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Introduction

The pinhole-occulter system is a Space Shuttle based experiment for
the production of hard X-ray images taken primarily from the Sun. The
system is basically a pinhole camera utilizing a deployable 50-m flexible
boom for separating the pinhole from the recording devices located in the
Shuttle as seen in Figure 1. At the distal end of the boom from the
Shuttle is a 50 kg mask containing pinholes and coronograph shields. At
the proximal end the detectors are located and mounted, along with the
boom, to a gimbal pointing system (either IPS or AGS) aligned with the
target along vector d.

The mask must be pointed at the X-ray source, along vector m with
a 1igh degree of pointing stability to align the axes of the detectors
with the pinholes and shields. Failure to do so will result in a blur-
ring of the images on the detectors and a ioss of resolution. Being a
Shuttle based experiment, the system will be subjected to the distur-
bances of the Shuttle. The worst of these is thruster firing for orbit
correction; the Shuttle uses a bang-bang thruster confro1 system to
maintain orbit to within + 0.1°, Other disturbances include man motion,
motion induced by ofher systems, and gravity gradient torques. .

The control system of the pointing mount can sense both position and
velocity of the mask tip and uses these to accurately estimate the flex-
ible body modes of the system. An optimal control/suppression scheme is
then used to controi these modes. Disturbances are detected by
sensors and are used as commands to drive the system. The AGS, with
perfect sensors was utilized in this three axis control system study.

The analysis of sénsor/drive errors as well as a free body analysis will

be the subjects of a later report.
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Background

The basis of the dynamic model was to us: standard modal analysis.
Cn any flexible structure, modes (eigenvalues) are set up and damp out.
Each mode (a pair of complex conjugate eigenvalues) has two complex con-
Jucate eigenvectors, associated with it. By using a finite element model
of the beam, there {s a mass associated with each node (connection points
of the elements). The eigenvectors alcng with these nodal masses can be
used to calculate the deflection of the beam at any node due to any mode.
Motions of the base excite th: rodes and induce deflections of the beam

tip.

iiven these flexible bedy modes, the state equations for the system

can easily be written as: [1,2]
x = Ax + Bu (1)
y = Cx + Du (2)

The inputs to the system are accelerations in each of the three axes
while displacements feed forward to the output. Partitioning the states

of the system into controlled states, x_. and suppressed states, X We

¢
have :
KX . A 0 ][] . % : {3)
_xs‘ l-0 A ] -xs_i B
v e [ecieg J[x] ¢+ 0w (4)
L . T <]




By noticing that the double integration of the acceleration fnputs
are part of the outputs, we can define six (6) new states, Xgo which are
the rigid body modes of the boom.[3] This fact introduced into Eyns. 3

and 4 yields the equations of state for the system:

x| [ o o7 [x] 8, |
x| = |0 A 0 x| *+ |3 | v (5)
Xp 0 0 AR Xp BR
L L J L |
E : -hc P lg i GR | -xc- (6)
I L N

XR

Where the control vector 3 and output y are three dimensional vectors.

This partioning of the state vectors reflects the objectives of the
control system design. The controlled states, Xo» MuSt be controlled to
achieve satisfactory system performarce while the suppressed states, Xgs
are known but not critical to the control design [4,5].

what we would like to do is effect changes in x_ and no changes in

c
either x_ or Xq- The effact of the zontroller on the rigid modes or

s

suppressed modes is called control spillover. We wish on one hand to
optimize the system for the controlled states and limit the control
spillover: the controlled states are controlled while the suppressed
states are not excited by the controller and the rigid states are

unaffected by it.



Let us proceed as follows: suppose we have an optimum controller
u' e - Kx (7)

determined by using an index of performance
PL = £ (x] Q x+u' R U)dt . (8)
0

We would then have in the control equations:

- i T _— -

X Ac - BcK ,» 0, O Xe
x| = -BK, A, 0 X (9)
L XR‘ N - BRK » 0 'y AR- LXR‘

Clearly, we would 1ike to have for no ccntrol spillover:

Bk = 0 (10)

BeK = 0 (11)

“owever, equation -t implies K = 0 because of the form of BR[3]. Equation
10 implies that Bs and K are orthogonal [5,6,7]. We can modify equations
10 and 11 so that

ByK = K=0 , (12)

e

which merely implies the crthogonality of B, and K.

By modifying the performance index <9 include spillover terms (BIG)
we can simultaneously minimize the PI and the product 8,K. Including

these spillover terms in the PIl, we have:

om



o

PLe 7 OxJ Qo xg* il R G+ (30T R, (0] ar (13)
5 |
it T T T v A
= [xc Qe % * U (Rc +8 R, 8) u] dt . (14)
2

Now by heavily penalizing the PI to suppressed state spillover (Rs ”’Rc)'
we can force the maximization of the crthogonality of 8, and K. The feed-
back coefficient matrix can now be solved from the familiar matrix riccati
equation of Appendix 2.

