General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

```
(NASÁ-IM- \1<y1) LCGIf AMAIYSIS Ct CCAELEX NE1-26407
~YSTEMS BY CHAGACIEhI2LAG rAIIUGE fHEACBEAB
Tu ALGLEVE DLASNCSIS ANE tAULI-ISOLAIIOA
(NASA) 2L&HC : &/HF AOI USCL 14D UnClas
GJ/J& /6732
```


Logic Analysis of Complex Systems by Characterizing Failure Phenomena to Achieve Diagnosis and Fault-Isolation

James T. Wong and William L. Andre

Logic Analysis of Complex Systems by Characterizing Failure Phenomena to Achieve Diagnosis and Fault-Isolation

James T Wong
and
William L. Andre, U.S. Army Research and Technology Laboratories (AVRADCOM)
Ames Research Center, Moffett Fielri, California

N/SA

Ames Research Center

United States Army Aviation Reseatich and Development Command St Louis Missouri 63166

It is often difficult if not impossible to analyze a design of a jarge, complex system with respect to its reliability paramete:s and maintenance chargiteristics when numerous elements are functionally interdependent. A recent result has shown that, for a certain class of systems, the interdependincy among the elements of such a system together with the elements constitites a mathematical structure - a partially ordered set. It is calied a loop-free logic model of the system. On the basis of an intrinsic property of the mathematical structure, a characterization of system component fallure in terms of maximal subsets of bad test signals of the system was obtained. Also, as a consequence, information concerning the total number of failure components in the system was deduced. Detailed examples are giver to show how to restructure rfil systems containing loops into loop-free models for which the result is appicable.

INTRODUCT:ON

Avallability is a system parameter and is used to measure the operational readiness of a system/equipment by the reliability and maintainability engineering community. It is defined as the ratio of mean time to failure (MTTF) to the sum of mean time to repair (MTTR) and MTTF. Accord'ay to the definition, availability is a child of the marriage between these two disciplines. The theory of reliability jals with a system's ability to perform its intended function under a prescribed condition for a period of time without failure. Maintainability concerns itself with a system's ability to restore a system to its operational condition or to prevent unnecessary faiiure. In both instances, time is the important conmon factor used to measure the "up" condition (free from fallure) on the one hand and the "down" condition (by fallure) on the other.

One way to increase system availability is to reduce the MTTR which partly hinges on the ability to correctly prognosticate the state of the system and to identify the failed components if the system is malfunctioning.

Recently, the U.S. Army Research and Technologies at Moffett Field, Califormia, established a mathematical basis for complex systems without loops - called a logic model theory. In the theory it has been established (ref. 1) that the minimum number of test points required for conclusive detection of system fallure is equal to the total number of terminal test points; this set of points constitutes the optimal choice. This result is useful for system checkout or prognosis. On the basis of the theory, we have etablished some results whose application is complementary to that of the foregoing one. In particular, it is shown that every maximal subset of bad events of the system corresponds to a failed component, and the converse of this statement is also true if a further assumption is imposed. Also, as a consequence, it has been deduced that the total number of failures is at least as many as the total number of maximal subsets of bad events.

ASSUMPTIONS AND DEFINITIONS

In this section, we shall state explicitly the assumptions and definitions upon which the following development is based. It is hypothesized that:

1. At any instant or stage, the system or equipment under consideration may be in only one of two states: funotioning or faulty.
2. The system aan be schematically decomposed into a finite number of components (or modules), each of which, at any instant, is in one of the two posaible states.
3. The state of the system depends solely on the states of its components.
4. The system is loop-free.

Hypothesis (1) is a realistic assumption because, if the performance level of a given component is degraded to an "unsatisfactory" level (or beyond the tolerance as specified in the specifications of the equipment), then the component is in the malfunctioning state. Assumption (2) demands only the feasibility of schematic system decomposition, not necessarily a physical decomposition. Also, it is tacitly assumed in (3) that a proper environment exists for the system under question. This also implies that input to the system is cousidered to be good. Assumption (4) imposes a limitation on the applicability of this study to systems containing functional dependence loops. For those cases, one should restructure each functional loop as a component and an event. Hence the resulting model would be loop-free.

In addition to the above assumptions, one needs the following. C \equiv nonempty finite set of all components of a given system. $E \equiv$ nonempry finite set of all events (signals) of the system. $S \equiv$ set of all functional entities, defined to be the union of C and E. $\mathrm{P} \equiv$ set of all peripheral components.

