
11 I!

3 1176 00165 5654 I
I

NASA Technical Memorandum 83167

NASA-TM-83167 19810019289

REQUIREMENTS AND PRELIMINARY DESIGN
FOR A GENERAL PURPOSE REAL-TIME
EXECUTIVE FOR FLIGHT COMPUTERS

Kathryn A. Smith

JUNE 1981

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

FOR REFERE!'TCE

riot TO BE TAXEl~ FROM nns ROOM

: !:) -,1 r' p ";~ ("': fHl V
L.I.;) .' :.~;.~:j~ i~

JUL 2 - 1981

'-1&:.\i<Y, rj,;st\
: lH"'PT""r,I, ~1"A"';\!l

https://ntrs.nasa.gov/search.jsp?R=19810019289 2020-03-21T12:55:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42859925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

REQUIREMENTS AND PRELIMINARY DESIGN FOR A
GENERAL PURPOSE REAL-TIME EXECUTIVE FOR FLIGHT COMPUTERS

SUMMARY

This document sets forth the requirements for a general purpose real-time
executive for flight computers. It includes a description of and the
requirements for the major elements of such an executive. These are an
initialization module, a task scheduler, and an interrupt handler. It is
intended that this document serve as a basic requirements document for a
general purpose flight executive, independent of application and computer.

INTRODUCTION

Recent advances in computer technology have led to increasing application
of digital control in all types of time critical processes. In NASA such
digital systems are becoming more important in flight control. In flight
computing, certain computations must be completed within given time intervals,
data must be retrieved and processed on a regular basis, and interrupts must
be handled without interfering with required computations. To accomplish
these functions a real-time executive is needed to provide an interface
between the applications programs and the flight hardware elements controlled
by the computer.

This document outlines the requirements for a general purpose capability,
allowing for differences in flight computers and application specifications
through the use of system parameters and variables. It is evident that the
development of a general purpose executive will reduce the cost of developing
specific real-time flight executives, primarily by reducing duplication of
effort. It is intended that this document serve as a basic requirements
document for a general purpose executive, independent of application and
computer.

DESCRIPTION OF EXECUTIVE

General Description

The major elements of this executive are (1) an initialization module to
handle initialization and start-up of the system, (2) a task scheduler to
ensure orderly and timely processing of both tasks and events, and (3) an
interrupt handler to control the interaction of interrupts with the system.
Figure 1 shows these major elements of the executive.

The executive also provides an interface between the computation process
and the I/O devices. All processing by the executive will be controlled by
priority levels; tasks and events will be scheduled by priority and interrupts
handled by priority. This design limits the number of priority levels to 15.

FIGURE 1

GENERAL PURPOSE EXECUTIVE
---------~----------

Iniiialization

Task
·Scheduler

Interrupt
Handler

MAJOR ELEMENTS of GENERAL PURPOSE EXECUTIVE

Tasks and events are computations performed by the flight computer
according to the application specification. Task and event processes are
program modules defined by the application user. Task processes occur
periodically throughout the entire execution sequence. Event processes on the
other hand are user defined modules that are executed when certain conditions
occur, and these may be activated throughout the entire execution sequence or
during some portion of it. Task and event modules may contain many
computations and may in fact consist of a group of related tasks. Tasks and
events are scheduled by priority from highest to lowest level.

The processing of interrupts is also controlled by priority levels. When
an interrupt signal is received by the executive, control will be transfered
to the interrupt handler. The interrupt handler will then determine if these
interrupts should be processed immediately or should be put into a pending
stack for later processing.

User defined program modules which perform tasks, events and interrupt
processing are called processes. Each module will have an associated, user
defined priority level and a table in which to store the machine state if it

2

is interrupted. Processes may only be interrupted by interrupts that have a
higher priority level. The number of task modules, the number of interrupts,
and the number of events will be defined as system parameters. Impending
processes are tasks, events, or interrupt modules which have been interrupted
before they could complete processing. .

The executive will handle up to 15 priority levels. Level 1 is the
highest priority level and level 15 is the lowest. The first four levels will
be reserved for the executive and will not be available to the user. These
levels will be reserved as follows: level 1 - power off interrupt, level 2 -
machine fault interrupt, level 3 - interval timer interrupt, and level 4 -
minor cycle and fast tasks. The user may assign the remaining eleven levels
as desired. Table 1 summarizes the assignment of priority levels.

