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ABSTRACT

Minimum variance estimation requires that the statistics
of random observation errors be modeled properly. If
measurements are derived through the use of atomic
frequency standards, then one source of error affecting
the observable is random fluctuation in frequency. This
is the case, for example, with range and integrated
Doppler measurements from satellites of the Global
Positioning System used for precise geodetic point
positioning and baseline determination for geodynamic
applications. In this paper an analytic method is
presented which approximates the statistics of this
random process. The procedure starts with a model of
the Allan variance for a particular oscillator and
develops the statistics of range and integrated Doppler
measurements. A series of five first order Markov
processes is used to approximate the power spectral
density obtained from the Allan variance. Range and
Doppler error statistics are obtained from the integra-
tion of the corresponding autocorrelation function.
Statistics for residuals to polynomial clock models are
then obtained by linear transformation. Examples are
given for rubidium and cesium clocks.

ATOMIC CLOCK ERRORS AND FREQUENCY STABILITY

A clock is any device which counts the cycles of a periodic phenomenon
and among the most stable clocks in use are the atomic clocks which
form the basis for atomic time scales such as International Atomic
Time (TAI). Atomic time is used primarily as a measure of time inter-
val and is based on the electromagnetic oscillations produced by quan-
tum transitions within the atom. The precise definition of stability
is found in Blair (1974). Basically it is a measure, usually given
statistically, of the random fluctuations in frequency which can occur
in a clock's oscillator over specified periods of time. For a given
time interval a particular oscillator is considered best if the ex-
pected level of frequency fluctuation is a minimum in terms of the
Allan variance defined below.

Equation (1) is the model used to describe the types of error present
in atomic time scales
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T±(t) = \ D±(t - to)
2 + R.(t - to) + T.(to) + x(t) (1)

The deterministic errors consist of bias, drift, and ageing terms
modeled as a quadratic polynomial in time. The ageing term is less
observable^ for clocks whose long-term stability is good such as cesium.
The term x(t) in equation (1) represents the random time error due to
the integration of random fluctuations in frequency:

i t t

x(t) = ̂  / f(T)dt = / y(T)dt . (2)
*I t t

o o

The magnitude of this term depends on the stability of the clock and on
the interval of time which has passed since the scale was reset or
calibrated.

Hellwig (1977) points out that "the characterization of the stability
of a frequency standard is usually the most important information to
the user especially to those interested in scientific measurements and
in the evaluation and intercomparison of the most advanced devices
(clocks)." Since the frequency stability of a standard depends on a
variety of physical and electronic influences both internal and exter-
nal to the standard, measurement and characterization of frequency
stability are always given subject to constraints on environmental and
operating conditions. In addition frequency stability depends on the
exact measurement procedure used to determine stability.

Frequency stability characterization is done in both the frequency and
time domain. In the time domain a frequently used measure of stability
is the Allan variance or its square root. In the frequency domain it
is the power spectral density.

The Allan variance as a time domain measure of frequency stability is
found especially useful in practice since it is obtainable directly
from experimental measurements and contains all information on the
second moments of the statistical distribution of fractional frequency
error. The Allan variance is defined as follows: let yft, y. , y?, . .
•> Yi.* ¥*• » Yo » • • • be observed fractional frequency errors separ-

ated by a repetition interval of T seconds. For each integer N greater
than or equal to 2, calculate y from

(nrH)N - 1
y = i I y m = 0, 1, 2, . . . M. (3)
m k = mN k
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This is an average over N consecutive values of y . The Allan vari-
2 -ance, a (N) , is then obtained from the averages y byy m

2H m = 0

An examination of this equation reveals that the Allan variance for a
particular sampling interval NT is the average two-sample variance of
the ym(N).

For frequency standards the square root of the Allan variance is usual-
ly given in graphical form on a log-log scale. For individual classes
of frequency standards models for the Allan variance are used which
portray general frequency stability characteristics. Hellwig (1975)
gives examples of such models for many oscillator types. Figure 1
shows the typical form. In this form, a (T) is the square root of the
Allan variance for the sample interval T. The quantity af is called
the flicker floor and T.. , T_, T~ are the break points of the plot. The
constants associated with this figure are usually specified for each
type of frequency standard. A comparison of such information can
facilitate the selection of a frequency standard for a specific appli-
cation.

