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APPROXIMATE ANALYSIS OF POSTBUCKLED THROUGH-WIDTH DELAMINATIONS 

John D. Whitcomb 
NASA Langley Research Center 

Hampton, Virginia 23665 

SUMMARY 

An approximate analysis was developed to analyze the postbuckling behavior 

of through-width delaminations in a laminated coupon. The analysis contains two 

parameters which are determined using a finite element analysis. After calcula-

ting the parameters for a few configurations, the approximate analysis was used 

to analyze many other configurations. Lateral deflections and mode I strain

energy release rates obtained with the approximate analysis were compared with 

results from the finite element analysis. For the configurations analyzed, the 

approximate analysis agreed very well with the finite element results. 

INTRODUCTION 

In laminated composite structures under compression loads, delaminations 

often precipitate failure. Even small, seemingly benign delaminations may induce 

localized buckling, which causes high interlaminar stresses. A buckled delami-

nated region may grow rapidly and lead to structural instability. To assess the 

criticality of a delamination, an analysis is needed to predict the rate of 

instability-related delamination growth. A key component of any such analysis 

is an accurate geometrically-nonlinear stress analysis. Unfortunately, general 

purpose analyses. such as geometrically-nonlinear finite element analysis, tend 

to be expensive. Specialized inexpensive approximate analyses are needed. 

This paper presents an approximate analysis for postbuckling of through

width delaminations in a laminated composite coupon (fig. 1). This configuration 



is perhaps the simplest that exhibits instability-related delamination 

growth. Hence, it is an ideal candidate for initial study. Furthermore, 

this configuration was studied in reference- 1 using a geometrically-

nonlinear finite element analysis. Thus, reference solutions are available. 

In the following sections the development of an approximate analysis is 

outlined. Lateral deflections and mode I strain-energy release rates obtained 

with the approximate analysis are compared with results obtained with the 

analysis described in reference 1. 
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NOMENCLATURE 

cross-sectional area of region A, m2 

length of delamination before loading, m 

effective length of delamination before loading, m 

axial length of delamination after loading, m 

width of coupon, m 

constants used in calculating GI 
Young's modulus, GPa 

extensional moduli for regions A and 0, GPa 

mode I strain-energy release rate, J/m2 

Go transverse shear modulus of region 0, GPa 

GM strain-energy release rate due to a moment, J/m2 

I moment of inertia, m4 

10 moment of inertia of region 0, m4 

M moment, N·m 

Mc crack closing moment, N·m 

Mo crack opening moment, N·m 
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n shape factor equal to 1.2 (ref. 2) 

PA,PB'} axial loads in regions A, B, C, and D, N 
PC,PO 
PFE buckling load calculated using finite element analysis, N 

PT applied load, N 

PT applied load corresponding to incipient buckling, N 

t thickness of delaminated region, m 

x,y rectangular Cartesian coordinates, m 

o maximum lateral deflection of buckled region, m 

8 lateral deflection corresponding to peak GI , m 

o lateral deflection corresponding to closing of crack tip, m 

€A axial strain in region A 

ED midplane axial strain in region D 

ANALYSIS 

Development of Governing Equations 

In this section approximate governing equations are derived for a laminate 

with a postbuckled through-width delamination. The laminate was subdivided 

into four regions, as shown in figure 2. Because of symmetry, only half of 

the laminate was modeled. The laminate was assumed to be of width b. 

Regions Band C are assumed to be perfectly bonded. Regions A and D 

are unbonded. Regions A, B, and C have constant axial strain. Hence, 

the force-displacement relations are those for a simple rod subjected to 

axial load. Region D is assumed to have zero slope at both ends. To 

describe the nonlinear behavior of region D, equations (1) and (2) for post-

buckling of a column were used. 
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ref. (2) (1 ) 

a - a = ref. (3) (2) 

where 0, a, a, and PD are lateral deflection, axial length before and after 

deformation, and load, respectively. Equations (1) and (2) were derived using 

a strength of materials analysis of a column. 

