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THE MARANGONI EFFECT AND TRANSLATION
OF FREE WON-DEFORNw9LE DROPS

E. Chifu, I. Stan, Z. Finta, and E. Gavrill

Department of Chemical Technology
Babet-Bolyai University, Cluj-Napoca

Drops suspended in an immiscible liquid undergo a complex motion Z76^*

when an interface tension gradient appears at the surface. In this

context, studies can be mentioned on the pulsations of suspended drops

fl-51 and the "interface activity" of "free" drops [ 6-71.

Recently, chemical and hydrodynamic instability has been studied

for fluid interfaces, instabilities of the Prigogine -Glansdorff "dis-

1pative Structure" type, in Which interface tension is the parameter

linking chemical and hydrodynamic processes C8-217.

The phenomena generated by interface tension gradients have been

arousing special interest in recent years in the problem of mass trans-

fer at fluid interfaces [1 0-201 and in modelling certain processes of

deformation and motion at the biosurface level [ 8-11, 14 9 211. Final-

ly, because surface ( interface) tension plays a decisive role in the

behavior of liquids at zero gravity [22-301, the authors consider that

the phenomena defined by gradients of this size will also occur in

space.

In this work, phenomena are studied, theoretically and experiment-

ally, which are caused by interface tension gradients in the case of

"free" drops. Such a drop, devoid of buoyancy (motion ), is obtained by

suspending it in a liquid of the same density. The studies carried out

show that, as a privary result of interface tension gradient, a sur-

*Numbers in the margin indicate pagination in the foreign text.
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face flow or so-called Marangoni effect is produced at the drop sur-

face [31-42]. Upon the action of surface-flow processes, a translation

motion then appears in the drops as a whole, although the initial drop

was immobile.

Model of Surface Flow ,nd Translation Motion of Free Drops

Let us consider drop L', with radius L. suspended in an immiscible

liquid L (Fig. 1). Force F, which acts as a unit drop volumes

F — Q , —  p)9

will go to zero, when the densities of these two liquids are equal

(p' = p), or in zero gravity lR s off.

Such a "free" drop and initial lack of motion (buoyancy) are as-

sumed.

Let us assume that the initial liquid/liquid interface tension is

c%. At point P  (F;g. 1) on the drop surface, the interface tension

is then reduced (a, )• by injecting a surfactant, while at the "pole"

opposite Pa , it remains as initially (a,). 	 Along the meridian of the 1766

drop, a gradient (difference) appears for interface tension tcro od.

The processes Which appear as a result of this gradient are com-

plex, and it is probable that at least -the following must be taken into

considerations

- displacement of drop translation and its eventual rotation;

- deformation and oscillation of the drop, appearance of waves on

Its surface;

- circulatory currents in the liquid.
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In revealing such processes, Valentine and co-authors r6-71es-

timate the order of site for energy dissipated in different forms of

drop "motion % bat they consider that solving the equations of fluid

motion is a much too complicated problem.

It is noted that up to now no rigorous and complete theory has

existed for the phenomena generated for interface tension gradient

relative to a "free" drop.

In an effort ?•o solve tb o problem, the authors of the present

study consider that- the MarLxLgoni effect relative to surface flow

[31-431,murt be taken into account first of all in a quantitative

treatment. It is surprising that the authors citP^3 C6-71 do not ex-

prossly specify this process among the phenomena enumerated, although

It represents the most direct effect of interface tension gradient.

From Figure 1, it results that, upon the action of the gradient

-a,)flow takes place at the drop surface itself L'. Simultaneously,

one layer of the liquid L, which corresponds to the arrows on the out-

side of the sphere, undergoes movement and liquid currents appear in

the interior of the drop L' (dotted arrows). These last two processes

are explained by the absence of slip between the surface proper of the

drop, activated by the interface tension gradient, and the two liquids

( L and L') .

