NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

FINAL REPORT

NASA PO \# H-52750B

PINHOLE-CORONOGRAPH TRACKING CONTROL

Submitted to

National Aeronautics and Space Administration Marshall Space Flight Center
 Huntsville, Alabama 35812

From

JMA Inc.
Tuscaloosa, AL 35405
(MASA-CR-161819)
TRACKING CONTROL PIMHOLE-CORCNOGEAPH
23 P HC A02/AF A01 Final Report (JHA, Inc.)

$$
\text { M } 81-27461
$$

CSC 14 E

Michael Greene, Ph.D. Principal Investigator (205)348-6351

June 5, 1981

table of contents

Page

1. Introduction 1
2. Background 3
3. The Tracking Problem 8
4. Results 9
5. Conclusion 11
6. Bibliography 12
7. Appendix I: Derivation of Tracking Centroller 13
8. Appendix II: Feedback Matrices 20

The pinhole-occulter system is a Space Shuttle based experiment for the production of hard X-ray images taken primarily from the Sun. The system is basically a pinhole camera utilizing a deployable $50-\mathrm{m}$ flexible boom for separating the pinhole from the recording devices located in the Shuttie as seen in Figure 1. At the distal end of the boom from the Shuttle is a 50 kg mask containing pinholes and coronograph shields. At the proximal end the detectors are located and mounted, along with the boom, to a gimbal pointing system (either IPS or AGS) aligned with the target along vestor \dot{d}.

The mask must be pointed at the X-ray source, along vector \hat{m} with a nigh degree of pointing stability to align the axes of the detectors with the pinholes and shields. Failure to do so will result in a blurring of the images on the detectors and a ioss of resolution. Being a Shuttle based experiment, the system will be subjected to the disturbances of the Shuttle. The worst of these is thruster firing for orbit correction; the Shuttle uses a bang-bang thruster control system to maintain orbit to within $\pm 0.1^{\circ}$. Other disturbances include man motion, motion induced by other systems, and gravity gradient torques.

The control system of the pointing mount can sense both position and velocity of the mask tip and uses these to accurately estimate the flexible body modes of the system. An optimal control/suppression scheme is then used to controi these modes. Disturbances are detected by sensors and are used as commands to drive the system. The AGS, with perfect sensors was utilized in this three axis control system study. The analysis of sensor/drive errors as well as a free body analysis will be the subjects of a later report.

FIGURE 1

Backoround

The basis of the dynamic model was to us: standard modal analysis. On any flexible structure, modes (eigenvalues) are set up and damp out. Each mode (a pair of complex conjugate eigenvalues) has two complex conjugate eigenvectors, associated with it. By using a finite element model of the beam, there is a mass associated with each node (connection points of the elements). The eigenvectors along with these nodal masses can be used to calculate tine deflection of the beam at any node due to any mode. Motions of the base excite the rodes and induce deflections of the team tip.
fifven these flexible beay modes, the state equations for the system can easily be written as: [1,2]

$$
\begin{align*}
& \dot{x}=A x+B \ddot{u} \tag{1}\\
& y=C x+D u \tag{2}
\end{align*}
$$

The inputs to the system are accelerations in each of the three axes while displacements feed forward to the output. Partitioning the states of the system into controlled states, x_{c} and suppressed states, x_{s}, we have:

$$
\begin{align*}
& {\left[\begin{array}{l}
\dot{x}_{c} \\
\dot{x}_{s}
\end{array}\right]=\left[\begin{array}{ll}
A_{c} & 0 \\
0 & A_{s}
\end{array}\right]\left[\begin{array}{l}
x_{c} \\
x_{s}
\end{array}\right]+\left[\begin{array}{l}
B_{c} \\
B_{s}
\end{array}\right] \ddot{u}} \tag{3}\\
& {[y]=\left[C_{c} \vdots c_{s}\right]\left[\begin{array}{l}
x_{c} \\
x_{s}
\end{array}\right]+0 u .} \tag{4}
\end{align*}
$$

By noticing that the double integration of the acceleration inputs are part of the outputs, we can define six (6) new states, x_{R}, which are the rigid body modes of the boom.[3] This fact introduced into Eyns. 3 and 4 yields the equations of state for the system:

