NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

ELLIPSODAL CORRECTIONS FOR GEOID UNDULATION COMPUTATIONS (NASA-CR-164440) ELLIPSOIDAL CORRECTIONS N81-25603 FOR GEOID UADULATION COAPNTATIONS (Ohio State Univ.. Columbus.) 25 p HC AOL af A01 CSC 08E \quad G3/46 $\begin{aligned} & \text { Onclas } \\ & \\ & 26562\end{aligned}$

by
Richard H. Rapp

Prepared for
National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20770

Grant No. NGR 36-008-161
OSURF Project 783210

The Ohio State University
Research Foundation
Columbus, Ohio 43212
March, 1981

Abstract

The computation of accur:ite geoid undulations is usually done combining potential coeffic lent information and terrestrial gravity data in a cap surrcunding the computation point. In duing this a spherical approximation is made that can cause errors that are investigated in this peper. The equations dealing with ellipsoidal corrections developed by Lelgemann and by Moritz are used 租 develop a computational procedure considering the ellipsoid as a reference surface. Terms in the resulting expression for the geold undulation are identified as ellipsoidal correction terms. These equations have been developed for the case where the Stokes function is used, and for the case where the modified Stokes funct, ion is used. For a cap of 20° the correction can reach -33 cm .

Ellipsoidal corrections were also computed for the Marsh/Chang geoids. These corrections reach -45 cm for a cap size of 20°.

Clobal maps are given show ing the distribution of the corrections so that more accurate geold undulations can be found.

Foreword

This report was prepared by Rlchard H. Rapp, Professor, Department of Geodetic Sclence, The Ohio State University. This work was supported under NASA Grant NG R36-008-161, The Ohlo State University Restarch Foundation Project 783210. The grant covering this research is administered through the NASA Goddard Space Flight Center, Greenbelt, Maryland, Mr. George C. Patterson, Technical Officer.

Helpful comments were received on a preliminary version of some of the material presented in this report from R. Rummel, B. Chovitz, and C. Tscherning.

Table of Contents
Foreword . ili

1. Introduction . 1
2. The Theory . 1
3. Ellipsoidal Corrections Using the Modified Stokes' Equation 7
4. Numerical Results . 7
5. The Zero and First Degree Correction Problem 8
6. Ellipticity Corrections for the Marsh-Chang Geoid 14
7. Summary and Conclusions . 16
8. Introduction

Geold undulations can be compuled from Stokes' equation given a global set of grivity anomalles. The Stokes' equation is usually given with spherical approximation (Heiskanen and Moritz, 1967, p. 94). The error of the spherical approximation has been investigated by several authors who have sought a solution of the boundary value problem with the ellipsoid as a reference surfact. Lelgemann (1970) developed techniques to compute corrections to the undulations computed from the Stokes' equation. He showed that the root mean square correction was $\quad 0.2 \mathrm{~m}$ with a maximum correction of about 0.6 m . A somewhat revised approach to this approximation problem is discussed by Moritz (1980).

Today, however, geoid undulations are not usually computed through a global integration procedures. Instead potential coefficient information is combined with gravity avomaly information in a cap surroudning the computation point (Rapp and Rummel, 1975, Marsh and Chang, 1976, Rapp, 1980). For this procedure we therefors cannot use directly the correction equations developed by Ielgemann; instead we must develop new equations.

2. The Theory

We start with the following representation of the earth's gravitational disturbing potential:

where:
kM geocentric gravitational constant;
r geocentric radius;
a earth equatorial radius used in potential coefficient determinations;
$C_{n m}, S_{n n}$ potential coefficients. (The $C_{a, 0}, C_{4,0}, C_{8,0}$ etc. are referenced to a defined reference ellipsoid.)
$P_{n}=(\sin \bar{\varphi})$. associated Legendre functions, as a function of geocentric latitude $\overline{0}$.

The disturbing potential can be evaluated on the ellipsold (assume no external masses) by letting $r=r_{E}$ the geocentric radius to a point on the ellipsoid. We now can compare this to the following representation of T on the ellipsoid (Moritz, 1980, p.320):
(2) $T(\varphi, \lambda)=\sum_{n=a}^{\infty} \sum_{n=0}^{a}\left(A_{n v} \cos m \lambda+B_{n} \sin m \lambda\right) P_{n}(\sin \varphi)$
where $A_{n n}, B_{n}$ are coefficients to be determined; φ is the geodetic latitude. We need to find the relationship between the A, B coefficients and the C, S coefficients noting that at the same point, equation (1) and (2) must yield the
same potential. We write (In a lincar approximation).
(3) $T(\varphi, \lambda, A, B)=,T(\bar{\varphi}, \lambda, A, B)+\frac{\partial T}{\partial \varphi}(\varphi-\bar{\varphi})$

$$
\begin{aligned}
& =T(\bar{B}, \lambda, A, B)+ \\
& \left.\sum_{=}^{\infty} \sum_{n=0}^{\infty}\left(A_{n}, \cos m \lambda+B_{n}=\sin m \lambda\right) \frac{d P_{n}(\sin \varphi)}{d \varphi}\right|_{\bar{\sigma}}(\varphi-\Phi)
\end{aligned}
$$

