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Abstract

The computation of accurate geoid undulations is usually done combining
potential coefficient Information and terrestrial gravity data in a cap sur-
rounding the computation point. In doing this a spherical approximation is
made that can cause errors that are Investigated In this p • per. The equations
dealing with ellipsoidal corrections developed by Lelgemann and by Moritz
are used to develop a computational procedure considering the ellipsoid as a
reference surface. Terms in the resulting expression for the geoid undulation
are identified as ellipsoidal correction terms. These equations have been
developed for the case where the Stokes function is used, and for the case
where the modified Stokes funct,'.an is used. For a cap of 20° the correction
can reach -33 cm.

Ellipsoidal corrections were also computed for the Marsh/Chang geoids.
These corrections reach - 45cm for a cap size of 200 .

Global maps are given showing the distribution of the corrections so
that more accurate geoid undulations can be found.
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1. Introduction

w1 oid undulations can be computed from Stokes' equation given u
glob.d set of grav ity anomallv q. The Stokes' equation is usually given with
spherical approximation (Hc"is'wnen and Moritz, 1967, p. 94). The error of
the spherical approximation has been Investigated by several authors who have
sought a solution of the boundary value problem with the ellipsoid as a refer-
ence surfacer. Lelgemann (1,970) developed techniques to compute corrections
to the undulations computed from the Stokes' equation. He showed that the
root mearf squarc, correction war = 0.2 m with a maximum earrection of about
0.6m. ,A somewhat revised approach to this approximation problem is dis-
cussed by Aloritz (1980).

Today, however, geold undulations are not usually computed through
a global integration procedures. Instead potential coefficient information is
combined with gravity au!lomaly information in a cap surroudning the com-
putation point (liapp and Rummel, 1975, Marsh and Chang, 1976, Rapp, 1980).
For this procedure we therefore cannot use directly the correction equations
developed by Wgemann; instead we must develop new equations.

2. The Theory

We start with the following representation of the earth's gravitational
disturbing potential:

CO
_	

(	
n

(1) T(r, cp, X) = k M
	

\ r	 (Cnn cos YnX + S n , sinmA) Pas (s in<p)

where:
k 	 geocentric gravitational constant;

	

r	 geocentric radius;

	

a	 earth equatorial radius used in potential coefficient
determinations;

	

C n, , S r„	 potential coefficients. (The C2, 0 , Cor o , Ce,o etc. are
referenced to a defined reference ellipsoid.)

	

Pn n (stnF	 associated Legendre functions, as a function of geocentric
latitude 3 .

The disturbing potential can be evaluated on the ellipsoid (assume no external
masses) by letting r = r E the geocentric radius to a point on the ellipsoid.
We now can compare this to the following representation of T on the ellipsoid
(Moritz, 1980, p. 320):

(2) T (gip, A)	 r	 n A cos mX + B sIn mJ1 P (s InL ^ ( nn 	n n 	 ) n^ (
n-2 ,_O

where An, , B,, are coefficientsients to be de term ined; cp is the eodeti^, latitude.
We need to find the relationship between the A , B coefficients and Che C , S
coefficients noting that at the same point, equation (1) and ( 2) must yield the

1



same potential. We write ( in a linear approximation).

(3) T	 A, B.	 T(0, X, A, B)

T(M,),, A, B) +
E	

o (Anscos m^ + Bns sinm).) 	 n n (sintp) (y^-gyp)

a 
-8 

0 =0	 d	 N

Now from geometric geodesy we know:

(4) (tp -- w) P-- e2 sin IP cosh!

From Moritz ( ibid, 39-46,) we can write:

(5) sin b cosZn d_ pn.e,	 ass Psra. s + bss Pas + c u Pra. n
do

where:
_ -n(n-m+1)(n-m+2)

an n 	 (2n + 1)(2n + 3)

6	 n2 - 3m2 + n
O	 bnm =  (2n + 3)(2n - 1)

Cnm =
(n+l)(n+m)(n+m-1)

(2n + 1)(2n - 1)

We now use ( 4) and ( 5) in (3) to write:

( 7) T (p ► ^, A ► B) = f t ( A n . cos mX + B ns sin ma) Pn n (sine)
n =a . =0

„ 	 n

	

+ e 2	 (An n cosmX + B„s sinma) (an n Pn►a.a + bns Pns + C nm Pn-•?r n )
n=fi n _O

To simplify (7) we use the following relationships (ibid, eq. 39-48):
CO	

Ans	

w	 Alarm
an m f	 } Pn- 2,s = E a'n+ar n ^	 ^ Pn n

	

n=a	 Bam	 n =O	 B,c^a,a

( g)	 cc	 Aa n
} '
	 An-^ ► n

anm 

JA
 Bn m P„+ 2.n 	 £ an--^'^ Bn +a. m Pn n

	