Priority
1
2
3
4

5-15

Table 1

Interrupts and Tasks by Priority Level

Interrupt
Power off
Machine fault
Interval timer

user set

Task

Minor cycle
user set

Event

user set

Most computations are performed periodically within some cycle or time
frame. Cycle lengths are application dependent and can include a minor (or
fast) cycle, intermediate cycles, and a major cycle. Each computation cycle
will be assigned a priority level. The minor cycle will have the highest
priority level (level 4), followed by the intermediate cycles and the major
cycle. All tasks with a given priority will be grouped into a task module
which will be given the same priority and will be associated with the
computation cycle with the same priority.

The minor (or fast) cycle is the driving computation cycle of the
executive. It is machine and application dependent and is controlled by the
hardware interval timer. Generally the interval timer will be driven by an
I/O interrupt indicating that input is ready. The length (time) of the minor
cycle will be stored as a system parameter. Each minor cycle will be
initiated by an interval timer interrupt. A task complete flag will be
provided for the minor cycle tasks. This flag will be tested at the beginning
of every minor cycle to ensure that all fast tasks were completed within the
last minor cycle. If these tasks did not complete processing, an error
condition exists and control will be given to the error module.

The intermediate and major cycles will be defined as multiples of the
minor cycle, although these cycles need not be mUltiples of each other. The
major cycle will be defined as the longest, or slowest, cycle. The length of
each intermediate cycle and the major cycle will be set by an associated cycle
counter. The user will be allowed to define up to 10 intermediate cycles and

3

one major cycle. The number of intermediate cycles will be stored as a system
parameter.

Counters will be maintained for all intermediate cycles and the major
cycle. Cycle counters will be set to their maximum values during
initialization and decremented every minot cycle. The counter for a cycle,
the maximum count, and a cycle complete flag will be stored in a table with
entries for each associated task module. The task counters will be tested
every minor cycle. When a task completes processing, its task complete flag
is set. Upon completion of an intermediate cycle (cycle counter = 0), the
tasks for this cycle should be complete, and the task complete flag will be
tested. If the task complete flag is on, the counter will be reset to its
maximum, the task complete flat reset, and that cycle restarted. If the task
complete flag has not been set, an error condition exists (tasks for this
cycle are incomplete) and control is given to the error module. Figure 2
shows this cycle count test for cycle i.

Counters will also be maintained for periodic events. These counters
will be set to initial values during initialization and decremented every
minor cycle. These event counters will be tested every minor cycle to
determine which event(s) should be processed. An event will be processed when
the associated counter is zero and the event is enabled. Upon completion of
an event its associated event counter will be reset.

FIGURE 2 - Cycle Count Test

4

Error
Module

Initialization

After the flight computer is powered on, the loading process will begin.
A bootstrap loader is one possible way to handle this (see Appendix B).
The loading process will include the initialization of memory and of the
registers, most likely either to zero or to some preset system value.
Following initialization, control will be given to the executive which will
initialize the task and event counters, start the interval timer and the real
time clock, and pass control to the task scheduler.

Task Scheduler

An important function of the executive is the task scheduler, which
schedules tasks and events to make efficient use of minor cycle time. Some
tasks and events must be processed more frequently than others. Also, certain
time critical tasks and events must be completed periodically within the
shortest cycle known as the minor or fast cycle. Others need only be
completed within the major cycle. So, all task and event processes must be
managed to make best possible use of the computation time available during
each minor cycle.

The task scheduler will handle the processing of tasks, timed events, and
pending interrupts and ensure that tasks are completed within their allotted
cycles. Tasks will be scheduled as follows: minor cycle (fast) tasks,
foreground tasks from highest to lowest priority, and background tasks.
Background tasks have the lowest priority and are scheduled only on a time
available basis within the major cycle. Timed events will be scheduled bY
priority level, before tasks of the same level. The user may optionally
indicate to the executive whether tasks and/or events are to be scheduled.
The task scheduler will also keep track of the various cycles by means of
cycle counters. Pending interrupts will be processed after the minor cycle
tasks and before remaining tasks and events of equal or lower priority
level. This can be seen in Figure 3.

Tasks

Tasks are computations performed by the flight computer, and task
processes are application program modules defined by the user to perform these
tasks. They occur periodically throughout the entire execution sequence.
Associated with each task process will be an entry in the task table
containing such information as the transfer address and cycle count. When a
task is scheduled, control will be passed from the executive to the task
module by means of a transfer address in the task table. Processing of the
task module will continue until the task completes or until the task is
interrupted by a process which has higher priority. This can be seen in
Figure 4.

