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Abstract

The computation of accur:ite geoid undulations is usually done combining
potential coefficlent iInformation and terrestrial gravity data in a cap sur-
rounding the computation point. In duing this a spherical appreximation is
made that can cause errors that are investigated in this prper. The equations
dealing with ellipsoidal corrections developed by Lelgemann and by Moritz
are used » develop a computational procedure considering the ellipsoid as a
reference surface, Terms in the resulting expression for the geoid undulation
are identified as ellipsoidal correction terms. These equations have been
developed for the case where the Stokes function is used, and for the case
where the modified Stokes funct,'on is used. For a cap of 20° the correction
can reach -33cm.

Ellipsoidal correction3 were also computed for the Marsh/Chang geoids.
These corrections reach ~45cm for a cap size of 20°.

CGlobal maps are given showing the distribution of the corrections so
that more accurate geold undulations can be found.
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1. Introduction

Gieold undulations can be computed from Stokes' equation given a
global sct of gravity anomalles. The Stokes' equation is usually given with
spherical approximation (Heiskanen and Moritz, 1967, p. 94). The error of
the spherical approximation kas been investigated by several authors who have
sought a solution of the boundary value problem with the ellipsoid as a refer-
ence surface . Lelgemann (1970) developed techniques to compute corrections
to the undulations computed frem the Stokes' equation. He showed that the
root mean square correction was -0,.2m with a maximum correction of about
0.6m . A somewhat revised approach to this approximation problem is dis-
cussed by Moritz (1380).

Today, however, geoid undulations are not usually computed through
a global integration procedures. Instead potential coefficient information is
combined with gravity aromaly information in a cap surroudning the com-
putation point (Rapp and Rummel, 1975, Marsh and Chang, 1976, Rapp, 1980).
For this procedure we therefores cannot use directly the correction equations
developed by Ielgemann; instead we must develop new equations.

2. The Theory

We start with the following representation of the earth's gravitational
disturbing po tential: ’

W) T(r, d 2 =M

I~

(-"‘l->n i (Coa COSINX + S, , Sinm)) P, (Sin®)

n= 2 r 80
where:
kM geocentric gravitational constant;
r geocentric radius;
a earth equatorial radius used in potential coefficient
determinations;

Cus » Spa potential coefficients. (The Cz,0 , Cq,0, Cs,0 €tc. are
referenced to a defined reference ellipsoid.) ’
P,, (singyg . associated Legendre functions, as a function of geocentric
latitude & .

The disturbing potential can be evaluated on the ellipsoid (assume no external
masses) by letting r = re¢ the geocentric radius to a point on the ellipsoid.

We now can compare this to the following representation of T on the ellipsoid
(Moritz, 1980, p.320): "

x n

(2 T@N = ) ] (Ay cosmr+ B,, sinmi) P,, (sin®

n=a23 a=0
where A, , B,, are coefficients to be determined; ¢ is the geodetic latitude,
We need to find the relationship between the A, B coefficients and the C , S
coefficients noting that at the same point, equation (1) and (2) must yield the
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same potential, We write ( In a lincar approximation).

it

(3 T@ A B,) = T@ A A,B)+ -%’f-; (© - B

it

T@, ) A,B) +

> 2 dP,, (sing)| @- B)
A ycOo8 mA + B,, sinm) ——-—-l
L L« Frams b

=@ .:—"0 (0
Now from geometric geodesy we know:

(4 @ -T) ~ e sin®cosP
From Moritz (ibid, 39-46,) we can write:
(5) sin® cosn (-la-%-& = Bpg Pyra, g + Dgy Pag + Cuu Ppa,y !

where:
a -~ A -m+1)(n-m+2)
ne (Zn + 1)(2n +3)

n—3m +n

® P T ETEH @ - 1)
. (n+ O +m@+m-1)

(2n + 1)(2n - 1)
We now use (4) and (5) in (3) to write:

() T@:A,A,B) = i i (ApscosmA + By, sinm)) P, (8in@P)

f Z (Apgcosm) + By, 8iInm) (23,4 Pra,s + by Pps + Cpo Pra,,)

Nz a...-

To simplify (7) we use the following relationships (ibid, eq. 39-48): i

R S U P

Cb An_j'.}
{ n.} Pn’*'aol = ﬂ—a. Br\an Pnl

n.—.—ﬁ

n

(8)

nMa

Now we can write (7) as follows:

(9 T2, A,B) =T ; [(A“ + e®K,,)cosm)

n=0 l-—O
+ (B,, + €°Ly)sinm) | P,, (sind)

where:
Kip = an—&ﬂ An—ﬁon + bnll Anl + clﬂao' A’”‘a"

(10)

Ly = An-2,2 B2, + byp Bpe + Crtaym Bpia,s
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(Note that the summation on n has started fiom zcro as a consequence of
the relationships in (8)) We now equate (9) and (1) with r=n to find

on 2 (8 52} - (et

The A,, , Bya coofficients are & Iunctlon of @sincere is a function of .
In a spherical approximation (11) becomes

n R @a) {5 - ()

We next consider the eéllipsoidal form of the Stokes' equation as
given by Moritz (ibid, eq. (49-26)):

(13) Ne = G%ff(zsg-e%g')sw)dm» e®( 11,- - —%- sin®¢@ N

Here we have assoumed the solution of the geoid boundary value problem as
opposed to the Molodensky problem as discussed by Moritz. In (13) we have:
¥, average value of normal gravity over the ellipsoid; N, approximate value
of the geoid undulation. In addition (Moritz, ibid., 39-80):

(14) og' = -%— )} § (Goa COS M + H,, sinm) P,, (sin®)

=

8.0 80
where:
Gaa } Aca,s Ans {Am}

8 = + A + _
(1 ) {Hnl A am {Bn‘a’.} na Bnn} [ Bma,.

it]
with X = -3(n - 3)(n - m - 1Yn - m)

na

2(2n 3)(2n -1)
19 Y zn-3mn on® - 6m° - 10n°+9
() . 3(2n + 3)(2n - 1)
u n+5)n-+tm+2)p+m+])
ne 2(2n + 5)(2n + 3)

Although Moritz starts the summation from n =2 in (14}, the formality
of the reduction leading to (14) indicates a starting summaticn from n =0.
We also have do=cospdpd (Lelgemann, 1970).

1l

Now consider the evaluation of (13) with the Ag values considered in a
cap o, surrounding the computation point, and in the remaining area of
the sphere. We have

n 27
(20) N 4nyff (Ag-eaAg')S(¢)do+a%‘7_£°£(Ag-eaAg')S('b)dU*‘AN

where
(20a) AN = €°( —i-'-- %—sin‘ﬂp) N

In (20) ¥, is the spherical cap radius surrounding the computation point.
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We introduce the new function S (¢) (Heiskanen and Moritz, 1967, p. 259): 1

2y S@) = { g(wl; 0¥t l
|
1

Equation (20) then becomes:
fop2n ) n 2n _
(22) Ng = -JL-/ (0g - “og') S(p) do + —B- (g - e®Ag') S(Y)do + AN
4ny J0 JO 4ny b Jo

We now write (Moritz, ibid, p.326):

(23) g = Ag® + e ag'

where
(24) og° = )'_' ): L'!-:-D (Ays COSMA + By, slnm)) P,, (sno) .

|

i =8 B0

i Using (23) for Ag' in (22) we have:
I

Yop2m R me2n é
P 53 ' o
| (25) N¢ = 4—3’-/-'/;/; (Ag - e°4g') S(¥)do + 4——1'77./;‘/; Ag°S(p)ydo+ AN

Foilcwing Heiskanen and Moritz (1967, p.259) we introduce the Moloderskii
coefficients Q, :

- 26 S@) = BFL Q, P, (cosy)
§=0

s» that the second integral in equation (25) can be written as:

i n 2n .
4"yff A S(y)do = —— 8”. (2n+1)Q,f£ Ag° P, (cosy) do

= QnA
271:—. g‘:

where Ag® would be obtained from (24).

e

If we now use (24) for 4g{ and use (11) for the coefficient relationships
‘we can express (25) as:
Yo 2m

4,,7‘[]’ (0g - €°0¢') S (p) do

gQ.,(u 1)( ) ‘go(cn.cosmx

+ S,, 8inmQA) P,, (8InY)