The stability characteristics shown in the three regions of Figure 1
are typically present in many Allan variance plots of specified oscil-
lator performance. The first part, region I, reflects the fundamental
noise properties of the standard. This behavior continues with in-
creased sampling time until a floor is reached corresponding to region
II . After T- the performance deteriorates with increased sampling
time. Hellwig (1977) outlines the error sources corresponding to each
portion of the graph. The magnitude and slope of each segment will
depend on the particular category of standard.

An alternative procedure for specifying the stability of a frequency
standard, in the frequency domain, is the use of the power spectral
density (PSD) of instantaneous fractional frequency fluctuations y(t) .
Allan et al. (1974) have given a useful model to represent the PSD for
various categories of frequency standards. This model is in the form
of a power law spectral density having the form

** (r»)°. <«» = < (5)
( 0 to > u^

where a takes on the integer powers between -2 and 2 inclusive depend-
ing on how the interval (0,uv ) is to be divided into subintervals, one
for each a to be used. The quantity h is a scaling constant, and the
PSD is assumed to be negligible beyond the frequency range (0,uj.).
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Fig. 1-General frequency stability characteristics
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Barnes et al (1971) and Meditch (1975) give the transformations between
the time domain measures of frequency stability in the form of the
Allan variance and the power law spectral densities. Table 1 taken
from Meditch gives these conversions for three types of fractional fre-
quency error sources.

Table 1-Allan variance and power spectral
density for common error sources

ERROR SOURCE

y<t)

WHITE NOISE

FLICKER NOISE

INTEGRAL OF
WHITE NOISE
(RANDOM WALK)

ALLAN VARIANCE

a2
y(t)

NO
I

2W, In 2
n

N2I

3

TWO SIDED SPECTRAL DENSITY

Syy <LU;

NO

"1
|(JU|

N2

U,2
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RANGE AND DOPPLER OBSERVATION ERRORS DUE TO RANDOM ATOMIC CLOCK ERROR

As previously discussed, an atomic clock's time scale can be expected
to differ from ideal time due to both deterministic and random errors.
The random component is due to integration of fractional frequency
errors. A range observation determined from radio signals broadcast by
a satellite is subject to the random errors of the frequency standards
in both the satellite and the tracking receivers. The effective range
error at time t due to the timing error in one of the time scale is

6Rt(t) = cTt(t) (6)

with the random component being the random walk

n-(t) = c / y(T)dT (7)
t
s

where c is the velocity of light. The random component is due to the
accumulated effect of fractional frequency error since the clock's
start or reset at t .

s

The random error f].(t) is correlated in time. Consider two measure-
ments of range R(t.) and R(t.) based on the use of the oscillator in
the satellite, and assume momentarily that the receiver's oscillator is
free from random error. The covariance between these measured ranges
due to correlated fractional frequency error in the satellite oscil-
lator is

E[R(t.)R(t,)] = E[n(t.)n(t,)]
J J K

= c2E[J J y(T)dt / k y(Odl']
t ts s

2 ti H
= c / J / E[y(T)y(T')]dTdt'

= c2 ; j ; k $ (t - OdtdT' (8)
t t ^
s s

where $ (t - T') is the autocorrelation function for fractional fre-

quency error y(t) defined by
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*yy(T - I') = E[y(T)y(T')]

00 00

= / / yy'f(y,y',t,Ody dy'. (9)
-oo -oo

The function f(y,y',T,t') is the joint probability density function for
fractional frequency error. Here it is assumed that y(t) is a mean
zero stationary random process. The function $ (t - T') could be

obtained by the inverse Fourier transform of the given power spectral
density S (tu) :

V0 = 2^ { SyyCuOe^du, (10)

where

t = T - T'.

An alternate procedure for obtaining the autocorrelation function
(|i (t) from the Allan variance is given below.

The variance of a range observation is obtained from equation (8) by
setting t. equal to t. :

J K

CTR = °2 5 J * J *w(T " T')dTdt'' (11)

j fcs **

The presence of random frequency error in the receiver oscillator
introduces additional, but similar, terms into equations (8) and (11)
which must be considered when assessing the range uncertainty due to
all random clock errors effecting the measurement.

For integrated Doppler or range difference observations the random
measurement error associated with system clocks is the integral of
fractional frequency error over the Doppler integration interval. The
random error in range difference due to one oscillator is

r]±j = n(t..) - n(tk)

t,
= c / J y(T)dt. (12)

t.
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Notice in equation (12) that the random error r\. . is a function of t.,

t., and y(t). The error does not depend on t . Range difference
J s

measurements have the following correlation for each oscillator

E[AR. - ,] = E[ni:jr

t

t.
i

J
t.