Now from geometric geodesy we know:
(4) $(\dot{\psi}-\bar{\psi}) \approx \mathrm{e}^{2} \sin \varphi \cos \varphi$

From Moritz (ibid, 39-46,) we can write:
(5) $\sin \bar{\varphi} \cos \bar{n} \frac{d P_{n g}}{d \psi}=a_{n i n} P_{m a n}+b_{n 2} P_{n i}+c_{n i n} P_{m, n}$
where:

$$
\begin{align*}
& a_{n n}=\frac{-n(n-m+1)(n-m+2)}{(2 n+1)(2 n+3)} \\
& b_{n=1}=\frac{n^{2}-3 m^{2}+n}{(2 n+3)(2 n-1)} \tag{6}\\
& c_{n=}=\frac{(n+1)(n+m)(n+m-1)}{(2 n+1)(2 n-1)}
\end{align*}
$$

We now use (4) and (5) in (3) to write:
(7) $T(\varphi, \lambda, A, B)=\sum_{n=2}^{\infty} \sum_{0}^{N}\left(A_{n} \cos m \lambda+B_{n} \sin m \lambda\right) P_{n}(\sin \bar{\varphi})$

$$
+e^{2} \sum_{n=0} \sum_{n=0}^{n}\left(A_{n!} \cos m \lambda+B_{n m} \sin m \lambda\right)\left(a_{n} P_{n+\infty}+b_{n n} P_{n!}+c_{n \pi} P_{n-2, m}\right)
$$

To simplify (7) we use the following relationships (ibid, eq. 39-48):

$$
\sum_{n=0}^{\infty} a_{n \llbracket}\left\{\begin{array}{l}
A_{n} \\
B_{n}
\end{array}\right\} P_{n-2}=\sum_{n=0}^{\infty} a_{n+2, n}\left\{\begin{array}{l}
A_{n+2, n} \\
B_{n+2, n}
\end{array}\right\} P_{n}
$$

)

$$
\sum_{n=a}^{\infty} a_{n m}\left\{\begin{array}{l}
A_{n}, \tag{8}\\
B_{n},
\end{array}\right\} \cdot P_{n+2, n}=\sum_{n=4}^{\infty} a_{n-2, n}\left\{\begin{array}{l}
A_{2-2, n} \\
B_{n-2, n}
\end{array}\right\} P_{n n}
$$

Now we can write (7) as follows:
(9) $T(\varphi, \lambda, A, B)=\sum_{n=0}^{\infty} \sum_{n=0}^{n}\left[\left(A_{n}+e^{2} K_{n}\right) \cos m \lambda\right.$

$$
\left.+\left(B_{n}+e^{a} L_{n n}\right) \sin m \lambda\right] P_{n=}(\sin \bar{\varphi})
$$

where:

$$
\begin{align*}
& K_{n n}=a_{n-\theta \mu} A_{n-2, m}+b_{n m} A_{n E}+c_{n+2, m} A_{n+2, n} \tag{10}
\end{align*}
$$

(Note that the summation on n has started finm zemo as a conscquence of the relationships in (8).) We now equate (9) and (1) with $r=n$ to find

The $A_{n}, B_{n n}$ conficients are a function of φ sincer is a function of φ. In a spherical approximation (11) becomes

$$
\frac{k M}{R}\left(\frac{a}{R}\right)^{n}\left\{\begin{array}{l}
C_{n n} \tag{12}\\
S_{n}
\end{array}\right\}=\left\{\begin{array}{l}
A_{n} \\
B_{n}
\end{array}\right\}
$$

We next consider the ellipsoidal form of the Stokes' equation as given by Morisz (ibid, eq. (49-26)):

$$
\begin{equation*}
N_{\varepsilon}=\frac{R}{4 \pi \gamma} \iint_{G}\left(\Delta g-e^{2} \Delta g^{\prime}\right) S(\psi) d \sigma+e^{2}\left(\frac{1}{4}-\frac{3}{4} \sin ^{2}(d) N\right. \tag{13}
\end{equation*}
$$

Here we have assumed the solution of the geoid bounciary value problem as opposed to the Molodensky problem as discussed by Moritz. In (13) we have: γ, average value of normal gravity over the ellipsoid; N, approximate value of the geoid undulation. In addition (Moritz, ibid., 39-80):

$$
\begin{equation*}
\Delta g^{\prime}=\frac{1}{R} \sum_{n=0}^{\infty} \sum_{n=0}^{R}\left(G_{n} \cos m \lambda+H_{n m} \sin m \lambda\right) P_{n}(\sin \varphi) \tag{14}
\end{equation*}
$$

where:
with

$$
\begin{align*}
& x_{n!}=\frac{-3(n-3)(n-m-1)(n-m)}{2(2 n-3)(2 n-1)} \\
& \lambda_{n a}=\frac{n^{3}-3 m^{2} n-9 n^{2}-6 m^{2}-10 n^{2}+9}{3(2 n+3)(2 n-1)} \tag{19}\\
& \mu_{n}=\frac{-(3 n+5)(n+m+2)(n+m+1)}{2(2 n+5)(2 n+3)}
\end{align*}
$$

Although Moritz starts the summation from $n=2 \ln (14)$, the formality of the reduction leading to (14) indicates a starting summation from $n=0$. We also have $d \sigma=\cos \varphi d \varphi d \lambda$ (Lelgemann, 1970).