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{c} \\
\dot{x}_{s} \\
\dot{x}_{R}
\end{array}\right]=\left[\begin{array}{lll}
A_{c} & 0 & 0 \\
0 & A_{s} & 0 \\
0 & 0 & A_{R}
\end{array}\right]\left[\begin{array}{l}
x_{c} \\
x_{s} \\
x_{R}
\end{array}\right]+\left[\begin{array}{l}
B_{c} \\
B_{s} \\
B_{R}
\end{array}\right] \ddot{u}} \\
{[\because} \tag{6}\\
{[\because}
\end{array}\right]=\left[\begin{array}{l}
C_{c}: c_{s}: c_{R}
\end{array}\right]\left[\begin{array}{l}
x_{c} \\
x_{s} \\
x_{R}
\end{array}\right]
$$

Where the control vector \ddot{u} and output y are three dimensional vectors.

This partioning of the state vectors reflects the objectives of the control system design. The controlled states, x_{c}, must be controlled to achieve satisfactory system performarce while the suppressed states, x_{s}, are known but not critical to the control design $[4,5]$.

What we would like to do is effect changes in x_{c} and no changes in either x_{s} or x_{R}. The effect of the controller on the rigid modes or suppressed modes is called control spillover. We wish on one hand to optimize the system for the controlled states and 1 imit the control spillover: the controlled states are controlled while the suppressed states are not excited by the controller and the rigid states are unaffected by it.

Let us proceed as follows: suppose we have an optimum controller

$$
\begin{equation*}
\ddot{u}^{0}=-k x_{c} \tag{7}
\end{equation*}
$$

determined by using an index of performance

$$
\begin{equation*}
P I=\int_{0}^{\infty}\left(x_{c}^{\top} Q_{c} x_{c}+\ddot{u}^{\top} R_{c} \ddot{u}\right) d t . \tag{8}
\end{equation*}
$$

We would then have in the control equations:

$$
\left[\begin{array}{l}
\dot{x}_{c} \tag{9}\\
\dot{x}_{s} \\
\dot{x}_{R}
\end{array}\right]=\left[\begin{array}{r}
A_{c}-B_{c} K, \\
-B_{s} K,
\end{array} A_{s}, 0,001\left[\begin{array}{l}
x_{c} \\
-B_{R} K,
\end{array}\right], A_{R}\right]\left[\begin{array}{l}
x_{s} \\
x_{R}
\end{array}\right]
$$

Clearly, we would like to have for no control spillover:

$$
\begin{align*}
& B_{s} K=0 \tag{10}\\
& B_{R} K=0 \tag{11}
\end{align*}
$$

iowever, equation it implies $K=0$ because of the form of $B_{R}[3]$. Equation 10 implies that B_{s} and K are orthogonal [5,6,7]. We can modify equations 10 and 11 so that

$$
B_{1} k=\left[\begin{array}{l}
B_{s} \tag{12}\\
B_{R}
\end{array}\right] \quad K=0,
$$

which merely implies the orthogonality of B_{1} and K.
By modifying the performance index to include splllover terms $(B, u ̈)$ we can simultaneously minimize the P I and the product $B_{1} K$. Including these soillover terms in the P!, we rave:

$$
\begin{align*}
P I & =\int_{0}^{\infty}\left[x_{c}^{T} Q_{c} x_{c}+\ddot{u}^{\top} R_{c} \ddot{u}+\left(s_{1} \ddot{u}\right)^{\top} R_{s}(\xi \ddot{u})\right] d t \tag{13}\\
& =\int_{0}^{\infty}\left[x_{c}^{\top} Q_{c} x_{c}+\ddot{u}^{\top}\left(R_{c}+g_{1}^{T} R_{s} g_{1}\right) \ddot{u}\right] d t \quad . \tag{14}
\end{align*}
$$

Now by heavily penalizing the PI to suppressed state spillover ($R_{s} \ggg R_{c}$), we can force the maximization of the erthogonality of B_{1} and K. The feedback coefficient matrix can now be solved from the familiar matrix riccati equation of Appendix 2.

The control spillover into the rigid body states cannot be avoided, but represents only steady state following errors. These errors can be lessened by the proper selection of controller gains for command inputs. By the design of an optimal tracker, orthcgenal to the suppressed states, the steady state following errors can be minimized.

