ē.

THE HIGH-EXCITATION PLANETARY NEBULAE

NGC 3918 AND IC 2448

S. Torres-Peimbert, M. Peña and E. Daltabuit Instituto de Astronomía Universidad Nacional Autónoma de México

ABSTRACT

We present IUE observations of NGC 3918 and IC 2448. Combining these observations with data in the optical range and computed model structures we derive the chemical composition for these objects. For NGC 3918 we obtain log C= -3.02, log N= -3.61 and log O= -3.22; while for IC 2448 we obtain log C= -3.44, log N= -3.81 and log O= -3.54.

INTRODUCTION

These planetary nebulae are ideally suited for observations with IUE since they have high surface brightness and small angular size.

They have been observed in the visual range by Torres-Peimbert and Peimbert (ref. 1). They derive for NGC 3918 N(He)/N(H)=.112, log N= -3.72, log O= -3.10 and log Ne= -3.84 and for IC 2448 N(He)/N(H)=.111, log N= -4.49, log O= -3.39 and log Ne= -4.08 under the assumption of $t^2=0.035$.

OBSERVATIONS

For NGC 3918 we have the following large aperture exposures: SWP 1906 (7 min), SWP 3191 (20 min), SWP 3192 (10 min), LWR 1767 (12 min), LWR 2753 (20 min), LWR 2754 (10 min), LWR 2809 (6 min) and the following small aperture exposures: SWP 1906 (20 min), SWP 3216 (15 min), LWR 2809 (12 min). For IC 2448 we only have available the large aperture exposures: SWP 3194 (30 min) and LWR 2756 (30 min).

We have applied the mean calibration correction (ref. 2) to the observed fluxes to derive absolute fluxes. We present in Figure 1 composite large aperture spectra of these objects.

In Table II we present the derived intrinsic fluxes for all emission lines, $I(\lambda)$, the observed fluxes F(1641) and $F(H_\beta)$ and the reddening correction at H_β , $C(H_\beta)$. To obtain the intrinsic fluxes we have used the relation log $I(\lambda)/I(H_\beta) = \log F(\lambda)/F(H_\beta)+C(H_\beta)f(\lambda)$. We have derived the reddening correction by assuming that: 1) the fluxes relative to H β in the visual range are the same for the observed region as for the entire nebula, 2) the reddening law $f(\lambda)$, behaves as the expression given by Seaton (ref. 3) and 3) the intensity ratio of the HeII recombination lines I(1641)/I(4686) is 6.6 (ref. 4).

The internal errors in the measurements, as estimated from the different exposures, are ≤ 15 % for NGC 3918, and presumably similar for IC 2448. For IC 2448 the listed flux for $\lambda 1549$ is only an upper limit, since the line was saturated.

MODEL IONIZATION STRUCTURES

We have computed model ionization structures that will be described in detail elsewhere. The models predict line intensities for C, N, O, Ne, Mg, Si and S. For comparison we present a few representative models in Table III.

To try to fit NGC 3918 we computed models for an exciting star of T_{\star} = 150,000 (from ref. 5). We have tried unsuccessfully to adjust both I(5007) and I(1909) simultaneously by varying density distribution and chemical abundances. The resonant lines of CIV, NV and MgII appear systematically too bright in our models. This effect has been noted by other authors (refs. 6 and 7) who explain it by dust absorption. In order to adjust the lines of low ionization, it is necessary to assume that the nebula is density bounded.

For our models of IC 2448 we have adopted an exciting star of $T_*=125,000$. We encounter the same problems in our attempt to adjust I(5007) and I(1909) and have found it necessary to assume a density bound nebula to improve the fit for ions of low stages of ionization. For this object we do not have observations of the faint lines and thus have less restrictions for our model.

IONIC ABUNDANCES

For NGC 3918 from the ratio I(1666)/I(5007) of 0^{++} we obtain the same temperature as from I(4363)/I(5007). We also are able to derive a temperature of 13800 °K from the I(1602)/I(2423) ratio of Ne⁺³; however none of our models predict the temperature of the highly ionized region to be drastically different for the 0⁺⁺ region.

To derive ionic abundances we adopted an empirical scheme of dividing the nebulae in three regions: those of low, medium and high stages of ionization. For elements in low stages of ionization we have assumed the observed T(NII) to be applicable. Our models do not predict such a sharp decrease in temperature in the outer shells and thus the derived abundances are probably over-estimated, but these ions are not dominant in either nebula. For the elements in the intermediate stages we have used T(OIII) as derived from observations (ref. 1); and for the higher stages of ionization we have used temperatures 600 K higher than T(OIII), since our models predict this temperature variation. We have assumed $t^2 = 0.0$ for our derivation of the ionic abun-

dances. The results are listed in Table II. For both objects, the 0^{++} abundances derived from $\lambda 5007$ and $\lambda 1666$ are in excellent agreement and give us confidence in the adopted reddening.

