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DECENTRALIZED CONTROL OF MARKOWAN DECISION PROCESSES: 

EXEI€NCE OF o-ADMISSIBLE POLICIES 

1. rnODUCI10N 

nrrrirar c m d  dreay deals with the problem of contdhg the performance of a dynajnical 

system. In their mdia form. c~ntrol models were completely deterministic in the sense that there 

ao probalistic or random nature to them. The first stochastic control modtl sinply added a 

probabilistic d&urbance tenn to  die p w i o d y  dcteministic morkl. yet it did so with tremardous 

utility. 

A further developmeat in the cornad of dynamical systems took place with the addition of 

laorc substantive stocb!ic components into the model. For example. one could consider cow 

trol1ing an indusuial production model by monitoring demand for the product, a probabilistic 

pmxss. and candling the process by a coln#natian'of factors (say. by adjusting size of werk 

force. amount of inventory. etc.). This model is an exampie of arkat has ken ccime to be called a 

Markmian Mali pmclcsa An elementary explication of this theory can be found in Derman I f  I 

In each of the previous models. it was assumed that control was overseen by one central de 

cisionmaker with access to all available information. Many examples exist of cases where ( 1 ) there 

are multiple decisionmakers and ( 2 )  no single decisionmaker has all of the information. It s this 

decentralized control problem that is the subject of our study. For added motivation we will end 

this section with several distinct examples of decentralized stochastic control models. 

(a) Satellite Communications and Control 

Consider a network of satellites each with finite buffers onboard to store data. The main prob- 

lem to tx considered is how to ston data until access to a broadcast channel is available and the buf- 

fer can be dumped. Assume data amvcs at each node (i.c.. satellite) by some known random process. 

7he -ml is to tn~tiate onboard control of this data nlanapment system without instant;lncoid\ 



knowing the state of other nodes in t l ~  network. in particular. to  avoid two satellites starting to  u9e 

t k  same channel simulwreotrsly (resulting in transmission collision and data less). hc best conmi  

strategy is cham by using o realistic cmst fulictibn designed to  include such variables as cost due t o  

data loss. storage cost, etc. 

For an interesting explication and partial solution to this problem, see a o u a  [ 23 1. 

(bi Combat Command SmccMIc 

A very different sort of model is that of the control (or mamgment) of a batde by f ~ l d  of% 

cm who cannot maintain perfect communication with their superiors (and certainly the "%cat" of 

a battle fwld is not conducive to  good infoomation flow). 

h e  question is: can one produce a strategy which minimizes battle lases and maximizes the 

chance of reaching an objective, but which functions in an environment of decentralited decision- 

making and i n f k t i o n  flow? 

(c.) Management of Marketing Force 

For an example which has application to the business world. c d e r  a sales force out "in the 

feld." They have only bare communication (possibly they agree to call in to  a central person twice 

daily) yet one wishes to  produce a strategy of resource allocation which maximizes profits and mini- 

mizes duplication of effort. The random occurrences an such things as product demand. weather 

conditions. etc. Each salesman must make some decisions but without benefit of full information. 

Possibly 3 set of nguideiines" for decisionmaking could produce more overall reward than each de- 

cisionmaker maximizing only his own reward. 

2. MOTIVATION FOR CURRENT RESEARCH 

In this section. we will lay out the particular model suggesting this research. Ceminly one of 

the driving forces behind this work is a NASA-sponsored study on Artificial Intelligcnie and Robotics 

(usually referred to  as the Sapn Repon). One recommendation of that study was that N.-\SA move 



toward employing more 'ktate-of-tktart" technology in thesr areas as 4 as taking a leading poei- 

Pion in research and development of & technolagis. Within that context, the f d o w b g  mudel 

was comrnunhbxl to us by Mr. R L Larsm. 