5

6

·------------
• : Task :

: Sched1Jler I ------ ----_.

process
minor cycl

tasks

process all
pending.
interrupts.
PI> Tk

Tk = priority level of next task

PI = ·priority level of pending interrupt

P = pending interrupt

* Interruptable process

rocess
next tosk*

yes

"wait"

FIGURE 3 - .Task Scheduler

on exit from
Task

l.Iodule

Interrpt
Handler

set task
>--e4 compl ete

flag

return to task
scheduler. begin
next level of tasks

FIGURE 4 - EXITTING FROM T 4SK PROCESS

Several priority levels of tasks will be allowed. Each priority level
will have an associated task process, which can contain any n~ber of
computations. The number of tasks and the priority of each will be set by the
user. Tasks may be interrupted by higher priority level interrupts.

Minor cycle processing: Minor cycle processing will include all tasks to
be processed each minor cycle. These are time critical tasks which have the
highest priority level allowed to the user and, thus, are not interruptable by
the user.

Foreground Tasks: Foreground tasks are those intermediate tasks which
have priorities lower than the minor cycle tasks and higher than background
tasks. Each intermediate cycle will have an associated task module (set of
tasks) to be completed within that cycle.

Background Tasks: Background tasks are low level tasks which are
processed on a time available basis. Background tasks must be completed
within the major cycle.

Task Scheduling: Tasks are scheduled in the following order: minor
cycle, foreground (from highest to lowest priority), and background.
Following completion of the fast tasks, foreground tasks will be scheduled by
priority level. Tasks of priority n+l are scheduled upon completion of level
n tasks. The scheduler will transfer control to the next lowest level which
has not completed processing--that is, the task scheduler can either restart an
interrupted task or initiate a new one. It will be the user's responsibility

7

to ensure that tasks are completed within the proper time frame. Upon
completion of a task process, the task complete flag will be set and
processing of the next level of tasks initiated. If all tasks complete
processing before the end of the major cycle, the executive will enter a
"I-lait" state. An interval timer interrupt will take the executive out of this
wait state. Figure 5 illustrates the scheduling of tasks over several minor
cycles. In this example there are four levels of tasks--minor cycle (fast
task), task 1, task 2, and background--and one event, which has the same
priority level as task 2. Task 1 repeats every 2 minor cycles and thus must
be complete within two minor cycles, and task 2 repeats every five minor
cycles. Since the event has the same priority level as task 2, it will be
scheduled first as seen in cycle 6. In this example, the length of the major
cycle is 10 minor cycles. Also note that the executive is in a wait state at
the end of cycle 10.

Interrupting Tasks:· A task can be interrupted by processes which are of
a higher priority level. When a task is interrupted the following must be
saved in the machine state table: contents of the registers, and the address
of the next instruction to be executed. A pointer to the machine state table
will be saved for this task in the interrupted process stack.

Restarting Tasks: When control is returned to the executive following an
interrupt, the task processes will be restarted as follows: If an interval
timer interrupt has occurred, the fast tasks will be initiated. Upon
completion of the fast tasks, the executive will activate the process with the
highest priority level. If the cycle counter for that level is at its
maximum, the executive will initiate that level of tasks. Otherwise, the
executive will reload the registers from the machine state table and activate
the previously interrupted task from the transfer address in the table. In
the case of lower level interrupts, other than those transferring to the error
module, the machine state for the last interrupted task will be reloaded and
that task resumed.

Events

Events are computations performed when special conditions occur, and
event processes are user defined program modules to perform them. Events may
be scheduled to occur during the entire execution sequence or during a portion
of it. Events may be specified in several ways. They may be (1) timed, (2)
external, or (3) background. Associated with each timed event process will be
an event table containing information pertinent to its execution. The form of
the table will depend on the type of event.

Timed events may be specified in two ways: (1) as a function of the
real-time clock, and (2) periodic. Timed events differ from tasks in that
they can be enabled and disabled. Thus it is possible for an event to
function only during some small time period of the complete execution cycle.

A clock event occurs at a specified time based on the real-time clock.
During every minor cycle after completion of the fast task, the times for
clock events will be tested against the real-time clock. A clock event will

8

0

1 f-

2 f-
Time

3 f-

4 ...