IS = a	 n =♦

Now we can write (7) as follows:
00	 n

( 9 ) T	 A ► B ) = E E I (An. + e2 Kn n ) cosm^

n=0 a=0

+ ( Bn n + e 2 Lns ) sin m X I P. s (s in N )

where:
Knm - an4p A n-9rm + b,. Anm + C nia. n An42rs

(1A)

Ln m = an-a,n B,-a,, + bn m Bnm + C t,' p,s Bn+a. n

2



(Note tlr► t the summation on n has started fmm zero as a consequence of
the relationships in (8).) We now equate (9) and (1) with r = it to find

LU 
a-rL	 ^)E 	 Se,• =- P.. + a Lne.

The An, Ian, coefficients are function of N s ince rE is a function of o.
In a spherical approximation (11) becomes

(12) R `a)n 
rCn:j	 fAn.^

n•	 %•

We next consider theellipsoidal form of the Stokes' equation as
given by Moritz (ibid, eq. ( 49-26)):

(13) NE - 4- IL
 ff (

Ag - e2 Ag') S (0) d o+ ea ( I - 4 s in 2 0  N

Here we have assli	 umed the solution of the geoid boun6ary value problem as
opposed to the Molodensky problem as discussed by Moritz, In (13) we have:
Y, average value of normal gravity over the ellipsold; N, approximate value
of the geo ld undulation. In addition (Moritz, ibid., 39-80):

(14) Ag' _	 ) (Gn, cos m + Fi rm sin mX) P o , (sin{O)
R a=o n _o

where:

(L8) 1 G-'o, ^ = Xm ^AR4,uj + 
X., {An: } +  ^ ^Awaa Iline	

a B,-a,,	 Bay	 Ba+a,s

with	 )(	 - ly^n-3 n-rn n - m)
K na 2(2n - 3)(2n - 1)

(19) ^a. = n3- 3m`n-9na - 6m2-10n a +9
3(2n + 3)(2n - 1)

µnm = -(3n + M(n+m+2) ( n+m+1)
2(2n + 5)(2n + 3)

Although Moritz starts the summation from n = 2 in (14), the formality
of the reduction leading to (14) indicates a starting summation from n = 0.
We also have do= coscpdcpdX (Lelgemann, 1970).

Now cons ider the evaluation of (13) w ith the Ag values considered in a
cap a, surrounding the computation point, and in the remaining area of
the sphere. We have

R
Oo 2 rr	 ^TT 2 Tr

(20)NE = 4 Try f f ( Ag - ea ,&g ') S (^) d a + 4 R
	
f(g - ea 	Og') S(0) da +GN

o
where
(20a) G N = e2 ( -• - -r slna cp) N

In (20) 0 o is the spherical cap radius surrounding the computation point.

3
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ape' . t

r ,:

We Introduce the new function S (0)

(21)	 S tip) =	
0 if 0 $	 < i^o
S(0)

(Heiskanen and Moritz, 1967, p. 259):

Equation ( 20) then becomes:
2n	 n 2TT	 _

(22) NE = Ri_r	 (Ag - e`'Ag') S (0) da+ 
4-,	

fo
(Ag - 

e2 Ag') S(0 )dv +AN
4 Try .l 

We now write ( Moritz, Ibid, p. 326):

(23) Ag = Ag' + ea A gr

where	 CO	 n

(24) Ago = E E n Rl (A„ cos m  + B" sin M).) Pn. (sing)
0=2 n =0

Using ( 23) for Ag' in (22) we have:
^0 2 TT	 rr 2 rt

(25) NE _ 4-	 r r (
,&geaAg') S(0)da + 4 y J o Jo

r AgoS (0)dv+ AN
.1	 ,►c 

FoiiewIng Heiskonen and Moritz ( 1967, p . 259) we introduce the MolodenskII
coefficients Q, :

(26) S t) 
_	 2u +	

Qn P. (COB o )
n=0

so that the second integral in equation (25) can be written as:
G7)	 R	 rr 2n

gA C+^ )
da = R	 (^ + 1) Qn 

TT 2 
Ago Pa (cote) dQt	 4Try	 8TTy a:o	 .l Jo	 _ R	 o 0

f Q. Aes
2yn=•

where Ag o would be obtained from (24).