Now consider the evaluation of (13) with the Δg values considered in a cap σ_{c} surrounding the computation point, and in the remaining area of the sphere. We have

$$
\begin{equation*}
N_{E}=\frac{R}{4 \pi \gamma} \int_{0}^{\psi_{0}} \int_{0}^{2 \pi}\left(\Delta g-e^{2} \Delta g^{\prime}\right) S(\psi) d \sigma+\frac{R}{4 \pi \gamma} \int_{\psi_{0}}^{\pi} \int_{0}^{2 \pi}\left(\Delta g-e^{2} \Delta g^{\prime}\right) S(\psi) d \sigma+\Delta N \tag{20}
\end{equation*}
$$

where

$$
\text { (20a) } \Delta N=e^{2}\left(\frac{1}{4}-\frac{3}{4} \sin ^{2} \varphi\right) N
$$

In (20) ψ_{0} is the spherical cap radius surrounding the computation point.

We introduce the new function $\overline{\mathbf{S}}(\psi)$ (Helskanen and Moritz, 1967, p. 259);

$$
\bar{S}(\psi)=\left\{\begin{array}{l}
0 \text { if } 0 \leq \psi<\psi_{0} \tag{21}\\
S(\psi)
\end{array}\right.
$$

Equation (20) then becomes:

$$
\begin{equation*}
N_{E}=\frac{\mathrm{R}}{4 \pi \gamma} \int_{0}^{40} \int_{0}^{2 \pi}\left(\Delta g-e^{2} \Delta g^{\prime}\right) S(\psi) d \sigma+\frac{R}{4 \pi \gamma} \int_{0}^{\pi} \int_{0}^{2 \pi}\left(\Delta g-e^{2} \Delta g^{\prime}\right) \bar{S}(\psi) d \sigma+\Delta N \tag{22}
\end{equation*}
$$

We now write (Moritz, lbld, p. 326):

$$
\begin{equation*}
\Delta g=\Delta g^{0}+e^{3} \Delta g^{\prime} \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta g^{0}=\sum_{n=0}^{\infty} \sum_{n=0}^{n} \frac{(n-1)}{R}\left(A_{n}=\cos m \lambda+B_{n} \sin m \lambda\right) P_{n_{n}}(s \ln \varphi) . \tag{24}
\end{equation*}
$$

Using (23) for Δg^{\prime} in (22) we have:

$$
\begin{equation*}
N_{\varepsilon}=\frac{R}{4 \pi \gamma} \int_{0}^{\psi_{0}} \int_{0}^{2 \pi}\left(\Delta g-e^{2} \Delta g^{\prime}\right) S(\psi) d \sigma+\frac{R}{4 \pi \gamma} \int_{0}^{\pi} \int_{0}^{2 \pi} \Delta g^{\circ} \bar{S}(\psi) d \sigma+\Delta N \tag{25}
\end{equation*}
$$

Foilcwing Heiskanen and Moritz (1967, p. 259) we introduce the Molodenskii coeffle ients Q_{n} :

$$
\begin{equation*}
\bar{S}(\psi)=\sum_{n=0}^{\infty} \frac{2 n+1}{2} Q_{n} P_{n}(\cos \psi) \tag{26}
\end{equation*}
$$

sol that the second integral in equation (25) can be written as:

$$
\begin{align*}
\frac{R}{4 \pi \gamma} \int_{0}^{\pi} \int_{0}^{2 \pi} \Delta g^{0} S(\psi) d \sigma & =\frac{R}{8 \pi \gamma} \sum_{\mathrm{a}=0}^{\infty}(2 n+1) Q_{n} \int_{0}^{\pi} \int_{0}^{2 \pi} \Delta g^{\circ} P_{n}(\cos \psi) d \sigma \tag{2?}\\
& =\frac{R}{2 \gamma} \sum_{n=0}^{\infty} Q_{n} \Delta g_{a}^{\circ}
\end{align*}
$$

where Δg° would be obtained from (24).
If we now use (24) for $\Delta \mathrm{g}_{n}^{\circ}$ and use (11) for the coefficient relationships we can express (25) as:

$$
\begin{align*}
N_{\varepsilon} & =\frac{R}{4 \pi \gamma} \int_{0}^{\psi} \int_{0}^{\psi_{0}}\left(\Delta g-e^{2} \Delta g^{\prime}\right) S(\psi) d \sigma \tag{28}\\
& +\frac{k M}{2 r_{E} \gamma} \sum_{n}^{\infty} Q_{n}(n-1)\left(\frac{a}{r_{\varepsilon}}\right)^{n} \sum_{n=0}^{n}\left(C_{n a} \cos m \lambda\right. \\
& \left.+S_{n=} \sin m \lambda\right) P_{n g}(\sin \varphi) \\
& -\frac{e^{z}}{2 \gamma} \sum_{n}^{\infty} Q_{z}(n-1) \sum_{\equiv=0}^{n}\left(K_{n_{n}} \cos m \lambda+L_{n} \sin m \lambda\right) P_{n a}(\sin \varphi)+\Delta N
\end{align*}
$$

