0.45	3.21	950	W	-	M	-	5	40 60 100	681 803 1251	412 562 963	331 344 526	11 18 30
P(ELS)2		0.90			0.45	-	950		_	M		5	40 60 100	86 248 332	82 144 362	65 52 134	9 12 11
EXPAND 1			1.23				900	-	-		• •	4	40 60 100	141 217 304	101 205 230	77 93 114	9 8 19
						0.40	900	-	~		- i 1 -	-	40 60 100	496 809 1646	82 136 818	59 88 147	7 10 13
EXPAND 3			3.90					-	-			-	40 60 100	872 1413 2677	442 620 1831	244 345 617	27 32 47
EXPAND 5		1.90			0.79		900	-	3		- r	1	40 60 100	541 962 1819	116 203 582	42 66 181	14 13 23
EXPAND 7	4	4,70	1.50	0.83	U.63	0.60	900	-	m			-	40 60 100	667 1366 1948	228 1077 1952	146 337 759	14 21 29

L

Ŧ

×				DOPANT	(PPM)			TEMP	ا 	PHAS	E STR	ENGTH	- TIME	ATTACK				
* ID *	1	RIG	NA	<u>к</u> -	MG 	CA 	CL	(0)	A 	B 	C D 	E	(HR)	IN100	U700	IN792	MM509	
X Expand	2	3	0.58	1.23	1.26	0.95	0.46	1000	-	-		5	40 60 100	120 174 246	94 305 679	96 175 202	77 81 140	
EXPAND	4	4	1.50	3.90	1.00	0.75	0.60	1000	-	-		5	40 60 100	1523 2123 3716	-	415 551 924	309 393 600	
EXPAND	6	3	1.90	0,50	1.05	0.79	0.48	1000	s _.	W		M	40 60 100	435 822 1022	432 585 933	149 317 525	98 201 200	
EXPAND	8	4	4.70	1.50	0.83	0.63	0.60	1000	5	W		M	· 40 60 100	1738 2424	1417 1743	766 780 1386	304 426 693	
LT01				0.50				900	-	-		-	100 300 400	1390 5608 6349	278 2442 2972	182 1151	146 454 539	
LT02		4		0.50	-			1000	S 	-			100 300 400	175	189 322 443	. 110	134 268 460	
LT03		3.	0.10	0.50	0.20	0.10	0.10	900	-	-		-	10 0 300 400	700 2830 4811	231 1478	163 872 926	195 482 450	
LT04		4	0.22	0.22	0.14	0.14	0.32	1000	-	-		-	109 300 400	125 305 412	142 220 387	105 147 317	166 312 277	
LT05		4	0.22	0.22	0.14	0.14	0.32	800	-	-		-	100 300 400	653 2413 3006	81 155 1362	104 326 463	111 313 355	
LT06		3		0.10		-		900	-	-	- M	-	100 300 400	374 1943 2928	83 319 791	96 142 506	108 178 281	
. LT07		3		0.10				900	-	-		-	100 300 400	471 4920 8476	86 197 2585	. 49 431 504	148 -392 470	•
LT08		4		0.04				950	-	-		-	100 300 400	923 2246 3319	609 2257 2245	246 584 1020	161 306 302	•
LT09		3		0.10	0.20	0.10	1.00	900	-	-	- 5	M	100 300 400	155 156 169	94 112 151	126 100 57	127 136 125	-

-1 8

-4 r

TABL	E	I	Ι.	-	Continued.
------	---	---	----	---	------------

1

×			DOPANT				TEMP				RENGTH	- TIME	ATTACK				
× ID ×	RIG	NA 	<u>к</u>	MG	CA	CL	(C)	A _	B	c -	D E	(HR)	IN100	U700	IN792	MM509	
¥ _ LT10	4	0.22	0.22	0.14	0.14	0.32	900	-	-		-	100 300 400	725 3129 4430	115 1892 2369	98 454 1171	, 134 310 248	
LT11	3	0.10	0.10	0.10	0.10	0.10	800	-	-	 -	-	100 300 400	443 1313 1184	26 60 131	145 125 135	39 163	
LT12	4	0.50	0.50	0.10	0.10	0.10	900	-	-		-	100 300 400	1970 5729 10382	472 2535 3739	253	426 619 720	
LT13	3.				0.10		900	-	-		-	100 300 400	195 482 1512	. 82 89 243		137 239	
LT14	4				0.20		900	-	-		-	100 300 400	1340 3249 5681	201 1677 2575	220 711 914	277 320	
LT15	3				0.10		900	-	M		5	100 300 400	1595 3833 7975	129 568 1386	145 994 1092	154 271 402	• *
LT16	4				0.45		950	-	-		5	100 300 400	127 212 307	105 197 261	136 280 252	231 210 315	
LT17	3				0.10		900	•	-		-	100 300 400	359 1609 2334	131 169 607	59 137 189	193	
LT18	4				0.10		1000	-	-	••••••	W	100 300 400	147 272 360	186 272 392	87 224 299	181	
LT19	3				0.20		900	-	-	-	5	100 300 400	69 99 123	55 120 127	59 126 128	105 118 155	
LT20 	4	0.50	0.10	0.10	0.20	0.10	900	3	-		5	100 300 400	1546 5522 8409	48 855 1763	55 592 445	301	