If we now use ( 24) for Ago and use ( 11) for the coefficient relationships
we can express (25) as:

00 2 n
(28) NE =	 R	 (Ag a 4g' ) S { ) d o

4TTy fo
OD

+ k M	
Q (n - 1) 

a )^	 (C Cos m arE y2	 s	 °	 r	 n^
E	 o.0

+ S., sinmA) Pn, (sine)
a CO	 n

e	 n- 1	 K cosmX + L sInmXP, sin + AN

The summation cu n is from 2 If we ignore the zero and first degree terms
that have been eliminated through the Stokes' equation. Note that the correction

'	 terms involving K and L arise from the fact that the associated Legendre
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r,

functions are evaluated at the geodetic latitude instead of the geocentric lat-
itude. if the evaluation is done at the geocentric latitude the correction terms
will not be necessary. We have:

JO

far2n
(29) NE _ Tl Y-

J 
(Ag - eaAg') S (0) do

 0

+ k M	 Q. (n - 1)	
In	

(C,, cos m A
2t Y n a	 U=o

+ S n ,, sinmk) Pn , (siia7o) + AN

Now consider the Integral in (29) involving e2 Ag, . We write:

R4?
0 2n	 a Ti 2n	 a n 2n

(30) R
4?	

Ag' S(O ) d o 4 Y 	
r Ag' S(0) do - ft ' r	 Ag' S(0) d a1 J	 Ja0 0	 o q

The first integral on the right hand side of (30) can be written as (Moritz, lbid
p, 426) :

n 2n

(31) Rea	 ]r Ag' S() d o= ea
	 1	 (G", cos m }

a
+ H,,, sInmX) P n, (sinio)

Note the summation starts from n = 2 because of properties of the Stokes'
hinction. Recall equation (14), however,where Ag' contains zero and first
degree term. Tntroducting the modified Stakes' function (equation 21), the
second integral on the right hand side of ( 30) can be written as:

n' 2 n	 a m
(32) 4^ for Ag ' S(0) d Q 2 Y nZ-a '&g'

Q n

Combining ( 31) and (32) we can write ( 30) as:

a

	

'12 n	 a m 

IXS-Q.l
Re
	e	 _-- n(331	 4rry 	 Ag S(+^)dd= 2y 	 i }fin	 , n 2

0 	 n=o	 (n-1)
n

(Go, cos MX + Hn, sin mX) Pn, (sinip)
n =a

We now can write our final result by re-writing (29) with (33) and (21):

0 2n
( 34) NE 4 

Ry 
J 7 Ag S(^) d a
0 0

+ 2rM j Q, (n - ^) r . l "	 (Cn, cosm^ + S,,, 9inmX) P n, (sinFb)
E yn	

E=ag CO_

+ e	 (Qn — Xn)	 t (G,, cos ma + Hn , sinm	 P", (s incp)
2 y n=o	 ,_o

+ ea ( 
+ - 

3 s Ina (p) N

5
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r,:

The first two terms in (34) represent the computation of the undulation
with certain approximations while the latter two terms represent the .corrections
needed to hilly meter the solution to an ellipsoidal reference surface. 'Thus we
would design our comlxrtations in the following usage:

(35) N k = N1 + Na + AN, + AN

where N 1 + Na represents the first two terms in (34) and AN, + AN re-
present thz, ellipsoidal correction terms. In a later part of the paper we will
discuss the numerical values of AN, + AN .

We can look at two special cases of the above equations. First let
Oo R, 0P which Implies that no gravity anomalies are used in the computation.
In this case (4, -- 2/(n - 1)(_n', 2) so that (34) becomes:

(36) 'N E = k M	 /a f n	 (C,. cos m N + a, , s!n ni X) PR. (sin cD)
n- , ^	 n EU

+ e` ( ^ - 3 sin"w) N

Equat!on (36) 1° the same \as-

(37) NE ^ rkM 
(^ ( ,)n E (Gam cos mX + Spy sinmX) 

pn. (gio)
E 'YE 

e
L,. a \ E / ,=Q

since (Moritz, 1980, eq. (39-17)):

(38) YE = Y(1 -1e' + 3 e' SOP)

Equation (37) is the same as given In 11,app (1967, eq. 7) for the computation
of a "rigerous" geoid undulation. We thus see the satisfactory reduction
of the general case derived in this paper to the special case previously known.

The second special case to consider Is when Oo 000 . `l hen Qn = 0
so that (34) becomes:

TT

(39) NE = 4 R f
o	

dg S(0)do

e2 
CO

E	 1	 E (G,,m cosmX + H,,, sinmX) P.. (sin(3,)Y A= (n - 1) 
3=0

+ e2 ( + - 
3

sin 20 N

This result can be compared to the solution given by Lelganam (1970, eq. (3-6))
where numerical tests show that the two formulations yield the same cor-
rections to about +1.6cm. We thus have an additional special case confirma-
Con of our general formula.