4> (T - T')dTdT (13)

with the variance

AR. .
- OdTdt (U)

t.i t.i

Observe that the random range difference errors, whose statistics are
given by equations (13) and (14), are stationary; however, random range
errors, whose statistics are given by equations (8) and (11), are not.
A stationary random process is one whose statistics are invariant in
time.

For the oscillator performance specifications shown in Figure 2 exam-
ples of the contribution to the range error are given for both oscilla-
tors in Figures 3 and 4 over a five-day span. The clocks are assumed
to be perfect initially. Also included is the standard error for the
random walk r\(t) obtained using equation (11). The procedure used in
simulating the random range error is discussed in Meditch (1975).
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Fig. 2-Allan variance for satellite and receiver oscillators
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Fig. 3-Standard error and random range error
based on receiver cesium specifications
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Fig. 4-Standard error and random range error
based on satellite rubidium specifications
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RANGE AND DOPPLER OBSERVATION ERROR STATISTICS

Fractional Frequency Autocorrelation from the Allan Variance

The equations giving the second order statistics of random range and
integrated Doppler observation errors due to random fractional fre-
quency errors were presented in the last section. Those equations
require that the fractional frequency autocorrelation function be
known. In this section discussion of a procedure for obtaining an
analytic approximation to this function from the Allan variance is
given. This method yields a simple analytic autocorrelation function
and avoids numerical difficulties that may arise when the inverse
Fourier transform of the power spectral density is evaluated.

The Allan variance models shown in Figure 2 for the satellite rubidium
and receiver cesium oscillators are a function of the sampling time t
having the form

< T < T.

< t < i
(15)

*3 < <w

^ T T3

Using the transformations in Table 1 the power spectral density for
fractional frequency may be developed from equation (15):

<3 0 < u, < u,0

S (u>) = <yy N

N2
~2 W0 < W < Wl
U)

— MI < u. < u)2

(16)

N0 U)- < U) < U), .

The square roots of the power spectral densities corresponding to the
Allan variance specifications of Figure 2 are given in Figure 5. The
constants associated with the two functions and the formulas for
computing the constants associated with the power spectral density
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function based on the Allan variance are given in Table 2.
mulas are developed from the transformations of Table 1.

These for-

The autocorrelation function 4> (t) can be obtained from the power

spectral density using equation (10)

However, as a result of transforming the band limited white noise
portion of the spectrum, this form for the autocorrelation function has
an oscillatory behavior for small t. This is an artificiality of the
model.

10

to*

to"

SATELLITE
CLOCK (RU8IDIUU)

RECEIVER
CLOCK (cesium

(I)

<o~* io~* io~4

FREQUENCY u ( SEC~f)
1O
-I •o"

Fig. 5-Square root of PSD

An alternate approach for obtaining an autocorrelation function is to
approximate the power spectral density model with a smooth function
whose autocorrelation is expressible in simple analytic form. The
first step in this development is to approximate the flicker noise
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Table 2-Oscillator parameters

QUANTITY

Ti

'2

T3

^0

0,,

-2

UNITS

sec

sec

sec

sec'1

sec'1

sec-1

FORMULA

V/3/T3

6ln2/(nij)

n/(2T,»n2)

"I

NO

N,

N2

sec

sec

sec

sec'

Tl°l

no,2/2ln2

3o,2/T2

°fV'2

SATELLITE CLOCKS
(RUBIDIUM)

1.00x103

I.OOxlO5

1.00x10*

1.73x10 6

1.32x10 5

2.27x10 3

6.00x10J13

3.60x10 a

8.16x10 K

1.08x10 29

3.60x10'18

2.36x10°

2.03x10 s

RECEIVER CLOCK
(CESIUM)

I.OOxlO5

1.00x10*

I.OOxlO7

1.73x10"7

1.32x10~6

2.27x10-*

3.00x10""

9.00x1 0"23

2.04X10-27

2.70X10"33

9.00x1 0'20

1.61x10°

1 67x10 *

segment of the spectrum by a series of cascading functions whose values
alternate between being constant and being inversely proportional to
the square of the frequency. This type of procedure is described by
Meditch (1975) in constructing a linear system which simulates flicker
noise using a white noise input. Figure 6 shows the transfer function
for flicker noise. A three stage cascading transfer function is super-
imposed consisting of the functions F., FR, and Fp which are defined in
Table 3. These functions are defined to have the required properties
and give a continuous although not smooth approximation to the flicker
noise power spectral density.