(28) N

2ry

2 2 n
- -22)-; EQ,(n - 1)-20 (K,cosmA + Ly, sinmd)P,, (sing) + &N

that have been eliminated through the Stokes' equation. Note that the correction

; P The summation cu n is from 2 if we ignore the zero and first degree terms 1‘
terms involving K and L arise from the fact that the associated Legendre %

B 4
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functions arce cvaluated at the geodetic latitude instead of the geocentric lat-
ttude. U tke evaluation is dome at the geocntric latitude the correction terms
will not be necessary, We have:

2n

po
(29) N = T”/ff (8 - ¢°Ag') S@¥) do

k 2 -
3 N;“f; Qy(n-1) <-§-> ‘Eo (CpaCOSMA

+ S, 8inm)) P, (8inD) + AN

Now consider the lntegral in (29) involving e “4g' . We write:
m . 2n

(30) -K—f]' bg' Sp)do= ff

The first integral on the right hand side of (30) can be written as (Moritz, ibid
pq 426):

2n
8g's(p)do

Re® nr2n i
(31) W‘[ JO Ag' S)do = £ 5 Za o) .Z (Gys cOSMA)

+ Hp, sinm)) P,, (sind)

Note the summation starts from n =2 because of properties of the Stokes'
function. Recall equation (14), however,where Ag' contains zero and first
degree terms. Introducting the modified Stokes' function (equation 21), the
second integral on the right hand side of (30) can be written as:

] m 'Zﬂ , _ Rea @ ,
(32) B .L’oj: bg'swdo= 3T T te @

Combining (31) and (32) we can write (30) as:
2m
. Re® v R - ] 0 if n<2
09O -

(Gga cOSmMA + Hy, sinma) P, , (sing)

s=Q

We now can wrlte our final result by re-writing (29) with (33) and (21):

2n
(34) N; = 411'}'_/"7‘ Ag S(p)do

+ Zkrgd‘ynu Qn(n - 1) < ) .to(C cosmA + S,, sinm]) P, (sin®é)
2 & =
+ Ze Z (Qn - Xn) i (Gn. cosmA\ + Hn‘SinmX) . Py, (Sm‘p)
.y B=0 820
+ e - __g_ sin®@) N
5




The first two terms in (34) represent the computation of the undulation
with certain approximations while the latter two terms represert the corrections
needed to fully refer the solution to an ellipsoldal reference surface, Thus we
would deslgn our computations in the following usage:

where N; + Ng represents the first two terms in (34) and AN, + AN re-
present the ellipsoidal correction terms, In a later part of the paper we will
discuss the numerical values of AN; + AN .

We can look at two special cases of the above equations. First let
Yo = 0° which implics that no gravity anomalies are used in the computation,
In this case Q, = 2/(m ~ 1)(n >2) so that (34) becomes:

(36) Me = 'lS_M.m ( an o X (CaecOSMA + 3,, 8lnmd) P, (sin @)
-E‘)’n?"ﬁ I'g =
+ € (3 1. ——— sin® (p)

Equation (36) is the same as:

(37) Ng = 1%’: E (a> Z (CpncOSMA + S,, 8inm)) P,, (3ind)

=0

since (Moritz, 1980, eq. (33-17)):

(38) % = ¥(1- 71;- e + }% e sin®p)

Equation (37) is the same as given in Rapp (1967, eq. 7) for the computation
of a '"rigerous! geoid undulation. We thus see the satisfactory reduction

of the general case derived in this paper to the special case previously known.

The second special case to conslder is when o = 180°. Tihen Q, =0
so that (34) becomes:

(39) Ne = 4n7fngS<w>da

Z (0 - 1) Z (Gno cOsmA + Hyy SiIDmA) Py, (Sin0)

+e(-1—- sm(o)N

This result can be compared to the solution given by Lelganam (1970, eq. (3-6))
where numerical tests show that the two formulations yield the same cor-
rections to about -1.6cm. We thus have an additional special case confirma-
tion of our general formula.