5

B ~
I---

C E
b b c b b

- I-- f--

b b b
:-- - I-- I-- i---- - -

a

1

a a a a a a

2 3 456 7
Minor Cycles

a I Fast Task
~===:::::!
!:====b ~I Task 1
L--_c=-----.JI T ask 2

B
E
w

~

c JL
b c

- f--

b b
i---- i---- f--

a a a

8 9 10

Background

Event
Wait

FIGURE 5 - Example of Task Scheduling

9

be scheduled when the real-time clock has reached the event time. If a clock
event is scheduled, control will be passed to the clock event module. Control
will return to the executive upon completion of the event.

A periodic event occurs periodically based on the interval timer. During
every minor cycle the executive will test'the counters in the cyclic events
table. Any event with a counter of zero, and which is enabled, will be
scheduled. Note that more than one event can be scheduled in a minor cycle,
and this will be on a first-come-first-served basis. After an event is
processed, its associated counter will be reset to its maximum.

External events are activated by an external interrupt. These generally
have a one time occurrence. External events will be initiated from the user
defined external event interrupt module.

Background events are low level periodic events that are processed after
all other tasks and events are processed. They are processed during any spare
time in the major cycle; if no time is available, background events will be
ignored.

Interrupting Events: An event can be interrupted by interrupt processes
which are of a higher priority level. When an event is interrupted the
following must be saved: machine state (registers) in the machine state
table, the address of the next instruction to be executed, and a pointer (in
the interrupted process stack) to the entry in the machine state table (see
Appendix A).

Restarting Events: When an event is restarted, the executive will reload
the registers and machine state from the associated machine state table and
transfer to the appropriate address.

Interrupt Handler

When an interrupt signal is received by the executive, control will be
transferred to the interrupt handler. The interrupt handler will determine if
the interrupts should be processed immediately or should be put into a pending
stack for later processing. Interrupts will be defined in terms of priority
level and type. This information will be stored in the interrupt table (see
Appendix A). If interrupts occur concurrently, then each of the interrupts
will be recognized and processed by priority level, i.e., highest level
first. The lower level interrupts will be put into a pending stack for later
processing. Each type of interrupt will have an associated interrupt process
module. Interrupt processes, including those for high level interrupts, are
user defined modules to handle each of the interrupts. Low level interrupt
processes may be interrupted by higher level interrupts. Figure 6 shows the
basic form of the interrupt handler.

If the priority lev~lof the new interrupt is greater than the level of
the currently active process, the present machine state will be saved and a
pointer to the machine state table added to the interrupted process stack.
Control will then be passed to the new interrupt process. Before restoring

10

1------------
: Interrupt : Ij = priority level of interrupt
: Handler:
______ --- __ 1 Tk = priority level of current process

J-----HI Save pending

save mac Ine
state of current

rocess

Process
interrupt

inrerru t

Resume
Current
Process

Restore Resum
>-----1R11 S ta te t---i7I Cur r en

Restore
>--HIISta te J---HI

FIGURE 6 - Interrupt Handler

Proces

GO TO
11

11

the interrupted state, the interrupt handler will activate any other current
interrupt whose level is greater than the level of the interrupted process.
The pointers in the interrupted process stack will be used to restart the
interrupted processes.

If the level of the new interrupt is not greater than that of the current
process, the interrupt will be added to the pending interrupt stack for later
processing and the pending interrupt flag (a system variable) incremented.
Pending interrupts are low level interrupts which have been recognized, but
because their priorities are lower than the level of the current task have
been allowed to begin processing. Interrupts on the pending stack will be
initiated at a later time by the task scheduler, according to priority.

After an interrupt is recognized, if the priority of the current process
is higher than the priority of the interrupt, the following information will
be saved in a pending interrupt stack:

priority level
type of interrupt
transfer address
buffer protect flag

After each task completes processing, the pending interrupt stack is
interrogated. If any interrupts are pending, then those pending interrupts
which are of equal or higher priority level than the next task to be scheduled
will be processed. The pending interrupt flag will be decremented by the
number of pending interrupts honored.

Interrupt Priority Levels: All interrupts and their associated interrupt
processes will be assigned priority levels. The highest level interrupts will
be reserved for the executive. User set priorities will be below those
reserved for the system. The user will be responsible for selecting and
setting the priority levels of the various interrupt processes.