The constants of this approximation are now derived over frequency
intervals as given in Meditch (1975). The general form of the function
FAis

(17)
U)

between the frequencies u> and ou) . At
Table 2, the function F. takes on the value

frequency u> , defined in

561



8
IT

Fig. 6-Three stage transfer function approximation
of flicker noise spectrum

Table 3-Definition of three stage transfer function approximation

FUNCTION INTERVAL DEFINITION IPSDI

N,/U,

Olg 4 OJ ^ O OJa

a aj

WHERE

n = 3
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N N

U)
a

since the flicker noise power spectral density has the same function
value at frequency uu . Solving equation (18) gives

N u)2

A similar analysis gives the constant N^. The function F,. has the form
15 D

NR
FB(u>) = -|. (20)

U)

2
At frequency a u) , F_ has the function value

3 15

N N

a u) a uia a
2

since at a u> the function F,. has the same value as function F. at3. B A
frequency atu (see Figure 6). Solving equation (21) and using equa-
tion (19)

NB = °2NA = aVr (22)

For the function Fp,L>

Nc
Fc(w) = -| (23)

uu
4

its function value at frequency a u) equals the value of Fn at fre-
3quency a 10 giving
3

4 NC NB
F-(cTu) ) = ~^~ = -^ . (24)
C a 82 62or ui a uu

a a

Using equation (22) gives the solution

NC = a
2NB = cAiljHj. (25)
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Numerical values for a and ui are given in Table 2. The power spectral
density consisting of the tnree cascading functions and the remainder
of the original function will be denoted as the second power spectral
density model for each oscillator.

The next step in the development of a simple analytic autocorrela-
tion function is to approximate various segments of this second model
with a first order Markov process power spectral density function, a
function of the form

S(u>) = 3 P
2 (26)

w + p

where 0 is the inverse of the correlation time (see Gelb (1974)). The
autocorrelation function for a first order Markov process is

4>(t) = aVP * . (27)

Notice in equation (26) that the power spectral density decreases as
the inverse of the square of the frequency. This is the type of func-
tional behavior seen in the interior of the cascading functions
F. through Fr. It is also the behavior of the original power spectral
density in the interval (u>_, u>.). In addition the power spectral
density of the Markov process remains virtually flat until the fre-
quency reaches a point at which the function decreases rapidly. These
properties make this function an excellent choice for approximating the
second power spectral density model piecewise.

The second model is then divided into five segments defined in Table 4.

The high frequency cut off UL , shown as 10 in Figure 5, will be in-
creased so that the band limited white noise component of the power
spectral density may be approximated better by the first order Markov
power spectral density.

Table 4-Division of second PSD model for Markov process approximation

INTERVAL

ro. a,.]

"3
U
|5
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The approximation consists then of fitting a function in the form of
equation (26) to each subdivision of the second model S' (ui) given in

Table 4. There are two parameters a and p to be determined for each
segment giving a total of ten parameters.

The procedure which was adopted was an asymptotic approximation whereby
two constraints were imposed on the Markov power spectral density
function giving a and P directly. This procedure was implemented
because of simplicity and because the results compared favorably with a
least squares approach. The asymptotic approach develops an approxima-
tion on the interval I.,

J

Ij ~ IV w£l

using the following constraints:

(i) at zero frequency the approximating Markov power spectral
density equals the second model at frequency u», :

S.(o) = S' (UL) (28)
j yy K

(ii) in the limit as iu increases the value of the function S . (tu)
converges to the following function

lim S.(u>) = _ (29)
ID •* Ô  U)

and at u>_ this limiting value is set equal to the value of S ' (iu) :

). "0

Equations (28) and (30) are a system of two equations in two unknowns.
Their solution yields the parameters o. and 8. for the approximating

Markov power spectral density function S . (w) . The nature of the second

constraint, equation (30), is to force the function S.(u>) to asymptoti-
J

cally approach S' (iu) at U).. The first constraint is necessary to ap-
yy

proximate the white noise or flat component of S' (u») at the beginning
of each subinterval.