Due to surface flow involving the exterior of the liquid L,

forces of hydrodynamic pressure act upon the drop L'. Their resultant

must define the translation motion of the whole drop in the direction

which links the points of the drop's maximum and minimum interface ten-

sion (Fig. 1, arrow pointing straight up).
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Experimental studies have led the authors to the conclusion that

two limiting cases exists

- large Interface-tension gradients and reducbd drop viscosity,

In which situation the drop is highly deformed, oscillation phenomena

appear, as well as its possible fission, etc.;

- low in}. ,̂ rll%ee-tension gradients and elevated drop viscosity,

In which situation the drop behaves as being practically non-deform -

able, like a rigid sphere.

In this work, the latter case is studied. Using non-deformable

drops has permitted the direct experimental determination of the rate

of surface flow. At the same time, it has been possible to "isolate",

at least partially, translation motion of the whole drop from the other

effects (deformation, oscillation, rupture, etc.) which appear as a re-

sult of interface tension gradient.

Utilization of a non-deformable drop model has led, in addition,

to a satisfactory theoretical treatment of the hydrodynamics of these

two processes.

Hydrodynamics of the Yarangoni Effect at a Spherical Fluid Surface

Let us assume that:

- the liquids L and L' are viscous and incompressible;

- the densities	 (P. P ' )•	 viscosities 0 — WP.  V ' =, jL, IP') )

and temperatures (T, T') are constant;

- the volume force (p'— p)g	 which acts upon the drop is zero,

according to the assumption In the model described;



- flow caused by the interface tension gradient is, in the

first approximation, stationary;

- the Reynolds number (R) is small;

- the Bond (Bo) and Weber (We) numbers are less than one, and

the forces of acceleration and inertia are small in comparison with

those of surface tension, in conformance with the model proposed;

this implies that interface tension?, is dominant in determining the

flow of the liquids [221.

The equations which govern flow are continuity equational

di. - 0 (1)

div r • = 0	 ( 2)

where t is the rate of flow of the medium (L), and 1 for the liquid

L' from the interior of the drop, and the Navisr-Stokes equations are:

1	 (3)
^eQ)r= — A gradp —vAC

0 VV -- ^— grad  v' Q t	 ( 4)
Y

p and p' being the pressures at the exterior and interior of the drop.

Because for a small Reynolds number, convection terms can be neglected,

equations (3) and (4) become:

grad e	 ji

grad n' µ ^7

The symmetry of the problem suggests a spherical coordinate sys- Z

tem (r, o.. ) with the origin at the canter of the drop and the Oz

axis intersecting the sphere at the point of minimum interface tension

III (Fig. 2). Assuming that motion is symmetric with respect to the

Oz axis, the liquid flow rates for exterior L and interior L' are in-

(5)

(6)
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dependent of angle 9 ; these rates will have only a normal (radial)

components

and a tangential one, at the drop surfaces

re (r. 0): re (r, e)

In spherical coordinates, equation (1) becomes [431s

dr.	 1 d re	 2 rr	 re cte 0	 0.	 /
Jr	 r "d8 

_	
-	 ► 	 ( 1 )

and equation (5) is written ass

tip 	 r d`i.	 I	 d r_ 2 drr	 og a JI-r
— 1 t

	

2 die	 21r	 2 ctg 0
r1l d0	 r'	 r=

I dp	 die	 11 d-re	 _2 de-0 	 cta a dre
r db	 Or'	 r db•	 ► d► 	 r' de	

(9)2 dr.	 re
r' do	 r' sin' 0

The equations for liquid motion at the drop interior have a similar

form.

The components of the rates at the exterior L and interior L' of

the liquids must satisfy the following conditionss

- the normal components must be zero at the surface of the non-

deform&ble drops

	

It - 1; 0	 at	 r a.	 (10)

- the tangential components must be equal at the drop surface

(continuity)s
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at

- the rate at the interior of the drop must be finite at every

point, particularly at its contort

e	 finite for ► °	 { 12)

and goes to zero away from the drops

t o _ 0	 for r-y,	 (13)

In addition to these kinematic conditions, it is necessary for a

dynamic condition to be fulfilled: the condition of continuity of the

tangential components P,e and P're for the tension tensors and the

gradient of interface tension pt = grad a	 R31t

P.0 - P, - P►o

In spherical coordinates, the condition can be written thust

d.	 dr,	 t_u	 _ 1 de =.