3. Ell'psoidal Corrections Using the Modified Stokes' Equation |

Tests described by Rapp (1980) aand Jekeli (1980) indicated a signi-
ficant improvement in geoid undulati:n determinations If the Stokes' func-
tion is modified bysubtracting S(cas fiq) = 55 from S@) . This procedure
can be represented in our case by re-writing equotion (13) in the following |
form:

(40) N, = R ff (88 - €28g") (S(¥) - Se)dO
Oc

4ny

+ Rff (Ag-eaAg')Soda
4ny
Oc

7y [ - a8 s 2o
0-0c

+ AN

+

|
b
|
}
|

Using a procedure followed before cousidering Jekeli (1980, sections 2 and 3)
we arrive at a result similar to equation {34). Specifically:

R Y2
(41) Ne = mfl‘ ) Ag(S(Y) - Sado
(o]

™ n 8 -
+ KM y &m-1) (—‘L) T (Cn coBmA + Sy, sinm)) Py, (sin®)
zrﬁ,‘y n==® Te =0

(GpgcOSMA + Hy, 8inm)). P,, (sind)
o}

s

e ¢ =
ey L@Q&-x)
=0
+ AN
We have (Jekeli, 1980, eq. 65):
(42)  Qu(do) = Qu (o) + FL, (P, (c08Yo) - cosyo P (cos o)) 3 B = 1
Equation (41) is the same as (34) with two exceptions: S() - So replaces S()

and Q, replaces Q. . Numerical tests of both equations will be described
in the following section.

4. Numerical Results

We now will evaluate tie ellipsoidal correction terms AN, and AN
defined in equation (35) and (34) and the similar terms in e juation (41). Our
sturting potential coefficierts are those of GEM9 (Lerch et al, 1979) taken to
degree 20, The first step In the computation is to find the A,,, Bn coefficients

o
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using equation (1.

We next determined AN, + AN as given in equation (35). This Is
Cae ellipticity correction to be added to & geold undulation computed from
the first two terms on the right hand side of equation (34). This evaluation was
done for = 10°, 20°, and 180° and the results are shown in Figures 1, 2,
and 3. The maximum correction and root mean square correction for each of
of these oases Js: (-26cm, Hcm, P =109; (-33cm, £10cm, P =20%; (-59cm,
+18cm, = 18(F),

Similiar computation were carried ot when using the modified Stokes'
equation. These results are shown for Y= 10° in Figure 4 and for = 20° in
Figure 5. The maximum and the RMS correction for $= 10° is (-21cm, +5cm)
and for ¢ = 20° it is (-27cm, +6cm), Examination of the corresponding figures
indicate that the correction for the modified Stokes' integral are somewhat smaller
overall than the case with the regular Stokes' function.

The corrections are generally small and below the current accaracy of
the data with caps of 10° or 20°. However as more precise computaiions
are carried out in the future, these corrections should be taken into account.

5. The Zero and First Degree Currection Problem

In carrying out the derivation of several of the previous equations, sum-
mations were started from 2 instead of 0 by convention or because the Stokes'
equation removes zero and first degree terms iu a glotal integration. However
the use of the relationships in equation (8) does introduce zero and first degree
terms that need to be ccnsidered. This problem has been discussed by Lelgemann
(1970) who assumed the follow ing form of the disturbing potential:

(43) T(I‘,-é.,k) = ;—13— f Aa'o &.o (6, A) + A3 RB,. (G.A) + Ba,a Sﬂ,ﬂ (6' A) ]
+ ;;g“( Aﬁﬂ RG.O (5,}() + A3.1 RB.I (Q ,A) + Aa,;: R&a (E, A)
+ Aa,aRgs (8, 2) + Ba,y Ra,y (5,)) + Bya 85,3 (8,0

+ Bap S5 (N 1+ 5 (AL Pay (X))

where: 8= 90° - &
R,, = cosmAP,,
Spe = SInmMAP,,

and {An} = icpar {Onn)
Bu Snl
Note that the A,,, B,, are not the same as given in equation (2). Equation

(43) represents a reasonable low degree model of the disturbing potential but
it is not meant to be a complete model.
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Lelgemann (1970) shows that the crror introduced by the neglect of the
zero and first degree terms when developing the ellipticity correction for the
global Stokes' integration (o = 180°) is:

<
c! 1 2
(44) ANo,, = > [ - 3 83,0 - %‘5 d3,0Ry, 0 - % (331 Ru +bg18y)]

