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HEAT PUMP PROCESSES INDUCED BY LASER RADIATION

M. Garbuny and T. Henningseo
Westinghouse R&D Center

Pittsburgh, Pennsylvania 15235

ABSTRACT

The construction of an experimental system has been completed

for the demonstration of heat pump processes induced by laser radiation.

Laser induced cooling of diatomic gases had been predicted as a result

of a theoretical study ur,d er a previous NASA-Ames Contract NAS 2-9135.

The system constructed on the present contract consists of a Co t laser,

a frequency doubling stage, a gas reaction cell kith its vacuum and high

purity gas supply system, and prnvisions to measure temperature changes

by pressure, or alternatively, by density changes. This report discusses

the laboratory system constructed and the theoretical considerations

for the choice of designs and components. The system is now ready for

the measurement phase. However, for external reasons, such measurements

will not be continued tinder NASA-Ames auspices.
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1# INTRODUCTION; BACKGROUND AND MOTIVATION

The availability of lasers with increasing ratings of power

delivery for various wavelength regions has made possible the application
of coherent radiation to selective and nonselective processes of energy

conversion. Such diverse fields as laser Induced chemistry and isotope
separation, nuelear fusion, machine operations and surgery have already
benefited, or are expected to benefit, from the aspect of the laser as
a power tool, The transmission of power from remote locations may be

useful for certain topographic conditions and, in particular, for space
applications. With this motivation, Westinghouse undertook a series of

StU(IICS under contract with NASA-Ames to explore the feasibility and

efficiency of remotely operating beating and cooling processes and the

conversion of coherent radiation into mechanical energy.

The first study dealt w10 the concept of a thermal laser

engine. I A beam from a remotely stationed power laser is fOCUSed into

the working space of a beat engine through a suitable window such as zinc

s,.^lenide or sapphire. A gas at resonance with the laser frequency absorbs

the focused beam almost completely, reaches temperatures that may be

well above	 and performs work by expansion by one of severaJ

possible thermodynamic cycles. For optimized cycles of various absorbing

gases admixed with helium, the study predicts 
2 typical thermal efficiencies

of 65%-75 014 at conservative temperatures. Subsequently small-scale ver-

sions of such laser engines have been built and successfully operated.3

Further theoretical and design studies of thermal lag er engines expanded

an these ideas and arrived at predictions 4,5 of thermal conversion

efficiencies as high as 90%.

The simple conversion of laser energy into heat in engine

cycles can approach the Carnot efficiency characteristic of the operating

temperatures used. Nevertheless, thermal laser engines utilize the

coherence properties of the laser only in part. Because of the vanishing



entropy of coherent radiation $ 6 thermodynamic considerations do not

exclude the existence of engine processes with 100 percent conversion

efficiency, if irreversible losses are ignored, such as those caused

'ay friction. In other words, there is no need for the rejection of

entropy and heat as in conventional thermal engines. Related thermo-

dynamic arguments show that, just as mechanical work via compressors can

be applied to heat pumps, coherent radiation can be used for remote

cooling.

The exploration of such laser induced isentropic processes was

the subject of a second NASA-Ames study contract. 7 This work showed$

that there exists a very general method, called "resonance defect

excitation", which represents an analog to mechanical heat pumps on the

molecular level. In thermal equilibrium, the molecules of a gas assume

a Boltzmann distribution over energy levels to which various degrees of

freedom can contribute, such as translation, rotation, and vibration.

If a photon raises a molecule from such a thermally generated state, El,

to a higher level, E2 , the Boltzmann distribution will be reestablished,

thereby cooling the environment by the amount El. As in a mechanical

heat pump, the sum of the heat withdrawn and the entropy-free energy

supplied is transferred to the gas. For purposes of cooling, this

total energy is rejected either by radiation or by thermal relaxation

after a certain decay time at which the gas may have been transferred to

a heat sink structure. On the other hand, for purposes of energy conver-

sion, the thermal relaxation of the gas may be used in an engine producing

mechanical work, This is the case cf a heat pump operating in series

with a thermal engine. Ideally, the engine produces work with Carnot

efficiency. The study  shows that operational conditions may be so

adjusted that the heat rejected by the thermal engine is just equal to

that withdrawn, and thus compensated, by the heat pump. Thermodynamics,

of course, does not exclude the possibility of completely converting one

form of entropy-free energy into another, even :hough intermediate heat

processes are involved.

Because o!, unavoidable losses and other irreversible processes,

100% conversion efficiency from lase, radiation into work can not be

V
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attained, Furthermore, the operational conditions for :ouch ideally

complete conversion pose rather stringent practical requirements.

Novortheless, loser engines incorporating a heat pump process may have

lmporfont advantages, even if the optimum conditions are only partially

obtained. Rather high efficiencies can be obtained at much lower

Lomperatures than those required for the simpler thermal laser engines,

with a resulting reduction of thermal stresses. Gas kinetic cooling by

loser radiation, of course, is of interest in its own right. A

capability of romotely cooling an isolated component, such no a detector

array, with powers promising to exceed those produced with thermoolk"Otric

devices, may have important applications. Not the least of its advnntages

is that laser induced cooling can reduce substantially the gas temperature

in nanoseconds and reach a steady state within a fraction, of a second.

Critical chemical and other reactions in gases may be controlled by such

processes with speeds not available by ether measures.

Perhaps the most suitable resonance process for a laser heat

pimp uses thermally excited rotational states of diatomic gases as

stunting points El . Although wo had independently proposed this method

initially for quasi-isentropic laser engines, other laser induced gas

kinetic cooling processes were proposed and, in part, demonstrated.

These processes use either translational energy or vibrational, energy as

starting levels H 1 . Translational cooling 
9 

can reduce the temperature.

of 411tollis 
10 

or ions 
11 

to well below I O K but, for inherent reasons, only

in Very small quantities C{105 particles). Vibrational cooling 
12,15 

can

operate oa large quantities of gas, but achieves a temperature reduction

typically of only a fraction of a degree. Rotational cooling produces

an action intermediate between these two extremes. It can cool gases in

amounts limited only by the available laser power and, starting from room

temperature or above, to a predicted 
8 
range between liquid helium and

nitrogen.

The construction of equipment and measurements for the demon-

stration of rotatianal cooling were the subject of the current contract

with NASA-Ames. This report describes design wivalysis and the completed



equipment construction for laser induced cooling of carbon monoxide-

nitrogen mixtures, the point reached at the and of the present contract

period. Although the broad theory of cooling initiated by laser radia-

tion has been described In th4i referenced reports and papers, a brief

and simple description of thfi relevant features is presented In

Section 2 so as to provide the basis for the design constdorations

involved.

The equipment is at present ready for the measurement phase.