Assume tint of all drat the Rardware and software exists for omboard satellite computer proms- 

&. By this we mean the capacity to perf- a wide raqp oC functions sucb as preprocossirrg of 

telemetry data (with the idea in n\ind of fdtering out bad or useless data). orbit and attitude deter 

mination, and conective maneuvering. One could fonsee s ~ m e  of the scheQuling and pbmiag func- 

tions now occwing manually cm the Earth being u a n s f d  for automatic cantrol to am omboard 

network of communicati~ computers 

The problem then wrrfeas: how does emc control the flow of pracesgins throughout 

dris netwwk of cornputas The object is to mini- loss of information (because of buffer OWP 

flow) yet at the same time reduce cose of data transfer and other communicatien costs. Again. 

because of time delay and odwr comtraints,it may not be possible fix each satellite control device 

to have full infannation about states and decisions taken at other satetlitw. 

The mathematid model reduces to a network of queues. where computer jobs or input data 

(in some standard units) are the objects lining up on the queues. The controlling device is to change 

the rate of data input or output by doing one of several "actions." For example. one could transfer 

processing to a neifhboting node in the network. one could transfer back to an essentially infinite 

queue on the Earth. one could activate reserve computing power (say on a space station). or one 

could reprioritize the processing of jobs in a way which allows faster service. Each of those actions 

is essentially simply altering the amvai and senice parameters of the queues at each node. These 

decisions are viewed as being made locally at each node and only with partial infonnation concern- 

ing the entire network. For example. a particular node may only have vital information concerning 

itself and. say. its two closest neighboring satellites: however, it must decide how to control its 

processor based on that incomplete knowledge. The details of what one means by ii controlling 

device for such a decentralized system and ways to obtain sucll devices arc tllc basic problcms to be 

aJdres~cd in this document. 
3 



3. MATHEMATICAL PRELIMINARIES 

We present in this section a short d i t c - o n  of hrkovian decision models. An excellent ele- 

mentary introduction is that due to Detman (71. while more sophisticated treatments will be found 

in Hinderer (91 and SdrHl [??I. 

A haarkmian decision pmccs is r stochastic pmcess modeling the time evolution of a dynamic 

system which is ""controlled" by sequences of decisions (actions) periodically or at regular time i n t e ~  

vak  The process may ev&e either in a dismte or continuous time frame: however. far reasons of 

simplicity and as we shall later see with no loss in generality, we will consider only discrete time 

processes in this repan. 

Ihe model is described by a Stuple (S, A, D, p. r) with the foilowing interpretations: 

( I  ) S is the set of states of the system. In general. S may be taken to be a s a n d a d  b l  space: - 
but for the pvposr~ of this report. we assume S is at most countable. 

(2) A is the set of @Me actions. Again. thereare general assumptions that can be made con- - 
cwning A. but we assume A is a set satisfying a decomposition that will be described in the next 

parampk. 

(3) D is a function from "Wstories" of the process into subsets of actions. By a history at time 

t. h,. we mean a member of the set: U ({x}?CA$+'. Thus. a history. ht. look like: 
xeS 

(xo. ao, xI. a, x2. a?, . . . . xt. where 

% * state of time 0 

80 a action taken at time 0 

x state of time 1 

a, action taken at time t. 



An augmented history simply adds the state at time t + I onto the history at time t. We will denote 

it by the symbd. iht. xt+, 1. 

The function D d t e s  to  each augmented history, (h,, xt+, ), the set of artions available to  

the dedsionmaker when the pmces evolved exactly as that aescribed in the augmented history. 

For the purpose of this study. we will have the faowing assumption and decomposition: 

(a) D(ht. xt+,) is finite for all (ht. xt+, ) 

(b) A u(D(ht. xt+l )I(\, xt+l) is an augmented hiw} 

(4) The symbol p represents the (Mov) transition probability. For each ae A. x. y e S  we 

interpret the symbod pXy(a) to be the probability of changing from state x to  state ): under action a. 

Of course, the following m t y  conditions must hold: 

(a) pXy(a) is defined only when it makes sense (i-e., a must belong to Wh,, x) for some history, 

"t- 

(b) Z pxy(a) 1 for all x t S  and aeD(h,, x) for some $. 
YES 

This transition probability represents the uncontrollable probabilistic aspkt  of the model. 