	

µ . d8 Y dr	 r' r.n	 o d8

The solution for equations(7-9) for flow of the liquid exterior L

is, taking conditions (10-14) into accounts

c.	 (oo — a, ► o	 I _ 1	 Cos ©,	 15

,0	 6(µ	 IA ') ( 2r$ + 2o'r Isii 8,

P	 _ µ(e,, --a,
► o cos 9

6 rli+ + µ• ► 	
(17)

while for the liquid L' at the interior of the drop, we obtains

	

^• _ («0 'eJ	 I	 rt

6 (^ - 
	Cos 8.

	

It') 
	 (18)
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6.lµ — µ' ► C	 of

P
,01) – —

S 
µ"(Q° – a' i r Cos 0

	

3 a%, - µ')	
( 20)

The liquid flows along the surface of the drop, where t•.—t;9

conforms to condition (11), with the rates

(+ol,^ ° 	- -°° — a, sin 0 = +° sin 0,	 ( ,21)
6 ('e+	 µ")

which results alternatively from equations (16) and ( 19) for ► = a•

The values

	

6 (µ + µ')	 ( 22)

represents the maximum rate found at the drop equator.

As for flow at the surface itself of the drop, a term could be

introduced corresponding to surface viscosity. The calculations done

by the authors, which will be adopted again in further works, show

that surface viscosity of expansion C331 appears in equations (15--•22),

as a correction term, which - for the systems studied - can be ne-

glected in the first approximation.

Finally, the phenomena of adsorption have not been taken into 	 68

consideration, nor have those of diffusion, because it is assumed that

these processes are sufficiently rapid in comparison with surface flow.

Interference of these phenomena with the Marangoni effect at a spheri-

cal fluid surface will be the subject of future research.

Experimental testing of the hydrodynamic mcdel proposed, relative

to equations ( 21-22), have led to conclusions which are totally satis-

factory.
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The experimental study of surface flow was done on a liquid/

liquid system with equal densities; several of the systems studied,

with density P-P'	 0.863 g/cm3 are presented in Table 1.

All the measurements were made at a temperature of 20 * O.loG.

The continuous phase L was placed in a rectangular vessel with a

capacity of 1 dm3 9 with transparent walls. A drop of L' was pipetted

into the continuous phase L. and the final density was then adjusted

by small additions of water or alcohol, until the buoyancy of the drop

practically disappeared.

After stabilization of the system, 10-3-10-2 cm3 of a solution

of a surface-active agent was infected at a point on the surface of

the drop (P l . Fig. 1). with the aim of making surface flow visible,

the surfactant solution was strongly colored with methylene blue (0.28

g/100 cm3)- The frontal advance of the surfactant was tracked by

means of cinematography with a high-speed camera (500 images/sec).

With the aid of a simple trigonometric relationship, from a blows:-up

projection of the filmed images, the distance 1 was determined which

was covered by the front along the meridians of the drop at different

instants t, the number of tl.e images being in direct correlation with

time. The rate of surface flow
	

Is given by the derivative of

the curve 1 s nr).

In Figure 3, the curves !—fit)
	

are represented for some of the

systems studied. The shape of these curves, usually an S. indicates

the qualititive agreement between experiment and theory, the maximum

value of the rate, in conformance with . equation (21), being attained

9



at the equator of the drop and marked with an arrow on Fig. 3.

Pronounced dispersion of the data, caused by various experiment-

al difficulties, did not permit sufficiently precise evaluation of

the flow rate over the entire surface of the drop. Nevertheless, the

average v^.luss of !win 	 corresponding to the equator, for drops of

different radius, were in satisfactory agreement with those calculated

according to equation (22), such as result from Table 2 (the

systems from Table 1).