While this work was in progress, the group interested in thtsi field

was reorganized for activities in other departments, and the contract

monitor left NASA-Ames. For this reason, by r(iquest of NASA-Ames,

the measurement phase of this program will not be continued under NASA-

Ames sponsorship.
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2, THEORETICAL CONSIDERATIONS

This section presents a short review of the theory underlying

molecular rotational cooling by defect resonance radiation and discusses

the resulting optimal clioica of target Cases and their mixtures.

Consider a gas containing N molecules, In thermal equilibrium
at a temperature T, the N molecules assume the Boltzmann distribution 14

n, W g I A e-rjjn .	
(1)

Hole H represents the total energy (quantized) of a molecule in "he
i

level i, to which all degrees of freedom contribute that make up the
spevific heat of the gas, viz., translation, rotation, and vibration;

n I is the number of molecules of energy r1 ; 81 is the statistical eight
of level 

I 
(i.e., the number of states with the same energy f: 1 )) and A is

a constant obtained from the condition that the sum of all, n1 equal NO

The solid curve 
in 

Fig. 1 represents the Boltzmann distribution 
in the

form E' I (n I ), i.e., the abscissae measure the populations of various
energy levels. The statistical weights g I are, for simplicity, set equal

to unity 
in 

this graph.
Viguro I further shows three discrete energy levela f r - 0,

J."	 and 
E - 

B2' E - 0 represents the lowest energy (ground state)

which 4he molecule can assume, i.e., its vibrational and rotational

quant,um numbers are, respectively, v - 0 and IT - 0, and its translational

energy (with respect to the observer) is zero. g1 Is a rotational level
of the vibrational ground state (v - 0). E 2 is the rotational ground
state (J - 0) of the first excited vibrational level (v - 1). Here we

ignore the fact that translational energies should be added to E and
I

E q . Although rotational and translational energies are of the same
order (several hundred cm-1 in spectroscopic units at room temperature),

f.	 the change of translational energy i, , emission and absorption is very

kk
small in comparison because of the small momentum of the photon. The

6
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1requoncy 
u02 

of d photon with enurgy hv 02 W P2 ; >4 at resonance with tht-

fi-.,damental (first harmonic) vibration of the irsojecule,

Assume that the molecule finds Itself in the thermally excited

state 11, 
1 
representing the first rotational state	 J - 1) of the

vibrational ground state. The transition from g
1 

to g
2 

can now be
excited by A photon of energy hv 12 " V,2 - 14 1 , the "defect" 1-*,1 being made

up by heat energy. Subsequent events affecting the heat balance depend

axe than various rates or energy transfer, Those thermal relaxation ratc4v

arcs, to a major extent, dominated by molecular collisions for which

certain general relationships exist valid for most gases. Exchwnge of

transl ►tlonal energy of two molecules occur at ever; collision and so do

exchavgeo of rotational energy and also exchanges bOLWeen transiation ►l

and rotational energy. The molecules of a gas at 300*9 and 100 Tarr

9(cor ,Wesponding to as density? of 3 , 1018 molecules/cm
3,

Y each undergo 10

colli-nions 
per 

second, i.e., the translation-r-otatiobal (T-R) relaxation

times are in the order of 10 -9 sec. Thus the defect excitation of the

MCACCUle from E 
I 

to 1
2 cools the translational-rotational heat reservoir

by E I in 10".9 sec, The vibrational energy H, can also relax themnlly

by its transfer to translational or rotational energies (V-T-R), but

usually at much slower rates. In a few diatomic gases, such no CO Ind

N2 ,
 

only one in 10 9-1.0 1'0 collisions produces thermal (V-T-R) relaxation.
Thus, whereas E I is withdrawn as heat in 10

-q 
seep E 2 - hV 12 + r1 is

returned ass heat only after several seconds. Under these conditions, CO

relaxes from L2 
much 

faster by radiation owing to a spontaneous emission

lifetime of 30 msec. If conditions can be so arranged that in the
.average an energy C.2 

 is carried away by radiation ) continuous defect

excitation produces continuous cooling. If, on the other hand, the CO

radiation is absorbed by the walls, cooling will occur over several

seconds until diffusion to and from the walls reverses the process.

The choice of the level v - 0 0 J - 1 represents the simplest

case of CO cooling ,)y laser. Figure 2 shows, on its left side, the

energy term scheme of CO for the first and second vibrational level, The

roLational energy of a state with qjtantum number J is given by 15

8
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E rot J(J+1)B 
V	

u)

where by to the rotational constant for the 
energy state given by v and

J. The beight of' 010 J-HtUte above the respective J - 0 strafe 
in 

Fig.

2 Is 4 mousure of ?rot'

Quantum sulection rules limit transitions in diatomic gases to

the condition AJ a +1. Transitions of he type J+J+1 (R-lines) add

rOt4tional energy; transitions of tile type &J-1 (P-lines) reduce the

recatlonal energy or the molecule. The rotational energies of the v - 1

level thermal re with the tranolational-rotational heat reservoir about

as fast ca p those of level v w 0. Therefore the amount of not heat with-

drawn per molecule exeltation in the cooling P-transitiona io, obtained

from I.-*,q, (2) of;

AE rot * J(B o +B I ) + J 2 010 -»h1 )	 (3)

The vtooling effect per molecule transition iacrenses therefore for 11(J?

transitions with increnuing J. Because BU  1i only slightly larger than

Ill , AX 
rot

 is approximately proportional to J t for large J.
If 11 

p 
photons are absorbed by gas molecules in the R, I level,

the heat withdriawn is n p AH rot' Nove that n 
p 

is limited by saturation,

If the pumping rate from E 1 to E2 is larger than the relaxation rate
front level k',2, the Population n, in U2 will increase to a value that,
WiLh rvapec-t LO the population ni, has the ratio of the respective
stati6tieal wights:

	

n2/ni 
I* g2/g , 	( 14)

at which point that gas becomes transparellL (beca yse of the balancing
stimulated emission) to radiation at v12 . In Fig. 1, the population

limit cat  is indicated by a horizontal bar for the case 92 " 81 or
ra t  xc n V Because of the fast therms-lization of the rotational states,
the rotational manifold of the v -; I level is quickly filled, subject to

10
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conditions (1) and (4). The number n p of defect excitations up to the

point o f saturation is therefore larger than n 2 by a factor C equal to

the ratio of the total population of the rotational manifold to that in

the particular ,T-state at E2.