To combine regions A, B, C, and D, equilibrium and compatibility 

conditions must be considered. The equilibrium condition for the axial force 

is 

(3) 

Compatabi1ity requires the shortening of regions A and D to be identical. 

Hence, 

(4) 

Equations (2), (3), and (4) can now be combined to obtain the governing 

equation for the laminate in terms of one unknown, 0. 
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(5) 

Equation (5) can be solved explicitly to obtain 0. 

(6) 

In a later section, lateral deflections calculated with equation (6) will be 

compared with results obtained with a finite element analysis. 

Calculation of Mode I Strain-Energy Release Rate 

In reference 1 the mode I strain-energy release rate (GI ) was shown to 

dominate instability-related delamination growth. The complexity of the load 

transfer at the crack tip prevents a simple, exact calculation of GI . An 

approximate procedure is presented here. 

Transverse normal stress at the crack tip is the net result of two 

opposing processes. The lateral deflection, 0, causes a moment Mo which 

tends to open the crack tip. Mo can be calculated by considering moment 

equilibrium of region D (see sketch below). 
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Mo is found to be 

(7) 

After the delaminated region buckles, an increase in applied load causes no 

change in the load carried by the buckled column (region D in the sketch), 

(see eq. (1)). 

c 

A B 

But the load carried by region C continues to increase with increased applied 

load. Hence, load must be transferred from C to A. The eccentricity in the 

load path causes a moment, Mc' which tends to close the crack tip. Because 

the closing moment arises from the difference in axial forces in regions C 

and D, Mc is expected to be strongly dependent on the quantity (PC - PD). 

Hence, the closing moment is assumed to be 

(8) 

The constant Cl is difficult to determine analytically because it 

depends on the complex stress diffusion process at the delamination front. 
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In the present method, it is left as a free constant to be determined through 

finite element analysis. 

The strain-energy release rate for a 'cantilever beam loaded by a moment 

is M2/2EIb (ref. 4). Assuming region D to behave like a cantilever beam, 

the strain-energy release rate associated with the moments Mo and Mc is 

(9 ) 

However, GI is not necessarily equal to GM. Because the specimen is not 

symmetric about the delamination, the moments can create both normal and 

shear stresses. Assuming the behavior near the crack tip is linear, GI is 

a constant fraction of GM. 

(10) 

Combining equations (6) through (10) and using the rule of mixtures to 

calculate PC' GI can be expressed in terms of 0 as 

(11 ) 

The constants Cl and C2 in equations (8), (10) and (11) have to be 

calculated with a finite element analysis; the procedure for calculating them 

will be discussed in a later section. 
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Extremum Behavior of GI 
Reference 1 showed that GI initially increases with increasing load 

and lateral deflection and then decreases." Since finite elements were used, 

no closed form expression was obtained to describe this behavior. In this 

section equations are presented which describe when Gr first becomes 

nonzero (i.e., initial buckling), the load and deflection for peak GI , the peak 

value of GI , and the load and deflection for closure of the crack tip (which 

results in zero GI ). 

Initial buckling occurs when the load carried by the delaminated region, 

PO' reaches the buckling load. Until buckling occurs, the load carried by 

the delaminated region is linearly related to the remote load. 

(12 ) 

Equating equations (1) and (12) yields an expression for the applied load for 

incipient buckling (and hence nonzero GI ). 

(13 ) 

The maximum value of GI occurs when the total peeling moment, (Mo + Mc)' 

reaches a maximum. The maximum value for (t~o + Mc) is found by solving 

equation (14) 

(14 ) 
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a6 aPC The term aPT is calculated from equation (6); the term aPT is 

calculated using equation (3) and the rule.of mixtures. Solving equation (14), 

one obtains the lateral deflection corresponding to peak Gr , 6. 