The summation ou n is from 2 if we ignore the zero and first degree terms that have been eliminated through the Stokes' equation. Note that the correction terms involving K and L arise from the fact that the assoclated Legendre
functions are evaluated at the geodetic latitude instead of the geocentric lattade. If the evaluation is done at the geocontric latiude the correction terms will not be necessary. We have:

$$
\begin{align*}
N_{E} & =\frac{R}{4 \pi \gamma} \int_{0}^{\psi 0} \int_{0}^{2 \pi}\left(\Delta g-e^{3} \Delta g^{\prime}\right) S(\psi) d o \tag{29}\\
& +\frac{k M}{2 n \gamma} \sum_{n=a}^{\infty} Q_{n}(n-1)\left(\frac{a}{n}\right)^{n} \sum_{n=0}^{n}\left(C_{n}=\cos m \lambda\right. \\
& \left.+S_{n} \sin m \lambda\right) p_{n=}(\sin \bar{D})+\Delta N
\end{align*}
$$

Now consider the integral $\ln (29)$ Involving $\mathrm{e}^{2} \mathrm{Lg}$ ' . We write:

$$
\begin{equation*}
\frac{R^{2}}{4 \pi \gamma} \int_{0}^{\psi} \int_{0}^{2 \pi} \Delta g^{\prime} S(\psi) d \sigma=\frac{\mathrm{Re}^{2}}{4 \pi \gamma} \int_{0}^{\pi} \int_{0}^{2 \pi} \Delta \mathrm{~g}^{\prime} \mathrm{S}(\psi) \mathrm{d} \sigma-\frac{\mathrm{Re}^{a}}{4 \pi \gamma} \int_{\psi 0}^{\pi} \int_{0}^{2 \pi} \Delta \mathrm{~g}^{\prime} \mathrm{S}(\psi) \mathrm{d} \sigma \tag{30}
\end{equation*}
$$

The first integral on the right hand side of (30) can be written as (Moritz, lbid p. 126):

$$
\begin{align*}
\frac{R e^{2}}{4 \pi \gamma} \int_{0}^{\pi} \int_{0}^{2 \pi} \Delta g^{\prime} S(\psi) d \sigma & =\frac{e^{2}}{\gamma} \sum_{n=0}^{\infty} \frac{1}{(n-1)} \sum_{n=0}^{n}\left(G_{n}, \cos m \lambda\right) \tag{31}\\
& \left.+H_{n} \sin m \lambda\right) P_{n n}(\sin \bar{s})
\end{align*}
$$

Note the summation starts from $n=2$ because of properties of the Stokes' function. Recall equation (14), however, where Δg^{\prime} contains zero and first degree terms. Introducting the modified Stokes' function (equation 21), the second integral on the right hand side of (30) can be written as:

$$
\begin{equation*}
\frac{\mathrm{Re}^{2}}{4 \pi \gamma} \int_{\psi_{0}}^{\pi} \int_{0}^{2 \pi} \Delta \mathrm{~g}^{\prime} \mathrm{S}(\psi) \mathrm{d} \sigma=\frac{\mathrm{Re}^{2}}{2 \gamma} \sum_{n=0}^{\infty} \Delta \mathrm{g}_{\mathrm{a}}^{\prime} \mathrm{Q}_{\mathrm{n}} \tag{32}
\end{equation*}
$$

Combining (31) and (32) we can write (30) as:

$$
\begin{align*}
& \frac{R e^{2}}{4 \pi \gamma} \int_{0}^{\psi} \int_{0}^{2} \Delta g^{\prime} S(\psi) d \sigma=\frac{e^{a}}{2 \gamma} \sum_{n=0}^{\infty}\left[X_{n}-Q_{n}\right] ; X_{n}=\left\{\begin{array}{c}
0 \text { if } n<2 \\
\frac{2}{(n-1)}, n \geq 2
\end{array}\right. \tag{33}\\
& \sum_{n=0}^{n}\left(G_{n i} \cos m \lambda+H_{n i} \sin m \lambda\right) P_{n n}(\sin \bar{\varphi})
\end{align*}
$$

We now can write our final result by re-writing (29) with (33) and (21):

$$
\begin{align*}
N_{\varepsilon} & =\frac{R}{4 \pi \gamma} \int_{0}^{\psi} \int_{0}^{2 \pi} \Delta g S(\psi) d \sigma \tag{34}\\
& +\frac{k M}{2 r_{\varepsilon} \gamma_{n}} \sum_{0=a}^{\infty} Q_{n}(n-1)\left(\frac{a}{r_{\varepsilon}}\right)^{n} \sum_{n=0}^{n}\left(C_{n n} \cos m \lambda+S_{n n} \sin m \lambda\right) P_{n \varepsilon}(\sin \bar{\varphi}) \\
& +\frac{e^{z}}{2 \gamma} \sum_{n=0}^{\infty}\left(Q_{n}-X_{n}\right) \quad \sum_{n=0}^{n}\left(G_{n=} \cos m \lambda+H_{n \pi} \sin m \lambda\right) \cdot P_{n=}(\sin \bar{\varphi}) \\
& +e^{2}\left(\frac{1}{4}-\frac{3}{4} \sin ^{2} \varphi\right) N
\end{align*}
$$

The first two terms in (34) represent the computation of the undulation with certain approximations while the latter two terms represert the vorrections needed to fully refor the solution to an ellfpsoidal reference surface. Thus we would design our computations in the following usage:

$$
\begin{equation*}
N_{\ell}=N_{1}+N_{\mathbf{a}}+\Delta N_{1}+\Delta N \tag{35}
\end{equation*}
$$

where $N_{1}+N_{2}$ represents the first two terms in (34) and $\Delta N_{1}+\Delta N$ represent the ellipsoidal correction terms. In a later part of the paper we will discuss the numerical values of $\Delta N_{1}+\Delta N$.