Į

r •

×				DOPANT	(PPM)			TEND		PHAS	E S	TRE	NGTH		ATTACK	MICRO	1ETERS)
X X X X	ID 	RIG	NA 	K	MG	CA 	CL 	TEMP (C)	Å	B 	С -	D	E	TIME (HR) 	IN100	U700	IN792	MM509
LT21		4	0.10	0.10	0.10	0.10	0.10	900	-	-	-	-	-	100 400 500	84 1640 4018 11431	30 511 985 2184	31 314 422 1082	57 299 341 384
LT2	2	3	0.04	0.04	0.01	0.01	0.01	900	-	-	-		-	100 400 500 1000*	63 147 108 208	43 71 110 217	1082 39 119 110 297	58 58 81 105 134
LT23		3	0.50		0.10			900	5	-	-	-	-	100 300 400	1065 4374 6611	66 218 1229	110 463 822	179 267 431
LT24		4	0.10	0.50	0.10	0.10	0.10	900	•	-	-	-	-	100 300 400	826 3921 5940	175 1791 2520	199 486 1060	206 546 605

`

TABLE II. - Concluded.

*Lot included in the final regression analysis.

t

.

1

۰. . .

18

٩,

.

• 1

. . .

۰.

٠.

•••

TABLE 111. - ESTIMATED PEGRESSION COLFFICIENTS FOR THE COMBINED MODEL

•

.

Coefficient estimate (standard error)

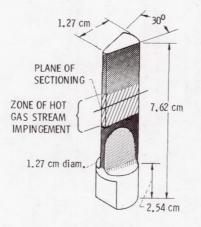
.

•

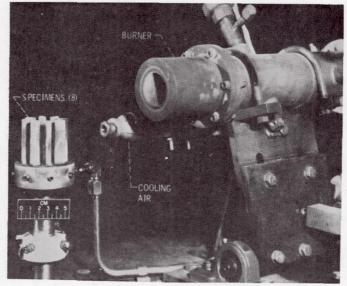
\$

•,

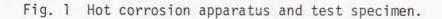
.


.

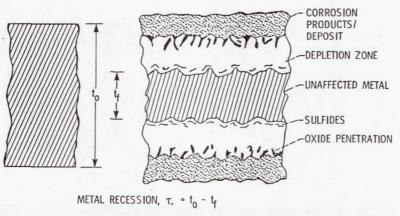
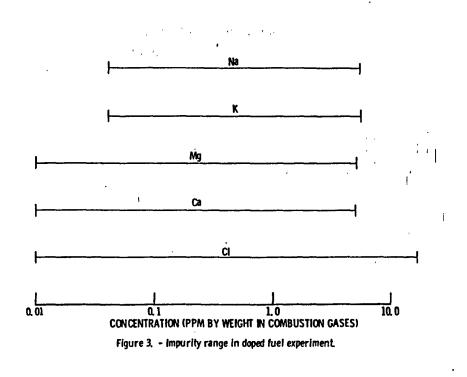
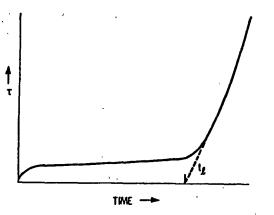
.