Once the optimal centroller is cetermined, the boom tip responses and control inputs ($-K x_{c}$) can be calculased using the system equations 5 , 6 and 9 . Taking the Laplace transform of equation 9 substituted into equation 5 we have:

$$
\begin{align*}
& s X_{c}(s)=\left(A_{c}-B_{c} K\right) X_{c}(s)+s^{2} B_{c} U(s) \tag{15}\\
& s X_{s}(s)=\left(A_{s} ; X_{s}(s)-B_{s} K X_{c}(s)+s^{2} B_{s} U(s)\right. \tag{16}\\
& s X_{R}(s)=-B_{R} K X_{c}(s)+A_{R} X_{R}(s)+s^{2} B_{R} U(s) . \tag{17}
\end{align*}
$$

Rearranging the terms of equations 15-i7 and defining

$$
\begin{align*}
& \theta_{0}(s)=\left(S I-A_{c}+B_{c} K\right)^{-1} \\
& \theta_{S}(s)=\left(S I-A_{s}\right)^{-1} \\
& \forall_{R}(s)=\left(S I-A_{R}\right)^{-1}, \tag{18}
\end{align*}
$$

we have:

$$
\begin{align*}
& X_{c}(s)=s^{2} v_{0}(s) R_{c} U(s) \tag{19}\\
& X_{s}(s)=s^{2} \theta_{s}(s) B_{s}\left[I_{3}-X{\left.g_{0}(s) B_{c}\right] U(s)}^{X_{R}(s)=s^{2} \theta_{R}(s) B_{R}\left[I_{3}-K g_{0}(s) B_{C}\right] U(s) .}\right. \tag{20}
\end{align*}
$$

The term, $K g_{0}(s) B_{C}$, in equations 20 and 21 represent the control spillover in the suppressed states and rigid body states respectively. This term represents the activation of the suppressed states in equation 20 and a reduction of the magnitude of tie response of the controlled states. In equation 21 , this term represents : further reduction in the magnitude of the controlled states and the intraduc:ion of steady state following errors.

Using the output equation E for tite system, we can find the boom tip responses as:

$$
\begin{align*}
Y(s) & =C_{c} X_{c}(s)+C_{s} X_{s}(s)+C_{R} X_{R}(s) \\
& \left.=\left(s^{2} C_{c}\right\rangle_{0} B_{c}+s^{2} C_{s} \theta_{s} B_{s}\left[i_{3}-K i_{0} B_{c}\right]+s^{2} C_{R} \forall_{R} B_{R}\left[I_{3}-K v_{0} B_{c}\right]\right) U(s) . \tag{22}
\end{align*}
$$

But
$s^{2} C_{R}{ }^{9} R_{R}=I_{3}$ since the positienal ingut is fed forward to the output in eqn. 2.

Therefore,
which are the controlled modes, sippressed nedes with spillover and rigid body modes with spillover.

The Tracking Problem

The tracking capability of the system represents the ability of the system to follow steady state cormand signals. In the case of the POF boom it is desired to track second (2nd) order polynomials. [3] The system output (tip angle of the boom) is given by equation 23 but the only steady state terms are given by the rigid body modes with spillover. Namely,

$$
\begin{equation*}
Y_{s s}(s)=\left(I_{3}-K \phi_{0} B_{c}\right) U(s) \tag{24}
\end{equation*}
$$

where $U(s)$ is the command signal.
It is desired to track a system of constant equation R, such that

$$
\begin{equation*}
\tilde{Y}(s)=\frac{R}{s^{3}} \tag{25}
\end{equation*}
$$

with a command signal

$$
\begin{equation*}
U(s)=\frac{a_{3} s^{2}+a_{2} s+a_{1}}{s^{3}} \tag{26}
\end{equation*}
$$

which yields the tracking error

$$
\begin{equation*}
E(s)=\gamma_{s s}-\tilde{Y}(s)=\left(I_{3}-K \hat{s}_{0} B_{c}\right)\left(\frac{A_{3} s^{2}+a_{2} s+a_{1}}{s^{3}}\right)-\frac{R}{s^{3}} . \tag{27}
\end{equation*}
$$

The first term of equation 27 reduces to a ratio of polynomials in s, whose denominator is composed of the optimum controlled modes, $D(s)$. The total tracking error is then the ratio of two polynomials in s;

$$
\begin{equation*}
E(s)=\frac{N(s)}{s^{3} D(s)}=\frac{K_{0}}{s^{3}}+\frac{K_{1}}{s^{2}}+\frac{K_{2}}{s}+\frac{N_{1}(s)}{O(s)} \tag{28}
\end{equation*}
$$

where the right half equation is the partial fraction expansion of $E(s)$. Notice that the steady state tracking errors are given by the first three terms while the term, $\frac{N_{1}(s)}{D(s)}$, represents the excited controlled modes which rapidly damp out.