(15 ) 

The corresponding applied load is obtained by solving equation (6) for PT, 

that is 

A 

The peak value of Gr is calculated using 6 in equation (11). 

To determine the load and deflection at which the crack tip closes, 

equation (17) is solved. 

M + M = a o c 

(16) 

( 17) 

Substituting expressions for Mo and Mc into equation (17) (using equation (3), 

rule of mixtures, and equation (16) to express Pc as a function of 6) 

results in 

(18) 
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Note that 0 = 28. The corresponding applied load is calculated by using 

8 in equation (16). 

Calculation of Constants, Cl and C2 

Finite element solutions are required to determine the constants Cl 
and C2. The finite element analysis is discussed briefly in a later 

section. 

To calculate Cl , equation (15) was used. Finite element analysis was 

used to determine the lateral deflection, 0, at which Gr is maximized 

for a particular configuration. 

After calculating Cl , C2 was calculated using equation (10). GM was 

calculated with equation (9) and GI was calculated with the finite element 

analysis. GM and Gr were calculated at the lateral deflection corresponding 

to the maximum Gr for a particular configuration. 

Cl and C2 could have been calculated using any two points, but the 

calculations would have been more tedious. 

Both constants were found to be independent of the delamination length 

and load; Cl was also independent of the thickness of the buckled region. 

Consequently, GI can be calculated with the approximate analysis for many 

different configurations after studying a few configurations with the finite 

element analysis. 

Modifications for Short, Thick Delaminated Regions 

If the buckled region is short and thick, the analysis described in the 

preceding sections should be modified to account for rotation at the ends of 

the delaminated region. Clamp conditions were assumed to obtain equation (6). 
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Rotation at the ends of the delamination cause the delamination to behave 

like it is longer than it is. That is, the buckling load is lower and the 

lateral deflection is greater than for the'case of clamped ends. The 

effective lengthening can be estimated from the relative magnitudes of Po 
calculated with equation (1) and the buckling load calculated by a finite 

element analysis. If we ignore the small shear correction term 

( nn:EDID) in equation (1), Po is inversely proportional to i. Hence, 
a AOGO 

the effective length is approximately 

= 2a (Po )1/2 
PFE 

Finite Element Analysis 

( 19) 

A two-dimensional, geometrically nonlinear finite element analysis was 

used to obtain rigorous reference solutions. These solutions were used to 

calculate C1, C2, and 2a ' for use in the approximate solution. The 

solutions were also used to determine the accuracy of the approximate 

analysis. 

The finite element analysis is described in detail in reference 1. A 

typical finite element mesh is shown in figure 3. The mesh contained 813 nodes 

and 740 four-node isoparametric elements. Similar meshes were used for other 

delamination lengths (2a) and depths (t). Strain-energy release rates were 

calculated using the crack closure technique reported in reference 5. 

11 



Description of Specimen Configuration 

The specimen configuration used in the parametric analysis consisted of 

unidirectional graphite/epoxy (regions C and 0 in fig. 2) bonded to an 

aluminum bar (regions A and B in fig. 2). The graphite/epoxy had a 

thickness t (see fig. 1). The aluminum had a thickness of 6.0 mm. The 

Young's moduli and shear modulus were assumed to be: 

aluminum: 

graphite/epoxy: 

E = 67 GPa (9.7 x 106 PSI) 

E = 140 GPa (20 x 106 PSI) 

G = 5.9 GPA (.85 x 106 PSI) 

RESULTS AND DISCUSSION 

The objective of this section is to illustrate the potential of the 

approximate analysis for analyzing specimens containing through-width 

delaminations. Specimens with different delamination lengths, delamination 

depths (t), and applied loads were analyzed. A finite element analysis was 

used to obtain reference solutions. 