We can look at two special cases of the above equations. First let $\psi_{0}=0^{\circ}$ which implies that no gravity anomalies are used in the computation. In this case $Q_{\mathrm{n}}=2 /(n-1)(n>2)$ so that (34) becomes:

$$
\begin{align*}
N_{E} & =\frac{k M}{z^{2}} \sum_{n=1}^{\infty}\left(\frac{a}{r_{E}}\right)^{n} \sum_{E=0}^{n}\left(C_{n E} \cos m \lambda+S_{n} \sin m \lambda\right) P_{n E}(\sin \bar{\varphi}) \tag{36}\\
& +e^{a}\left(\frac{1}{4}-\frac{3}{4} \sin ^{2} \varphi\right) N
\end{align*}
$$

Equation (36) is the same as:

$$
\begin{equation*}
N_{\varepsilon}=\frac{k M}{r_{E} \gamma_{E}} \sum_{n=0}^{\infty}\left(\frac{a}{r_{\varepsilon}}\right)^{n} \sum_{\equiv=0}^{n}\left(C_{n} \cos m \lambda+S_{n} \sin m \lambda\right) P_{n}(\sin \bar{\phi}) \tag{37}
\end{equation*}
$$

since (Moritz, 1980, eq. (39-17)):

$$
\begin{equation*}
\gamma_{\varepsilon}=\gamma\left(1-\frac{1}{4} e^{a}+\frac{3}{4} e^{a} \sin ^{2} \varphi\right) \tag{38}
\end{equation*}
$$

Equation (37) is the same as given in Rapp (1967, eq. 7) for the computation of a "rigerous" geoid undulation. We thus see the satisfactory reduction of the general case derived in this paper to the special case previously known.

The second special case to consider is when $\psi_{0}=180^{\circ}$. Then $Q_{n}=0$ so that (34) becomes:

$$
\begin{align*}
N_{\epsilon} & =\frac{R}{4 \pi \gamma} \int_{0}^{\pi} \int_{0}^{2 \pi} \Delta g S(\psi) d \sigma \tag{39}\\
& -\frac{e^{2}}{\gamma} \sum_{n=2}^{\infty} \frac{1}{(n-1)} \sum_{=0}^{2}\left(G_{n} \pi \cos m \lambda+H_{n!} \sin m \lambda\right) P_{n}(\sin \bar{\sigma}) \\
& +e^{2}\left(\frac{1}{4}-\frac{3}{4} \sin ^{2} \varphi\right) N
\end{align*}
$$

This result can be compared to the solution given by Lelganam (1970, eq. (3-6)) where numerical tests show that the two formulations yield the same corrections to about $\pm 1.6 \mathrm{~cm}$. We thus have an additional special case confirmation of our general formula.

3. Ell fosoidal Corrections Using the Modified Stokes' Equation

Tests described by Rapp (1980) and Jekell (1980) Indicated a significant improvement in geoid undulation determinations if the Stokes' function is modified by subtracting $S\left(c o s V_{0}\right)=S_{0}$ from $S(\psi)$. This procedure can be represented in our case by rewriting equetion (13) in the following form:

$$
\begin{align*}
N_{E} & =\frac{R}{4 \pi \gamma} \int_{\sigma_{c}} \int_{0}\left(\Delta g-e^{2} \Delta g^{\prime}\right)\left(S(\psi)-S_{o}\right) d \sigma \tag{40}\\
& +\frac{R}{4 \pi \gamma} \int_{\sigma_{c}} \int_{0}\left(\Delta g-e^{2} \Delta g^{\prime}\right) S_{0} d \sigma \\
& +\frac{R}{4 \pi \gamma} \int_{\sigma} \int_{-\sigma_{c}}\left(\Delta g-e^{2} \Delta g^{\prime}\right) S(\psi) d \sigma \\
& +\Delta N
\end{align*}
$$

Using a procedure followed before considering Jekell (1980, sections 2 and 3) we arrive at a result similar to equation (34). Specifically:

$$
\begin{align*}
N_{\varepsilon} & =\frac{R}{4 \pi \gamma} \int_{0}^{\psi} \int_{0}^{2 \pi} \Delta g\left(S(\psi)-S_{0}\right) d \sigma \tag{41}\\
& +\frac{k M}{2 r_{\varepsilon} \gamma} \sum_{n=2}^{\infty} \bar{Q}_{n}(n-1)\left(\frac{a}{r_{\varepsilon}}\right)^{n} \sum_{n=0}^{a}\left(C_{n=} \cos m \lambda+S_{n a} \sin m \lambda\right) P_{n a}(\sin \bar{\varphi}) \\
& +\frac{e^{2}}{2 \gamma} \sum_{n=0}^{\infty}\left(\bar{Q}_{n}-X_{n}\right) \quad \sum_{m=0}^{n}\left(G_{n}=\cos m \lambda+H_{n}, \sin m \lambda\right) \cdot P_{n}(\sin \bar{\varphi}) \\
& +\Delta N
\end{align*}
$$