The approach taken in this work was to varying the a_{1}, a_{2} and a_{3} matrices to obtain zero steady state error coefficient; namely $K_{0}=K_{1}=$ $K_{2}=0$. A complete derivation of this approach is shown in appendix one.

Resulits

The matrix riccati equation was solved using the PI of equation 14 and no control spillover occurred in the \hat{z} axis. This yielded an equation 24.

$$
Y_{s s}(s)=\left[\begin{array}{ccc}
1-\frac{1.765+2.5 s}{s^{2}+2.69 s+2.99} \cdot \frac{4.3+1.2 s}{s^{2}+2.05 s+56.3} & 0 & , 0 \\
0,1-\frac{1.765+2.66 s}{s^{2}+2.69 s+2.99} & 0 \frac{4.3+1.3 s}{s^{2}+2.05 s+56.3}, 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{c}
1(s) \\
(29)
\end{array}\right.
$$

Using the approach above it was found the tracking error could be minimized by:

$$
\begin{align*}
& U_{x}(s)=\frac{1.44 s^{2}+2.91 s+3}{s^{3}} R_{x 0} \tag{30}\\
& U_{\hat{y}}(s)=\frac{.828 s^{2}+3.408 s+3}{s^{3}} R_{\hat{y 0}} \tag{31}
\end{align*}
$$

and, $\quad U_{\hat{z}}(s)=\frac{R_{i 0}}{s^{3}}$.
Plots of $e_{\dot{x}}(t)$, and $e_{\hat{y}}(t)$ are shown in Figure Two. Following errors start at zero as the shuttle starts drifting through its deadband and gredually increase to about .1 arc sec after 100 sec. During a typical shuttle deadband drift lasting 50 secs the maximum tracking error in \hat{x} is . 04 are sec and .03 are sec in \dot{y}.
FIGURE 2: Tip Following Errors During

Conclusions

The gimbal driven POF boom has been shown to be capable of tracking during shuttle gravity gradient drifting to within a few hundredths of an arc sec. The regulator system was recptimized to eliminate i axis tracking errors entirely. This reoptimizat‘on did not change the characteristic eigenvalues of the system.

BIBLIOGRAPHY

1. Sperry Support Services, Final Report Contract *NAS8-33588, "Sperry Interactive Graphics System (SIMS) and its Application to Control Simulation of the Pinhole X-Ray/Coronograph Experiment," 1980.
2. Greene, M. E., "On the Control and Stability of the Pinhole - Occulter Flexible Boom Facility," Final Report Contract FNGT-01-002-099, 1980.
3. Greene, M. E., "On the Pinhole/Coronograph Pointing Control," Final Report P.O. H-50876, NASA, 1980.
4. Sesak, J. R., Likins, P. W., and Coradetti, T., "Flexible Spacecraft Control by Model Error Sensitivity Suppression," J. Astronautical Sciences, Vol. 27, No. 2, Apr.-Mar., 1979.
5. Sesak, J. R., Likins, P. W., "Model Error Sensitivity Suppression: Quasi-Static Optional Control for Flexible Structure," Proc. 18th IEEE Conf. on Decision and Control, 1975.
6. Sesak, J. R., "Control of Large Space Structures Via Singular Perturbation Optimal Control," presented at AIAA Conf. on Large Space Platforms, Los Angeles, CA, Sept. 27-29, 1978, Paper No. 78-1690.
7. Sesak, J. R. and Coradetti, T., "Decentralized Control of Large Space Structures via Forced Singular Perturbation," presented at AIAA Aerospace Sciences Meeting, New Orleans, LA, Jan. 15-19, 1979, Paper No. 79-0195.