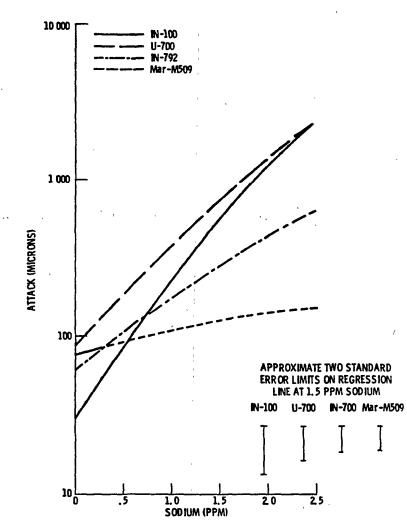

		-100 g (7)		-700 og (†)	IN-3 log	792 (T)		-M509 j (7)	The variables in the polynominal equation are defined as:
Intercept	2.749		2,595		2.316		2.194		
t	1.014	(0.069)	1.142	(0.066)	0.901	(0.046)	.0.627	(0.041)	τ ₌ attack (microns) t ₌ log ₁₀ (time (hrs.)/100)
- -1	-0.053	(0.020)	-0.088	(0.020)	-0.056	(0.014)	0	(010 11)	
2	0		0.047	(0.019)	0		0		$r_1 = \begin{cases} -1 & \text{for rigs 1, 2} \\ +1 & \text{for rigs 3, 4} \end{cases}$
r1r2	0.025	(0.016)	0.032	(0.018)	0		0		Int for rist 1, 3
Na	0.644	(0.046)	0.384	(0.046)	0.322	(0.032)	0.191	(0.027)	'2 "[+1 for rigs 2, 4
K	0.373	(0.042)	0.215	(0.022)	0.279	(0.028)	0.295	(0.025)	Na = ppm Sodium9
Mg	0.319	(0.089)	0		0		0.198	(0.042)	K = ppm Potassium9
Ca	0.099	(0.076)	0		0.193	(0.045)	-0.061	(0.034)	Mg = ppm Magnesium47 Ca = ppm Calcium47
C1	-0.249	(0.024)	-0.092	(0.021)	-0.109	(0.015)	-0.126	(0.011)	C1 = ppm Chlorine -2.93
T	-0.152	(0.017)	0.111	(0.017)	0.077	(0.011)	0.052	(0.009)	T = (Temperature (°C) -950)/50
Na ²	-0.089	(0.123)	-0.040	(0.013)	-0.028	(0.008)	-0.023	(0.007)	
NaK	-0.120	(0.044)	0		-0.062	(0.031)	-0.088	(0.025)	Alon alway and the contribution of
K2	-0.049	(0.011)	0		-0.028	(0.088)	-0.027	(0.007)	Also given are the coefficient of determination (R ²) and the standard error
NaMg	-0.284	(0.086)	-0.385	(0.091)	-0.297	(0.060)	0	(0.01())	of estimate (s).
KMg Mg ²	0	10 0403	-0.281	(0.073)	-0.169	(0.053)	-0.107 -0.445	(0.046) (0.059)	
MgC NaCa	-0.214 -0.203	(0.040) (0.115)	-0.281 -0.221	(0.087) (0.092)	-0.330 0	(0.057)	-0.445	(0.059)	
KCa	-0.381	(0.094)	-0,187	(0.087)	-0.161	(0.064)	-0.089	(0.050)	Results Based on n = 322 data points.
MgCa	-1.321	(0.228)	-0.280	(0.190)	-0.713	(0.131)	-0.333	(0.085)	
⁻ Ca ²	-0.718	(0.144)	-0.117	(0.035)	-0.282	(0.073)	0	*	Terms were deleted based upon examination
NaCl	0		-0.046	(0.015)	-0.047	(0.010)	0	10 0051	of all possible subset regressions using
KC1	0		-0.050	(0.011)	-0.037 0	(0.008)	-0.016 0.123	(0.005) (0.018)	the Mallows Cp criterion.
lgC1 CaC1	0 (0.361)	(0.074)	0		0.112	(0.036)	0.125	(0.018)	, i i i i i i i i i i i i i i i i i i i
C12	0.030	(0.005)	0.035	(0.010)	0.042	(0.006)	0.011	(0.002)	
YaT	0.051	(0.022)	0.057	(0.022)	0.047	(0.015)	0	•	
KT	0		0		-0.033	(0.017)	0	(0.007)	
MgT	0	(0.052)	0	10.050	0 0.298	(0.025)	-0.109 0.210	(0.027) (0.029)	
Cat Cit	0.178 0	(0.052)	0.203	(0.058) (0.010)	0.290	(0.035)	0.210	(0.023)	
T2	-0.013	(0.009)	-0.058	(0.010)	-0.019	(0.00/)	ŏ		
		(01005)		(01010)		(,	-	(0.105)	
NaMgCa	0		0		0		-0.363 0	(0.125)	
(MgČa C 1MgCa	-0.236	(0.112)	-0.144	(0.085)	-0.159	(0.078)	ŏ		
TMgCa	0	(011-2)	-0.293	(0.128)	0	(0		
NaC 1Mg	0.097	(0.031)	0.071	(0.039)	0.128	(0.026)	0		
KC 1Mg	0		0.057	(0.031)	0		0		
Nat	0.191	(0.080)	0	٠	0.130	(0.055)	0.098	(0.049)	
(t	0	(00000)	Ō		Ó	•	0.109	(0.053)	
Mgt	0		-0.172	(0.139)	-0.249	(0.098)	0	(0.000)	
Cat	0		-0.286	(0.141)	0		-0.399	(0.093)	
s	0.3	257	0	.249	0.1	70	0.	150	
R2	0	769	Û	,760	0.8	19	0.3	759	
			•		0.0				