We have (Jekeli, 1980, eq. 65):

$$
\begin{equation*}
\bar{Q}_{n}\left(\psi_{0}\right)=Q_{n}\left(\psi_{0}\right)+\frac{S\left(\psi_{0}\right)}{(n-1)}\left(P_{n-1}\left(\cos \psi_{0}\right)-\cos \psi_{0} P_{n}\left(\cos \psi_{0}\right)\right) ; n \geq 1 \tag{42}
\end{equation*}
$$

Equation (41) is the same as (34) with two exceptions: $S(\psi)-S_{0}$ replaces $S(\psi)$ and \bar{Q}_{n} replaces $Q_{i z}$. Numerical tests of both equations will be described in the following section.

4. Numerical Results

We now will evaluate tre ellipsoidal correction terms ΔN_{1} and ΔN defined in equation (35) and (34) and the similar terms in equation (41). Our starting potential coeffle ierts are those of GEM9 (Lerch et al, 1979) taken to degree 20. The first step in the computation is to find the $A_{a_{1}}, B_{n=}$ coefficients
using equation $\langle 1\rangle$.

We next deternined $\Delta N_{1}+\Delta N$ as given in equation (35). This is for ellipticity correction to be added to a geold undulation computed from the first two terms on the right hand side of equation (34). This evaluation was done for $\psi=10^{\circ}, 20^{\circ}$, and 180° and the results are shown in Figures 1,2 , and 3. The maximum correction and root mean square correction for each of of these oases is: $(-26 \mathrm{~cm}, \pm 6 \mathrm{~cm}, \psi=109) ;(-33 \mathrm{~cm}, \pm 10 \mathrm{~cm}, \psi=209$; $(-59 \mathrm{~cm}$, $\pm 18 \mathrm{~cm}, \psi:=180^{\circ}$).

Simil iar computation were carried out when using the modified Stokes ${ }^{\prime}$ equation. These results are shown for $\psi=10^{\circ}$ in Figure 4 and for $\psi=20^{\circ}$ in Figure 5. The maximum and the RMS correction for $\psi=10^{\circ} \mathrm{ls}(-21 \mathrm{~cm}, \pm 5 \mathrm{~cm})$ and for $\psi=20^{\circ}$ it is $(-27 \mathrm{~cm}, \pm 6 \mathrm{~cm})$. Examination of the corresponding figures indicate that the correction for the modified Stokes' Integral are somewhat smaller overall than the case with the regular Stokes' function.

The corrections are generally small and below the current acciracy of the data with caps of 10° or 20°. However as more precise computations are carried out in the future, these corrections should be taken into account.

5. The Zero and First Degree Ccrrection Problem

In carrying out the derivation of several of the previous equations, summations were started from 2 instead of 0 by convention or because the Stokes' cquation removes zero and first degree terms liu a global integration. However the use of the relationships in equation (8) does introduce zero and first degree terms that need to be considered. This problem has been discussed by Lelgemann (1970) who assumed the following form of the disturbing potential:

$$
\begin{align*}
& T(r, \bar{\theta}, \lambda)=\frac{1}{\mathbf{r}^{3}}\left[A_{2,0} R_{0,0}(\bar{\theta}, \lambda)+A_{2, a} R_{a, 0}(\theta, \lambda)+B_{2, a} S_{2, a}(\bar{\theta}, \lambda)\right] \tag{43}\\
& +\frac{1}{r^{6}}\left[A_{30} R_{0,0}(\theta, \lambda)+A_{3,2} R_{3,1}(\theta, \lambda)+A_{3,2} R_{3,2}(\bar{\theta}, \lambda)\right. \\
& +A_{3,3} R_{3,3}(\bar{\theta}, \lambda)+B_{3,1} R_{3,2}(\theta, \lambda)+B_{3,2} S_{3, a}(\bar{\theta}, \lambda) \\
& \left.+B_{3,3} \mathbf{S}_{3,3}(\overline{0}, \lambda)\right]+\frac{1}{\mathbf{r}^{5}}\left[A_{4,1} \mathbf{P}_{4,2}(\bar{\theta}, \lambda)\right]
\end{align*}
$$

where: $\bar{\theta}=90^{\circ}-\bar{\varphi}$

$$
\begin{aligned}
R_{n!} & =\cos m \lambda P_{n!} \\
S_{n} & =\sin m \lambda P_{n!}
\end{aligned}
$$

and $\left\{\begin{array}{l}A_{n n} \\ B_{n!}\end{array}\right\}=k M a^{n}\left\{\begin{array}{l}C_{n m} \\ S_{n!}\end{array}\right\}$
Note that the $A_{n}, B_{n}:$ are not the same as given in equation (2). Equation (43) represents a reasonable low degree model of the disturbing potential but it is not meant to be a complete model.