Types of Interrupts: The general purpose executive allows for several
types of interrupts including the following: power off, machine fault,
external, and arithmetic fault. The system will also allow for "other" user
defined interrupts. The priorities of the power off, machine fault and
interval timer interrupts are pre-defined. All other interrupts will have
user set priorities. The interrupt modules may be interrupted by higher level
interrupts.

12

The Power Off Interrupt is the highest level of interrupt.
If a power failure occurs, control will be transferred
immediately to the power off module. The power off
module will accomplish all that is necessary for an
orderly shutdown of the system.

The Machine Fault Interrupt is a high level interrupt
which signals a hardware failure. When the executive
receives this interrupt, control will be transferred to a
user defined error module for special processing.

External Interrupts are signals from external devices, such as
(1) the interval timer, (2) I/O device, (3) external events,
(4) external"clock, and (5) other user defined external
interrupts. These are discussed in further detail below.

(1) Every minor cycle an interval timer interrupt will give
control to the executive. It signals the beginning of a
new minor cycle. Control will be passed from the interval
timer module back to the executive. At this point the
executive will schedule the fast (minor cycle) tasks, and
then decrement the task and event counters. An interval
timer interrupt will supersede all other interrupts
except the power off and machine fault.

(2) An I/O device interrupt signals that I/O is ready for
the system. A typical I/O interrupt signals that an
input buffer has been filled and is waiting for processing.
Processing of this interrupt will be done by the I/O
Interrupt Module. Upon completion of this, control will
return to the interrupt handler where the interrupted task
will be restarted.

(3) An External Event Interrupt indicates that an external event
should be processed. The external event will be initiated if it is
of higher priority than the current process; otherwise it will be
added to the pending interrupt stack. After processing the event,
control will be returned to the interrupt handler and the
interrupted task restarted.

(4) The External Clock Interrupt allows a clock other than
the interval timer and real-time clock to interrupt processing.

(5) An option will be included to allow for user defined
external interrupts which would not be included in one of the
other external interrupts.

The Arithmetic Fault Interrupt is a relatively low level interrupt.
It indicates that some anomalous arithmetic operation, such as
division by zero, has occurred. This interrupt causes control to be
passed to a user defined error module.

An option will be included to allow the user to define other
interrupts which have not been specifically defined.

13

CONCLUDING REMARKS

This paper defines the requirements for a general purpose, real-time
executive for flight computers, which allows for differences in flight
computers through the use of system parameters. The major elements of this
general purpose executive are (1) an initialization module to handle
initialization and start up of the system, (2) a task scheduler for both tasks
and events, and (3) an interrupt handler to control the interaction of
interrupts with the system. The executive outlined in this paper has been
reviewed with respect to its use in a number of applications. This document
is presently being used as the requirement specifications for the design of
the flight executive for the LaRC supported Terminal Controlled Vehicle (TCV)
Project.

Langley Research Center
National Aeronautics and Space Administration
Hampton VA 23665
June 19, 1981

14

APPENDIX A

TABLES AND STACKS

The general purpose executive, in the performance of its duties (task and
event scheduling, and interrupt processing), will use several tables and
stacks containing information necessary to perform these functions. Tables
will be used for interrupts, events, tasks, and interrupted processes. Stacks
will be used for pending interrupts and interrupted process pointers. These
tables and stacks are discussed in detail below.

Interrupt table: This table will be used to control the interrupt
handler. Information about interrupts will be stored from highest to lowest
priority level. This table will have an entry for every interrupt and each
table entry will contain at least the following information.

Priority level
Type
On/off flag
Interrupted flag
Transfer address
Buffer protect flag

Timed Event tables: There are two types of timed events which will
require tables. They are periodic events and clock events. Event tables will
contain at least the following information:

(a) Periodic event table (interval timer)
Counter (to be decremented)
Max count
Transfer address
Enable/disable flag
Interrupted flag

(b) Clock events (real time clock)
Event time
Transfer address
Enable/disable flag

Task table: The table will be used by the task scheduler to schedule
tasks. This table will have an entry for each task module and will include at
least the following information for each entry:

Cycle counter (to be decremented)
Maximum cycle count
Task complete flag
Pointer to current address (restart)
Pointer to beginning address
Priority level

APPENDIX A

Machine state table: Each module or process (task, event, interrupt)
will have an entry in this table, containing the last contents of the
registers (last state of the system) for each module and the return address.
This table will be used during restart procedures.