To assess the magnitude: of cooling available from P-transition

cooling, consider the effect of CO irradiation at the frequency of its

P(14) line (v	 O, J a 14•)-,,y . 1, J	 13). With b0 . 1.923 cm-1 and

Bl . 1.9(b cm-1 , Eq. (3) yields Erot ^ 57.12 cm -1 , corresponding to

113.5 • 10
-16 

erg, per transition. If driven to saturation, about half

of all CO molecules have undergone the P-transitions so that, in the

average, 56.8 . 10"
16
 erg, i.e., about 5.5% of the heal content (2.5 kT/

molecule) at 300 K has been withdraw ,.i from the translational-rotational

heat reservoir. The molecules in the v= 1 level, of course, relax to

the vibrational ground level with a certain time constant. T'Py thereby

provide a fresh supply for repeated cooling events as long aL much of

this relaxation is non-thermal by the average effect of spontaneous

P- and R-line emissions.
The P-transitions extract only the difference AE 

rotof 
rota-

tional, eni^rgy in the two vibrational Levels. However, it is possible

to extract all (or at least the major part) of the energy Erot given by

Eq. (2) by colli.sional energy transfer to a second gas, such as N2 (see

Fig, 2). The rotational ground state of N2 of the v l level has an

energy which is 187.5 cm-1 higher than in CO. That N2 ground state is,

however, virt.aally (within about 10 ;:m_1) at resonance with the J = 10
or J - 9 states of the v = 1 level of CO, Excited, for example, by

radiation at the frequency of P(10), the CO state at J s 9 (i.e., E2)

can transfer its energy very fast to N2 . This defect excitation of N2

occurs at the expense of the energy E l , viz., J(J+I)B0 . With J = 10,

this energy equals El = 211.5 cm-1 per molecular excitation, considerably

larger than AE 
rot" 

57,1 cm-1 of the P(14) transition.

The gas mixture may contain, typically, 10 Torr CO and 150 Torr

t	 N2. Excitation of the P(10) transition is expected to be distributed

over the rotational manifolds of the v - 1 Levels in both gases within

less than J.0~7 seconds, while the maAfolds in the v 0 level are

_	 l l



t'ol*rt► 11poiW1ng1y depleL#A. rile detailed CaICUIntlOn 
a shows that, A i N

molet.-ulos of the mixture 
are 

brotight to saturation, the heat Wthdrilwil

from Lite translational-rotational reservoir is approximately

L2M=-11E1e- 
EINT

1+(2J-I)e -H'j - JkT

where J 
is 

tile rotational quantum number of the initial state of the

transition (J - 10 in this example) and 1'. l 
 
- J(J+I)BO . Equation (5) is

valid for isothermal operation, i.e., by withdrawal of heat at constant

temperature T from a heat reservoir in thermal contact with the gas.

The equaltion is nl6o valid for adintatic operation in which a gas mass,

thernially isolated from any walls, is cooled from a temperature T' to a

lovior temperature T so that (for constant specific heat c v ) T O -T - AH/cv#

Inspet:tion of Eq. (5) shows that for a given T, the energy H' I

assumes an optimum value for which AH is a maximum. The physical reason

for this is that, while the beat withdrawn equals K
1 

in each transition,

the population in E 
I 
decreases exponentially, as K

1 
increases, with a

resulting reduction of the possible number of such transitions according

to Hqs. (1) and (2). By the same argument, there exists a temperature

T for a given El , at which the entropy i-ransfer AH/T is a maximum. In

adiabatic cooling, this optimum temperature for fixed E
1 
also defines

the M3XiMU►  of a cryogenic merit factor M - (T'-T)/T. M is the relative

temperature reduction produced by the number sa p 
 
of photons sufficient for

saturation.

Iti, P(IO) transition cooling of the GO/N
2 

mixture, With 1: l 
 
fixed

at 211 cm-1 , the optimum temperature is 121°K. Pumping to saturation

extracts 61% of the thermal energy of the gas at that temperature in

isothermal operation. The predicted adiabatic cooling effect with P(10)

irradiation is represented in Fig. 3. Starting at 730°K, the gas

temperature decreases almost linearly with irradiation time, scaled in

units of the (radiative) relaxation time T 
E2. 

The merit factor AT/T

reaches the maximum of 61% when the gas temperature passes through 1210K.

12
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3. CHOICE Of EXPERIMENTS

Studies of the adiabatic and isothermal types of laser induced

cooling are equally of interest in terms of the knowledge to be gained

of the gas kinetic processes involved and possible applications at a

later time. However, adiabatic experiments are simpler to perform and

should precede isothermal studies. In beat pump processes there is always

a stage in which the heat withdrawn, in addition to the entropy-free

energy added, must be rejected. In the radiative beat pump process, the

translational,-rotational heat content and gas temperature is reduced

within a time as small as 10-g-10-10 sec, unless simultaneously tent is

injected. The energy stored in the vibrational levels is released Q

two ways. Virn, spontaneous emission carries away, in the average of

P- and R-transitions, the radiation energy injected and the T-R beat

withdrawn. This process has, for example, a time constant of 30 msec

in pure CO, but is prolonged by a factor equal to the ratio of N 2 
Wo

eoncentrations in the mixture, Second, the energy stored in the vibra-

tional evels may be converted into heat by VTR collisions among the

molecules or by collisions of molecules with the walls to which they

diffuse. For CO and CON, these destructive processes have time con-

stants Vom 1-10 sec. Thus the rate of cooling events far exceeds that

of heating. In adiabatic operation, the laser beam may pass through the

core of a stagnant gas in a cylindrical container with walls which absorb

spontaneously emitted radiation and are maintained at a certain tempera-

ture T w . The core of the gas will then have a temperature which, starting

at T w , will have the type of redurtion shown in Fig. 3. The measurement

of the temperature"Lime behavior is relatively simple and, aside from

testing the validity of the theoretical predictions, throws light on

secondary processes such as on vibrational escalation to be discussed

at the end of this report.

14



Isothermal cooling requires that the translational and rotational

states of the gas are strongly coupled to a heat reservoir at constant

temperature, while the vibrational states remain Isolated front it. Thv

realization of such provisions is possible, or at least conceivable,

in a surprising number of ways. However,, all these methods are more

W?

	

	 complex than the adiabatic measurements and were, therefore, not con-

sidered for the present project.

15



4. LAM SYSTIN FOR TH2 DUECT EXCITATION OF CO(VwO)+(V-l) TUNSITIONS

4.1 ComRatibility Requirements

Various diatomic molecules have an ionic (vibrntional) dipole

moment, hence an infrared spectrum, and also a rate of spontaneous

emission which exceeds their (VTR) rate by many orders of magnitude.

Aniong these, CO was chosen as the cooling medium because it tins the

sma llest (VTR) decay rate and therefore is most suitable for the dotniled

study of the other molecular energy transfer mechanisms involved. CO

can also serve as "collisional pump" source for the excitation of other

diatomic gases, such as N,, which have a very small (VTR) rate, but lack

air ionic dipole moment, (VTR) rates are, as are collision mechanisms,

proportional to pressure; but for a number of reasons, notably diffusion

to the walls, the optimum pressure Is typically about 102 Torr.

