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ABSTRACT

Effective mechanical properties for large repetitive frame-

like structures are derived using straight forward combinations

of strength of material and orthogonal transformation techniques.

Once the actual structure is identified symmetry considerations
are used in order to identify its independent property constants.

The actual values of these constants are constructed according to
a building block format which is carried out in the three consec-

utive steps:	 (a) All basic planar lattices are identifed (b)

effective continuum properties are derived for each of these

ola,iar basic grids using matrix structural analysis methods and

(c) orthogonal transformations are finally used to determine the

contribution of each basic set to the overall effective continuum

properties of the structure.
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I. Introduction

In recent two papers (1,21 we introduced a straightforward

construction nroceduxe in order to derive continuum equivalence

of discrete pLn jointed repetitive structures. Broadly speaking

we outlinad the method as follows: Once the actual structure

was specified symmetry considerations were used in order to

identify its independent property constants. The actual values

of these constants were constructed in accordance with a build-

ing block approach consisting of -he following three consecutive

steps: (a) all sets of parallel members were identified,

(b) unidirectional "effective continuum" properties were de-

rived for each of these sets and (c) orthogonal transformations

were finally used to determine the contribution of each set to

the overall effective continuum properties of the structure.

Here the term properties is general and includes mechanical

.^tiffnesses), thermal (coefficients of thermal expansions) and

material densities. The method was then applied to a variety

of structures.

In the present paper we extend the analysis of (1,21 in order

to derive the effective properties of rigid-jointed (frawe-like)

repetitive structures. This differs substantially from the

truss-like structures in that we here include the influence of

inplane bending rigidities to the structure. The construction pro-

cedure will differ in that the rod's unidirectional properties

will no longer be adequate to derive the overall oronerties.

The fact that the individual rou in a rigid-jointed array can
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resist in plane bending dictates that the smallest suk-cell of

the structure which will be used for the building block

approach will no longer be unidirectional and thus have to be

two-dimensional substructures. Here the most identifiable basic

two dimensional frame structures are the (0 0 , g oo ) and

(0Q , + 600 ) lay ups. Effective properties for the sub-dells

will be constructed using the direct analysis method which is

also known by the matrix structural analysis method (see, for

exau-,jle (3-51). This method, which uses simple and straight-

forward strength of material technique;, c:onstituties two-

dimensional generalization of the one-dimensional area weighted

properties approach of (1,21. The derived effective properties

for such substructures will then be used in a bL lding block

format in order to derive the effective properties of more

complicated two and three dimensional structures. This last

step will be done by employing the orthogonal transformation.

In summary we thus outline the procedure of constructing

effective properties for frame-like repetitive structures as

follows. Once the actual structure is identified symmetry

considerations are used in order to identify its independent

property constants. The actual values of these constants are
constructed according to a building block format which is

carried out in the three consecutive steps: (a) All basic

planar lattices are identified (b) effective continuum

properties are derived for each of these planar basic grids.

Here a representative repeating cell is isolated and studied



by the direct method noting that the effect of the joints'

rigidity is taken into consideration and (c) orthogonal trans-

formations are finally used to determine the contribution of

each basic set to the overall effective continuum 	 properties

of the structure.

Since the inclusion of bending rigidities do not influence

the thermal expansion of the structures, the thermal expansion

properties derived in j1,21 for the truss are identical to those

of corresponding frame. Accordingly in what follows we con-

centrate on deriving the elastic iroperties of the frame structure.
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II. Orthoaonal Transformations

As was pointed out earlier the actual values of the total

structure's effective continuum properties are determines.( from

the individual contribution of each two-dimensional subset. The

individual subsets contribution is obtained by a three-dimensional

coordinate transformation. Before we proceed to describe the

transformation, however, we shall first state the :elevant Stress-

strain relations of elastic bodies.

The stress-strain relations for a general linear elastic

body are written in the compact fLrm

J ij = CijkQckQ	 ipj,k,t = 1,2,3	 1	 (1)

where o.. and t kf are t,ne components of the stress and strain

tensors, respectively and Cijkz are the stiffness tensor of the

solid.

