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ABSTRACT

This paper presents and justifies a new algorithm for solving linear constant-

coefficient ordinary differential equations. It also discusses the computational

complexity of the algorithm and describes its implementation in the FORMAC system.

It concludes with a comparison between the algorithm and some classical algorithms

for solving differential equations that have been previously implemented.
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INTRODUCTION

The class of problems we are solving are those of the type: find a particular

solution y  to the ordinary differential equation L[D]y - f(x), where L(t) is a real

polynomial antn + an-1 to-1 +...+ alt + a0 , Dr denotes r-fold differentiation

and f(x) is a linear combination of terms of the form 
X  

exp(a+i$)x, a and $

reai and n an integer. Note that we may restrict our attention to f(x) which

are monomials of the above form, by using linear superposition of solutions. Note

also that we may obtain the solution of L[D]y - x  exp ax (cox $x or sin Sx)

by finding the real or imaginary part of the solution of L[D]y - x  exp (a+i6)x.

The general solution of L[D]y - f(x) may be obtained by adding a particular

solution of this equation to the general solution of L[D]y - 0. The latter is

determined by the roots of the polynomial L(t), which in general cannot be found

exactly. We shall not consider this problem further here.
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ALGORITHM AND JUSTIFICATION

To present the algorithm for finding a particular solution of

L[D)y - f(x) - xn exp(a+is)x, we consider separately the cases for S = 0 and

S#0.

Case 1 S - 0.

Step 1	 Set M(t) - (t-a)n+l.

Step 2 Use the extended Euclidean algorithm to determine polynomials A(t) and

B(t) such that A(t)L(t)/(t-a)r + B(t)M(t) - I, where r > 0 is the

multiplicity of a as a root of L(t).

Step 3 Set yp (x) - exp ax D-r A[D+alxn , where D r xi = j! xj+r/(j+r)!

Case 2 S # 0.

Step 1	 Set M(t) - (t2-2at+a2+s2)n+l.

Step 2 Determine AM,  B(t) such that A(t)L(t)/(t 2-2at+a2+a2 ) r + B(t)M(t) - I,

where r is the multiplicity of a±is as a root of L(t).

Step 3 Set yp - exp axtD2
+6 F 

A[D+a] xn exp(isx), where

Xi
2 2,-r x

[D +a	 exp(isx) - exp(isx) Cr,j Ur,j (x), with

C
r,j - j'•(-1)rir+j/(r-1)!(2S)r+j and

Ur, j (x) _(r+j-k-1) ! (-21B) k 
xr+k/ ( j _k) ! (r+k) !

k=0

We now establish the correctness of the algorithm in case 1.

Theorem The function yp (x) determined by the algorithm in case 1 is a

particular solution to L[P)y - f(x) - x  exp ax.

Proof	 It is readily verified that M[D]f(x) - 0, where M(t) is as

defined in step 1. Note also that L(t)/(t-a)r and M(t) are relatively prime,

so that there are polynomials A(t) and B(t) as described in step 2. Note as

well that D r D-rxj - xj , where D-r is as described in step 3.
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It then follows that L [ D]yp = {L[D ]/[ D-ajr^ [D-a]  exp ax D-r A[D+c ►)xn =

{L[D)/[D-a]r} exp ax Dr D r A[D+a]xn , using the exponential shift,

{L[D]/[D-a1r } exp ax A [ D+a]xn - {L[D]/[D-a ] rI A[D] exp ax xn - {I - BID]M[D]}f(x) - f(x),

since M [ D]f(x) - 0.	 Q.E.D.

The following result is needed to prove the correctness of the algorithm

in case 2.

Fro osition 1 For all positive integers r, non-negative integers j, and

real numbers S,	 [ D2+S2 ] r exp(isx) - C ry j Ur, j (x) - xi exp(isx), Cry j and

Ur,j (x) being as defined in step 3.

Proof Set Frj (x) - exp (isx) Crj Urj (x). The result is equivalent to

[D2+62 ) r Fr'j (x) - xi exp(isx), for all positive integers r, non-negative

integers j, and real numbers S. The latter result is established by induction

on r.