APPENDIX I: DERIVATION OF TRACKING CONTROLLER

Tencking Cont rouser.
To derive the optimal tracking coutroller we start with the stendy state tip motion Ekuatiun in La Pance Eorm, Namect:
the desigeo tio ancles are

$$
\tilde{y}(s)=\frac{1}{s^{3}}\left[\begin{array}{l}
R_{20} \tag{3}\\
R_{70} \\
R_{10}
\end{array}\right]^{T i P} \text { AN },
$$

ano tne puaizaule contruls are

$$
U(s)=\frac{1}{s^{2}}\left[\begin{array}{l}
\alpha_{3} s^{2}+x_{2} s+\alpha_{1} \tag{4}\\
B_{3} s^{2}+B_{2} s+B_{1} \\
R_{\frac{1}{2} 0}
\end{array}\right]
$$

THE TIP TRAGKING GREOES BAEF THEN GİAN BY

$$
\begin{equation*}
E(s)=Y(s)_{s s}=\tilde{Y}(s) \text {. } \tag{5}
\end{equation*}
$$

Jmmeointegy we see $E_{z}(\mathrm{~s})=0$ SuT, in GENEEAC, $E_{x}(t)+0 \nmid E g(s)$.

THE APAROAGH TAMEN WAS TO PERTORM PA,ZTIAL Fraction expansious on $E_{z}(s)$ ANO Ezls) E_{y} (SO GAGEULATE $X_{1}, x_{2}, x_{2}, B_{1}, A_{2}, Z_{3}$ FOR aERO sTEAOY stater enror terms. Tme onmpeo sinusoignt terms Of THE PARTIAL FRAGTION EXPANSIOM DONOT AFFECT stendy tracring And nec ignoese. In gevernb,

$$
\begin{align*}
& E(s)=\frac{N(s)}{s D(s)}=\frac{K}{s^{3}}+\frac{K_{1}}{s^{2}}+\frac{K_{2}}{3}+\frac{N_{1}(s)}{D(s)} \tag{6}\\
& K_{0}=\left.s^{2} E(s)\right|_{s=0} \tag{9}\\
& K_{1}=\frac{d}{d s} s^{3} E(s)=\frac{d}{d s} \frac{N(s)}{D(s)}=\frac{N^{\prime} D-N D^{\prime}}{D^{2}} \tag{*}
\end{align*}
$$

AnO,

$$
K_{2}=\frac{d^{2} s^{2} E(s)}{d s^{2}}=\frac{d^{2}}{d s^{2}} \frac{N}{D}=\frac{N^{\prime \prime} D^{2} \cdot N D^{\prime \prime} D-2 N^{\prime} D^{\prime}+2 N\left(0^{\prime}\right)^{2}}{D^{3}} \cdot(91
$$

Usinc THESE IERMuGAS (5-9) wE PRECEED TO FOAM $E_{i}(s), E y(s)$ ere.

$$
E_{x}(s) \equiv-\frac{\left(3.7 s^{3}+14.4 s^{2}+189.5 s+112.2\right)\left(\alpha_{3} s^{2}+x_{3} s+\alpha_{1}\right)}{\left(s^{4}+4.74 s^{3}+64.8 s^{2}+157.8 s+1683\right) s^{3}}+\frac{\alpha_{3} s^{2}+x_{2} s+x_{1}-R_{x 0}}{s^{2}}
$$