Two calculated parameters were examined--lateral deflections and mode I 

strain-energy release rate (GI ). The lateral deflection was considered 

an important parameter for study because intuitively one might expect the 

severity of the interlaminar stresses to be related to the degree of post

buckling. Also the accuracy of the calculated lateral deflection (determined 

by comparison with finite element results) is a measure of how well the 

gross deformation behavior of the specimen is modeled. GI was considered 
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because results presented in reference 1 suggested that delamination growth 

rates are dominated by GI • 

In the results presented, correctioni for end rotation are not included 

except where specifically indicated. This was done so that the simplest 

form of the approximate analysis could be evaluated. 

Figures 4 through 6 show calculated lateral deflections 0 for various 

delamination lengths, delamination depths, and applied loads. The approximate 

analysis (eq. (6)) and the finite element analysis agree very well for most 

of the cases. The differences are primarily a result of rotation at the 

ends of the delamination. The rotation is greatest for the case t = 0.762 mm. 

Since ignoring end rotation "stiffens" the system, it is not surprising 

that the finite element analysis ahJays predicted a lower buckling load and 

a greater deflection. 

Figure 7 shows that for t = 0.762 mm the approximate and finite element 

analyses agree very well if corrections are included for end rotation. For 

both 2a = 25.4 mm and 2a = 38.1 mm the difference between the effective 

length and actual length of the delamination was calculated (with eq. (19)) 

to be approximately 

(2a ' - 2a) - 2t (20) 

Figures 8 to 11 compare mode I strain-energy release rates calculated 

with the approximate analysis (eq. (11)) and the finite element analysis. 

Figure 8 shows the relationship between GI , lateral deflection, and 

delamination length for t = 0.508 mm. The constants C1 and C2 were 

calculated (as described earlier) using only the finite element results for 
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the case 2a = 25.4 mm. The figure shows the approximate analysis agrees 

very well with the finite element results for all four delamination lengths. 

Figures 9 through 11 show the relationship between G1, applied load, 

and delamination length. Three values of t are examined: 0.508, 0.254, 

and 0.762 mm. The value of the constant Cl determined from figure 8 (in 

which t = 0.508 mm) was used for all three values of t. C2 had to be 

calculated for each value of t. The finite element results for the shortest 

delamination length (for each t) were used to calculate C2. 

The analyses agree very well for the cases t = 0.508 mm (fig. 9) 

and 0.254 mm (fig. 10). For t = 0.762 mm (fig. 11) the agreement is fair. 

Recall that when lateral deflections were calculated, the approximate 

analysis was not as accurate for the case t = 0.762 mm. However, with the 

corrections for end rotations, the approximate analysis performed very well 

even for t = 0.762 mm. If these corrections are used, the GI calculations 

also are greatly improved, as shown in figure 12. To determine how these 

corrections might affect calculations for other values of "t," the curves 

in figure 9 were recalculated using the corrections for end rotations. 

Equation (20) was used to determine the effective length (instead of eq. (19)). 

Comparison of figures 9 and 13 shows the approximate analysis agrees more 

closely with the finite element analysis if end rotation effects are included. 

CONCLUDING REMARKS 

An approximate analysis for postbuckling of a through-width delamination 

in a laminated composite coupon was developed. Lateral deflections and 

mode I strain-energy release rates (G I ) obtained with the approximate 
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analysis were compared with results from a geometrically-nonlinear finite 

element analysis. 

Specimens with different delamination lengths, delamination depths, and 

applied loads were considered. In most cases, lateral deflection and GI 
obtained with the approximate analysis agreed very well with the finite 

element results. For the cases in which the agreement was only fair, 

excellent agreement was obtained by incorporating corrections for rotation 

of the ends of the delamination. 

Before calculating GI with the approximate analysis, two constants 

had to be determined from a finite element analysis. Hence, the approximate 

analysis cannot stand alone (except for calculating lateral deflections). 

However, a significant advantage of the approximate analysis is that the 

effect of various parameters on GI can easily be determined from the 

governing equations. 
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