For r = 1, j arbitrary,

[D2
+62

] Fl.j( x)
 = -exp(isx) [D+21s]D j! ij+l
	

i	 (-2(k+k)xk+1 -
(2B)	 k=0

- j! ij+l exp(isx)	 (-20) k xk-1 _ (-21B)k+l X 

(2C)
j+l
	k+l	

(k-1)!	 k!

(-20)	 x exp(isx) .

Hence the result is valid for r - 1, j arbitrary.

Suppose now that the result is valid for r < v, j arbitrary. Then

}	 C	 - (-i/2Sv) C	 and it follows from the inductive hypothesis thatv+l,j	 v,j
I

[D +('22[N Fv,j (x)
	 xj exp(isx). Thus [D+21B] v Dv 

Cv.j 
Uv' j (x) = xj . In

l'
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addition, [D
2

+B2 ] Fv+l, j (x) _ (i /28v) C   j exp ;iBx) [D+2i6]D Uv+1, j (x), and

it follows from lengthy, but routine, computations that [D+21$]D Uv+l,i(x)

_ {(v+j)!xv-1/j! (v-1)!} + 21sv Uv' j (x). Hence 
[D2+S21v+1 Fv+1, j(x)

(-i/28v) 
Cv.j 

exp(iBx)[D+2is]v
+1 Dv

+l Uv+l,j(x)

_ (-i/2Bv) Cv.j exp ( i Bx)[ ]D+2i s]v Dv {(v+j)!xv-1/j!(v-1)!} + 2ivUv,j(x)

= xd exp(iBx)

establishing the result for rm v+l, j arbitrary. Hence the result holds for

all r and j.	 Q.E.D.

With this result, the proof of the correctness of the algorithm in case 2

is similar to the proof in case 1, hence we will omit it.

The next result is used to determine the polynomials A(t) and B(t)

mentioned in step 2 of the algorithm (bnth cases). It is readily verified by

induction. For completeness we state it for a Euclidean Domain, which is a

generalization of the ring of polynomials over a field.

Proposition 2 Let L and N be relatively prime elements of a Euclidean

Domain D, and AD , BD e D be such that ADL + B 
0 
N = I. For s a non-negative

integer, define A
s+1	 s+1	 s+1

and B	 recursively by A	 = A s
	 s[I+B N(2s)].

s
BS-1	 Bs 2 . Then As L + BsN

(2
 )	 I, all s.
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IMPLEMENTATION

We have implemented the above algorithm as a program in the FOR1AC73 system (2).

In the program's notation, the input is the polynomial L and the function F. The

output is a particular solution YP to the equation L(D)Y - F(X), a FORMAL chain

containing the individual terms of YP, and an integer giving the length of the

chain. The function F is required to be of the form X - exp aX(cos sX or sin OX)

and X is used as the independent variable in L, F, and the solution. THe program

includes a check on the correctness of the particular (solution YP obtained, by

direct substitution into the original differential equation.

Operations on coefficients are performed using rational mode arithmetic.

";ers who find large rational coefficients inconvenient to work with may wish to

truncate them or convert them to floating point. Programs for doing this are given

in [6].

The code for our program follows below.

_	 3
f	

3
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DRIVER: PROCEDURE OPTIVNS(MAIN) REORDER;

t/
/* THIS TEST DRIVER IS GIVEN TO ILLUSTRATE THE METHOD
/* OF CALLING LINODE * FORMAL PARAMETERS ARE PASSED AS
/* pL/I CHARACTER STRINGS OF LENGTH EIGHT * FOR THIS EXAMPLE

	
*/

/* L AND F ARE READ FROM INPUT FILE SYSIN*

/* INPUT DATA FOLLOWS //GO * SYSIN DD * LARD*
/* NOTE: IMBE03ED BLANKS ARE IGNORED; INPUT IS FREE FORM*

DATA FOR AS MANY DOES AS DESIRED MAY BE INCLUDED@

t
	 /* EXAMPLE:

INPUT DATA FOR L(X)=5*X**2 + 3*X -1
AND F(X)= X**2 * #E**(2*X) * SIN(3*X) IS OF THE FORM:

/* 0 5*X**2 t 3*X - 1'	 *X**2 * NS**(2*X) * SIN(3*X)'