The pressure has an important bearing on the Optical properties

of the gas and the selection of the laser source. Self-broadening 16 of

the P(10) line In the fundamental band of CO amounts to about 0.075 cm-1

atm- I (HWHM) at 300 K. The line width varies as T- 0.7 and decreases 17

slowly for increasing J. Somewhat smaller values are obtained for CO/N 2

mixtures. Thus for maximum absorption the pumping laser frequency must

be tuned to CO molecules at 100 Torr within 0.01 cm-l.

The fraction P 
abs 

/P 
0 
of laser power P absorbed by a path length

L of the has is up to certain intensities given by

P abs /
po = 1 - e-o(v)nL	 (6)

where ,T(v) is the absorption cross section and n the gas density. The

absorption cross ser---ion, measured with the nearly monochromatic radia-

tion of a laser at the peak of the absorbing line, v 
0 , varies inversely

with tile line width of the absorber. At the peak of the strong P-lines

16



in tho fundamental CO band, a cross section of 63 - 10" 18 cm2 was mensuredis

for a l.inewidth of 0.0024 em"1 (Doppler limit), whereas the cross section

for CO in atmospheric air is given 
19 

as 1.8 . 10-18 cm2 for a linewidth

of 0.07 cm-1 .
 At a 100 Torr CO pressure, the peak cross section is

therefore expected to be about 15 . 10
`18 

and about 7-8*to' larger for CO

admixed to N2 . Equation (6) shows then that radiation at peak resonance

traversing through 100 Torr CO will be 95% absorbed over a length L

0.057 cm, and over i. 0.53 cm in the N 2 gas mixture containing 10 Torr

CO. However, in intense laser beams, o(v) quickly decreases towards zero

as the v .1 level of CO saturates (the rotational states thermalizing by

collisions) and stimulated emission balances absorption processes, There-

fore the beam continues in its path, bringing successive sections of CO

to transparency ("saturation wave").

For the choice of a suitable laser source, it is important to

know the extent to which its ,frequency can deviate from a peak resonance

at a .frequency v  and still provide sufficient excitation of the gas.

Since the dominant process of line broadening at the prospective CO

pressures is self- and collision-broadening, the cross section o(v) has

this Lorentzian spectral profile

(v-vo ) 1, + Y2

	
(7)

where the normalization factor S

width. It is seen from Eq. (7),

placed from peak resonance v  by

increased by 26 or 101, respecti-

f ct (v) dv and y is the (HWHM) line-

that if the laser frequency v is dis-

5y or 10y, the path length L has to be

vely, to achieve the absorption effects

at peak resonance described in the preceding paragraph, according to

Eq. (6). Thus a cell containing 100 Torr CO must have o length o° at

least 1.5 em or, respectively,5.8 cm to produce 95% absorption. The

corresponding lengths for CO/N 2 are 14 cm and 53 cm.

i-
17



4. 9 AlLernatives for the 1,niier SVaLeM

Since CO lasers produce large powers with high offiviencles,

they would provide the most perfect solution for the radiation source

problem, provided they could yield sufficient powers 
in 

the 1-0 band.

However, only ;a 	 1-0 lasers have been built, 
20 

and they provide only

low powers,') 
I 
Single-line CO lasers for the 1-0 band yielding larger

powers can be built, but the effort presents to project In itself.

Continuously tunable infrared lasers can also provide a perfect.

inaLeh 11) frequency, n1belt again at low spectral radiances. An exception

perhaps is tbe LiNbU 
3 
parametric tunable laser which, however, can only

reach the overtone 21 -0 band of CO, The resulting low absorbance over,

typically, 12 cm would than bave to be compensated by multiple reflections

through the gas coll.

A third class of resonance radiation sources for CO is comprised

Cif littiers with lines which directly, or via S11G or other parametric con-
version
	

Raman shift), eiincicle with the fundnmental absorption

lines of CO. In fact, frequency doubling of 00 2 laser lines hati been used

for various purposes with the coincidences shown 
in 

Table I.

TABLE I

CO2 transition
(001)-(020)

Doubled CO2
freq. in cm-1 CO transition

CO frequency
CM-1

Av
cm-1

P(24) 2086.326 11(14) 2086.323 0.003

R(18) 2154.605 1t(2) 2154.598 0.007

R(30) 2169.270 R(6) 2169.200 0.070

For the planned experiment's, the first of those coincidences had to be

ohosen because of the type of transition and the excellent overlap even

at CO or CO/N 
2 pressures well below 100 Torr, T1 3 

AsSe 
3 

(LASS, developed

at Westinghouse), proustite, and CdGeA,9
2
 all quality as CO,) frequency

doubling crystals. Among these, CdOeAs
2 excels in SHG efficiency by more

than tin order of magnitude.
22
 It turned out that only one souree, viz., a

18
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group at MIT Lincoln Laboratories, was growing slid demonwating CdGvAs.'

crystals of sufficient size And quality to provide a SHVY ositput power

level useful for our experiments.

Before committing ourselves to any laser system, we undertook

a search and calculation to find direct line coincidences between lines

of known lasers of sufficient power and CO. Unfortunately, the funJa-

mental CO spectrum coincides with strong laser lines of other media only,

in one case, viz., its P(22) transition at 2050,86 cm
-1
 with the krypton

laser line at 2050.86 cm -1 . However, another possibility is a match

between 
120160 

lasers And the fundamental, absorption band of a heavier

CO isotope, The band spectra lasing in the former between higher vibra-

tional levels occupy- successively longer wavelength regions and can

therefore be expected to overlap the fundamental band of some CO isotopes

shifted to longer wavelengths by the larger mass of the vibrating ions.

We derived, therefore, the P-line spectrum 
of 

suitable CO isotopes from

recently published Dunham coefficients. 
23 

The 120160 laser frequencies

were obtained from the most recent tables 20 of CO (vacuum) wavelengths.

The search for coincidences yielded the results shown 
in 

Table 11.