Por future format references we shall rewrite equation (1)

in its expanded form

.°11 01111 0 1122 c1133 01123 0 1113 1112 E11

°22 02211 02222 2233 2223 02213 02212 E22

°33 03311 0 3322 033.13 03323 0 3313 3312 E33

°23 02311 2322 02333 02323 02313 2312 E23

°13 '1311 0 1322 C 1Y 3 0 1323 0 1313 0 1312 `13

°12 01211 0 1222 1233 0 1223 0 1213 0 1212 E12

(2)
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Since C ijk: is a fourth-order tensor it obevs the: transformati___

(1,6,71

C ijk	 Cpgrs b pi 3qj "rk SsZ	 (3)

where
ax.

S ij = ax.	 (4)

are components of the orthogonal transformation tensor which

transforms the unprimed to the primed coordinates. Accordinglv,

E ij is the cosine of the angle between the x i and the x  axis.

The relation (3) hold equally well for either continuous or

discrete structures. The numerical values of the aFt',ropriate

C ijk entries will depend, however, upon the specific structure

under consideration. Since we are interested in analyzin g frame-

type structures that are constructed from smaller subsets, it is

expected that each subset will contribute to its overall properties.

If a structure has n different subsets then equation (3)

can be written for each subset m, m, m = 1,2,...,n as

(C..	 ) = (C '	 s	 s	 3	 6	 )iJke m	pgrs pi qj rk sQ,m

Onca the direction cosines of each subset are identified

the su.-nover all of these subsets yield the final properties

n

C i'k	 =	 i	 (C. k^)	 (6)
M=1	 J m

-5-
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III. Basic Planar Grids

We shall use the'Uirect method" to find the properties of

t-he equivalent continuum of two basic planar g rids. This

approach is the reverse of that used by McCormick (8),

McHenry, (9) and Hrennikoff (10), who describe a procedure

for modeling p roblems in plane stress analvsis with one dimensional

elements.

The main idea behind the direct method is to equate the

displa:ements of the nodes of the model to the displacements of

the corners of the continuum plate element under the same loading

conditions. The si gn convention for the displacement and stress

resultants used in the present stud y are shown in sketch la,b.

a) (00 , 900 ) layup

we consider a plane network which is formed from a large

number of orthouonaily intersectin g beams ri g idly jointed at

their intersections a: shows: in figure 1. The beams are assumed

to be identical, each havin g the length L, the cross-sectional

area A, the Younqs modulas E and the moments of intertia I y and

I  around the Y and Z axis (principal axes), respectively.

The deformation of each joint is described b y the displacements

u, v and w in the X 1 , X 2 and X 3 directions, respectivel y and by

the rotations 
a xl' 0x2 and 

e x3 around the axis X1, 
X2 

and X3,

respectively . Here the rotations are considered to be positive

ire the counterclockwise direction.

Using symmetry arguements reveal that this model is orthotropic

and that a 90 0 rotation in its plane will not alter its behavior

(11). These conditions reluce its general stress-strain relations

I	 (1? to
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C111 C 1122 0	 0 0 0

0 1122 1111 0	 0 0 0

0 0 0	 0 0 0

0 0 0	 C1313 0 0

0 0 0	 0 C1313 0
0 0 0	 0 0 C1212

[Cijk4I
(7)

which has the four independent constants 
C 1111' C1122' C1313

and 01212

The actual values of thew constants are derived

using the direct method of analysis. This consists of isolatin g the

representative	 repeating cell, figure 2a, loading it at its

nodes and equating the displacements of these nodes to the

displacements of the edges of the equivalent continuum plate under

the same loading conditions. The appropriate loadin g conditions

for calculating C1111 and C1122 are shown in figures 2b and 2c,

those pertaining to calculating C1212 
are shown in figure 2d and

2e and finally those used in calculating C1313 
are shown in

figures 2f, 2g, 2h. In the first and second loading conditions,

we are dealing only with the "in-plane" displacements of the

lattice; while in the third loading condition we are calculating

the "off-plane" displacement..