The results contained in Table 2 generally reflect well the role

of the interface tension gradient and the viscosity of the liquids in

surface flow.

Taking into account the values for the rates of flow and other

parameters from Table 1, the Reynolds numbers R - 7 G P "o-exp . / (µ 1 µ') are

close to unity' that is, the assumptions which were made for the hydro-

dynamic model are correct.

In many cases (systems 2-4) 9 the experimental values for flow

rate are larger (by 20°x) in comparison with the theoretical ones, which

is, at first glance, surprising. It is considered that this deviation

is explained by the fact that the drop acted upon by an interface ten-

sion gradient is not immobile, as is assumed in the hydrodynamic Maran-

goni effect, but undergoes translation motion as a consequence of the

very processes of surface flow (see the model in Fig. 1). This effect

Is studied below.

Translation "otion of Free Dropsy_ H►drodvnamic Treatment

As is noted in the case of the experiments on surface flow which were

carried out, the Reynolds numbers were close to unity, and a viscous

10
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flow regime exists. In turn, the experimental determina`lons of

the rate of translation for whole drops led to values for this cri-

terion in the range of 10-60. Due to this, in order to calculate

the translation rate of a drop, one no longer has recourse to direct

integration of the hydrodynamic equations; a different method is used.

Actually, according to the model for surface flow, involving the

exterior	 liquid L (Fig. 1), forces of hydrodynamic pressure

act on the drop L'. Taking into account tre symmotry of surface flow,

the resultant 
r  

of these forces is oriented in the pocitive sense

along the axis Cz (Fig. 2). The force of propulsion F  thus defines

the translation motion of the drop as a whole, and i-ts center of

mass along the positive Cz axis.

The force F  which appears due to flow of the liquid L around

t•he drop L' have the form [443:

	

arp 
f i^s ( p„ cos	 8 - p,, tin 81 ai.	 (23)

where p„ and p,a are the normal and tangential components, respect-

ively, of she tensor of viscous tensions

61,n..^. --D' 2µ 
dr

-.

	

1 dr,	 dt,	 ip
P,«

	

All	 N	 r

Since the element of the spherical-drop surface is:

di -- 2 nae sin 8 d8,

equation (23) is transcribed ass

(24)

(25)

(26)Fr = J 1p„ Cup U - p,n %in 81 :' i = tin BJ^^.
u

But, at the drop surface, for , _ a , we have r, =0.

to equation (15), and, in additions

e.,	 s C
n,	 101

according

(27)
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	 Thus, in order to obtain a normal (radial component or the

tension tensor, taking into account equations (24), (27), and (17)1

P., = 
;a(ao
— --e1) cos @.	 (28)
6 a(µ µ')

The tangential component of the tensor is, in conformance with equa-

tions (25), (27), cnd (16):

Pro (
,/
a" 	 sin e.

	

2 ^.\EL ? !A')
	 (29)

Finally, introducing the values and from equations (28)

and (29) into equation (26), the following expression is obtained by

integration for the resulta;•at force F p :

F,	
9 (4 _.- µ')

_ 14 nµa(a, — a,)	
(30)

The force F  of propulsion for the entire drop acts as a motive

force, which is directly proportional to the difference in interface

tension, causing translation of the drop.

The force of resistance Fr which opposes the displacement of a

spherical drop takes the form [43, 451:

z

where u is the rate of displacement, while C d is the coefficient of

resistence,which depends on the Reynolds number. For Reynolds numbers

lower than 300, the coefficient C d for a liquid drop is the same as

for a solid sphere with identical radius and can be obtained by inter-

polation from the curve R = R(Cd) [45].