TABLE II

	

120160 Laser Transition 	 CO Isotope Transition
VI"11	 0-1 Hand	 Av
Terms Comb,	 Freq. (cm7 1 )	 P-Line	 Freq. (cm- 1 )	 cm-1

3-2 P(16) 2025.876
130180 P(5) 2025.9281 0.0521'

5-4 P(6) 2015.0029 P(8) 2014,9121 0.0908

5-4 PM 2011.0911 P(9) 2011.1813 0.0905

3-2 P(18) 2017.2136
12 C is 0 P(19) 2017.134 1 ) 0.0787

3-2 P(14) 2012.8338 to P(20) 2012.8801 0.0463

4-3 P(14) 2008.5552 #1	 P(21) 2008.5955 0,0435

4-3 P(15) 2004.3369 P(22) 2004.2811 0.0558

19



The accuracy of the isotope frequency calculations should be

within 0.0020 cm-1 , To test the reliability of this estimate, published

Duai.'am 
23 

coefficients ware used to determine the 
12 

C 
16 
0 P-line spectrum

of the fundamental band up to the fourth order of the quant ► , .In state

terms ) just as had been done for the CO isotopes. Theso calculated

-frequencies were then compared with those measured in 
12 

C 
16 
0 and published

In recent laser tables) 
20 

as well as with CO (vacuum) wavelength standards 24

established before 1966. We found that the calculated frequencies agreed

within better than 0.0002 cm with the former and within 0.002 cm with

the latter. The older standards, of course., were limited in accuracy

by Doppler line broadening and by a larger error limit for the speed of

light. We conclude that the coincidence predictions are accurate to a

degree better than that required.

The best overlap between (v'-v") transitions of 
120160 

and

(1-01) all as CO isotope should occur for 
14 

C 
1$
0. Unfortunately, the

spectrum of the latter cannot be determined with sufficient accuracy at

present, and the availability of the, gas is in question.

At a 100 Tarr gas pressure, the P-lines of CO have a linewidth

of about 0.01 cm-1 . 
The mismatch of their coincidences with doubled CO

frequencies, shown in the last column of Table 11, produces gaps from

four to nine times the linewidth at 100 Torr. According to the preceding

section, therefore, most of the laser radiation is absorbed, even in the

least favorable combination of gas mixtures and exciting lines, in gas

cells of convenient size.

The rotational ground state of the v - I level in 120160 lie's

99.58 cm-1'
 
above that of 3.30180. Therefore, a mixture of the two isotopes,

Lypici-illy of 10% 
130180 

and 907 
1201.60 

provides a suitable medium for

rotational cooling, the energy term scheme being quite similar to that

of Fig. 2. The predicted adiabatic cooling	 8,25ng process	 has a trend

similar to that shown in Fig. 3. The rotational conetant B I
 of 13,180

equals 1.73 cm-1 so that, according to Eq. (2), the (v 	1, J - 7) state

of this isotope is in near resonance with the (v = 1, J 0) state of

120160. The proper defect excitation is therefore provided by the P(8)

transition of that isotope which, with B 
0 

ft 1.75 cm-1 , starts at

20



H	 125.74 em
-1 , L

'xcitatiort of that line 
is 

possible with the CoLlci-

dence shown in the second row of Table 11. The predicted adiabatic

cooling process in the CO isotope mixture has its peak efficiency at 75 K

and reaches 24 K asymptotically.

The coincidences of 12 C 16 u laser frequencies with P- lines of

120180 cover the range J - 19 to J - 22 of the latter. The location of

these lines yields relatively high values for P-transition cooling of

pure 120180. Furthermore, they reach unergies sufficient for transfer

to the v - I level of N2.

In summary, a line-tunable CO laser provides coincidences with

Co isotopes suitable for experiments with P-line cooling in Co and

transfer cooling in CO/N 
2 
and CO isotope mixtures. None of the other

methods mentioned before exhibit this flexibility.

4.3 Choice and Acquisition of the Laser , Sy  =Lm

Although the analysis described in the preceding rt-etion had

indicated that CO laser pumping of CO or CO mixtures represented the

best choice, a decision had to be made on the basis of cost in view of

the limited scope of this pro.ject. Cost cons id era t ions excluded the

purchase of a commercial CO laser dedicated to this project. The opera-

tion of CO lasers with upper vibrational levels v' -;. 6 requires cooling

to at least 130 K. A survey of CO lasers not in present use discovered

a few that were available, but none capable of delivering the transitions

shown in the third column of Table II (or transitions with less favorable

coincidences not listed there), Cost consideration also excluded

acquiSiLlon of a 'krypton laser for the coincidence with the P(22) absorp-

tion line of CO.

it was therefore necessary to pursue the next best option, viz,,

the combination of CO2 laser and CdGeAs 2 S11G crystal. The (0-1) P(14)

line of 
1201600 within the Doppler linewidth coincident with the frequency

doubled P(24) line in the (001)-(020) band of CO., excites CO to an

energy somewhat above the (v - 1, J - 0) state of N2* However, the

slightly decreased resonance transfer efficiency of this process compared

21
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to PkIO) operation is amply compensated by Increased net energy defect

oxviiange. The cooling affect of Clio P(14) transition in pure V-0 U, or

course, relatively favorable, as described in $action 2,

We received from Dr. Mooradinn O s group at the MIT Lincoln

Laboratories a OdGeAs, crystal of approximate dimansions 3 x, 3 x 3 mm.

According to a communication from Dr. Many4kp attempts to achieve output
powers of I watt had to be limited to pulsed operation. To reduce aboorp -

tion by the crystal of the pump radiation, the crystal is cooled by

contact with a liquid nitrogen reservoir.

Several G02 laaers, operating either continuously or pulood

were available at the Westinghouse R&D Center. Among thasa t n longitudinal

discharge laser wns chosen and installed in the system. It has a maximum

output power rating of 200 watts cw, but can be operated pulsed at lower

average powers. 
At 

any rate, however, a lower power limit is imposed

Vy the Noon's 2 'T

The crystal is supported in a metal Dewar equipped with NnCl

windows, Because of the small size of the crystal, we acquired a benni

condenser which reduces the diameter of the laser beam to about 2,5 mm.

22



5. THE GAS KINETIC REACTION CELL

In view of the power limitation of the source, onforeed by the

limited radiation damage threshold of the small $110 cryiitalp the design

of the coll, containing CO or CO/N2 had to be a compromioe of mutually

conflicting roquirements. The diameter of the call had to be small

enough so that the adiabatic temperature reduction produced in the path

of Lite 2.5 mm din, Inner beam would be easily measurable by the resultant

pressure reduction. However, the call diameter: line also to be large

enough no Clint the difrusion time of the vibrationally excited moleculeti

to the walls was large compared to the time of vibrational energy relaxa-

tion by spontaneous emission. Similar trade-offs apply to the choice of

Lite gas pressure, Too small a pressure decreases the diffusion time of

the vibrationally excited molecules to the walls to magnitudes no longer

large compared with those of radiative relaxation, Too large a pressure)

however, dacreases the (VTR) time constant of thermal relaxation to a

point at which spontaneous emis gion is no longer the dominant relation

mochattism. The optimal choice of the cell length depends on Lite CU

pressure (or rather on its molecular density) tin ► on the available

laser power. The number N or molecules in the path of the laser beam

equals the product of the molecular density to the beam cross seetion)

and the cell length. Obviously for optimal operation, the number N

should be just large enough to deplete the available beam power by

absorption. However, a possibly conflicting consideration is that the

length should also be large enough to allow the flexibility needed for to

variety of experiments, involving different gas mixtures, densities,

temperatures, and laser powers.