At $x_{4}=x_{1}-R_{x_{2}}$

$$
\begin{aligned}
& s^{4}-4.74 s^{3}-64.8 s^{2}+157.6 s+168.3 \\
& \alpha_{3} 5^{2}+x_{3} 5+\alpha_{4} \\
& \alpha_{1} s^{6}+474 \alpha_{3} s^{5}-64.8 x_{3} s^{4}-153.6 \alpha_{3} s^{3}-168.2 x_{3} 3^{2} \\
& \alpha_{2} s^{5}+4.74 \alpha_{2} s^{4}+643 \alpha_{2} s^{3}+\sqrt{2} .6 \alpha_{2} s^{2}+1683 \alpha_{2} s \\
& \alpha_{4} s^{4}+4.74 \alpha_{4} s^{3}+04.3 \alpha_{4} s^{2}+157.6 x_{4} s-168.3 x_{4} \\
& \alpha_{3} s^{6}-\left(4.7 \alpha_{3}+\alpha_{2}\right) s^{5}+\left(64.8 x_{3}+4.7 \alpha_{2}-x_{4}\right) s^{4}-\left(187.6 \alpha_{2}+64.8 \alpha_{2}+4.7 \alpha_{4}\right)^{3}+ \\
& \left(1683 x_{j}-1026 \alpha_{2}+648 \alpha_{4}\right)^{2}+\left(1683 x_{2}+157.6 \alpha_{4}\right) s+16 \\
& 3.7 s^{3}-14.4 s^{2}+159.5 s+112.2 \\
& x_{1} s^{2}+\alpha_{2} s+a_{1} \\
& 3.7 x_{3} s^{5}+19.4 \alpha_{3} s_{4}^{4}-154.5 x_{3} s_{3}^{3}+112.2 \alpha_{3} s^{2} \\
& 3.7 \alpha_{2} s^{4}+14.4 \alpha_{2} s_{3}^{3}+159.5 \alpha_{2} s^{2}+112.2 \alpha_{2} s \\
& \frac{3.2 \alpha_{1} s^{2}+144.4 \alpha_{1} s^{2}-155.5 \alpha_{1} s+112.2 \alpha_{1}}{3.7 \alpha_{3} s^{5}+\left(14.4 x_{3}+3.2 \alpha_{2}\right) s^{4}+\left(15 s .5 \alpha_{2}+14.4 x_{2}+3.7 \alpha_{1}\right) s^{3}+\left(118.2 \alpha_{2}+159.5 \alpha_{2}+14.4 \alpha_{1}\right) s^{2}} \\
& +\left(112.2 \alpha_{2}+159.5 \alpha_{1}\right) s+112.2 \alpha_{1}
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}(s)=\alpha_{3} s^{6}+\left(\alpha_{2}+\alpha_{3}\right) s^{5}+\left(49.9 \alpha_{3}+\alpha_{2}+\alpha_{4}\right) s^{4}+\left(-1.9 \alpha_{3}-49.9 \alpha_{2} \alpha \alpha_{1}-4.7 R_{10}\right) s^{3} \\
& -\left(56 \alpha_{3}-1.9 \alpha_{2}+504 \alpha_{1}-64.8 \alpha_{\alpha_{0}}\right)^{2}+\left(5 \sigma_{.1} \alpha_{2}-1.9 \alpha_{1}-152.6 R_{0}\right) s \\
& -5 \times 1 \times 1-168.7 \Omega \\
& s^{3}\left(s^{4}+9.74 s^{3}+69.8 s^{2}+157.6 s+168.3\right)
\end{aligned}
$$

$$
=\underbrace{\underbrace{s_{0}^{3}}_{s^{3} \alpha_{1}-1683 R}+\frac{k_{0} \dot{x}}{s^{2}}}_{\text {sTEAOY STATE }}+\frac{k_{2} \hat{x}}{s}
$$

DAMFED TERMS
STEAOY STATE

$$
\begin{aligned}
& K_{1 x}=\left.\frac{d}{d s} s^{2} E_{2}(s)\right|_{s=0}=\frac{168.3 i 52.1 x_{2} \cdot\left(.9 x_{1}-1572_{2}\right)-157.6 i 561 \alpha_{1}-1683 R_{i} i_{2}}{\therefore 65 . z^{2}} \\
& =\frac{5 c_{1} 1 \alpha_{2}-54.4 \alpha_{1}}{1-5,3}
\end{aligned}
$$

LET

$$
\begin{aligned}
K_{0}=0 & =564 \alpha_{1}-168.3 R_{R_{0}} \\
\alpha_{1} & =\frac{158, ~}{5 \epsilon_{2} F} R_{20} \equiv-3 R_{\lambda_{0}}
\end{aligned}
$$

$$
K_{1}=0=\frac{56.1 \alpha_{2}-56.4 \alpha_{1}}{168.3}
$$

$$
\alpha_{2}=\frac{5 \pi \pi_{4}}{5 x_{1}} \alpha_{i}=2.91 \quad R_{\hat{x}_{0}}
$$

$$
K_{2}=0=\frac{-168.8 x_{2}+159.34 x_{1} \div 11.2: 2 x_{3}}{168.3}
$$

$$
\alpha_{3}=-1.44 R \hat{x}_{0}
$$

$$
\begin{aligned}
\therefore U_{z}(s) & =\frac{\left(-1.44 s^{2}+2.9 / s^{-}+3\right)}{s^{3}} \quad R_{\lambda 0} \\
U_{x}(t) & =\left(-1.44+2.91 t+1.5 t^{2}\right) R_{i=} \quad t \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& K_{2 f}=\frac{d^{2}}{d s^{2}}=^{3} E_{F}(s)
\end{aligned}
$$

$$
E_{i}(s)=\frac{\left.B_{3} s^{2}+B_{2} s+\beta_{i}-R_{y} \cdot \frac{\left(3.96 s^{3}+18 s^{2}+168.8 s+12.2\right)\left(B_{3} s^{2}+B_{2} s-B_{1}\right)}{s^{3}}\right)}{s^{3}\left(s^{4}+4.74 s^{3}+64.3 s^{2}+156.6 s-140.2\right)}
$$