(5) The last element of the model is the function. r, the - reward function. Formally r is a ~unc- 

tion fmm statelaction pain into the real numbers. r(x,a) is interpreted to mean the reward (negative 

rpwanl is Ycost9associated with choosing action a when in state x. Of course, r is defrned for all 

xeS and aeD(ht. x) for some h,. 

The basic problem associated with this model is to bcontrol'' the time evolution in such a way 

as to 'tnaximiae" reward. There are stiU two key concepts yet undefined. 

Let H, be the set of all histories up to time t. By a policy. r, we mean a sequence. (no. r , .  n:. 

. . . ) where at : Ht XS 4 P( A) and '"'(A) is the set of probability distributions on the action space. 

+,(.lh,. s) is the probability distribution on A when the system has experienced an augmented 

history. (h,. sl. Since we arc assuming D(h,. s) is a finite set. r,(.lh,. x )  can be interpreted ;is a dis- 

crete pmbability density on D(ht. x). Let the symbol. A. denote the set of all such policies. 

S 



If for cach t the probability is concentrated on one state. i.e.. ut(yl h,. x) 1 for some state 

y eS. then we call s a deterministic pdicy. 

It is the policy a that in fact ""controls" the time evdution of the process. It is desirable to find 

deterministic policies becaw otherwise the decisionmaker is faced with the unpleasant option of 

having to perf' some random ptocedwe (say, flip a theoretical coin) to decide which action to 

take when in some state. 

As a means of picking an optimal policy, we will use the reward function defined above. Further, 

we want to  pick a policy that is good throughout the evolution of the process for at least to  some 

large finite time frame). It is here that there is significant divergence in the analysis For the purpose 

of this study. we will r e a c t  ourselves to ""discounted" reward functions, but we acknowledge that 

other reward functions are of interest and deserve similar investigation. 

l e t  a be a fixed discount factor. 0 C a < 1. Let s be a fixed policy. The theory of stochastic 

processes ins- that to each policy and to Gach initid distribution on the state at time 0. there is a 

stochastic process generated. We denote the stochastic process by (%. 4) w h e i  X, is the state at 

time t and A, is the action taken at time t. We will use the notation P, and E, for the probability 

and expectation operaton under the policy s. 

Define VJz. x ) ~  E,{~:~ otr(q, - x}. This is the discounted reward function given 

the process starts in state x. Since we will be assuming a is constant throughout, that symbol witl 

be suppressed in the notation. 

Next define. V(x) rsup{v(+, x ) ( s c ~ ) .  If there ex& a policy rn' such that for all xeS. 

Vf*. X) f V(X), then we say AO is an optimal policy. 

The basic results in this area are (1) theorems providing (under appropriate assumptions) 

existence of optimal (possibly deterministic) policies and ( 2 )  theorems outlining methods of com- 

puting those policies. We refer the reader to Derman (71 for a documented account of such results: 



Irowcwr, one could not proceed without at kast mentioning the principle of optirnality" of Bellman 

bemuse of its motivatiorral value. One can usually prove (in centralized control models) that tire func- 

tion V(x) satisfies the fdlowing equation: 

The interpretation is important: the equation says that the expected discounted reward starting 

from state x is the m e  as the sum of the one step cast of being in state x under the "best action." 

a. plus the weighted and digcounted cost of starting from another state, y, one time unit later. 

This equation is useful in deriving algorithms for computing optimal srmtegies. 

4. DECENTRALIZED MARKOVIAN DECISION MODELS 

In this section we will build upm the structure discussed in Section 3 to apply it to a decentral- 

ized contrd situation. There is no daim of full generality in the model to be described: in fact, we 

have limited the scope initially for ease of analysis. . 
Consider a network with M nodes, and assume that the state of the system at each node can be 

described by a non-negative integer. A useful example to have in mind is that at each node there is 

a queue where an integer will describe the numb-r of people in line or in service at that queue. n\e 

state of the entire network is thus given by a vector (n,, n,. . . . , nN) where ni is the state of node i. 