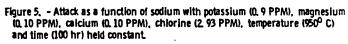
/


.

(b) BURNER RIG.


Figure 2. - Measurement of extent of corrosion.


CS-80-1256

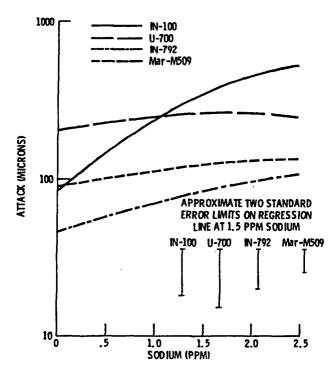
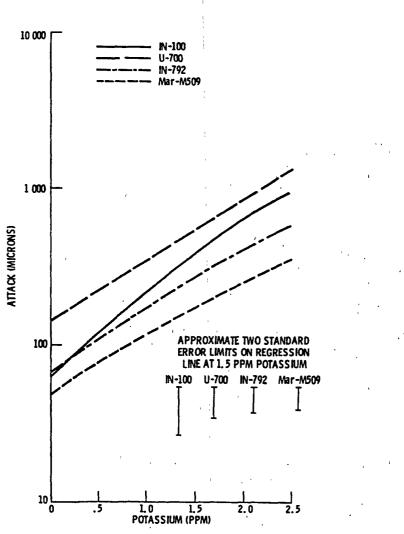
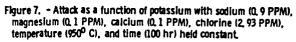
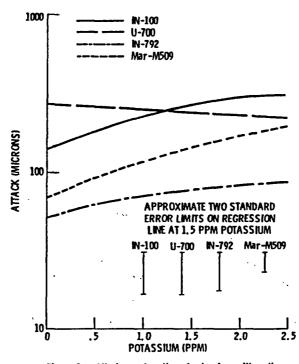
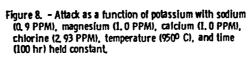
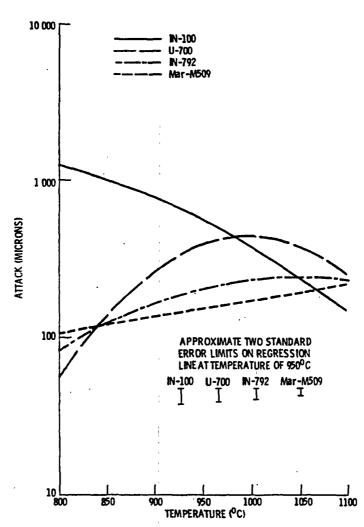
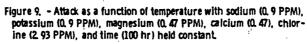





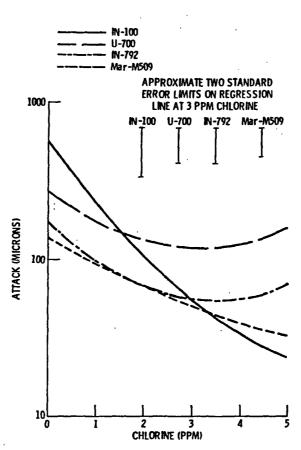
Figure 6. - Attack as a function of sodium with potassium (0.9 PPM), magnesium (1.0 PPM), calcium (1.0 PPM), chlorine (2.93 PPM), temperature (950° C), and time (100 hr) held constant.