/* THE FOLLOWING DCL IS NECESSARY IN ANY DRIVER THAT USES
/* LINODE AS AN EXTERNAL PROCEDURE*

DCL LINODE ENTRY(CHAR(S)*CHAR(S)*CHAR(S)*CHAR(S)*CHAR(S));
DCL (LP IN• F IN) CHAR(72);
ON ENDFILE (SYSIN) GOTO DONE;
FORMAC_CPTIONS; OPTSET(EXPND):
OPTSET (LINFLEKGTH=72);
DO WHILE (*148);

GET LIST (LPIN,FIN);
PRINT-OUT (LX="LPIN"; FX-«FIN„);
CALL LINODE ('LX' * 'FX' * 'SOLN' * 'LIST'• 'N');
PRINTOUT (R=SOLN; S=N; T=CHAIN(LIST));

FND;
DONE: PUT SKIP(2) EDIT ('ENO OF O * D * E * SOLVER')(A);
ENO DRIVER;
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LINODE: PROCEDURE (L•F•YP,TER MS•NTERMS) REORDER;

/* THIS PROGRAM COMPUTES PARTICULAR SOLUTIONS OF N-TH ORDER #/
/* LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF THE FORM L(0)Y =FfX) */
/* INHERE L(X)=A(N)*X**N +	 A(N-1)*X**(N-1)	 +	 •..	 + A(1)*X +	 A(0) */
/* WHERE THE A(l) ARE °ATIONAL CONSTANTS AND F IS A (RATIONAL) LINEAR*/
/* COMBINATION OF TERMS OF THE FORM X**N * MME**(ALFA*X) * G(X) #/
/* WHERE G(X)= SIN(BETA*X) OR G(X)= COS(BETA *X). */
/* N IS A NON-NEGATIVE	 INTE'	 . */
/* ALFA AND BETA ARE RATIONAL CONSTANTS * */
/* (E.G.	 F=X•	 F=COS(X). FrX +	 #E**(A*X)*SIN(•*X))* */

/* FORMAL PARAMETERS ARE PASSED TO LINODE AS PL/I CHARACTER */
/* STRINGS OF LENGTH EIGHT * */

/* DATA GOING IN: */
!* FIRST ARGUMENT:	 POLYNOMIAL L(X)+ */

SECGND ARGUMENT:	 FORCING FUNCTION F(X). */
/* RESULTS COMING OUT: */

THIRD ARGUMENT:	 PARTICULAR SOLUTION TO L(D)Y=F(X)• */
FOURTH ARGUMENT:	 FORMAC CHAIN CONTAINING THE INDIV-

IDUAL TERMS OF THE PARTICULAR SOLUTION. */
FIFTH ARGUMENT:	 INTEGER LENGTH OF THE ABOVE CHAIN. */

/* LINODE WILL EXPAND L. */

/* THE FOLLOWING DCL MUST BE IN ANY PROGRAM THAT USES LINOOL */
/* AS AN EXTERNAL PROCEDURE: */

DCL LINODE ENTRY(CHAR(S) * CHAR (8)•CHAR(81•CHAR(8).CHAR(8))S */

/* LINODE CONTAINS THE FOLLOWING INTERNAL PROCEDURES: */
PQLYDIV:	 WHICH DIVID!ES A POLYNOMIAL BY ANOTHER POLY- */

NOMIAL AND RETURNS THE QUOTIENT AND REMAINDER. */
RE:	 WHICH COMPUTES THE REAL PART OF A COMPLEX NUMBER * */
IM:	 WHICH COM PUTES THE IMAGINARY PART OF A COMPLEX */