Figure 1
Undulation Correction When Using Anomalies Within a Cap of $\dot{\psi}=10^{\circ}$
with the Regular Stokes ${ }^{\prime}$ Formulation (Contour Interval $=5 \mathrm{~cm}$)

ORIGINAL PAGE IS OF POM otiality

Undulation Correction When Using Anomalies Within A Cap of $\psi=20^{\circ}$ with the Regular Stokes' Formulation (Contour Interval $=5 \mathrm{~cm}$)

Undulation Correction When A Global Set of Anomalies

Undulation Correction When Using Anomalies Within a Cap of $\psi=10^{\circ}$
with the Modified Stokes' Formulation (Contour Interval $=\mathbf{5 c m}$)

Undulation Correction When Using Anomalies Within a Cap of $\psi=20^{\circ}$ with the Modified Stokes' Foæmulation (Contour Interval $=\mathbf{5 c m}$)

Lolgemann (1970) shows that the crror introduced by the neglect of the zero and first degrec terms when developing the ellipticity correction for the global Stokes' integration ($\psi_{0}=180^{\circ}$) Is:

$$
\begin{equation*}
\Delta N_{0,1}=\frac{e^{2}}{\gamma}\left[-\frac{1}{5} a_{2,0}-\frac{12}{35} a_{3,0} R_{1,0}-\frac{24}{35}\left(a_{3,1} R_{11}+b_{3,1} S_{11}\right)\right] \tag{44}
\end{equation*}
$$

where:

$$
\left\{\begin{array}{l}
a_{n n} \\
b_{n}
\end{array}\right\}=\frac{k M}{a}\left\{\begin{array}{l}
C_{n} \\
S_{n}
\end{array}\right\}
$$

Using the coefficients of GEM9 we have evaluated equation (44) with the results shown in Figure 6. As is obvious from (44) this correction is very long wavelength. The magnitude is quite small with the maximum correction being $\pm 7 \mathrm{~cm}$. We would expect that the correction for the small cap sizes used in practice would be considerably smaller than this as was seen for the usual ellipticity correction. Therefore we will not pursue the derivation of this correction term for the cap case.

6. Ellipticity Corrections for the Marsh-Chang Geoid

For the past several years Marsh and Chang (1976, 1978) have computed detailed geoid undulations combining potential coefficinnt information and terrestrial gravity data. The method used by them is called Method A in Rapp and Rummel (1975) or Method 1 in Rummel and Rapp (1976). The specific equations used by Marsh and Chang in their recent papers are as follows:

$$
\begin{equation*}
\mathbf{N}(\boldsymbol{\varphi}, \lambda)=\mathbf{N}_{\mathbf{1}}+\mathbf{N}_{\mathbf{p}} \tag{45}
\end{equation*}
$$

where:

$$
\begin{align*}
& \text { re: } \tag{46}\\
& N_{1}=R \sum_{n=a}^{\bar{a}} \sum_{n=0}^{n}\left(C_{n u} \cos m \lambda+S_{n!} \sin m \lambda\right) P_{n m}(\sin \bar{\varphi}) \\
& N_{2}=\frac{R}{4 \pi \gamma} \int_{\sigma_{c}} \int\left(\Delta g-\Delta g_{a}\right) S(\psi) d \sigma \\
& \Delta g_{a}=\gamma \sum_{n=a}^{n} \sum_{n}^{n}(n-1)\left(C_{n t} \cos m \lambda+S_{n} n \sin m \lambda\right) P_{n}(\sin \bar{\varphi})
\end{align*}
$$

Here $\overline{\mathrm{n}}$ is the maximum degrec used with the potential coefficients. In practice the integration in the cap has taken place us ing just $1^{\circ} \times 1^{\circ}$ anomalies or these anomalies in conjunction with smaller block sizes such as 51×5, and $15^{\prime} \times 15^{\prime}$. The integration cap has been $10^{\circ}, 20^{\circ}$ or presumably 0° when insufficient gravity data is present. In view of our previous discussions we now are interested in the geoid error caused by the spherical approximation in equation (46) and (47).

For convenience we introduce A_{a} as follows:

Zero and First Degree Ellipticity Corrections

$$
\begin{equation*}
A_{a}=\sum_{\underline{=}}^{n}\left(C_{m a} \cos m \lambda+S_{m n} \sin m \lambda\right) P_{m a}(s \sin \phi) \tag{44}
\end{equation*}
$$

The ell ipsoldal errcr in the Marsh/Chang geold will be:
(50) $\Delta N_{m / c}=N_{\varepsilon}($ eq, 34) $-N($ eq. 45)

In order to reduce (50) the following equality can be used

$$
\begin{equation*}
\frac{R}{4 \pi \gamma} \int_{\sigma_{c}} \int_{\Delta g_{a}} S(\psi) d \sigma=\frac{R}{2} \sum_{a=0}^{\bar{Z}}\left(2-Q_{a}(n-1)\right) A_{n} \tag{51}
\end{equation*}
$$