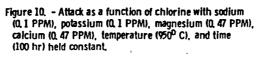


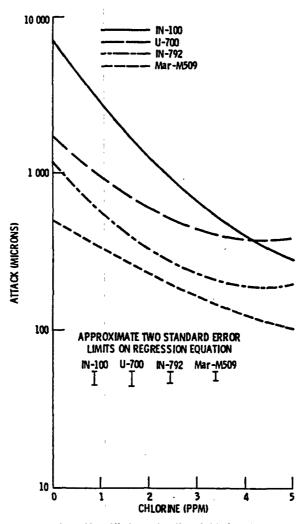


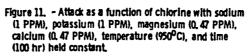
í.

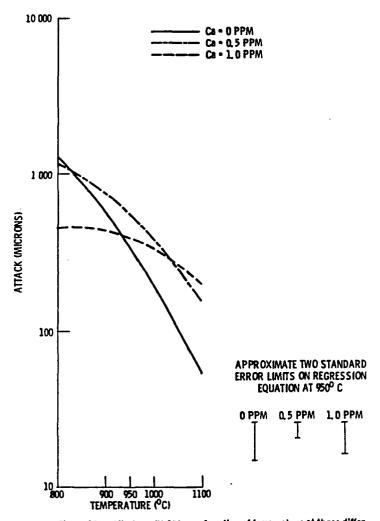

T

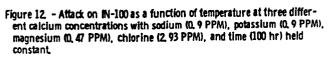





:







ъ

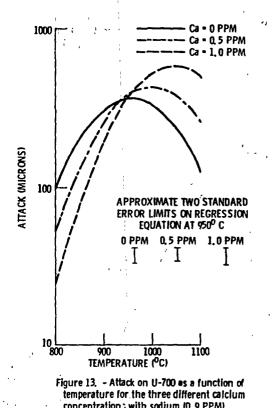
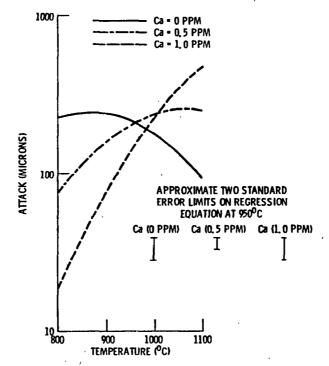
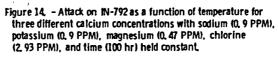
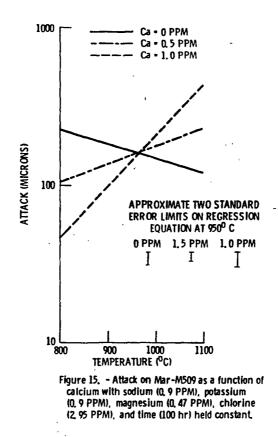
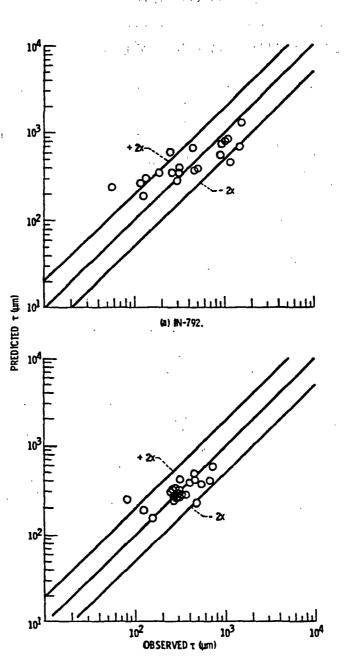
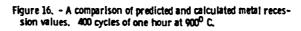





Figure 13. - Attack on U-700 es a function of temperature for the three different calcium concentration: with sodium (0, 9 PPM), potassium (0, 9 PPM), magnesium (0, 47 PPM), chlorine (2, 93 PPM), and time (100 hr) held constant.


1

ł


0

¢

٠.