6
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3. Elhosoidal Corrections Using the Modified Stokes' Equation

Tests described by Rapp (19801 and Jekeli (1980) indicated a 81PI-
ficant Improvement In geoid undul att-11.1 determinaflions if the Stokes' func-
tion is modifies! by subtracting S((,,ns ^,,) Cu w o from d(o) . This procedure
can be represented In our case by re-writing equation (13) in the following
form:

(40)
NET y 	

(Ag - e2 dg ') (S(0) - 80 ) d o

ac

Y r r(Ag  Sod oJi	 o^

I	 + Tr yJ r (Ag e^ Ag ') S(0) d a

I	 a °Jac

+ AN

Using a procedure followed before considering jekeli (1980, sections 2 and 3)
we arrive at a result similar to equation (34). Specifically:

(41) NE i T1,1
7fo 0 2 7 A g (S(i) - Sold a

TT I
CO

+ - M E qn(n-1)
2 r Ey n-2

ea m

+ 2 y	 ( Qn - X„)
D=0

+ AN

We have (Jekeli, 1980, eq. 65):

(,a,n
D
 (C no Cos MX + S DD sinmx) PM (sin3)

n .o
D

E (Gn D cos mX+ Hn D sin mX). P,,(sinFD)
M =O

(42)	 Qn ( ^o) ` QA (00) + (-^ (P,,-, (cos A) - cos 00 PD (cos Oo)) ; n 1

Equation (41) is the same as (34) with two exceptions: S(^) So replaces S(0)
and Qn replaces Q . Numerical tests of both equations will be described
In the following section.

4. Numerical Results

We now will evaluate tle ellipsoidal correction terms AN., and AN
defined in equation (35) and (34) and the similar terms In a ivation (41). Our
starting potential coefficients are those of GEM9 (Lerch et al, 1979) taken to
degree 20. The first steep in the computation is to find the A DD , B. coefficients

) rM

II	 7
44`f
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using equation (1 a.

We next determined AN l + AN as given in equation (35). This is
E., ►^ ellipticity correction to be added to a geoid undulation computed from
the first two terms on the right hand side of equation ( 34). This evaluation was
done for O= 10% 260 , and 180 0 and the results are shown in Figures 1, 2,
and 3. The maximum correction and root mean square correction for each of
of these cases )s: (-26 cm, 36 cm, =10^; ( -33 cm, ±10 cm, » 20); (-59 cm,
+18 cm, W - I9W).

Sirr.tlfar computation were carried od when using the modified Stokes'
equation. These results are shown for 0 = 10° in Figure 4 and for 0 = 20° in
Figure 5. The maximum and the RMS correction for # = 10° is (-21 cm, +5 cm)
and for V 200 it Is (-27 cm, +6 cm). Examination or the corresponding figures
indicate that the correction for the modified Stokes' integral are somewhat smaller
overall than the case with the regular Stokes' function.

The corrections are generally small and Below the current accaracy of
the data with caps of 10° or 20° . However as more precise computa^ions
are carried out in the future, these correction ,3 should be taken into account.

5. The Zero and First Degree Correction Problem

In carrying out the derivation of several of the previous equations, sum-
mations were started from 2 instead of 0 by convention or because the Stokes'
equation removes zero and first, degree terms is a global integration. However
the use of the relationships in equation (8) does introduce zero and first degree:
terms that need to be considered. This problem has been discussed by Lelgemann
(1970) who assumed the following form of the disturbing potential:

(43) T(r, 6 , X)= r [ As,o Rs,o (b, a) + As,a Ra,s (O. X) + Ba,s Sa,s ( 0 , X)

+ ^' ( A 3,0 R6,0 ( 9 , X) + A 3.1 R 3.1 ( b + ^) + A,3,j R30a (;+ ^)

+ Aa,3 R3,3 ( e t X) + B3,1 %.I ( g ► X) + B3,2 Sara 0 1 >)

+ B3 ,3 S 3,3 ( b f X) I + -4 ( A,&,1 P4,., ( g , X)

where: T= 90'-a
Rn , cos m X Pa.
S n , = sinm>.Pn,

and A" 
}-

 k M a" {',-*I
BUM 	 S na

Note that the A,, , 13n , are not the same as given in equation ( 2). Equation
(43) represents a reasonable low degree model of the disturbing potential but
it is not meant to be a., complete model.