The design of the gas reaction cell was based on all these

considerations which are outlined in the following in greater detail.

23
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5.1 Power Balanco and Call Dimanoiono

In the adiabatic cooling process of CO2/N2, the temperature
undergoes initially an almost linear descant and than approaches a
,cower limit asymptotically. After the onset of laser radiation, the

Population in the it - I levels is built up close to the saturation point

of CO by n 
P 

photons of energy hv 12 (0 E2-El) The ri
p 

molecules In the

v in I levels now decay at a rate I/T mainly because of spontaneous
V- 2

emission. To maintain the excited population close to the saturation

value, the laser system must therefore supply the pump power

1)	 n p 11V 12 /T E 2
	 #

	
(8)

However, n 
p 

is a function of temperature since the saturation population

in E has to adjust to population in 
t'1  

which decreases with falling

temperature# Introducing n p a bu/E 
1 

from Eq. (5) into Eq, (8), we

obtain

	

P - ALnhv 
12 (2J-1 e-EIAT —	 1	 (9)

	1 4- (2J-1)e-El/kT	 E2

where the number N of molecules in the path of the laser beam has been

expressed as the product of beam area A, cell length L and molecular

density n. We now choose "he apparatus parameters given in Table Ill.

TABLK III

A - 4.9 • 10~'2 cm 2

L - 12 cm

n # 3.53 - 1418 cm-3

11V 12 , 4.1E • 10
-20 J

E I - 0,796 - 10
"20 J

T E2 - 0.30 sec

J - 14

06	 le4

Cross section of 2.5 min dia. laser
beam

Cell length

Molecular density at 100 Torr

Photon energy of the P(14) trans l-
tion at 2086.3 cm-1

Energy of CO state (v w 0, J * 14)

Time constant of decay for v - I
states due to radiation in CO/N

is,otational quantum number of 81
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When introduced into Eq. (9), the values of Table III determine

the following power requirements:

At f w 300 K, with k - 1.38 - 10~23 J/K 0 P u 237 mW represents

the inaLuntaneous required power at the start of excitation. Under

adiabatic conditions, the temperature begins to fall and, according L0,

Eq. (9), he demand for power lessens. For example, an the temperature

reaches 120 K, the required power Is only 52 mW. After a few seconds,

the asyjnptotl •̂ ,, trend of the temperature is reached and the power demand

approaches very small values. In this description, it has been assumed

that the rates of events leading to cooling are much larger than those

of heating due to such relaxation processes as VTR transfer and diffu-

sion to and from the walls. Tt , e conclusion that the gas finally reaches

a finite, although not vanishing, steady state temperature is in fact

based on the existence of these losses.

The range of powers required for CO/N 
2 

is well within the

rating of the SHG crystal, Similar evaluations have been performed for

P-line pumping of CO. The difference between the two gases is that the

radiative channel of norithermal relaxation is ten times as fast in pure

CO than in CO/N 
2 

(since In the former, every molecule has a dipole

moment, rather than one in ten as in the latter). While this factor

tends to increase the power requirement according to Eq. (9), it is

compensated by a statistical weight factor which reduces n 
p , 

as a detailed

calculation shows. The power requirements are thus of the same order as

in CO/N2.
The parameters listed in Table III for the gas kinetic reaction

cell were of course chosen beforehand so as not to exceed the available

power rating of the laser system.

5.2 Diffusion Losses and Cell Diameter

When a vibrationally excited molecule drifts to and collides

with a wall of the container, it has a certain probability of deactivation

to the vibrational ground state. However, the detailed energy transfer

processes do not appear to be known. There are four types of Interactions

possible which, in the order of their estimated probabilities, are the following:
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(1) No transfer of vibrational energy,

(2) Transfer of vibrational energy to lattice phonons of

wall; return of molecule with Wr corresponding to wall

temperature.

(3) Transfer of all or part of vibrational energy to R-T energy

of molecule.

(4) Induced photon emission of photon of average ^L^nergy liv 20,

Of these, the third mechanism is the most damaging since, it returns in

the  average the vibrational energy hv 02' 
which is five times the rota-

tional energy (see Table III), to the RT reservoir of the gas, In the

event of alternatives (2) or (4), nothing is added to the energy balance

that would not have occurred, if the molecule had previously returned

to the ground state by radiation. The first process acts as if the

cell diameter 
had 

been extended.

Experiments on the cooling balance in the low pressure regime

should yield information on the probability of the third process.

Nevertheles g , LO ensure conditions under which the effect of wall quenching

is negligible, the diffusion time to and from the walls should be made

long compared to the time of radiative relaxation.

Because of the importance of this problem, we calculated the

required diameter of tbo cell in two ways. The first was a simple

random walk calculation. In random walk, the average distance R reached

after m steps of Length A equals m1/2A,  In gases A represents the mean

free path which is traversed in the collision time A/—v at the mean velo-

city V. The mean diffusion time to a distance R is therefoia

A	 R2=

	

dif f 
M 
v= TV	 (10)

which is (for mean free paths short compared to cell dimensions) propor-

tional to the gas density n (cm -3 ), but behaves as 
T_1/2 

at constant

density and as T!3/2 at constant pressure. At T = 273 K and 100 Torr,

CO molecules have, a mean velocity of	 4.54 - 10 4 cm/sec and a moan

free path A = 4.91 • 10-5 cm. Thus for CO at 100 Tarr, 273 K:
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tdiff " 0.45 k"	 kit)

The second calculation used classical diffusion equations and published

values 
26 

for the self-diffusion coefficients D$ ^ of CO and N2

000/00 " 0.170 and 
DN2/N2 

0.154 cm  sec-1 at T • 273 And 1 atm). This

calculation showed that 32% of CO molecules at 100 Torr and 273 K had

exceeded a range R after a time

t 327. " 
0.35 R2
	

(12)

with 10% Longer delays for N2.

These results led to the conclusion that a cell of at least

2 cm inner diameter produced a sufficiently long diffusion time over a

path length R S 3 cm to the wall and back to the irradiated core. With

a radiative relaxation time of 0.03 sec for pure CO and 0.3 sec for a

102 mixture of CO, only 7.7% of CO and N 2 molecules arrive at the wall

in the average from the mixture at 100 Torr in a vi,brationally excited

state. For the case of pure CO, only 10-16 of the excited molecules

hit the walls with their original vibrational energy still intact.