Since each member is shared by two neighboring cells,

its effective cross sectional area anil moments of inertia must

be half of the corresponding values in the orioinal lattice.

Under the present lcac:ing conditions, matrix structural methods [31 are

utilized to solve for the displacements and rotations of each



individual node. Specifically for figure 2b, we obtain

u  = u 2 = u 3 = u 4 = 0	 (8.a)

and from figure 2d, we get

u l = u 2	 0	 v  = v 2 = 0	 v3 = v 4	 (9.a)

3

U3	 u 4	 PEI	
(9.b)

Similarly, the displacement in figure 2h is found to be

w 2 = w 3 = - PL 3 /(3EZ y /2)	 (10)

Figures 2.c, 2.e and 2.f display the equivalent souare continuum

element of side length L and thickness h subjected to normal

stresses, 0 2 , in-plane shearing stresses, 7 121 and off-plane

shearing stresses, 7 13 , respectively. The displacements of the

plate element due to the normal stress ^,' are

3	 - 1)2L	
S	

a2L 
^'P

1	
E 
	 2	

E 
	

(11)

and the one due to the in-plane shearing_ stress T 12 , J.s

53	
T12 

L	 (12)
12

while the displacement iue the off-plane shearing stress -13 
is

given as
T

13

X13

I	 -8-

t

(13)



where E  is the effective modulus of elasticit- , of the equivalent

orthotropic continuum in the X 1 and the X 2 direction, .
e is the

effective Poisson's ratio of the continuum between the X 1 and X2

direction, G12 is the in-plane shear modui.us and I	 Is the off-

plane shear modulus. The relations between Cijhz of equation (7)

and EP , ve , G 12 and G 13 are

C
E	 C1111(1-ve) 	 V = C1122	 (14.a)e 

1111

G12 = C1212	 G13	 `1313	 (14.b)

By equating the displacements of the plate element with the

corresponding displacements of the representative unit cell while

insuring that the total fuL-, e on the unit cell e quals the total

force on the plate element for each loading condition yields

AE
01111 

S 
Lrl 01122	

G (15.a)

5FI

01212 
_	 2	 (15.b)

3EI

1313	
L h
	 (15.c)
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b)	 (0, + 60  layups)

For the (0, + 60 0 ) layup of figure 3, we shall assume that

all members are identical and have the same geometrical and

material properties L,A.I y , I Z and E. The isotropic nature of

the (0, + 60 0 ) configuration (see (2,111) dictates additional

restrictiors on the stiffnesses coefficients of t'ie equivalent

continuum. The appropriate p roperty matrix is

Cijkp

C1111 01122
0	 0 0 0

C 1122 C1111 0	 0 0 0

0 0 0	 0 0 0

0 0 0	
C1313

0 0

0 0 0	 0
C1313 0

0 0 0	 0 0 1
(01111-C1122)

1 (16)

whict, has the three independent constants 
C 1111' C1122 

and 
C1313'

The actual values of these constants are derived using the same

method outlined above.

The appropriate loading conditions for calculating 
C1111 and

C1122 are shown in figures 4a and 4b, and those used in calculating

01313 are shown in figures 4e and 4f. The representative unit

cell for this layup is shown figure, 4.a. Since the diagonal

members are shared by two neighboring cells, their effective

cross sectional properties are half those of the chord member.

With these loading conditions, matrix structural methods are 	
i

utilized _again to solve for the displacements of each i.ndivi-ual node.

Specifically, from figure 4c we obtain

-10-



12 I
(3A + ---^= )

u 3 0 ^	 `LI	 (17.a)

3A(A + --^—z)
L

12/7 I

v /TA - z
2	 L

u3	 3A +	
I	 (17.b) ^_

L

and from figure 4.f we get

PL 
W 1	 - 5EI	

(18)

Figure 4.b and 4.f display the equivalent rectangular continuum

element of side dimensions L x L,, and thickness h, subjected to

normal streses o l , and off-plane shearinv stresses, T 13 , respectively.