All ionic abundances derived from ultraviolet lines are highly dependent on temperatures, and we typically expect errors of ± 0.10 dex in the ionic determinations for errors of ± 300 °K.

DISCUSSION

We have derived total abundances from the ionic ones. In the case of NGC 3918, for oxygen and nitrogen we have added all the ionic abundances in a straightforward way. For carbon we have taken into account only I(1909) and from comparison with our models we have adopted a ratio of relative volumes of carbon to oxygen $x(C^{++})/x(0^{++})=0.74$. In the case of IC 2448 we have added O⁺ and O⁺⁺, and have corrected by a factor i_{Cf} = He/(He⁺), which is in agreement with our models. For nitrogen we have adopted an intermediate value between those derived from the comparison of our models and N⁺² and N⁺⁴. For carbon we have assumed that the resonance line I(1549) has been depleted by a factor of 2 due to dust and have added all other ions. Comparison with our models shows that the carbon abundance is probably underestimated. The total abundances relative to hydrogen in NGC 3918 are log O= -3.22, log N= -3.61 and log C= -3.02; in IC 2448 are log O= -3.54, log N= -3.81 and log C= -3.44.

We are grateful to M. Peimbert for fruitful discussions.

REFERENCES

- 1. Torres-Peimbert, S. and Peimbert, M.: Photoelectric Photometry and Physical Conditions of Planetary Nebulae. Rev. Mexicana Astron. Astrof. Vol. 2, No. 3, Aug. 1977, pp. 181-207.
- 2. Bohlin, R.C. and Snijders, M.A.J.: Photometric Calibration of the IUE. NASA Newsletter No. 2, Nov. 1978.
- 3. Seaton, M.J.: Interstellar Extinction in the UV. M.N.R.A.S., Vol. 187, No. 3, June 1979, pp. 73p-76p.
- 4. Seaton, M.J.: Calculated Intensities of HeII Recombination Lines in the Ultraviolet. M.N.R.A.S., Vol. 185, No. 1, Oct. 1978, pp. 5p-8p.
- 5. Hummer, D.G. and Mihalas, D.: Surface Fluxes for Model Atmospheres for the Central Stars of Planetary Nebulae. JILA Report No. 101, June 1970.
- 6. Pequinot, D., Aldrovandi, S.M.V., and Stasinska, G.: Charge Transfer Reactions. A Consistent Model of the Planetary Nebula NGC 7027. Astron. and Astroph., Vol. 63, 1978, pp. 313-324.

7. Bohlin, R.C., Marionni, P.A., and Stecher, T.P.: The Rocket Ultraviolet Spectrum of the Planetary Nebula NGC 7027. Ap. J., Vol. 202, 1975, pp. 415-420.

		T ())(T(T ()))		
λ	Ion	$\frac{1(\lambda)/1(\lambda)}{NGC}$	TC 2448	
		NGC 5910		
1215	HI	<-0.51	-0.41	
1240	NV	-0.54	-0.25	
1401	OIVJ +SIV+SIIV	-0.46		
1488	NIVJ	-0.43	≪1.00	
1549	CIV	+0.64	+0.37	
1575	[NeV]	• • • •	-1.01	
1602	NeIV	-1.17		
1641	HeTT	+0.43	+0.40	
1666	OTTI	-0.55	-0.63	
1749	NTTT	-0.63	≼ -0.82	
1909	CIII	+0.69	>+0.58	
2298	• • • •	• • • •	-0.75	
2326		-0.38	-0.99	
2386	NeII	-1.57		
2423	[NeIV]	+0.11	-0.63	
2471	TOII	-0.98		
2512	HeII	-1.33	• • • •	
2734	HeII	-1.03	-1.12	
2800	MgII	<-1.34	<-1.10	
2837	OIII	-0.98	-1.17	
3023+47	OIII	-0.73	-1.06	
3133	OIII	-0.04	-0.26	
3204	HeII	-0.66	-0.83	
log F(1641)	• • • •	-10.05	-10.69	
$\log F(H\beta)$		-10.03	-10.84	
С(НВ)		+ 0.40	+ 0.22	

TABLE I .- UNREDDENED FLUXES RELATIVE TO $H\beta^{a}$)

a) Log I(λ)/I(H β).