An erroneous form of (51) was given in Rapp and Rummel (1975, eq. 33). Using (34), (45), and (51), equation (50) can be written as:

$$
\begin{align*}
\Delta N_{m h} & =\frac{k M}{2 r_{E} \gamma} \sum_{n=0}^{\bar{\pi}} Q_{n}(n-1)\left(\frac{a}{r_{E}}\right)^{n} A_{n} \tag{52}\\
& -\frac{R}{2} \sum_{n=m}^{\bar{a}} Q_{n}(n-1) A_{n} \\
& +\frac{e^{2}}{2} \sum_{n=0}^{\bar{\pi}}\left(Q_{n}-X_{n}\right) \quad \sum_{n=0}^{a}\left(G_{n E} \cos m \lambda\right. \\
& \left.+H_{n=} \sin m \lambda\right) P_{n a}(\sin \varphi)+\Delta N
\end{align*}
$$

We have evaluated (52) with the GEM9 potential coefflcients ($n=20$) for $\psi=0^{\circ}, 10^{\circ}$, and 20°. These results are shown in Figure 7, 8, and 9. The maximum correction and root mean square correction for each of these cases is $\left\{101 \mathrm{~cm}, \pm 27 \mathrm{~cm}, \psi=0^{\circ}\right),\left(44 \mathrm{~cm}, \pm 16 \mathrm{~cm}, \psi=10^{\circ}\right),(-45 \mathrm{~cm}, \pm 14 \mathrm{~cm}$, $\psi=20^{\circ}$).

7. Summary and Conclusions

This paper has developed the formulas needed to compute the correction for geoid undulation computations made from the combination of potential coeffic lent information and terrestrial gravity data. The first procedure developed the formulas needed for the precise computation of the geod considering the ellipsoid as a reference surface and using the usual Stokes' equation. The corrections are a function of the cap within which gravity data is used. For a cap size of 20° the maximum correction was -35 cm .

Another case was considered with the use of the modified Stokes' function In this case the maximum correction for $\psi=20^{\circ}$ was -27 cm .

The third case considered was that for the ellipticity corrections for the Marsh/Chang geoid. If a cap of 0° was used the maximum correction was 101 cm ; if the cap was 20°, the maximum correction was -45 cm .

All the corrections have been computed using the GEM9 potential coef-

Figure 7
Ellipticity Correction for Marsh/Chang Geoid Undulation
if $\psi=0^{\circ}$, (Contour Interval $=10 \mathrm{~cm}$)

ORIGINAL PAGE IS' OF POOR QUALITY
Ellipticity Correction for Marsi/Chang Geoid Undulations if $\psi=10^{\circ}$, (Contour Interval $=5 \mathrm{~cm}$)

Figure 9
Ellipticity Correction for Marsh/Chang Geoid Undulations if $\dot{\psi}=20^{\circ}$, (Contour Interval $=10 \mathrm{~cm}$)
ficients taken te degree 20. Errors in the se coeffictents or the use of additlonal higher degree terms should not significantly effect these results.

As can be seen from the various maps, these correction terms are fairly long wavelength. Therefore in some applications working with altimeter data and gravimetric geoids, the correction could appear as a constant difference. In some cases, for example, in examining the difference between the sea surface and the gravimetric geoid of Marsh/Chang a net correction, across the pacific ocean, of about 35 cm should be made. If, in the future, we are to determine highly accurate geoids from potential coefficients and terrestrial gravity data, the corrections or problem formulation given in this paper should be used.

References

Helskamen, W., and H. Moritz, Physical Geodesy, W. H. Freeman, San Francisco, 1967, (reprint from Institute of Physical (eodesy, Steyrergasse 17, A-8010 Graz, Austria).

Jekeli, C., Reducing the Error ofGeoid Undulation Computations By Modifying Stokes' Function, Dept. of Geodetic Science Report No. 301, The Ohio State University, Columbus, 1980.

Lelgemann, D., Untersuchungen zue einir genaueren Lösung des Prciolems von Stokes, Deutsche Geodätische Kommission, Series C, No. 155, 30pp. 1970.

Lerch, F.J., et al., Gravity Model Improvement Using GEOS-3 (GEM9 and 10), J. Geophys. Res., Vol. 84, B8, 3897-3916, July, 1979.

Marsh, J.G., and E.S. Chang, Detailed Gravimetric Geoid Confirmation of Sea Surface Topography Detected by the Skylab S-193 Altimeter In the Atlantic Ocean, Bull. Geod., Vol. 50, No.3, 291-299, 1976.

Marsh, J.G., and E.S. Chang, 51 Detailed Geoid i: the Northwestern Atlantic Ocean, Marine Gtodesy, Vol.1, No. 3, pp253-261, 1978.

Moritz, H., Advanced Physical Geodesy, Abacus Press, England, 1980.
Rapp, R. H. , Comparison of Satellite Geoids and Anomaly Fields, Dept. of Geodetic Science Report No. 80, The Ohio State University, Columbus, 1967.

Rapp, R.H., and R. Rummel, Methods for the Computation of Detailed Geoids and Their Accuracy, Dept. of Geodetic Science, Report No. 233, The Ohio State University, Columbus, 1975.

Rapp, R. H., A Comparison of Altimeter and Gravimetric Geoids in the Tonga Trench and Indian Ocean Areas, Bulletin Geodesique, Vol. 54, No. 2, pp149-163, 1980.

Rummel, R, ard R. Rapp, The Influence of the Atmosphere on Geold and Potential Cocfficient Determinations from Gravity Data, J. Geophys. Res., Vol.81, No.32, p5639-5642, 1976.