{a ml = KM {g..}

b/ 2 ls,

Using the coefficients of GEM9 we have evaluated equation (44) with the results
shown in Figure 6. As is obvious from (44) this correction is very long
wavelength., The magnitude is quite small with the maximum correction being
-7cm. We would expect that the correction for the small cap sizes used in
practice would be considerably smaller than this as was seen for the usual
ellipticity correction. Therefore we will not pursue the derivation of this
correction term for the cap case.

where;

6. Ellipticity Corrections for the Marsh-Chang Geoid

For the past several years Marsh and Chang (1976, 1978) have computed
detailed geoid undulations combining potential coefficirnt information and ter-
restrial gravity data. The method used by them is called Method A in Rapp and
Rummel (1975) or Method 1 in Rummel and Rapp (1976). The specific equations
used by Marsh and Chang in their recent papers are as follows:

(45) N(@,A) = N, + Ng

where: 5 a
(46) N, =R J § (Coucosm] + §,,8lnm)) Py, (sin@)
=3 8=0
(47) Na = —&ff (Bg - 8g4) S(W)do
4y
i“oc )
(48) Agy = Y (n - 1) (Cpy cosm) + Sya sinm)) P,, (sin) ‘
n=3 a=go

Here n is the maximum degrec uscd with the potential coefficients. In
practice the intcgration in the cap has taken place us ing just 1° x 1° anom-
alies or these anomalies in conjunction with smaller block sizes such as 5' x 5',
and 15'x 15'. The integration cap has been 10°, 20° or presumably ¢°
when insufficient gravity data is present. In view of our previous discussions
we now are interested in the geoid error caused by the spherical approximation
in equation (46) and (47).

For convenience we introduce A, as follows:

. . £ i e
wa Y .
[ * i ’f)‘,fz« . ;xf‘,,. )‘X
N e et R AN g b o g kiR, e o o A . S R
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(44) A, = {o (Cas COSMA + Sy, sinm)) P, (8inB)

The cl!ipsoidal errcr in the Marsh/Chang geold will be:
(50) i Nusc = Ne (eq. 34) - N(eq. 45)
In order to reduce (50) the following equality can be used

(57 B fng.sw>do= Bf e-Qm-1)a,
Oc

4ny =

An erroneous form of (51) was given in Rapp and Rummel (1975, eq. 33).
Using (34), (45), and (51), equation (50) can be written as:

kM & n
(52) ANy, = 2r’:‘7 u);‘Q. (n - 1) <":T) A,
- TR n (n = 1) An

. %}g Q- X)) [ (Gucosm\

o] » =0
+ H,; sinm)) P, (sinm) + AN

We have evaluated (52) with the GEM9 potential coefficlents (fi=20) for

$=0° 10°, and 20° . These results are shown in Figure 7, 8, and 9. The
maximum correction and root mean square correction for each of these cases
is (101em, ¥27cm, $=0°), (44cm, t*16cm, {=10°), (-45cm, Y14cm,

Y= 20°).

7. Summary and Conclusions

This paper has developed the formulas needed to compute the correction
for geoid undulation compuitations made from the combination of potential coef-
ficient information and terrestrial gravity data, The first procedure developed
the formulas needed for the precise computation of the geold considering the
ellipsoid as a reference surface and using the usual Stokes' equation. The
corrections are a function of the cap within which gravity data is used. For
a cap size of 20° the maximum correction was -35cm.

Another case was considered with the use of the modified Stokes' function
In this case the maximum correction for Y= 20° was -27cm.

The third case considered was that for the ellipticity corrections for the
Marsh/Chang geoid. If a cap of 0° was used the maximum correction was
101cm; if the cap was 20°, the maximum correction was -45cm.

All the corrections have been computed using the GEM9 potential coef-
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ficients taken tc degree 20. Errors in these coefficientsor the use of ad-
ditional higher degree terms should not significantly effect these results,

As can be scen from the various maps, these correction teevms are
fairly long wavelength, Therefore in some applications working with alti-
meter data and gravimetric geoids, the correction cculd appear as a constant
difference. In some cases, for example, in examining the difference between
the sca surface and the gravimetric geoid of Marsh/Chang a nct correction,
across the Pacific Ocean, of about 35cm should be made. If, in the future,
we are to determine highly uccurate geoids from potential coefficients and
terrestrial gravity data, the corrections or problem formulation given in
this paper should be used.
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