The displacements of the plate element due to the normal stress

CI f are given by
0 1 I.

bl z	 ,
E e

r2	 e= - 3^ v b l (19)

and the displacement due to the off-plane shearing stress T13

is given as
- 13 L^

3 = -

2G13

Usinq the relations between C ijk , and Ee , v e and G 13 'as given in

(14) equating -Lhe displacements of the plate element with the

corresponding displacements of the representative unit cell and

insuring that the - total force on the unit cell equals the total

force on the plate element for each loading condition yields

(20)
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3^ EI

1111
 3j EA + ^z	 (21.a)

	

4 Lh	 h

	

_ 3I EA	
3./T E I z

`	 ►h
	 (21.b)

1122	 4L 

3 3 3 EI

'1313 -	 L h
	 (21.c)
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IV.	 A-ielications

In this section we present applicat?o.is to our con•°ruction

procedure as outlined in Sections II and III. The models which

we shall discuss constitute two-dimensional and three dimensional

team-like structures, respectively.

a) Two-Dimensional Structures: The (0°, 90°, + 45°) layup

The (0°, 90°, + 45°) grid shown in figure 5 is constructed

from two basic square grids inclined at an angle of 45° and having

the geometrical properties L, E, A, I y , and I  and L,2, Ed , Ad,

Iyd' I zd' respectively.

The four independent constants for the first (i.e., 0°, 900)

basic square grid with respect to its local system of axis are

Oven in (15); while those corresponding to the ± 45° square grid

with respect tj its own local system of axis are

^a

Ed Ad

(0111.1) 2 - L•2 h

3 Ed

'T 

1 z
(01212) 2 - -	 L 3 h

(01122)2	
0
	

(22.a)

(.2.b)

33 E

(01313)	 2	 L h

	 (22.c)

The direction cosines of the local system of axis of the +45° grid

with respect to the fixed coordinate system of axis (X 1 , X2, X3)

are defined according to (4) as
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K

X1	 X2	
X3

'	 1	 1
1 ) 	0

	

2	 ►^	 ,/^ 

(X 2 )	 - 1	 1	 0

	

2	 42-

	(X
2	

0	 0	 1

Substituting from (15), (22), and (23) into (5) and summing the

results yield the final properties of the 0 0 , 90 0 , + 450 layup as

__ EA	
E d A d	 3EdIzd	 (24.a)

	

E 1111	 LFi	
2 3l Lh	 v-2 Lsh

E 
d 
A d	 3EdIzd	 (24.b)

	

1122	 2 v'f Lh V'2—

E A	 6EI
d d +	 z	 (24.c)

	

1212	 2 37 Lh	 L 
3 h

3EI	 3EdI d

	

1313	 +	 3	
(24.d)

L h	 2 3T L h

-14-
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b)	 Three-Dimensional Structures: (octetruss Structures)

The smallest generating (repeating) unit cell of the octetruss

structure is shown in figure 6. It is a diamond-like element with

each of its sides having th3 length L and being shared by two

neighboring cells. The octetruss structure is shown in figure 7

with respect to the coordinate system arrangement showr in figure B.

For further details of the geometr,.c characteristics of this kind

of structure the reader is referred to (1,21. In the present

analysis, the octetruss structure is considered to be composed of

"beam elements." Examination of this structure reveals what it can

be constructed from the superposition of different planes. Specific-

ally, it can be constructed from the three repeating sets of (0 , 900)

basic planar grids having different orientation in space, as shown

in figure 9. The stiffness coefficients for each of the (0°, 900)

basic grid with respect to its local system of axis are given in

(15) where h now stands for the distance between the parallel

(0°, 90°, la yers; its value is thus given by

h = L
	

(25)

The direction cosines of the local system of axis of the three

basic (0°, 90°) planes with respect to the global_ system of the axis

of figure 8 are defined according to equation 4 as (,3 i ^ m ), m = 1,2,3

by

	

1/2	 1/23	 •2 3

(3 ij ) 1 =	 -1/2	 372	 0
	

( 26a)

176 	 ^1?3
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01111 01122 01133 01123
0 0

01122 0 1111 01133 -01123
0 0

0 1133 0 1133 03333
0 0 0

0 1123 -01123 0 02323
0 0

0 0 0 0
C2323 01123

0 0 0 0
C1123 01212

(C ijkQ I 	I (27)

1	 0	 0

(S ij ) 2	 0
	 - ► 2 73

	
(26b)

0	 ^IT3 	 ^.