8
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Lelgemann (1970) shows that the error Introduced by the neglect of the
zero and first degree terms when. developing the ellipticity correction for the
global Stokes' integration (^b = 1800 ) Is:

C 	 1
(44) ANo,i -- Y I - a as ,o - R `l3 ► 0 Rip 0 -	 (a 3. 1 Rll + b a,l 'S 11) j

whe re: 

(b,,:; 	 ^.. 
1-K na^

 a 

Using the coefficients of GEM9 we have evaluated equation (14) with the results
shown in Figure 6. As Is obvious from (44) this correction is very long
wavelength. The magnitude Is quite small with the maximum correction being
+ 7cm. We would expect that the correction fo r the small cap sizes used in
practice would be considerably smaller than this as was seen for the usual
ellipticity correction. Therefore we will not pursue the derivation of this
correction term for the cap case.

6. Ellipticity Corrections for the Marsh-Chang Geoid

For the past several years Marsh and Chang (1976, 1978) have computed
detailed geoid undulations combining potential coefficient information and ter-
restrial gravity data. The method used by them Is called Method A in Rapp and
Rummel (1975) or Method 1 In Rummel and Rapp (1976). The specific equations
used by Marsh and Chang in their recent papers are as follows:

(45) N (9,X) = Ni + Na

where:	 n n
(46) N 1	R	 E (C n„ cos m X + Sn a sin m X) P. (sin

n=2 S=0

(47) Na 4-2 r	 (d g - Ag o) S(0) d a o f
.Qc
n	 n

(48) Ago = y	 E (n - 1) (C„m cos mA + S n a sinma) Pn , (sin^p)
n=2 =0

HereHere n Is the maximum degree used with the potential coefficients. In
practice the integration In the cap has taken place us Ing just 1 0 x 10 anom-
alies or these anomalies in conjunction with smaller block sizes such as 5' x 51,
and 15' x 15' . The Integration cap has been 10 0 , 200 or presumably 00
when insufficient gravity data is present. In view of our previous discussions
we now are Interested in the geoid error caused by the spherical approximation
in equation (46) and (47) .

For convenience we introduce A n as follows:
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(44) A, = t (C„ cos ma + S,,, sin m X) P,. (sinO)
•=0

The ellipsoidal error in the Marsh/Chang geoid will be:

(50) A NM/c = NE (eq. 34) - N (eq. 45)

In order to reduce (50) the following equality can be used
/' 	 i

(51) 4 y J 
If

^^ S(0) d  = 2 c (2 - Q, (n - 1)) An—a=a
An erroneous form of (51) was given in Rapp and Rummel ( 1975, eq. 33).
Using ( 34), (45), and (51), equation (50) can be written as:

a	 n

( J2) AN,VL = k M E Q. (n - 1) a ) An2r E y ,=A 	rE
R =tQn (n - 1) A,2n

n

+ 2	 (Q. - X ,)	 (G,, cos m

	

n =0	 10=0

+ Has sin m X) P,,, (s Imp) + A N

We have evaluated (52) with the GEM9 potential coefficients (t1=20) for
0 = 00 , 100 , and 2(P . These results are shown in Figure 7, 8, and 9. The
maximum correction and root mean square correction for each of these cases

	

is (101 cm, ±27 cm,	 00), (44 cm, ±16 cm,	 = 100 ), (-45 cm, ±1;4em,
0=200).

7. Summary and Conclusions

This paper has developed the formulas needed to compute the correction
for geoid undulation computations made from the combination of potential coef-
ficient information and terrestrial gravity data. The first procedure developed
the formulas needed for the precise computation of the Wold considering the
ellipsoid as a reference surface and using tho, usual Stokes' equation. The
corrections are a function of the cap within which gravity data is used. For
a cap size of 200 the maximum correction was -35cm.

Another case was considered with the use of the modified Stokes' function
In this case the maximum correction for O= 200 was -27 cm.

The third case considered was that for the ellipticity corrections for the
Marsh/Chang geoid. if a cap of 00 was used the maximum correction was
101 cm; if the cap was 20 0 , the maximum correction was -45cm.

All the corrections have been computed using the GEM9 potential coef-
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ficients taken to degree 20. Errors in these coefficientsorthe use of ad-
ditional higher degree terms should not significantly effect these results.

As can be seen from the various maps, these correction terms are
fairly long wavelength. Therefore in some applications working with a14i-
mater data and gravimetric geoids, the correction could appear as a constant
difference. In sonic cases, for example, in examining the difference between
the sea surface and the gravimetric geoid of Marsh/Chang a net correction,
across the Pacific Ocean, of about 35cm should be made. If, in the future,
we are to determine highly :accurate geoids from potential coefficients and
terrestrial gravity data, the corrections or problem formulation given in
this paper should be used.
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