NUMBER. */
/* POLYDOP:	 WHICH APPLIES A POLYNOMIAL ARGUMFNT AS A */

DIFFERENTIAL OPEPATOR TO A SECOND ARGUMENT. */
CU:	 WHICH COMPUTES (COS(BETA *X)+ * I*SIN(SETA*X)) *C*U 	. */

NOTE:	 FORMAC VARIABLES BETA & R USED IN CU ARE */
GLOBAL TO LINODE. */

OIVMFAC:	 WHICH DIVIDES A POLYNOMIAL BY A GIVEN FACTOR */
/i AND RETURNS A OUCTIENT AND MULTIPLICITY. */

/* ADDITIONAL COMMENTS ON THE ABOVE MENTIONED INTERNAL */
/* PROCFDURES ARE GIVEN IN THE	 INDIVIDUAL PROCEDURES. */

/* DEFINITION OF FORMAC VARIABLES USED IN LINODE: */
ALFA:	 ALPHA. */

/ BETA:	 BETA * */
AP:	 A(I). */
8p :	 B(I). */
87:	 TEMPORARY VARIABLE USED	 IN COMPUTING A(0)	 & 8(0). */
83:	 TEMPORARY VARIABLE USED IN COMPUTING A(0)	 & B(0) */

I* WHEN BETA IS PRESENT	 IN F. */
CP:	 USED TO CHECK SOLUTION VP BY SUBSTITUTION. */
F:	 A TERM OF FT. */
FT:	 TOTAL FORCING FUNCTION AS GIVEN RY THE USER. */
L P :	 THE POLYNOMIAL L. */

/i LOR:	 THE POLYNOMIAL LP/NPR *Q 	. */
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/• N:	 N. */
NP;	 X — ALPHA	 OR	 (X —ALPHA) **2 + BETA**2 * */
NTERMFT:	 FORMAC EQUIVALENT OF 00	 INDEX FROM 1 TO NARGSFT * */

/* NTERMS:	 SAME AS NARGSFT• */
NULL:	 USED TO INITIALIZE BETA FOR THE VACUOUS CASE. */

N1:	 N+1 * */
01:	 TE'IPORArlY VARIABLE USED IN COMPUTING B(0) * •/

02:	 TEMPORARY VARIABLE USED IN COMPUTING A(0) 6 */

B(0)	 WHEN BETA IS PRESdNT. */
R:	 R * */
TERMS:	 CHAIN OF SOLUTIONS FOR TERMS OF FT * */

/* X:	 INDEPENDENT VARIABLE OF L AND F *	 X IS USED AS */
THE INDEPENDENT VARIABLE FOR ALL PROCEDURES IN LINODE * */

YP:	 SOLUTION FOR ONE TERM OF FT * */
YT:	 TEMPORARY VARIABLE USED TO COMPUTE AP(X+ALFA), */

f* YTOTAL: SUM OF PARTICULAR SOLUTIONS FOR ALL TERMS OF FT * */

/* FIXED 8IN VARIABLES USED AS 00 LOOP INDICES IN LINODE: */

IS:	 USED IN COMPUTING AO AND BP * */

NARGSFT:	 NUMBER OF ARGUMENTS IN FT WHEN FT IS A SUM */

OF TERMS. *f

NTERMFT:	 RANGES FROM I TO NUMBER OF TERMS IN FT * */

/* CHARACTER VARIABLES USED TO PASS FORMAL PARAMETERS TO */

AND FROM LINODE:	 L• F * YP *	 TERMS* NTERMS * */

FORMAC_OPTIONS; OPTSET(EXPND);
F_FUNCTICN (CU; RE; IM; POLYDOP);
DCL ( L * F * YP * TERMS * NTERMS) CHAR(S);
DCL (NARGSFT. NTERMFT* IS) FIXED BIN;

ATCMIZE (TERMS);
LET( LP="L-"; F T="F") ;
LET( Y'TOTAL=O); /* WILL CONTAIN SUM OF SOLUTIONS */

IF LOP(FT) =24 THEN NARGSFT=NARGS(FT); ELSE NARGSFT=I;

/* NARGSFT MAY BE 1 EVEN IF NARG S FT)>l */
DO NTERMF T=1 TO NARGSFT; /* LOOP FOR NR OF TERMS IN FT */

LET( NTERMFT="NTERMF T •• ) ;
IF NARGSFT=1 THEN LET(F=FT); ELSE LET(F= ARG(NTERMFT*FT) ); U1tIG1NAL PAGE IS
LFT( N1=HIGHPOW(F*X) + I ); 	 OF POOR QUALITY
/* NOW EXAMINE F AND COMPUTE ALFA AND BETA */
LFT( ALFA=F/REPLACE(F* #E**( SJ*X )* 1 )) ;
IF I DENT( ALFA;1)