Pending interrupt stack: This stack will be used to indicate pending
interrupts. It should include at least the following information for each
pending interrupt:

Priority of interrupt
Type of interrupt
Transfer address

Interrupted process stack: This stack will contain pointers to
interrupted processes in the machine state table and will be used during
restart procedures.

A-2

APPENDIX B

GLOSSARY

Bootstrap loader: A load process in which the first few instructions of
a program are loaded into memory and then those instructions are used
to load the rest of the program.

Cycle: Period or time frame during which computations are performed.
Minor (fast) cycle: The shortest computation cycle which is the

driving cycle of the executive.
Intermediate cycle: Computation cycle

defined as a multiple of the minor cycle.
Major cycle: The longest, or slowest, computation cycle.

Cycle counter: A counter which is used to keep track of all
intermediate cycles and the major cycle in terms
of the minor cycle.

Events: Computations which are performed under special conditions by the
flight computer.

Timed events: Events activated by some time element.
Clock event: Events which occur at a specified time based

on the real-time clock.
Periodic event: Events which occur periodically based on the

interval timer.
External events: Events activated by an external interrupt.
Background events: Low level periodic events that are
processed after all other tasks and events are processed.

External clock: A clock external to the executive.

Interval timer: A timer which gives a periodic signal every minor cycle.

Machine state: The contents of the registers at any given moment.

Priority: A pre-set number used to determine the order for processing
events, tasks and interrupts.

Process: A process is a user defined program module which performs
tasks, events, or interrupt processing.

Task process: User defined program module which performs tasks
periodically throughout the execution sequence.

Event process: User defined program module that is executed when
certain conditions occur, and this may be activated throughout
the entire execution sequence or during some portion of it.

Interrupt process: User defined program module to handle one of
the interrupts.

APPENDIX B

Real-time clock: A timer which gives the real-time from initialization of
the executive.

Schedule: To initiate or restart a task·or event process.

Tasks: Computations which are performed by the flight computer
periodically throughout the execution sequence.

Minor cycle (fast) tasks: Time critical tasks which must be
processed each minor cycle.
Foreground Tasks: Tasks of lower priority than the fast tasks,
performed during the intermediate cycles.
Background (major cycle) Tasks: Background tasks are low level
tasks which are processed on a time available basis. They must
be completed within a major cycle.

B-2

REFERENCES

1. Viking Flight Program Description Document, Martin Marietta Corporation,
Denver, Colorado, 83767000130, Vol I., 1973.

2. AGS Software Requirements Document, Sperry Flight Systems Division,
Sperry Rand Corporation, File No. 5121.8085.14.6-1, June 1979.

3. Cleveland, J. I., Crawford, D. J., and Rowell, L. F., Reference Manual for
the Langley Research Center Flight Simulation Computing System,
NASA Langley Research Center, NASA TM 78757, June 1978.

4. Margolis, S. P., Wolverton, D. A., and Hamm, R. L., Flight Control Computer
Software Description, Computer Sciences Corporation, Hampton, Virginia,
CSC Number 33508, July 1979.

I 2. Government Acceuion No. 3. Recipient's Catalog No. 1. Report No.

NASA TH-83167
4. Title and Subtitle
Requirements and Preliminary Design for a

General Purpose Real-Time Executive
for Flight Computers

7. Author(sl

Kathryn A. Smith

9. Performing Organization Name and Address
NASA Langley Research Center
Hampton VA 23665

5. Repon Oat.

June 1981
6. Performing Organization Code

506-61-l~3-05

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

t--------------------------------.........{ 13. Type of Repon and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington DC 20546

15. Supplementary Notes

16. Abstract

Technical Memorandum

14. Sponsoring Agency Code

This document provides the requirements and preliminary design of a general
purpose, real-time executive computer program for flight computers.
The paper includes a description and the requirements for the major elements
of the executive: an initialization module, a task scheduler, and an
interrupt handler. Task priorities and various process interrupts are
discussed. System parameters and variables are identified which make the
design adaptable to various flight computer and application specifications.

17. Key Words (Suggested by Authorlsll

Real-time executive program
Flight computers

18. Distribution Statement

Flight software
General purpose executive'program

19. Security Oassif. (of this report'

Unclassified
20. Security Classif. (ot this pagel

Unclassified

Unclassified - unlimited

Subject Category 61

21. No. ot Pages

20
22. Priceo

A02

N·)05 For sale by the National TechnicallnfOlmation Service, Springfield, Virginia 22161

End of Document