Let $\beta_{4}=\beta_{1}-R_{\hat{c}}$

$$
\begin{aligned}
& -3.96 s^{2}+15 s^{2}-168.2 s+112.2 \\
& B_{1} s^{2}+B_{3} s+B_{1} \\
& 3.96 \theta_{3} 5^{5}+15 A_{3} S^{4}+168.8 G_{3} S^{2}-112.2 B_{3} s_{2}^{2} \\
& 3.96 \mathrm{E}_{2} \mathrm{~s}^{4}+15 \mathrm{~A}_{2} \mathrm{~s}^{5}-168.8 \mathrm{E}_{2} s^{2}-112.2 \mathrm{G}_{2} s \\
& 3.96 B_{1} s^{3}-15 A_{1} s^{2}+168.8 B_{1} 5+112.2 G_{L}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(112.2 \sigma_{2}+168.86\right)\right)_{s}+112.26 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& E_{\hat{y}}(s)=B_{3} s^{6}+\left(.74 B_{3}+B_{2}\right) s^{5}+\left(49.8 B_{3}+.74 B_{2}+G_{4}\right) s^{4}+\left(-11.2 B_{3}+49.8 B_{2}+.74 B_{1}-4.7 R_{\mu \rho}\right): \\
&+\left(E G_{3} B_{3}-17.2 B_{2}+49.8 B_{1}-64.8 R_{y 0}\right) s^{2}+\left(36+B_{2}-16.2 B_{1}-157.6 R_{10}\right) s \\
&+\left(5 B_{1}-168.3 R_{70}\right)
\end{aligned}
$$

$$
=\frac{K_{0} 7}{S^{3}}+\frac{k_{1}}{s^{2}}+\frac{k_{84}}{3}
$$

DAmPED TERMS

$$
\begin{aligned}
& K_{O Y}=\frac{56_{2}+0_{1}-169.3 R_{V 0}}{1683} \\
& K_{A}=\left.\frac{d}{d e} s^{3} E_{y}(s)\right|_{s=0}=\frac{168.3\left(361 B_{2}-11.2 B-1526 R_{y 0}\right)-157.6\left(56.18,1883 R_{1} 0\right.}{168.3^{2}} \\
& K_{14}=\frac{56+B_{2}-63.73 B}{168.3} \\
& K_{2 F}=\left.\frac{d^{2} s^{3} E_{\hat{y}}(s)}{d s^{2}}\right|_{s}
\end{aligned}
$$

LET $K_{\text {AT }} K_{2 \%} K_{4}=0$

$$
\begin{aligned}
K_{i 5} 0 \Rightarrow \quad 56 B_{1} & =168.3 R_{70} \\
B_{1} & =-3 \cdot R_{70}
\end{aligned}
$$

$$
\begin{aligned}
K_{1}=0 \quad 5 C B B_{2} & =-63.73 B_{1} \\
B_{2} & =3.408 R_{10}
\end{aligned}
$$

$$
x_{27}=0 \quad \Rightarrow \quad B_{3}=\frac{1 E 7.47 B_{2}-175.76 B_{1}}{I 62.2}=\frac{107.46(3.408)-175.76(3}{112.2}
$$

$$
B_{3}=\pi_{1} 828 R_{\hat{Y} 0}
$$

$$
\begin{aligned}
& U_{\hat{y}}(s)=\frac{-.828 s^{2}+7.774 s+5.007 R_{\gamma 0}}{s^{2}} \\
& U_{\hat{y}}(t)=\left(-.828+7.774 t+2.5 t^{2}\right) R_{90} \quad t \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\frac{1182 B_{2}-187.47 B_{2}+175.70 G_{1}}{\cdots \cdots 168.3}
\end{array}
\end{aligned}
$$

APPENDIX II: FEEDEACK MATRICES