UミCリP or $\ddagger \cup C$
A partially ordered set P is a structure consisting of a set S and a relation - satisfying the following postulates:

1. (Reflexive): $a \cdot b$ and b ~ a hold if and only if $a=b$, where $a, b \in S$.
2. (Transitive): a - b and b - imply a ~ c, where $a, b, c \in S$.

Let $\alpha, \beta \in S$. Then α depends functionally on β (symbolically, $\alpha<\beta$) if there exist functional entities $\ell_{1}, \ell_{2}, \ldots$.. in such that $a<\ell_{1}<\ell_{2}<$. $\leqslant \ell_{n}<B$.

An event (or signal) is said to be bad if it is out of apecification; otherwise, it is sald to be good. A component in a loop-free system is said to be malfunctioning if all its input signals (events) are good and at least one of its output signala (events) is bad; it is ald to be functioning if all its outputs are good.
$\Lambda_{a}\left(0_{j}\right) \equiv\left\{a \in E \mid s<0_{j}\right\}, O_{j}$ is an output oi $a, a \in C$.
$\ddot{i}_{a}\left(0_{j}\right) \equiv$ all events (signals) in $\Lambda_{a}\left(0_{f}\right)$ are bad.
Lot $a \in C$ and O_{j} be an output of a. Then a set of bad events (signals), $\overline{\bar{n}}_{a}\left(0_{j}\right)$, is ald to be maximal if for all $\dot{b} \in U, \bar{\Lambda}_{a}\left(0_{j}\right) \subset \bar{\Lambda}_{b}\left(0_{i}\right)$ implies $\bar{n}_{a}\left(0_{j}\right)=\bar{n}_{b}\left(0_{i}\right)$.

Now we state the last assumption, which allows for flexibility in modeling at different levels.
5. For every event $s \in E$, there is a . omponent $c \in U$ having s as its output.

Finally, in the iaterest of completeness, we define explicitly the following terme.

Component - a collection of one or more items.
Event (signal) - a measurable or observable quantity.
Functional entity - a component or an event.
Espendence - a functional relationship between two functional entities.
Dependency chain - a collection of two or more functional entities for which dependence exists.

Loop - a closed dependence chain.

BACKGROUND

In this section we discuss the basic idea of the logic model concept together with some notions that will be required to understand the following development.

Structurally, a logic model consists of a collection of dependency chains arranged in a particular order that raflects the functional relationship that existed between the components and the observable or measurable state of nature of a satem or equipment. The dependency chains are the basic building block of the ligic model concept. A simple example of a dependency chain can be illustrated by the "black-box" concept an follows:

This simple input-output mechanism shows that the output signal \mathbf{Z} depende functionally on the operational status of the black box Y (or simply the black box Y) and the input signal X. The dependency chain of this simple mechanism is pictorially r presented as

where represents an observable or measurable state of nature, O represents the functional component, and Δ denotes the dependency of one functional entity on another. This symbolic representation of the dependency chain also yields a logic model of the mechanism - a logic model that consists of only one dependency chain.

A more complex example is a simple power relay circuit together with a logic model as shown in figure 1 . This logic model consists of four dependency chains. Note that, for example, the signal at TP-2 depends on the operational status of the transformer T1 and the signal at TP-1. This is a dependency chain and it reflects the power transition portion on one leg of the transformer, whereas the chain corresponding to TP-3 reflects power transition for the other output leg.

The foregoing example has been generated manually and reported in reference 2. In this case, the manual generation of the model has been an easy task because there are altogether only a fitw functional entities in the model - five events and three components. (Note items Sl and Rl together are considered as a component.) For a more detailed modeling of a complex system, an automated capability for generating a logic model no: only is desirable but becomes necessary.

CHARACTERIZATION OF COMPONENT FAILURE

The set of all functional entities S together with the functional dependence, $<$, as drelation on S constitutes a mathematical structure. In fact, as was establishad in a previnus report (ref. 1), avery loop-free logic model is a partially ordered set, and from this some interesting resulta that are usaful for maintenance analysis ware deduced.

This unique property of logic models enablea ue to obtain a characterization of system component failure phenomena, whose proof in given in the appendix.

Theorem 1: Leit $a \in C$ and L be a loop-free 2 gicic model. Then component a is malfunctioning if, for oome output O_{j} of $a_{s} \bar{\Lambda}_{s}\left(O_{j}\right)$ is a maximal subset of the set of all bad events in E.