Finally a comment concerning the approximation in the last subdivision
I_ is necessary. In order to obtain a good approximation to S' (u>) in

that interval it is necessary to choose ut large enough to allow the

565



flat portion of the Markov process spectral density to fit the white
noise component which dominates this interval (see Figure 5). Choosing
UL three or four orders of magnitude larger than 0.1 and S' (UL ) two or

three orders of magnitude smaller than N , enables a good approximation
to be made but adds power at these higher frequencies. The result is
an autocorrelation function which tends to a delta function as UL
goes to infinity and whose variance increases as UL is chosen larger
(see Figure 7). However, this will have negligible effect on range
and range difference statistics.

The smooth fractional frequency autocorrelation function 4" (t) is

given by the inverse Fourier transform of the five Markov process power
spectral densities S. (ID) . The result of each transformation is an ana-
lytic function whose form is given by equation (27). The final result
is the sum of these functions

<fr (t) = I aVPjM. (31)
j = 1

For range and integrated Doppler observations the statistical contribu-
tion due to random oscillator error is obtained using equation (31) in
equation (8) through (14).

Figures 8 and 9 show the original transfer functions and the asymptotic
approximations. The parameters obtained using this approximation
procedure are given in Table 5.

Observation Error Statistics Based on Markov Process Approximations

The first order Markov autocorrelation function, equation (31), and
equations (8) through (14) give the second order statistics for random
range and integrated Doppler observation errors due to each oscillator
used in the measurement process. These integrals may be evaluated
giving analytical expressions for the variance and covariance of range
and Doppler observations.

Let R(t.) and R(t ) be range observations subject to one random clock
error only. The covariance between the observations is given by equa-
tion (8). Using the first order Markov approximations, the integration
of equation (8) gives the covariance as
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Fig. 7-Asymptotic fractional frequency autocorrelation
functions based on Markov process approximations
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Fig. 8-Satellite oscillator transfer function and sum
of asymptotic approximations
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FREQUENCY A (1 SEC)

Fig. 9-Receiver cesium transfer function and sum
of asymptotic approximations

Table 5-Fractional frequency autocorrelation function
parameters for Markov process approximations

ASSYMPTOTIC LEAST SQUARES
OSCILLATOR TYPE

RUBIDIUM (SPEC)

CESIUM (SPEC)

•o>h = 1.0x10* S'vy(a)h) =

ERVAL
•̂ •̂̂ ^

1,

I2

«3

1,

If

h

'2

'3

u
I6

(ALPHA)2

3.1177X10"24

6.2625x1 0"26

6.2625X10"25

6.2625X10"28

1.8000x10""

7.7942X10"27

1.2922X10"27

1.2922X10-"

1̂ 922x10"27

4.5000X10"20

BETA

1.732x10"*

2.032X10"5

1.128x10"4

6^62x10""

roooxio3"

1.732x10"7

1.677x10"*

4.321X10"6

1.113x10"6

1.000X103"

(ALPHA)2 BETA

3.3719X10"24 1.681x10"*

7.6238X10"25 2.2B6X10"5

7.6245X10"25 1J52x10~4

7.6245X10"26 6.947x10"*

1.9343x10"" 9.631X102*
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B[R(ti)R(tk)i = E[n(ti)n(tk)i
5 5z / 2(tM -j = i PJ

o , / -P.(t. - t )
= c2 I J- | 2(t.. - t ) + ̂ f e ^ J S

Pj

for t, greater than t., where t is the start or reset time of the
clock. The variance oxf the random range error is obtained by setting
t, equal to t. in equation (32)
K 1

E[R(ti)R(ti)] =

(33)

The range error n(O resulting from the integration of fractional
frequency error y(t) is a statistically nonstationary process. An
examination of equations (32) and (33) reveals terms which are func-
tions of t. , or t,, minus t . Thus, for instance, the variance in-
creases with time. This is illustrated in Figure 10 for the rubidium
clock. The standard error of a range measurement based on the use of
this clock is given for 20 range observations spaced at 15-minute
intervals starting five minutes, one hour, and five hours after the
start of the clock. The increase in variance is almost linear. An
examination of the autocorrelation function shows that this function,
dominately flat, is similar to a random bias having a constant auto-
correlation and whose integral is a random ramp which increases exactly
linearly. Hence a linear growth in variance is expected as seen in
Figure 10. The correlation coefficients p, . between the first and the
i'th range observation in each of these sequences are given in Fig-
ure 11. As the starting time of the sequence increases from t , so
does the correlation among the random errors. This again is expected,
since the variance increases with time and the errors are correlated.