Let Ai be the set of actions available to a controller at node i. We can fit this situation into the con- 

text of the previous section by defining: 

S = S ,  x .... xSNandA=A,  x .... xAN 

where Si is the set of states available at node i. 

Ihe key ingredient that must be added now is that of ar. information structure. Several authors 

have dealt with this problem already. With no pretense of being complete we mention two sources 

(in very different disciplines) dealing with this issue. See. for example. Marschak and Radner I 191 

or Witsenhausen I301 for mote details of work in this m a .  



In this paper an infonnation structure. a. will be a finite sequence of projection functions 

u ~ ( o ~ ~ . . . ~ u ~ )  

wliore each oi m a p  the a t  S1 x . . . x % onto some subset of the SiVs. say. Si,. x . . . x Sik. 

For example. suppose that o l  (x, . x:. . . . , xN) = (xl . x3. x ~ ) .  We interpret the function. ol . 
as saying that contrdler I has full infonnation about nades 1.3 and N. 

To simplify notation we introduce the use of ai as a superscipt. Its use is meant to simply apply 

the appropriate projection operation whenever it is needed. It is best to illustrate by example. 

If ol is as above, by (xl.. . . , xN) we mean the vector. (xi. x,. xN). Sinulny ol can k 

''qplied" to actions as follows: 

(a,.. . . , = (a1. aj. aN). 

In fact, we want to also use the notation freely with such complicated objects as histories. If h, is a 

0  0  0  1 1 history in the decentralized model, then h, looks like:-h, (xy,. . . , xN) (a,, . . . . aN). (x*. .  . . . xN). 

1 (a,. . . . . aa). . . . ) where xi and a; are the state and action at time t at node i. 

0 0 0 0  0 0 0  BY (h, ' we mean : ((x . x,. xN l L . a,. aN 1, . . . 1. In other words. the superscript oi indi- 

cates that information available to c o n t d e r  i is extracted from the "'whole system" state or 

action vectors. 

Our current goal is to define what we mean by a policy which is compatible with the informa- 

tion structure. It is obvious that the N decisionmakers can only "go on" the data available to them. 

This notation helps express this idea. We add that this model does not really handle time delays in 

information which were noted in Section 2 as being important. A notation more useful to those 

features is that of Witsenhausen 1301, but we will forego those complications in tlie context of this 

document. 

To complete the Markov decision model. we assume the existence of a transition probability 

p. a decision structure D and a onestep cost function r as described in Section 3. 



0 
By P m d m h i b k  policy. w. we main a policy such that r h m c v a  (ht, xfi = (hi. x l  ' we h m  

P,(A;' = aoilhl. X) P*(A;~ a0'lh;* I@). 

The above definition simply quantifies what we mean by decentralized control: i.e.. whenever 

a controller. i, has a certain information contlguration. he will always act in the same way even if the 

!&tory or state at other - nodes is different. The set of dl such u-admissible palicies is denoted Aa. 

The mathematical problems are similar to those in the standard control problem. For example, 

does there exist a c~admissible optimal policy? If so, is it deterministic? Docs the discounted reward 

function satisfy a functional equation similar to the "Principle of Optimality?" Fmally, are there 

reasonable and implementable algorithm that can be used to produce the optimal policies? 

In Section 5 we will amucr the fmt question, and in Section 6 we witl suggest some approaches 

that could be useful in answering the remaining questions. 

5. EXISTENCE OF u-ADMISSIBLE POLlCIES . 
We begin this section by defining the topology on the space of policies A. We say dn). a sequence 

of policies in A, converges to s if and only if for each t 0, 1, 2. . . . ; xe  S; h, e H, and: aeD(h,. x) 

lim d") (alh,. x)= sr(alht* x). l l i s  is exactly the standard product topology in the compact space 
n- 

n [O , I I  
X) 

(h,. X) 
and 

t=O. l*  ... 