5.3 Design and Preparation of the Gas Reaction Cell.

The considerations detailed in the two preceding sections led

to the cell design shown in Fig. 4. It consists of a 5" long, 1" Q.A.

copper tube to which sapphire windows were brazed via flanges consisting

of 70% Ni and 30% Fe. The completed window seal assemblies were obtained

from Ceramaseal, Inc. The inside of the copper cylhnder was painted with

Aquadag, a product of Acheson Colloids Co., consisting of graphite sus-

pended in water with a binding material. After heating above 450°C,

which occurs conveniently during the brazing operations in an atmosphere

of hydrogen, the graphite forms a black coating which is more than 95%

absorbing for radiation at 5 um. The purpose of the black Layer is to

prevent multiple reflections of the spontaneously emitted radiation from

the copper wall. This radiation undo goes a certain amount of resonance

27



imprisonment, i.e., repeated processes of absorption (at somewhat lower

cross sections than in the center of the line) and reemission. While

these processes as such do not contribute to heating in the average, they

prolong in effect the radiative lifetime of the vibrational states in

the environment of the irradiated core (the core itself is relatively

transparent, however, because of its near saturation.)

Tests showed that Aquadag withstood repeated heat treating

cycles for vacuum outgassing without deterioration. Other blacks, such

as CuO, were not considered to be as reliable.

Before the choice of black walls, the alternative of letting

the radiation escape through the wall had not been overlooked, One-inch

diameter sapphire tubes (polycrystalline transparent alumina) are, in

fact, used by Westinghouse for arc lamps. Such a cell would permit

steady state cooling of the structure itself, and the concept represents

one of the embodiments of isothermal cooling by laser radiation. However,

the need for four sealing operations (to two windows, the dynamic pres-

sure gauge, and the pump line) did not appear warranted for the adiabatic

cooling experiments

28
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G. GAS HANDLING SYSTI-It AND ASSMBLY

6.1 Requirements of Gas purity

The very small VRT collision rates of CO, CO/N2, and CO/N2/He

(the latter pertinent for isothermal cooling and other conditions) are

possible only at high purities. This is especially true with respect to

polyatomic gases, such as H 2O,  CO
2
, and hydrocarbons some of which have

VRT 'rates 105-106 times larger than CO. They should therefore not be

present in concentrations larger than 1-0.1 ppm. We obtained from Matheson

Gas Products Co. several one-liter glass flasks each of 99.99% pure CO

and 99.998% pure N2 (Research Grade). For CO the specified impurities

were less than 100 ppm N 	 IQ	 200 ppm A,
'0 

ppm 0
2 1V	 10 ppm 00

2' 10 ppm 1i2,

and 2 ppm C 
x 

It 
Y, 

Taking into account the known or estimated VRT rate

of each component, these specified limits of impurity are still acceptable.

The presence of a liquid nitrogen trap constitutes an additional safeguard

(CO has, at nitrogen temperatures } still a vapor pressure of about 400

Tort).

Impurities other than those of the gas sources have to be

-i,_rx,oalzed by preceding the filling of the cell with evacuation and bake-

out cycles. A vacuum condition of 10 -6 Tort is adequate since it con-

tributes to a gas admitted at 100 Tort impurities of no more than 0.01.

ppm. Bake-out cycles must be repeatable and must be performed on the

Installed system connected to the diffusion pump. The one-liter glass

flasks, unlike steel tanks with differential pressure gauges, can be

easily outgassed, but have to be replaced after about 20 filling opera-

tions.

6.2 System Assembly

The assembled system is shown in Fig. 5 (not to scale to emphasize

certain details regardless of their..laze). The subassembly of the gas

M,
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reaction call between valves V 
I 
and V3 uses stainless steel tubes of

1/4 1' outer diameter, 1/4" T-joints, Cajon seals to the Baratron pressure

gauge, and stainless steel Nupro valves, all connected by brazing opera-

tions, Valves V 2
 and V 3 , when closed, isolate a gas volume which changes

pressure in response to the resonance defect excitation. Since the

adiabatic heat withdrawal is measured by the reduction of pressure, all

"dead" volume outside the cell should be kept t o a minimum. The volume

of tLa gas cell itself is about 50 cm 
3 
whereas the volume in the tubing

and the measurement compartment of the Baratron add up to about 7 cm3

The reaction cell occupies therefore 8$% of the volume isolated between

valves V2 and V3.

To allow a suffietient pumping speed, the tubing outside of

valves V 1 and V3 is made of glass with 5/8" to I" diameter except for

the section between the Nupro valves V 4 and V5 . Because of the bake-out

requirement, only stainless steel valves can he used. The volumes

between V 4 and V3 and between V5 and V5 represent gas sluices to meter

out the desired GO or N
2 

pressures to the gas cell and, by alternatively

opening and closing valve V 2 , also to the reference compartment of the

Baratron between V1 and V 2 . Liquid nitrogen trap 2 conditions the

vacuum outside valves V1 and V,# Trap 1 is operated during gas filling

operations.

The entire gas handling and evacuation system is permanently

wrapped by about 100 1 of heating tape consisting of insulated Cr-Ni

strip. This permits repeated bake-out cycles during the course of

experimentation.

6.3 Measurement Equipment

The phenomena that we expect to measure are of the following

type and sequence in time t after the onset of continuous or pulsed

radiation at t = 0 (100 Torr CO or CO/N 2):

(1) At t - I nsec, the molecules which have already undergone

resonance defect transitions have mostly thermalized with the surrounding

T/R heat reservoir. However, their density in the irradiated core has
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not; had time to change, and tile small temperature reduction call only bo

measured by picosecond or nanosecond spectroscopy.

(2) At t w I psec t the density in the core tins begun to increase

(this has occurred over a radial distance of about 0.5 min with the speed

of sound). Another effect, 
8 
not specifically mentioned in Section 3,

that of further fast cooling by V=V escalation tins also begun to take

effect.

(3) At t - I msee, the pressure reduction in the cell begins to

be sensed by the Baratron.

(4) At t - 100 msec, pure CO has gone through three cycles of

spontaneous emission and repeated excitation, whereas CC/N
2 
has just

started to do so. Cooling has spread by diffusion to a radius of about

2.5 mm.

(5) At t • 3 secs, the pressure and the radial distributions of

temperature and density, are approaching a steady state. The tempernt- u r e

at the steady state has a minimum in the core and results as the balance

of defect cooling and VRT heating. Most of the VRT,generated heat,

however, is transported to the wall by radiation and there absorbed.

Because of the
	
thermal conductivi t v of the copper enclostne, inside

and outside surfaces of the wall are virtually at the same temperature,

which is held constant by the environment. The radial temperature dis-

Lribution thus varies from the minimum in the core to the wall temperature,

typically at 300 K. The net beat content of the volume in the cell is

reduced from the initial state by an amount which is measured as a pres-

sure reduction at constant volume by the Baratron.