This pleasing result would not necesnarily hold if the loop-free constraint were relaxed. For then we could have a malfunctioning component in a loop ani, in this case, the logic model is not a partially ordered set. Hence the asymmetric property of a partially ordered set does not apply, and :t might lead to an incorrect identification of failed components. This undesirable feature on the applicability can be circumvented to a degree, provided a certain degradation on the logic model is admitted. A detailed dscussion along with some examples follows in the next section.

The converse of the Theorem ts generally not true. So it is somewhat unorthodox to call it a characterization because such usage implies an eriuivalency of two statements in the mathematical literature. However, we do have a weaker equivalence result.

Theorem 2: Suppose U contains at most ons malfunctioning component, and let L be a loop-free logic model. Then a component $: \in C$ is malfunctioning if and only if, for some output O_{f} of $a_{,} \bar{\Lambda}_{a}\left(O_{j}\right)$ is a maximal subset of tie set of all bad events in E.

Before we continue, note that in this weaker form of characterization, an additional hypothesis is assumed - namely, we allow not more than one failure component, at a given instant, within both the system components and the peripheral components. Also, the Theorem would not be necessarily valid if the peripheral portion were omitted unless all the peripheral components were assumed to be good.

The next result states that the totality of bad events in a malfunctioning system is precisely the set theoretic sum of all the maximal subsets of bad events in the system.

Theorem 3: The set of all bad e:sents in E of a loop-free logic model is equal to the union of all maximal subsets $\bar{\Lambda}_{\mathrm{a}}\left(\mathrm{O}_{\mathrm{j}}\right)$ in E .

Finally, is a consequence of the foregoing resulty, we deduce the followlng corollary.

Corollary: If each oomponent of a loop-free logio model has only one output, then the number of failed components of a maifunctioning system is equal to or greater than the total number of maximal subsets of bad evente.

This Corollary can only conclude that there are at least as many failed components as the number of mioimal subsets of bad evente. Equality dous not hold in general becnuse the converse of Theorem 1 is not necessarily true.

SYS'KEMS WITH LOOPS

It is not uncommon for syatems to contain closed dependence chains or loops: especially in electronic equipment. As discussed under "Assumptions and Definitions," for such a system it is necessary to degenerate each 100p into a component and an event so that the resulting logic model is loop-free, and for which the result obtained under "Characterization of Component Fallure" is applicable.

Figure 2 is a computer-generated lugic model, published in reference 2 , of a radio used extensively in Army helicopters such as the UH-1. There are two loops (or closed dependency chains) in this relatively complex model, which consigts of 51 dependency chains involving 175 functional entities. Concatenation of the following four dependency chains:

Event A038 depends on component 1044 and on event A037.
Event A037 depends on somponent 1043 and on event A036.
Event A036 depends on compenent (1042, I110) and on event A076.
Event A076 depends on component (1089, 1088, 1046, 1045) and on events A038, A009, A010, A011.
is a dependency chain involving a loop, as shown in figure 3. To eliminate this loop, we must remodel the events A038, A037, A036, and A076 as one event called Axxo, where xxx is unique in the remaining event set and items I044, 1043, 1042, and II10 as one item Iyyy or component, where yyy is unique in the remaining items of the model. The other loop in the model is embedded in the following dependency chains:

Event A070 depends on component 1100 and on event A069.
Event A069 depends on somponent 1099 and on event A060.
Event A060 depends on component 1098 and on event A059.
Event A059 depends on component 1097 and on event A058.
Event A058 depends on component (I096, IO95) and on events A070, A040, A009, A010, A011.
as shown in figure 4. Here, as before, the evente involving in the loop as well at the items must be degenerated into a unique representation. Now, the model is loop-free, and the apparent price to be paid for this action is an inability to fault isolate down to the same level if the loop did not exiat.

The foregoing model involvee simple loops. A more complicated example (fig. 5) of loop embedding is provided by a logic model of an on/off gating circuit board (ref. 3) used on special underwater surveiljance gear by the Navy. A careful examination of the model reveals thet there are five loope embedded in the following eight dependency chains:

Event A038 depends on component 1030 and on events A045, A046, A027, A044.
Event A045 depends on componen: 1038 and on events A052, A037.
Event A052 depends on component 1041 and on events A034, A033.
Event A046 depends on component 1015 and on events A030, A031.
Event A027 depende on component 1015 and on evente A030, A031.
Event A034 depends on component 1023 and on events A030, 1040, A037, A041.
Event A030 depende on component 1017 and on events A034, A033.
Event A033 depends on component 1022 and on events A038, A037, A036.
To obtain a lcop-free model, we identify events A038, A045, A052, A046, A027, A034, A030, and A033 as another event that is unique among the remainIng eventa; similarly, 1tems IO30, IO17, I023, 1015, 1038, and I041 should be groufed as a new component with a unique idencification.