The control spillover into the rigid body states cannot be avoided,
but represents only steady state following errors. These errors can be
lessened by the proper selection of controller gains for command inputs.
By the design of an optimal tracker, orthcganal to the suppressed states,
the steady state following errors can be minimized.

Once the optimal controller is cetermined, the boom tip responses
and control inputs (-Kxc) can be calculated using the system equations 5,
6 and 8. Taking the LaPlace transform of equation 9 substituted into

equation 3 we have:

sX.(s) = (A, - 8,K) X.(s) + % 8_ U(s) (1)
sXg(s) = (Ag) X(s) - BK X (s) + s B¢ U(s) (16)
SXg(s) = - Bok X (s) + Ag Xg(s) + s% 8p U(s) . (17)

Rearranging the terms of eguations 15-17 and defining

oc(s) = (SI - A+ BCK)°1
35(s) = (ST - A"
3R(S) = (SI - AR)-1 ’ (18)

we have:



Xo(s) = s 35(s) R, U(s) (19)
Xg(s) = s% a(s) By Iy - X 35(s} 3.1 Us) (20)
Xe(s) = 52 op(s) By (13 - K 3,(s) 3. u(s). (21)

The term, K eo(s) B.» 1n equations 20 and 21 represent the control spill-
over in the suppressed states and rigid body states respectively. This
term represents the activation of the suppressed states in equation 20
and a reduction of the magnitude of the response of the controlled states.
In equation 21, this term represents 2 further reduction in the magnitude

of the controlled states and the introduction of steady state following

errors.

-

Using the output equation £ for the system, we can find the boom

tip responses as:

= (szcc°03c + 52950555513 - K3,3.] + sZCR¢R3R£I3 - Koosc])u(s),
(22)
But

schpRBR = 13 since the positiznal input is fed forward to the
output in eqn. 2.

Therefore,

o e 2 e
Y(s) = s ot + s csasas(;3 - K3g3.) + 1y - Koosc]U(s) , (23)

which are the controlled modes, supc-sssed wcdes with spillover and

rigid body modes with spillover.
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The Tracking Problem

The tracking capabflity of the system represents the ability of the
system to follow steady state command signals. In the case of the POF
boom it is desired to track second (2nd) order polynomials. [3] The
system output (tip angle of the boom) is given by equation 23 but the
only steady state terms are given by the rigid body modeswith spiliover.
Namely,

Yoo () = (I3 - KegB.)U(s) (24)

where U(s) is the command signal.
It is desired to track 2 system of constant equatfon R, such that

N
Y(s) = & (25)
s
with a command signal

3352 + st + Q]

U(s) = (26)
s
which yields the tracking error
~ ‘ ::352 + azs + L3 R
E(s) = Yog = Y(s) = (I3 - KegB.)( ) - =5 . (27)

H s
The first term of equation 27 reduces to a ratio of polynomials in s,
whose denominator {s composed of the optimum controlled modes, D(s). The

total tracking error is then the ratio of two polynomials in s;

(s) Kn Ky K, Ny(s)
& S(s) 50 " ' s ' 0(s) e

where the right half equatfon is the partial fraction expansion of E(s).

Notice that the steady sta(te) tracking errors are given by the first three
Ny(s

terms while the term, —:)GT , represents the excited controlled modes

which rapidly damp out.



The approach taken in this work was to varying the 31139 and a,
matrices to obtain zero steady state error coefficient; namely Ko . K, .

Kz = 0. A complete derivation of this approach is shown in appendix one.

Results
The matrix riccati equation was solved using the PI of equation 14

and no control spillover occurred in the 7 axis. This yielded an equation
24,

. _1.765¢2.55 _ _ 4.341.2s

- - 9 » 9
$€42.69s+2.99  5°+2.055+56.3 [Uts)
1.765+2.66s 4,.3+1.3s
Ye(S) = P, Vet e, p| (29)
$s $°42.695+42.99  $°42.05s+56.3
) » p / o 1

Using the approach above it was found the tracking error could be

minimized by:

2
ale) & J1:445°42.91543 o,
Uk(s) Reo

(30)
$
2
(e} o :8285%43.408s43 -
qy(s) 4;3 Ryo (31)
RA
and, Uz(s) = —3’- . (32)

Plots of e;(t). and e&(t) are shown in Figpre Two. Following errors start
at zero as the shuttle starts drifting through its deadband and gradually
increase to about .1 arc sec after 100 sec. During a typical shuttle
deadband drift lasting 50 secs the maximum tracking error in x s .04 arc

sec and .03 arc sec in 9.
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Conclusions

The gimbal driven POF boom has been shown to be capable of track-
ing during shuttle gravity gradient drifting to within a few hundredths
of an arc sec. The regulator system was recptimized to eliminate 2
axis tracking errors entirely. This reoptimization did not change the

characteristic eigenvalues of the system.

N
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