THEN LET (ALFA=O);
ELSE LET( ALFA=REPLACF(ALFA * ASE**(SJ*X)* SJ));

LET( BETA=F/REPLACE(F * COS(SJ *X) * to SIN(SJ*X)* 1));
IF IDENT(9ETA ;1)

THEN DO;
LET( BETA=NULL);
LET( NP=X—ALFA);
/* NOW DIVIDE LP(X) BY POWERS OF NP; LPR IS OUJTIENT

AND R IS MULTIPLICITY OF NP IN LP */
CALL DIVMFAC (*LP* * *NP*. • LPR* * •R•);
/* NOW COMPUTE A(0)=AP & 8(0)=BP USING SINGLE

STEP EUCLIDEAN ALGORITHM */
CALL POLYDIV ('LPR • * *NP* * *01* * *82*);
LET( AP=1/82; BP=—Qt/82);

FND;
FLSE 00;

LET( BETA=RE PLACE(9ETA * COS(SJ *X) * SJ * SIN(SJ*X). SJ));



LET( NP*X**2 - 2*ALFA*X * ALF A**2 * BETA**2);
/* NOW DIVIDE LP BY POWERS OF NP */
CALL DIVMFAC (*LP* * *NP 1 * *LPR* * *R*1;
/* NOW COMPUTE A(0) 6 13(0) */
/* USING TWO STEP EUCLIDEAN ALGORITHM */

CALL POLYDIV (*LPR*. *NP* * 1 01 1 * *82*):
CALL POLYDIV (*NP* * * 82* * *02* * *83*);
LET( AP*-02/R3; 8P=(I ♦01 *02)183)%

ENO;
/* COMPUTE A(S) */
00 IS*0 RY I WHILE (2**IS < INTEGFR(NI));

LET( APaAP * (I ♦ BP*NP**(2 * *"IS"))1;
LET( PP=80*9P);

END;
/* NOW FORM A(D+ALFA)(E**(-ALFA*X)*F(X)) */
LET( YP=*E** (-ALFA*X ) * F)*'
LET( YT=FVAL(AP * X• X+ALFA));
LET( YP=PULYDOP(YT*YP))*
/* NOW APOLY APPROPRIATE ANTI-DIFF OPERATOR */
IF IOENT(9ETA;NULL)

THSN LET(YP=REPLACE(X *X*YP * X**SJ*
FAC(SJ-P)*X**(SJ- 2+R)/FAC(SJ-2+R)));

ELSE IF -%IDENT(R; 0) THEN
LET(YP=REPLACE(X*X*YP * X**SJ*COS(BETA*X) * RE(CU($J-2))*

X**SJ *SIN(BETA*X) * IM(CU(SJ-2))));
LET( YP=AtE**(ALFA*X) * YP);
/* NOW CHECK RESULT */
LET( CP=POLYDOP(LP*YP));
IF -IDENT(CP;F) THEN

DO;
PUT SKIP(2) EDIT
( • L(0)YP = TERM OF F * CP=L(0)YP PRINTED AS DEBUG AID*)(A);
PRINT_OUT(CP); RETURN;

END;
LET( QUEUE (TERMS)=YP);
LET( Y TOTAL= Y)'OTAL ♦ YP);

END; /* OF 00 NTERMFT=I TO NARGSFT; */
LET ("YP" =YTOTAL; "TERNS"=CHAIN(TERMS));
LET ( NTERMS=**NARGSFT"; "NTERMS"=NTERMS) ;

OOLYDIV: PPOC(A * M * 0*REM) REORDER; /* kEM=A (MOT) M) */
/* THIS ROUTINE DIVIDES A POLYNAMIAL A BY A POLYNOMIAL M */
/* AND RETURNS THE QUOTIENT 0 AND REMAINDER REM */
DCL (A*M*O*REM!) CHAR(B);
/* THE FOLLOWING ARE TEMPORARY VARIABLES USED IN POLYDIV: */
1_OCALIZE (AT;CA ;CM;NA;NM;Q;QT;S);
LET( OT=O; AT="A"; NA=HIGH POw(AT * X); NM=HIGHPOW(**M"*X));
IF IDENT(NM;O) THEN DO; LET("0"=AT/"M";"REM"=0): RETURN: ENO;