CONCLUDING REMARKS

On the basis of the previously established result that every loop-free logic model is a partially ordered set, we have found thet every maximal subset of bad events corresponds to a failure component. This result, together with the fact that every bad event of a malfunctioning system belongs to yume maximal subset of bad events, enables us to deduce that the number of failure components is equal to or greater than the total number of maximal subsets of bad events. The equality does not generally hold because it is not necessarily true that every failed component gives rise to a maximal subset of bad events. However, this statement is true for systems containing only at most one failed component at a given instant.

Theoram 1: Let i be a loop-free model and a E C. Then oonponest e is malfunctioning if, for come output O_{y} of $\mathrm{A}, \bar{x}_{\mathrm{a}}\left(\mathrm{O}_{\mathrm{j}}\right)$ is a mazimal subset of the set of all bad cusnte in E .

Eroof: Firat we observe that $0_{j} \in \bar{\Lambda}_{\mathrm{a}}\left(\mathrm{O}_{\mathrm{j}}\right)$, eo O_{j} 1e a bad output of couponent a. The prool of the Theorem now is raduced to prove that all the inputs, to component a, upon which O_{y} depende are good. Acsuming the contrazy, suppose chare is an laput to that is bad. Then, by defiastion, there is a component $b \in \mathbb{V}$ auch that a is an output of b. Evezt a being bad_impiles that all the events in $\Lambda_{b}(\mathrm{~s})$ are bad. So, we have $\bar{\Lambda}_{a}\left(O_{j}\right) \subset \bar{\Lambda}_{a}\left(O_{j}\right)+(s\} \subset \bar{\Lambda}_{b}(s)$. But $\bar{\Lambda}_{a}\left(O_{j}\right)$ 1s maximal implies
 partially ordered eet, we have e - Oy, or input is the ame as output, a contradiction.

Theorem 2: Suppose 0 containe at most one malfunctioning oomponent and i be a loop-jrbe logis model. Then a component a E C is malfunction. ing if and only if, for sonc output O_{j} of $a_{s} \bar{X}_{a}\left(O_{j}\right)$ is a mesimel subeet of the set of all bad suants in E.

Froof: The proof for the sufficient condation is carried over from that of Theorem 1. Now we want to prove that it is necessary also. Suppose $\bar{I}_{a}\left(O_{j}\right)$ is not maximal. Then there is a set $X_{b}(s)$ such that it containa $\bar{\Lambda}_{\mathrm{a}}\left(\mathrm{O}_{\mathrm{f}}\right)$ as a proper mubset. Now, if $\bar{\Lambda}_{b}(\mathrm{~s})$ is maximal, then b is malfunctioning, in which we have a comtradiction gince U contains two faliure components a and b. On the geher hand, if $\bar{n}_{b}(a)$ is not maximal, then there exists $\bar{\Lambda}_{c}(t)$ such that $\bar{\Lambda}_{b}(s) C \bar{\Lambda}_{c}(t)$. Now applying the eame_argument, we have either c malfunctioning or else the extstance of a set $\bar{\Lambda}_{d}(n)$. The process will terminete eventually since the set U is finite. Thus, it leads to a contradiction.

Theoren 3: The set of all had avente in E of a loop-free logic model is equal to the union of all maximal subsets $\bar{\Lambda}_{\mathrm{a}}\left(\mathrm{O}_{\mathrm{j}}\right)$ in E .