Figure 12 gives the autocorrelation function for the cesium clock based
on the Markov process approximation and Figures 13 and 14 give the
standard error and correlations of range errors based on this clock. A
comparison of Figures 10 and 13 reveals the greater stability of the
cesium clock. After ten hours of operation the standard error of the
cesium clock output is approximately 3.5 nanoseconds compared to 63
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Fig. 10-Standard error of range observations
based on satellite rubidium oscillator
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Fig. 11-Correlation coefficients between range 1
and range ± (rubidium clock)
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Fig. 12-Asymptotic fractional frequency autocorrelation
function for cesium standard
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Fig. 13-Standard error of range observations
based on cesium oscillator
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5 HR
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TO TS 5 MIN

0 00 3 00 6 00 9 00 12 00 15 00 18 00 21 00 24 00

NUMBER OF IS MINUTE RANGES

Fig. 14-Correlation coefficients between
range 1 and range i (cesium clock)

nanoseconds for the rubidium standard. In addition, the correlations
among the cesium clock errors decrease more rapidly than the rubidium
clock errors. Considering both random clock error sources the total
variance and correlation of range observations R, (t.) and R, (t.) meas-
ured by receiver k are given by the equations

E[Rk(t.)Rk(t.)] =

E[Rk(t.)Rk(t.)] = E[nk(t.)nk(t.)]

(34)

(35)

where the variances and correlations of the random error r| are given by
equations (32) and (33). The subscript "s" refers to the satellite
rubidium clock.

For simultaneous observations of range by two receivers the covariance
of the observations R, (t.) and R.(t.) is given by

K i x. j

E[R (t )R (t )] = E[n (t )n (t )]. (36)
fc 1 * J -L J

In the above equations the random errors (] have zero mean which is a
consequence of fractional frequency error being zero mean.

Let AR(t ) be an integrated Doppler or range difference measurement
over the interval (t. , t ) and AR(t-) a similar measurement from the
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same receiver over the interval (t, , t-). The covariance of the obser-
vations is

E[AR(tn), AR(t£)i = E[n(tn) - nC^), n(t£) - n(tk)]

= E[n(tn)n(t£)i - E[n(tn)n(tk)] -

E[n(t.)n(tk)]

' -\
J - i P

2
,-V'i - v. /ys -

(37)

The variance of a range difference observation is given by

~ 5 2d2

E[AR(tn)AR(tn)] = c I -^

Equations (37) and (38) are independent of the clock epoch t . The
s

statistics of the range difference error depend only on the Doppler
integration interval or the time difference between observations. Thus
the random range difference error is stationary. Expressions analogous
to equations (34) through (36) express the complete statistics of range
difference observation errors for individual or simultaneous observa-
tions due to clock error.

STATISTICS OF RESIDUALS TO POLYNOMIAL CLOCK MODELS

The statistical characteristics of fractional frequency error and its
integrated effect on range and Doppler observations have been discussed
in detail. For range observations assume that the total random error
is due to three sources, two of which are correlated noise processes.
Then the total random range error is expressed as

n(t) = ns(t) + nk(t) + £(O (39)
where r| and r\, are the correlated random range errors due to satel-
lite and receiver random clock errors respectively. The quantity 4
represents receiver white noise. The total integrated Doppler random
error over the integration interval [t.,t.] is

J *

) = n.(t£) - n.ctj) + nk(t£) - nk(t.,) + C£ (40)
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where t,, is the white noise associated with the Doppler measurement
procedure.

Depending on the stability of the clock, the random range or Dop-
pler error components, r\ (t) and r)k(t)>

 may appear quite systematic
over fixed time intervals and may be represented by polynomial models
of varying degree. For short time intervals the models for clock error
were taken to be a bias and drift for range observations and a frequen-
cy bias for Doppler observations. However, these models and even
higher order polynomial models are not sufficient to entirely represent
this correlated error. Thus knowledge of the statistical properties of
the deviations of the error from such a model becomes important, as
these residuals represent an unmodeled part of the observation equation
after the inclusion of the polynomial model.