By making the forces from equations ( 30) and ( 31) equal, a rate

u is obtained at which the translation displacement of the entire drop

must take place:
n '
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L.
r

a -_ 2R µ (a^ n_=_o^ 1	
( 32 )9 p a Ct (µ + JAI

It is evident that equation (32) describes only the initial rate

of drop displacement. Its motion is damped gradually, however, due to

the disappearance of the interface tension gradient, by the process of

surface flow itself, and as a result of friction with the viscous med-

ium. The entire phenomenon has a transitory character.

The fact must be emphasized that, in the hydrodynamic model pro-

posed, it is assumed that the translation of entire "free" or "weight-

less" drops (initially without motion), at the surface of which inter-

face tension gradients act, is explained by the processes of surface

flow. This fact has not been described as yet in the literature.

Experimental Determination of the Rate of Translation for Free Drops.

Discussion

Evaluation of the rate of translation for whole drops - essential-

ly non-deformable - was done in the same system (Table 1) in which the

rate of surface flow was determined.

The experiments were conducted in a similar way to those for sur-

face flow, with the distinction that for these data, translation of

the drop as a whole was used:

- a "free" drop, initially at rest due to a lack of buoyancy, is

infected with a surfactant solution at a point on the surface, inter-

face tension here being 6,. , while at the "pole" opposite to it, it is

momentarily as initially, cO (Fig. 1);

as a result of the gradient of interface tension (^„ - Q,l , a
y
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surface flow appears ( made visible by coloring the surfactant solu-

tion with methylene blue) and, after a certain "induction" period,

translation of the drop is produced;

- displacement of drop translation, relative to a fixed refer-

ence point, resulted during filming at a speed of 24 images /sec; the

distance z covered by the drop in time t was read with thin films pro-

jected at a specific size ratio.

It is necessary to emphasize, first of all, the fact that trans-

lation motion remains in accordance with that indicated in the theor-

etical model proposed in this work, that is, along the positive Qz

axis (Fig. 2), if injection is carried out at the point on the surface

of interface tension ^,. 	 Reproducible results are obtained, in partic-

ular, when injection is done laterally, because the existen^e of a

small density gradient along, the vertical can die upt the advance of

the drop.

In Fig. 4 1 the results are recorded which were obtained for the

function _ .:fir ► for some of the systems studied. It is observed

that, after a certain time of injection (i _ 0) , the rate becomes max-

imum and constant, after which it tends to decrease, which is normal,

considering the transitory character of the phenomenon; the maximum

value of the derivative u -- d:idr	 (solid straight line) is taken its

the rate of drop translation.

In Table 1, for the I systems from Figure 4, the average experi-

mental values uexp Tire reproduced for the rate of drop translation,

In addition to the values ucalc which resulted from equation (32).

Fecause the calculation of the ucalc values necessitates a knowledge

14



of the coefficient of resistance Cd O the Reynolds numbers R - 2apur^µ,

are evaluated first and then, with the aid of the diagrams R = R((d).

the values for C d are obtained by interpolation R51.

It is observed that the experimental values are 20-30f lower

than those calculated using equation (32). Although at present it is

not possible to give a complete explanation, it can be suggested, in

the case of visible, non-deformable drops, according to the author,

that the dissipation of surface energy occurs in a form of motion

other than translation.

It is, then, worth mentioning the fact that the experimental 	 /_771

rates of drop translation, on the order of 0.2-0.3 cm/sec, explain

the hi;{iier values for the experimental rates of surface flow, in com-

parison with those calculated (Table 2), because the sense of the

drop's translatory motion is opposite to that of the surface flow

(Fig. 1).

Conclusions

The translation motion which a free, non-deformable drop - sus-

pended in a liquid of equal density - executes upon the action of

gradients of interface tension, is explained on the basis of a model

proposed in this work:

- The gradient of interface tension determines surface flow -

the "'.arangoni effect; this process takes place, first of all, at the

very drop surface, at the rate given by equations (21)-(22).