FLSE LET(CM=COEFF("M"*X**NM));
00 itHILE (INTEGER(NA) >= INTEGER(NM));

LET( CA=COEFF(AT* X**NA));
LET( O=CA/CM * X**(NA-NM));
LET( QT=OT+0; S=0*"M"; AT=AT-S);
LET( NA=HIGHPOW(AT*X));

F ND

LET( "O"=GT; **REM**sAT) ;
ENO POLYDIV:

QE:	 PROC (Z) REORDER;
/* THIS ROUTINE COM PUTES THE REAL PART OF A COMPLEX NUMSFR Z */
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F_QETURN (EVAL(Zs0I9011;
END RE;

IM: F_PROC (Z) REORDER;
/* THIS ROUTINE COMPUTES THE IMAGINARY PART OF A COMPLEX NUMRCR Z */
F_RETURN (R1*(EVAL(Z*#1901—Z));
F—SNO IM;

POLYDOP : F_PROC (Us V) REORDER;
/* THIS ROUTINE RETURNS THE RESULT OF APPLYING THE POLYNOMIAL	 */
/* FIRST ARGUMENT AS A DIFFERENTIAL OPERATOR TO THE SECOND	 */
/* ARGUMENT•	 */
F_RETURN (RE PLACE(X*X *Us X **:Js DERIV(V*XoSJ-2)));
F END POLYOOP:

CU: F_PQOC (J) LOCAL (C:U) REORDER;
/* THIS ROUTINE COMPUTES (COS(BETA*X)+#I*SIN(SETA*X))*C*U */
/* RETA G R ARE GLOBAL VARIABLES s J IS A FORMAC INTEGER. */
DCL K F IXED RIN
LET( U=0);
00 K=0 TO INTEGER(J); LET( K="K"):

LET( U=U + FAC(R+J —K-1) / FAC(J— K) / FAC(R+K)
* (-2* M1*SETA)**K * X**(R ♦K I );

E NO ;
LET( C=FAC(J) / FAC(R — I) * (—I)**R

* 01**(R+J) / (?_*BCTA)**(R+J));
F_RETURN ((COS(BETA*X)+Art*SIN(SETA*X))*C*U):
F ENO CU;

DIVMFAC: PROC(L09NP9LPR*R) REORDER;
/* THIS ROUTINE DIVIDES A POLYNOMIAL L P REPEATEDLY BY A FACTOR •/
/* NP AND RFTURNS THE ODUTIENI POLY AS LPR AND THE MULTIPLICITY */
/* OF NP IN LP AS R */
DCL (LPsNPsLPFsR) CHAR(S);
/* DE F INE LOCAL TEMPORARY VARIABLES: */
DCL IR FIXED SIN;
LOCAL17E (DRX;LLP;RP;7P);
LET( RP=O; OP="LPs•);

DO IR=— I BY 1 WHILE (IDENT(RP;O)):
LET( LLp=Op);
CALL PCLYDIV ( s LLP s s *NP s * @ QP s s •RP•);

F.ND;
LET( "LPR"=LLP; DRX= "IR "; " R "zORX);
END DIVMFAC:

ENO L I MODE ;
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TEST PROBLEMS

The program was able to solve problems from a variety of sources. A sample

of typical results follows below.
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5	 4	 3
X	 -? x	 + 18 X	 - 36 x	 + Al X- 162

1	 2 x	 2	 x

F  s R	 #R	 + x	 COS ( It x ) NE	 + SIN ( 3 x )

4	 ? X	 3	 9 X	 2	 x

a T 1/576 x	 ME	 - 0/2197 X	 4E	 - 117/13590 X	 SIN ( 3 X ) +1E

	

?	 ?	 x	 2
+ 11468 x	 SIN ( 3 x ) - 1/13690 X	 COS ( 3 X ) AF	 + 1/312 X	 CO::