Proof: Let T denote the eet of all bad test pointe in E, and
 To prove the theorem, it is only necessary to prove that $T \subset R$ because obvioucly each element of R is also an lemunt in T. So, let e_{1} be an clement in T. We want to show that if is an element of some maximal subset. To begin with, by definition, there is a component c_{1} having i_{1} as its sutput. It follows that the set $\Lambda_{c_{1}}\left(s_{1}\right)$ is a subset of bad test points. Hance, if $\bar{\Lambda}_{c_{j}}\left(a_{j}\right)$ is maximal, the assertion follows; otherwise, there axists a bad test point s_{2} such that $\bar{\Lambda}_{c_{1}}\left(s_{1}\right)$ is a proper aubset of $\bar{X}_{c_{2}}\left(s_{2}\right)$, for some component c_{2}. Uniess $\bar{\Lambda}_{c_{2}}\left(s_{2}\right)$ is maximal, the process can be continued and eventually tarminates itself aince there are only a finite number
of cegt points in a givan logic model. Therefore, $\|_{1} \in \bar{\pi}_{c_{1}}\left(s_{1}\right) \subset{\overline{X_{c}}}_{c_{2}}\left(s_{2}\right) \subset \ldots \subset \bar{\pi}_{c_{k}}\left(s_{k}\right)$ is maximal.

Corollary: If each oomponent of a lnop-y'res legio madel hae only one outpus, then the number of failed componente of a malfunotioning syotem is equal to or greater than the total numier of macimal subsets of bad events.

Proof: Lat the nonnegative integer k be the number of failed components in the logic model under conelderation. Then the hypothesis and Theorem 1 imply that, for each fallure component, there corresponds one and only one maximal subset of bad test point\%. So, we have k maximal subsets of bad test eignals, but Theorem 2 implies these are the only maximal subsets. Hence K cannot be leas than the number of maximal aubsets. On the other hand, the converse of Theorem 1 is not necesapri!y true. It follows that k can be greater than the total number of maxital subsets of the set of all bad test signals.

aeferences

1. Wong, James T.; and Andre, William L.: Some Generic Properties of a Logic Modi: for Anelyzing Hardware Maintenance and Deaign Concepts. Proceedings of the Symposium on Applications of Decision Theory to Problems of Diagnosis and Repair, Fairborn, Ohio, June 2-3, 1976.
2. LOGMOD Diagnostic Test Set and Demonstrator. Prepared by DETEX Systems, Inc., for U.S. Army Research and Technology Laboratories (AVRADCOM), Ames Research Center, Moffett Iield, Callf., June 1977.
3. LOGMOD Diagnostic Procedures for Mechanical and Electrical Equipment. Prepared by DETEX Syatema, Inc., dar U.S. Army Research and Technology Laboratories (AVRADCSM), Amet Research Center, Moffett Field, Celif., Junc 1975.

Figure 1.- A Power relay and a corresponding logic model.

\qquad
\qquad
u-u.
EOLDOUT PRAME
ORIGINAL PAGE IS OF POOR QUAIIT:

Fiçure 2.- Logic model with loops.

Yoonl 1

FOLDOUT PRAME 3 : 3 .51-3

1	1	A	1	1	1	1	A	1	1	A	1	1	H	1	1	1	A	1	1	A	1	A	1	1	A	1	1	A	1	A	1	1	1	1	A
0	0	0	0	0	0	0	0	0	0	1	1	0	11	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	7	4	4	8	8	7	2	2	2	1	4	3	7	9	9	5	2	2	2	4	3	3	9	7	1	1	2	4	7	1	1	1	1	2
0	1	4	5	6	8	9	6	3	4	7	0	2	6	0	1	2	7	5	6	8	3	7	3	4	7	1	2	2	4	8	3	4	5	6	3

```
10-5-*
```



```
                        U------------1)-1
```



```
                            \(U\).
```


- - -

U-

1	1	A	1	1	1	1	A	1	1	A	1	1	A	1	1	1	A	1	1	A	1	1	1	1	A	1	1	A	1	A	1	1	1	1	A
0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	7	4	4	8	8	7	2	2	2	1	4	3	9	4	9	5	2	2	2	4	3	9	9	7	1	1	2	4	3	1	1	1	1	2
0	1	4	5	6	8	9	6	3	4	7	0	2	6	0	1	2	7	5	6	8	3	7	3	4	7	1	2	2	4	8	3	4	5	6	3

Figure 3.- Loop embedded in logic model.

C	J	A	A	N	H		A	A	R	A												
C	P	3	3	E	E	C	S	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3																						

1	A	1	A	1	A	1	1	A	1	1	A												
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	1	0
6	4	4	3	6	4	9	9	5	9	5	9	6	9	6	0	7	0	7	0	7	0	0	7
3	-		5	4	9	5	6	8	7	9	8	0	9	9	1	1	0	0	2	2	3	4	3

model 1

ARC-51-3

Recelving

Figure 4.- Loop embedded in the model.

Figure 5.- Logic model with loops interwoven.

U-0 -0

-

U-