1
1/2
	

2
_ 3	

_ v173

( 8 i j ) 3	 1/2
	 '' 3	 0	

(/6c)

/M

Substituting from (26) into ( 5), using ( 15) and summing according

to (6) yields the final properties of the octetruss structure

with respect to coordinates of figure 8 as

where:

__ 5/T EA	
EIv	 EIz

C 1111	 4 ^ + 6 3^ 
77– + 3	 71--

_ 5,,f EA	 2 T EI
v 	EIz

0 1122 IT- -	 L4 - - 3 7f

_	 EA	 EI

01133 _ 3 ^ - 4vI L4

__ 1 EA	
EI	 EIz

0 1123	 6 ^ + 4 
L- 4 - 6 – --

_ 4 " 2 EA	 8,7 EI`,

0 3333	 j	 +	 L4

(2B.a)

(28.b)

(28.c)

(23.d)

(28.e)



	

EP,	
E I V	 E I 

z
C 2 3 2 3	 3	

+ 2.2 
_711- 

+ 6.7 
4

	

L "	 L	 L

5	 EA	
- EI
	

- El zC	 + 4., f	 + 3 , 2f	1212 - M ___Y	 7_41	 4

	

L	 L	 L

( 21 8. f )

(d' 8. g)

Notice that (27) constitutes a modification of our previously

reported result in (1) which are reflected in the appearance of

the bending rigidties of the members. Notice also that there is

no change in the number of the independent constants which can

also be deduced from symmetry 11,2]. Examination of the results

(28) indicates that C	 C1212	 (C lill	 1122 )/2 and hence the octetruss

is transversely isotropic, as is expected.

Remark

By reexamining figure 7 we can see that the same structure can

0	 0also be constructed from four different repeating sets of (0 , + 60

basic planar grids. In this case of construction, each member will

be shared by two different basic grids. Since I 
y 

and I 
z 

are the

moments of inertia of the cross section of the beam around two

principal axes and since each beam is shared by two different bdsic

^,rids, we must have two sets of principal axis for each cross

section; this can only sense for circular cross-sections. Thus,

constructing the propertics of the octetruss from those pertaining

0	 0to four (0 , + 60 ) layup is restrictive in that only beams with

circular cross-section can be treated. This was actually done and

its results were found identical to (27) and (28) when the later

are also specialized to I y = I 
z .
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Figure 1. The ( 0 0 ,90 0 ) Lattice
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Figure 2.	 The Loading Conditions of the Representative Repeating

Cell for the (0*,90 0 ) Layup, used to determine the

Stiffnesses Coefficients of the Equivalent Continuum.
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Figure 2 (cont.) The Loading Conditions of the Representative

Repeating Cell for the (0 ° , 90 ° ) Layup used to

determine the Stiffnesses Coefficients of the

Equivalent Continuum .
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Figure 3.	 ( 0 0 , + 60° ) Layup .
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Figure 4.	 The Loading Conditions of the Representative

Repeating Cell for the ( 0 0 ,+60 0 ) Layup used

to determine the Stiffnesses Coefficients of

the Equii•alent Continuum.
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Figure 4 (cont.) The Loading Conditions of the Representative

Repeating Call for the (0 0 ,+60 0 ) Layup used to

determine the Stiffnesses Coefficients of the

Equivalent Continuum .
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Figure 8 . Direction Cosines of the Octetruss .
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Figure 9. The Octetruss Structure constructed from

Three Basic Planar (0°,90°) Grids viewed

in the Coordinate System of Figure 8.
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