?.	 x	 x
t 3 x ) + 65/?9561 x	 OF	 + 42411/1261325 x SIN ( 3 x ) VE	 -

x 	 2 x

1 3152/1256' ?S X COS ( I X ) 4E	 + 336/371293 X ME	 - 21294621/

X	 K
458840250 SIN ( 3 x ) 4F	 + 0418497/469540250 COS t X X ) NE

S = 3

4	 2 X	 3	 2 X	 2	 2 x
T = CHAIN ( 1/67A x	 ME	 — 8/2197 X	 #E	 + 66/ls mS61 x	 Mc

2 X	 2	 X	 2
+	 .	 - 117/13690 X	 SIN ( 7 X ) xF	 - 1/13690 X

x	 K
Cos ( 3 X ) x'"	 + 42411/1265325 X SIN ( 3 X ) NE	 - 13132/1 1>663 a 5 x

x	 x
Cn5 t ' X ) OF	 - 21?94621/468540250 SIN ( 3 x ) 4E 	 + 9&18997/

X	 2	 ?
469540'50 CPS t	 X ) OF . 1/468 X	 SIN t 3 X ) + 11312 X	 COS ( 3 X

1 )

	

^	 2
t_x =	 - 3/2 X	 + x	 - I

------------------------	 ORIGINAL PAGE L5- 4/7 x
FX	 - 112 X + ?/5 SIN ( 4/7 X 1 ME	

)F P)K QUALM

- 4/7 x
7 s 3/' X	 7:402/459?81 SIN ( 4/7 X ) !E 	 + IS5376/?296405 CO5

- 4/ 7 X
( 4/7 X ) Or

S = 2

- 4/7 x
T = CHAIN ( 117 X. - 73432/459291 SIN ( 4/7 X ) ME	 + 795376/

- 4/t x

?796405 CIS ( 4/7 X ) 4F	 )
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2

LX = 5 X	 + 3 X- i

2 X
EX = X	 SIN ( 3 X ) ME

2	 2 x	 2	 2
R = - 20/5151 X	 SIN ( 3 X ) ME	 - 69/5161 X	 COS ( 3 X ) ME

2 X

	

1662(15/?_6635921 X SI N ( 3 X ) ME	 + 1 34700/26633921 X COS ( 3 X )

'' X	 ? X
ME	 - 659109350/137467998281 SIN ( 3 X ) ME	 + 441581922/137

2 X
45 7QS8'? e1 COS ( 3 X ) MF

S = 1
--- A-

2	 2 X	 2	 2 X
T	 - ?0/5161 X	 SIN ( 3 X ) ME	 - 69/5161 X	 COS ( 3 X ) VE

2 X

	

+ 356205/26635471 X SIN ( 3 X ) ME	 + 134700/25635921 X COS ( 3 X )

2 X	 2 x
sc	 - 5SQ109351/1374E7998281 SIN ( 3 X 1 ME	 + 44158192?/137

2 X
45 7988?A1 COS ( 3 X ) ME

ENO OF 7.3.F. SOLVER



until 2s > n+l.

where

d to determine the running time for each step.
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r;

ANALYSIS OF ALGORITHM

Following the discussion in [1], we assume that there are functions M(n) and

D(n), where M(n) - time to multiply two nth degree polynomials and D(n) - time

to divide a polynomial of degree at most 2n by a polynomial of degree n, time being

measured in terms of the number of bit operations required on a computer. In

addition, we assume that the running time of the program is essentially deter-

mined by the time to perform operations of the above types, so that we shall ignore

the time-requirements of scalar multiplication and symbolic differentiation in our

analysis. From this assumption it follows that the running time is determined by

step 2 of the algorithm. Consequently, we restrict our attention to that step.

We further restrict our attention to case 2, where f(x) - x  exp(ot+iR)x, $ 0 0.

To facilitate the analysis, we set N(t) - t 2-2at+a2+R2 , L - deg L(t), and

assume for convenience that L-2r > 3, where r is the multiplicity of a±is

as a root of L(t). We assume further that the method in Proposition 2 is used

to implement step 2. In addition, we set q 0 - deg Boo where A 0(t),'BO(t) are

polynomials as described in Proposition 2, with L - L/Nr.