		NGC 3918	IC 2448
T(NII) T(OIII T(NeIV N _e (SII N _e (rms)))	8900 12100 13800 9000 4600	9400 ^{b)} 12500 13100 ^b) 12000 1700
C+ C++ C+3 N++ O++ O++ O++ O++ O++ O++ O++ O++ Ne+3 Ne+3	2326 1909 1549 6584 1749 1488 1240 3727 5007 1666 1401 3869 2423	-3.84 -3.52 -3.82 -4.68 -4.11 -4.00 -4.21 -4.06 -3.54 -3.55 -3.46: -4.28 -4.09	-4.62 ≥-3.72 -4.20 -6.17 ≤4.40 ≤4.71 -4.05 -5.08 -3.71 -3.72 -4.38 -4.90
s+ s++ s ⁺³ Ar ⁺⁺	6717+31 6311 1393 7136	-6.30 -4.99 -4.50: -5.97	-7.51: -6.51:

TABLE II.- TEMPERATURE, DENSITY AND IONIC ABUNDANCES^a)

a) Given in log $N(X^{+m})/N(H^{+})$.

b) Adopted.

<u></u>	NGC 3918			IC 2448			
	Obs.	Nl	N2	N3	Obs.	Il	12
HeI 4471 HeII 4686	3.8 44.0	3.1 41.8	3.0 44.0	3.1 43.1	4.0 38.0	3.3 34.7	3.0 41.2
CII] 2326 CIII] 1909	41.0 490.0	122.0 1070.0	34.7 567.0	133.0 1170.0	10.0 ≽380.0	9.1 411.0	460.0
CIV 1549 [NI] 5200	450.0 0.5	2540.0 0.0	1950.0 0.0	1970.0 0.1	230.0	0.0	0.0
NII] 6584 NIII] 1749	66.0 23.0	45.0 56.6	24.9 60.1	60.7 59.4	2.5 ≮ 15.0	10.5 51.5	14.2 57.3
NIV] 1488 NV 1240	37.0 29.0	71.0 174.0	112.0 296.0	54.0 104.0	56.0	65.7 8.3	6.1
[OI] 6300 [OII] 3727	3.8 61.0	13.0 277.0	4.7 222.0	15.2 349.0	6.3	28.3	. 39.9
OIII 5007 OIV 1401	1570.0 <35.0	1590.0 18.8	2210.0 39.9	1630.0 16.4	1060.0	400.0 40.5	1290.0
T(C+) T(C++)	• • • •	12600 12680	12830 12940	11890 12050	• • • •	13240 13340	13260 13330
$T(C^{+3})$ $T(N^{+})$	8900	13530 12 59 0	14180 12820	12930 11900	• • • •	13540 13250	13480 13270
т(о+) т(о++)	12100	12620 12700	12830 12970	11840 12100	12500	13110 13250	13130 13260
x(C+) x(C++)	••••	0.035	0.017 0.329	0.041 0.441	••••	0.008	0.010 0.432
$x(C^{+3})$ $x(N^+)$	• • • •	0.386	0.008	0.340	• • • •	0.005	0.007
$x(N^{+3})$ $x(O^{+})$		0.295	0.318	0.255	.030	0.477	0.420
$x(0^{++})$ $x(0^{+3})$.513	0.447 0.195	0.461 0.213	0.421 0.228	.676	0.653 0.300	0.602 0.349
$\overline{\mathbb{N}_{H}(\mathrm{cm}^{-3})}$	4600	5000	5000	5000	1700	4000	2000
log O/H	-3.22	-3.30	-3.20	-3.20 +0.40	-3.54 +0.10	-3.54+0.10	-3.54 +0.10
$\log N/O$	-0.39	-0.20	-0.30	-0.20	-0.27	-0.16	-0.16
$\begin{array}{c} \mathbf{R}_{0} (\mathbf{p}\mathbf{c}) \\ \mathbf{R}_{0} (\mathbf{p}\mathbf{c}) \\ \mathbf{R}_{\mathbf{*}} (\mathbf{R}_{0}) \\ \mathbf{d}) \\ \mathbf{R}_{\mathbf{*}} (\mathbf{R}_{0}) \\ \mathbf{c} \\$.05	.068 0.10	.067 0.10	.084 0.10	.13	.074 0.10	.116 0.10 125
Τ <mark>*</mark> (10K)	• • • •				• • • •		

TABLE III. - COMPARISON OF MODELS WITH OBSERVATIONS. LINE INTENSITIES, TEMPERATURES AND RELATIVE VOLUMES. a)

a) Relative to H β , where I(H β)= 100, b) ϵ is the filling factor. $T(X^{+m}) \equiv \int N_e N(X^{+m}) dV / \int N_e N(X) dV$. c) R_i , R_o are inner and outer radii. $x(x^{+m}) \equiv \int N_e N(x^{+m}) dV / \int N_e N(x) dV.$

d) R_{\star} , T_{\star} are central stars parameters.