Proceeding, equation (39) is expressed as follows

n(t) = Pms(t) + Pnk(t) + rs(t) + rk(t) + ̂ (t) (41)

where P (t) is an m'th degree polynomial chosen to model the correlat-
iDS

ed random error r\ (t) and P ,(t) is an n'th degree polynomial model-
s n K

ing the random process q,(t). The statistics of the range residuals
r(t) may be developed from the covariance of the random clock errors.
The second order statistics of the range residuals r(t) to a polynomial
model are obtained as

E[r(t)rT(t)] = GE[R(t)RT(t)]GT (42)

where

G = [I - A(ATA)"1AT] (43)

and A is the least squares design matrix for the polynomial model
T

selected. The E[R(t)R (t)] is the covariance matrix of the random
clock error being modeled. This covariance is given by equations (32)
and (33).

For integrated Doppler observations the statistics of the residuals to
a given degree polynomial model are similarly obtained from equations
(42) and (43), using the covariance matrix for integrated Doppler
random error due to each system clock, equations (37) and (38). The
equation may be written as

E[Ar(t)ArT(t)] = HE[AR(t)ART(t)]HT (44)
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where the matrix H is similar to the matrix G of equation (43) with
changes due to the choice of the model adopted for clock-induced random
Doppler errors

T T
H = [I - A'(A'A') A']. (45)

After the selection of the polynomial model, equation (40) has the form

- p( + + Ar( + Ar( + t (46)

If the statistics of these residuals were ignored in an estimation
problem, then the resulting parameter covariance matrix would be opti-
mistic. An increase in the degrees of the polynomial clock models would
offset this optimism to some extent since the level of unmodeled error
would be decreased. However, if a rigorous estimation is to be per-
formed, then these residual statistics must be included in the weight
matrix to account for the unmodeled error r(t) or Ar(t) in a statistic-
al rather than parametric fashion. The estimation algorithm should
then produce a valid parameter covariance matrix regardless of the
order of the polynomial models used provided numerical problems are not
encountered and the parameters are independent and well observed.

Finally, the theoretical standard errors for range residuals to a
linear fit were determined using equation (42) for the rubidium and
cesium clocks. The results are given in Figures 15 and 16. These
figures graphically demonstrate that the statistics of the residuals to
the clock modeling polynomial are not stationary. The variance of a
residual depends on the order of the polynomial, the interval length
and the location within the sample. However, the statistics of the
residuals will be constant from interval to interval of the same length
provided the sampling is performed equivalently and the same order
polynomial is used.
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Fig. 15-Standard error of satellite rubidium
clock residuals based on a linear fit

12 IS 20

NUMBER OF SAMPLES

24 28 32

Fig. 16-Standard error of cesium clock
residuals based on a linear fit
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QUESTIONS AND ANSWERS

DR. KARTASCHOFF:

I have just one question that you have been remodeling the flicker
noise level with these five processes, and I was asking myself now
when I hear it what do you think about if one just could use direct-
ly the time interval error estimation, as I had shown just before,
also for estimating the range error?

Furthermore, one could try to estimate the uncertainty of that
estimation by using the uncertainty of the Allan variance using the
theory of Audoin-Lesage that limited the sample that we always, for
a given time, T, on the flicker level, and we always have an un-
certainty that is given as the number of samples. For the last
point you measured, you have only two samples; so you have 2000 per-
cent error as the uncertainty.

I think it would be an interesting exercise to repeat the cal-
culation using these estimations and using your process. Very
probably both will give very similar results and both can be used.
That would be interesting, I think.

MR. FELL:

I think you are right. This is just one way that you could do this
approximate method, those Allan variances. They are specified for
a clock and are only an approximation of actual performance, but for
a long time people have ignored this type of residual error which is
left in the estimation problem. And I think that because we are now
trying to get down to such small errors, namely baseline errors of
less than 10 centimeters, that we are going to have to take a second
look at our modeling and make sure that it is sufficient for the
problems that we are addressing.

Otherwise the parameter of statistics which we get out of the
estimation algorithm are going to be too optimistic.

DR. VICTOR REINHARDT, NASA/Goddard

You also, if you do your conversions to your range statistics, or
range rate statistics, up front you will find that your range rate
estimator is one of the weighted Allan variances, and you can just
use the tables that are published from converting to the zero dead
time Allan variance to the Allan variance with dead times to get
your range statistics. That all combined with some factor like C
or-£.
/T
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And you can do this not even with a hand calculator on the
back of an envelope, do the same thing just by looking up the NBS
publications on the various weighings for the various models since
all of the frequency standards that we use breakup into well de-
fined regimes we have, you know, a well defined parallel.
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