Theorem The time to execute step 2 of the algorithm in case 2 is bounded

above by

(r+2) D[^Z] + D(1] + M(L-2r-2) + 2log 2 (2n+1) M[(2n+1)(qO+2)-(L-2r)],

r1% denotes the least integer > Y.

Proof Step 2 may be divided into three parts:

a. determine L(t) - L(t)/N(t)r, where Y(t)r'L(t), N(t)
r+t

t L(t);

b. calculate A0 (t), B0 (t) such that A 0 L + B ON - I;
s

c. calculate A8 (t), B s (t) recursively by A s+l - As[I4BsN(2 )],
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W
a. This part involves computing successively L 1 = L/N, L 2 =_ L1/N - L /N2.

..., L  = Lr_ 1 /N - L/Nr, and terminating with L  : N, which has a non-zero

remainder. The time to compute L1 is bounded above by D[ IjR]. Since

deg L1 > deg L2 > deg L3 > ...	 the times to execute the remaining steps are
r.

all bounded above by D[Alt] as well so that the running time for part a is

bounded by (r+l) D[W .

b. Since R-2r > 3 by assumption, we have that deg L > 3, hence L - S0 N + T0,

for polynomials S0 l. T0 , with deg TO < 1. If deg TO - 1, then N - S 
1 
T 0 + T1

for polynomials S i . T1 , with deg T1 0, T1 necessarily non-zero. It follows

that AoL + B 
0 
N - 1, for A0 - -S1 /T1 , B0 - (S 1S0+I)/T1 . Now

deg S0 R-2r-2 > 1 and deg S 1 = 1. It then follows that the work to calculate

A0 and B0 in this situation is bounded abcve by D[ R-r] + D[1] + M[R-2r-23.

If deg TO = 0, we may similarly obtain upper bounds on the work to calculate

and on the degrees of A0 and B0 . In all cases the bounds do not exceed the

corresponding ones obtained above.

c. Set ps = deg As , qs - deg B
s . It follows readily from the recursive definitions

of As and Bs that qs = 
2s q0' ps - qs + 

2 s+1 _ (R-2r) - 2 8 (g0+2)- (R-2r). Hence

PO < p  IS p 2 	 ••• < ps 
and 

q0 < q l S q2 < " ' < qs' so that the time to perform

each step of the recursion is bounded above by the time for the last step.

Suppose now that s is the smallest integer such that 2 s > n+l. Then the
(2s-1)

time to compute As is determined by the time to compute 
As_1 Bs-1N	

To

get upper bounds on the degrees of these polynomials, note first that

n+l < 2s < 2n+1, by minimality of s. It then follows that ps-1 < ^ ( 2n+1)(q0+2)

- (R-2r), q s_1 < ' (2n+1)go , deg 
N(2s-1

) < 2n+1. Adding the bounds, it follows

(2s-1
that Ps- 1 + qs-1 + deg N'
	 ) < (2n+1) (q0+2) - (R-2r). Thus the time to compute

S-1

s-1 Bs- 1 N
(2	 ) is bounded above by 2M[(2n+])(q0+2) - (R-2r)], and the total
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time to compute As is bounded above by 2s M[(2n+1)(q0+2) - (t-2r))

< 2 log 2 (2n+1)M[(2n+1)(q0+2) - (k-2r)], since 2 s < 2n+1.

Having obtained bounds for the execution times of parts a, b, and c of

step 2, we obtain the overall bound announced in the theorem by addi:ig these

together.	 Q.E.D.
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COMPARISON WITH OTHER METHODS

Linear differential equations of the type considered here are commonly

solved by the method of undetermined coefficients or the method of Laplace trans-

forms. The former method requires in general r+n divisions of the polynomial

L(t) over the complex numbers, while our method requires r+2 divisions over

the reals. The latter method requires the factorization of the polynomial L(t)

over the rationals, and in general will not give explicit answers unless all

factors have degree < 4. See [5] and [4] for details on the two methods.

Both methods have been implemented as programs in the MACSYMA system, the

former by Ivie [7] and the latter by Bogen [3]. It would clearly be of interest

to compare the methods with ours in a practical sense, by implementing the three

in a common system and trying them on a common set of problems.
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