- Due to the absence of slip between the surface proper and the

liquids at the exterior and interior of the drop, surface flow is

brought about	 rough the viscosity of both fluid phases, the compon-

15



onto of the rate corresponding to those described in equations (15-

16) and (18-19)•

- As a consequence of surface flow involving the exterior liquid,

the drop is subjected to forces of hydrodynamic pressure, the result-

ant of which (eq. 30) determines the translation motion of the entire

drop. Propulsion of the drop takes place in tho sense of the positive

0z axis (Fig. 2), passing through the point of minimum interface ten-

sion.

- Drop translation has a transitory character, the initial rate

given by equation (32) diminishing gradually, due to the disappear-

ance of the interface tension gradient through the processes themselves

of surface flow and as a result of friction with the viscous medium.

The experiments performed on practically non-deformable drops

have permitted direct measurements of both the processes of surface

flow and translation motion of a drop, the data being in generally sat-

isfactory agreement with the hydrodynamic theory proposed in this work.

The results presented contribute to a knowledge of the mechanism

of "interface activity" of free drops, initially lacking motion, upon

the action of gradients of interface tension. They attest to the fact

that surface flow to an elemental phenomenon which determines the

process of translation as a whole for free, non-deformable drops.

1_	 16



Fig. 2. System of spherical coordinates. /767

L

Y

translation

Via- s face,
ow Fig. le Model of surface flow and drop ZZ66

translation.

^. x

O'< 0.

Z A-00
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TABLE 1. COMPOSITION AND PARAMETERS OF LIQUID/LIQUID SYSTEMS

System
Continuous phase,

L
Drop,
L' urfactant e I

P"

1 Ethanol 011 of i-P>s ooanol 3.2±0,4 2,26 so
(78.6': Vol.) paraff i (15,95 % Vol.)

Vater ?pater

2 Ethanol 011 of n-Propanol 4,4}0,4 2,26 80
(7B,ti;. Vol.) paraffin (77,3 •/. Vol.)

Water stater

3 Methanol 011 of i-Propanol 5,5f0 ,4 1,33 so
(7$y ^^^- paraffi (15,95%. Vol.)
Water water

4 Methanol 011 of n-Propanol 6,7±0,4 1,33 I	 80
(78'^ voi., paraffi (77,3% Vol.) I

Water Water

1,	 Ev

1,0	 .°°	 .

 3 •	 Fig. 3. Distance

	

t4	 covered by the sur-
0,6

	

	 t	 factant front at var-
• ious time intervals:

04 	 systems 1-4 from
•••
•° 
	 t	 i	 Table 1; drop radius

2	
°O	 ,	 o = 0.49	 em.

4	 •

^	 I0	 ^ .,, - „^ ,.a J	 --^t.s
^{c	 ^a	 uv	 v,v	 µ!	 ^

—J

0 0
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TABLE 2. RATE OF SURFACE FLOW AT THE DROP EQUATOR, cm/sec

System . leapt

0.63±0.15
1.12.!:OAS

3 1 37 .0,24
4 1.45- 033

I  tcalcl

0,65-; 0.08
0.69—.0.08
1.11 _.0.09
1.37i 0.08

TABLE 3. RATE OF DROP TRANSLATION, cm/sec

a System I'm	 1 "Cale R	 1 rd "calr"ew

1 0.21 0,31 19.1	 1 3,2 etc

2 0.31	 j 0.40 47,9 1,7 7N
3 0,36 0,44 35.6 1,7 82

T,5

E
0,3j" N

	

0,2	 °

	

011 1	 °
i	 •

01 
A t2 t,4 tP 16 w 22

1 0	 1--- ;	 I	 '

0

Fig. 4. Distance-time as a
function of translation of a
drop with radius o =1,19 cm
and viscosity I, • c o,8o r:

0. — °, - 4.4 drn!cm.
p - 0 0226 #.

M. —G,	 5.5 dymcm.
u - 0.0133 P.

3. e. — •, , 6.7 dywcm.
v	 0.0113 11
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