(b) Mar-M509

NASA TM-82591		3. Recipient's Catalog No.	
4. Title and Subtitle			
HIGH TEMPERATURE ALKA	LI CORROSION IN HIGH	5. Report Date May 1981	
VELOCITY GASES	· · ·	6. Performing Organization Code 778-11-06	
7. Author(s)		8. Performing Organization Repor E-838	t No.
Carl E. Lowell, Steven M. S	laik, and Daniel L. Deadmo	10. Work Unit No.	••••••
9. Performing Organization Name and Address National Aeronautics and Space		· · · · · · · · · · · · · · · · · · ·	
Lewis Research Center Cleveland, Ohio 44135		11. Contract or Grant No.	i
-	· · · · · · · · · · · · · · · · · · ·	13. Type of Report and Period Co	overed
12. Sponsoring Agency Name and Address U.S. Department of Energy	· · ·	Technical Memorand	um
Office of Coal Utilization		14. Sponsoring Agency Gode-Rep	ort No.
Washington, D.C. 20545		DOE/NASA/2593-22	
15. Supplementary Notes	· · · · · · · · · · · · · · · · · · ·		
Final report. Prepared unde		CF-77-A-01-2593. ds such as Na, K, Mg, Ca and C1 o	
0.3 burner rig for times to 1	000 hours in one-hour cycle	es. These impurities were injected	d in
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, corr	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat	the burner rig. The experimental sion was determined by metal receipent on to a polynomial expression which As anticipated, corrosion increase emperature response was noted for as the Ca, Mg and C1 contents in- rations of Na and K as low as 0.1 P	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, corre creased. Extensive corrosion	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat	the burner rig. The experimental sion was determined by metal receipon to a polynomial expression which As anticipated, corrosion increase emperature response was noted for as the Ca, Mg and C1 contents in-	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, corre creased. Extensive corrosion	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat	the burner rig. The experimental sion was determined by metal receipon to a polynomial expression which As anticipated, corrosion increase emperature response was noted for as the Ca, Mg and C1 contents in-	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, corre creased. Extensive corrosion	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat	the burner rig. The experimental sion was determined by metal receipon to a polynomial expression which As anticipated, corrosion increase emperature response was noted for as the Ca, Mg and C1 contents in-	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, corre creased. Extensive corrosion	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat	the burner rig. The experimental sion was determined by metal receipon to a polynomial expression which As anticipated, corrosion increase emperature response was noted for as the Ca, Mg and C1 contents in-	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, corre creased. Extensive corrosion	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat	the burner rig. The experimental sion was determined by metal receipon to a polynomial expression which As anticipated, corrosion increase emperature response was noted for as the Ca, Mg and C1 contents in-	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, corre creased. Extensive corrosion	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat	the burner rig. The experimental sion was determined by metal receipon to a polynomial expression which As anticipated, corrosion increase emperature response was noted for as the Ca, Mg and C1 contents in-	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, correct creased. Extensive corrosion at long times.	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat on was observed at concentration	the burner rig. The experimental sion was determined by metal receivent on to a polynomial expression which As anticipated, corrosion increase emperature response was noted for the tast of the Ca, Mg and C1 contents increases of Na and K as low as 0.1 P	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, correct creased. Extensive corrosion at long times.	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat on was observed at concentration	the burner rig. The experimental sion was determined by metal receivent on to a polynomial expression which As anticipated, corrosion increase emperature response was noted for the tast of the Ca, Mg and C1 contents increations of Na and K as low as 0.1 P oution Statement	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, correct creased. Extensive corrosion at long times.	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the te rosion decreased somewhat on was observed at concentration marked at concentration (18. Distrikt loy Uncl	the burner rig. The experimental sion was determined by metal received on to a polynomial expression which As anticipated, corrosion increase emperature response was noted for the tast of tast of tast of the tast of task o	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, corre- creased. Extensive corrosion at long times.	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the ter rosion decreased somewhat on was observed at concentration in was observed at concentration (18. District loy Unclusted ion STAI	the burner rig. The experimental sion was determined by metal receivent on to a polynomial expression which As anticipated, corrosion increase emperature response was noted for the tast of the Ca, Mg and C1 contents increations of Na and K as low as 0.1 P oution Statement	matrix ssion. h d many
utilized was designed statistic The metal recession data were allows both interpolation and rapidly with Na and K, and a conditions. In contrast, corre- creased. Extensive corrosion at long times.	cally. The extent of corros re fitted by linear regression extrapolation of the data. marked maximum in the ter rosion decreased somewhat on was observed at concentration on was observed at concentration in the terms of the data. It is th	the burner rig. The experimental sion was determined by metal received on to a polynomial expression which As anticipated, corrosion increase emperature response was noted for as the Ca, Mg and C1 contents increations of Na and K as low as 0.1 Provide the second statement assified - unlimited R Category 26 Category UC-90h	matrix ssion. h d many PM

* For sale by the National Technical Information Service, Springfield, Virginia 22161