The events of this scenario are measured by two types of

instrumentation:

(1) The Mach-Zehnder Arrangement shown in Fig. 5 measures tile

temperature in the core by its molecular density. The heart of the arran L'o-

ment is the set of four, beam splitters (1) to (4) shown in the figure.

The beam from a Model 120 Spectra Physics He-Ne laser emerges polarized

horizontally. Half of this beam is split towards a CaP 
2 

(or UP) flat

(2) so that, at its horizontal polarization, about 5% of it is transmitted

through the axis of the cell. The other half of the beam traverses the
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coated silica beam splitter (1) and is reflected by Au mirror (3) towards
a second CaF 

2 
flat (4). At this beam splitter, the two halves of tile

lle-Ne beam are ouporpusad with equal intensity, corrected by a neutral
filler and focused on a pinhole In front of a photomultiplier. The

frequency doubled CO2 laser beam is made collinear with the lie-No laser

beam by beam splitter (2).

The measurement sensitivity of changes in density and tempera-

ture can be estimated 
on 

the basic of the refraction indices for CO

(n - 1.000044 at 100 Torr and 300 K) and N
2 

(n - 1,000039 at 100 Torr and
300 K). The 12 cm length of the cell produces at 3.00 Torr a path length
which is increased over that of vacuum by 8.9 X and 7.3 )., respectively,

for the wavelength X - 6.3 - 10-5 cm of lie-Ne. The thermally caused

Increase of the optical path length in the cell amounts to about 0.025 X/K.

Starting with complete destructive interference of Lbe two superposed

beams, 0.1 K represents the mirit-Itum detectable temperatcu re. change, if

sufficiently stable beam conditions are obtained.

Used with 
an oscilloscope of appropriate speed, the Mach-Zelinder

arrangement can follow the dynamic temperat"re behavior from time scales

of 100 nsec on upward.

(2) The Baratron (MKS Instruments, Inc.) tins a dynamic range

of pressure measurement of 10 Torr. The reference side: of the gauge must

Llierefore be first raised to the appropriate bias pressure. The specified

accuracy at full scale is 0.08%. If initially at 1.00 Torr and 300 K, the
gas temperature in the cell has to change 30 K to produce a full scale

response and is measured with an accuracy of 0.024 K. The accurac y is

still much higher, according to the manufacturer's specifications, at

fractional scale readings.

Because the Baratron gauge operates by the capacitive sensing
of a deiiention produced in a diaphragm, its minimum response time is

only 2 cosec. According to Hqs. (11) or (12), cooling has spread beyond

the core after 2 msec only to a fraction of a millimeter. Tbo pressure

change measured by the gauge is, therefore, caused by t1io temperature

cliange of the core, subject to a small correction. Typically, such a

measurement is started by equalizing the pressure of the two Baratron
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compartments via valve VV To gain an Impression of the accuracy possible,

assume initial conditions of 30014 100 Torr, A temperature ebange of

0.3 K then causes in the core a fractional density change of I • 10-'

and 1 - 10-5 in the cell. The measurement side of the baratron thus

experiences an increase by 1 • 10-3 Tarr which, according to MKS graphs,

it reads with 1% accuracy. Honco, the 0.3 K temperature change in the

core 
is 

measured to an accuracy of 0.003 K.

Because of the linear relationship between pressure and tempera-

ture at constant volume, the gauge measures the difference in the heat

content of the gas volume in the call at the start of radiation and at

times up to the steady state condition. it is possible to calculate

from this the temperature that has been reached in the core. More

important, one can determine the temperature that would be reached, under

otherwise equal conditions in an irradiated gas core of a diameter large

compared to the mean diffusion range at the time of the steady state

condition (note that, because of molecular level saturation, that

temperature is not obtained by merely multiplying the mean temperature

drop of the cell volume by the arose section ratio of cell and core).
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7. PIANNED AND PROPOSED EXPERIMENTS AND HW-'URFMgNTS

At tile present work status, the assembled system is ready for

the measurement 
Phase, 

Tile experiments which were planned under this

contract were to explore adiabatic cooling. 
In 

detail, they were the

f ollowlng;

(1) Measurement of tile gas temperature as a function of time

from milliseconds to seconds at various preBsures farm 1 Torn to about

300 Torr of pure CO. The experiments were to be performed wish 2.5 mm

diameter lager beama t but comparison experiments with 5 mm beams were

also planned.

(2) Measurements of the same type. as under (1) on COINS.

Mixtures of 10 and 50 Tarr CO each at various added pressures of nitrogen

were to be investigated, tile choice to some extent depending on (1).

(3) Investigation of the gas kinetic transfer phenomena in the

time domain from the shortest time achievable with the system in pulsed

operation to milliseconds. These are essentially operations at low

energy 
in 

which density and pressure changes are measured simultaneously.

some of these measurements were also to be taken with long pulses and

higher total energy input. from milliseconds to seconds.

These measurements were intended to determine tile magnitude

and time behavior of the temperature in tile, core and, indirectly with

further -analysis and calibration, of the radial temperature distribution

in the gas kinetic reaction cell. The variation of tile experimental

parameters has as a main objective the assessment of competing transfer

processes and their effect on adiabatic cooling. These are, 
in 

tile

order of their respective relaxation times at intermediate pressures,the

following: VV energy transfer, resonance imprisonment, diffusion to the

walls, and VRT thermal relaxation.

Aside from exploring laser induced heat pump processes as such,

the experiments and measurements out.Lined here are expected to yield
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were to be investigated, 
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choice to some extent depending on (1).

(3) investigation of the gas kinetic transfer phenomena in the

Livv domain from the shortest time achievable with the system 
in 
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operation to milliseconds. These are essentially operations at low

energy in which density and pressure changes are measured simultaneously.

Some of these meaourements were also to be taken with long pulses and

higher total, energy input from millisecrnds to seconds.

These measurements were Incended to determine the magnitude

and time behavior of the temperature in 
the core and, indirectly with

further analysis and calibration, of the radial temperature distribution

in Ole gas kinetic reaction cell. Tile variation of the experimental

parameters has as a main objective the assessment of competing transfer

processes and their effect on adiabatic cooling. These are, in 
the

order of their respective relaxation times at intermediate pressur-8,tho

following: VV energy transfer, resonance Imprisonment, diffusion to the

walls, and VRT thermal relaxation.

Aside from exploring laser induced beat pump processes as stich,

the experiments and measurements outiined here are expected to yield
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Information on gas kinetic coefficients by methods different, And often

not obtainable, from a spectroscopic approach. This includes collisional

energy transfer rates, especially those involving molecules without an

electric dipole moment, and the relatively unexplored conversion of

vibrational energy in collision with walls. Such experiments, which may

quite possibly encounter impasses and phenomena not foreseen by us, may

prove of value to such other fields as chemistry and isotope separation

induced by lasers, as well as to the development of gas lasers themselves.
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