In fact. A is simply a closed subset of the above compact space, i.e.. those elements such that for 

each t, (h,. x). the function n : D(h,, x) -x  satisfies 

Zx(a(h,, x ) ~  1. 
a 

Thus A is a compact set. 



It is well known. see D e m n  (5) .  that under the assumptions of this report, VJx) is a contin- 

uous function on the space A. Thus, since A is compact, V, attains extreme values in the set h 

We use this fact in the following: 

Theorem 1. There exist a-admissible policies. 

Roof. - F i t  we will clarify the meaning of u-admissible optimality. a* is such a policy if for 

all xeS 

v,,. = sup{~,,(x)I a c  AO} 

We will be able t o  apply the standam ..gument for continuous functions on compact sets if we can 

show that Au is itself compact. In fact, we need only show that as a closed subset of A. 

To that end let{*be a sequence of policies in Au and assume dn) )- n in A. We want to  show 

that acAu. Let t be a fixed time parameter and assume that for ie{l, . . . . N} 
(h,. x)" = (h*. x'fi 

t . 
Since rr(")e~O for each n, we have 

ci (Aui i * roilh;. x') P*,n,(At+, = aoilht, x) =P,,,,, ,, 
Since dn) -r a. then 

"i P (A,, = auilh,, x)-PR (A::, = aOilh,. X )  

and 

P~,~) (A:~ ,  * auilh;. X? + P (Aui a a,/h;. xo) 

Thus it follows that 

P, (A::, auilh,. XI= P,,(A:~ = aulh;, x') 

Therefore, A0 is closed. The conclusion of the theorem follows using exactly the sane argument as 

that used by Dermaa ! 5 I . 



mal- His-. with the c e n t d i d  control problem. the diseounted d function. V, 

satisfoed a functional equation which abwed the use of dynamic pmpamiq techniques. n u s  far 

A more hopeful approach may be one similar to that outline by Ho [ 10) m a recent paper. 7he 

idea is to pick or gues a starting optimal M c y .  One rrses the general poky. leaving out one node 

3t a time. sq node i. and obtain a "d" solution at node i (with other nodes fuec). After all 

nodes haie a revised solutian. one compares the reward function under the revised solution to the 

miginai. Thc algorithm condudes when no better reward function is obtained. 

Ch course there are no thearema yet obtained in this m. but we feel it is a method worth 

investigating. 



7. REEXAMINArnN OF mnvmffi ExAwLE 

Wedow this regum witha f e w ~ d l l l m e a t s ~ t h e ~  betweem the po#ers~llt- 

l i n e d i n S e c t i o n ? a n d $ r a t ~ ~ t i y .  TbefiipoiMr~~isthatdrecontrelpbekm 

outl inedinScctkm2isckafiyac~l~timemodd Certaialy&&totberaricwrsnodesmtbe 

network can happa at auy harnnt in time. However. the laudmaaties dcscribwl is for a t h e  -- 
T B e p o i m i s t h a t t b c c o a ~ L i m a p J o B l e r a b ~ ~ p o b l c r e b a b c d B w l m o i Q ( ~ t h e  

i runppojD~iatBe~):aadrsorr i i rrputaady.asokr~d-dthepDobkras( im. ,~-  

iagtbemwdfmction)wiUiaeuceasdafionaothe~- F ~ r a c x ~ t c x p d i c a a i o n o f t h i s  

phcrrarneam see Serfaeo (251. 

A d  point tobe~ndeisthat the -&+xibedin d r i s ~ t d o e s n c t ( a n  the 

s l g f ~ ~ 9 )  embmce the problem of timedelayed mfmtiosr  smcmes In fecf with a sokatiea mure 

adapted to thot situation, say the notation is W i  1301. oac am inctudr tk thmjdayed 

case aisa It is expecaed that subsequent wmrk will fdm that directian. 
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