
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 

https://ntrs.nasa.gov/search.jsp?R=19810019411 2020-03-21T12:54:17+00:00Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42859909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


V	 i

Final Report: January, 1980-July, 1981

Grant: NASA-NAG1-33

SILICON SUPERLATTICFS: THEORY AND APPLICATION

TO SEMICONDUCTOR DEVICES

Principal Investigator: J.A. Mori arty +

College of William and Mary, Williamsburg, VA 23135

NASA Technical Officer: R.L. Stermer

NASA-Langley Research Center, Hampton, VA 23665

s

'	 r	 Sit VAC1 

F - 
00 OED'"^

+Current address: Department of Electrical and. Computer Engineering

University of Cincinnati

Cincinnati, Ohio 45221

(NASA-CH-164568) SILICON SUPERLATTICES:	 N81-2:949S	
THEORY AND APPLICATION TO SEMICONDUCTOR
DEVICES Final Report, Jan. 1980 - Jul. 1981
(GO13ege of Williaa and Mary) 33 P	 UnclaS

a	 HC A01/MF A01	 CSCL 20L G3/76 26841

t __	 _ __	 __...	 _	 .,	 ,+w.uraac^w;ra, _	 ..., s.^x aw«san.^ee!++r

ti



a

1

I. INTRODUCTION

This report summarizes the research efforts of the principal investigator

to initiate a theoretical study of silicon superlattices and their applicability

to improved semiconductor devices. The work described here has proven to be

very fruitful and is currently being continued by the atsi,hor at this new institu-

tion, the University of Cincinnati. Additional support for this research, in 	 !
1

the form of a s;ep3rate NASA grant, is now pending.

The motivation for undertaking this investigation was two-fold. First,

there has been a great deal of recent interest in the device-application poten-

tial of III-V semiconductor superlattices fabricated in the form of ultrathin
e

(-100-500;) periodically-layered heterostructures. This interest first began

with the suggestion of Esaki and Tsu i that the atomic-Like dimensions of such

structures could lead to interesting and useful quantum size effects and would.

create the possibility of altering familiar transport and optical properties

over broad physical ranges. The sophisticated technique of molecular-beam-

epitaxy2 has since been used to fabricate superlattices out of compatible semi-

conducting compounds and their alloys, most notably GaAs and Ga AP. As, where
1-x

the lattice constants of the two constituents can be closely matched. Very re-

cert research on the GaAs-Ga AR As system has been both intense and suc- 	 j
1-x x

cessful.
2-16

 Applications to improved semiconductor lasers and electron devices

have been achieved and many more are expected.

The second motivating ingredient for the present work was the natural

question of whether or not such ideas had practical relevance to silicon, still

the most technologically important electronic material. In particular, we were

attracted by the prospect of combining the benefits of cost-effective materials

processing, which is offered by current silicon technology, with the improved



and suggestions for future directions are given in Sec. III.
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electron-device performance promised by semiconductor superlattices. The

modified electronic structure of the semiconductor superlattice brings with it

the possibility of controlling basic electronic properties such as electron and

hole mobilities. Of special interest is the possible application of silicon

superlattices to faster high-speed computing devices, where one factor limiting

the speed of the device is the relatively low carrier mobility in silicon.

Our specific objective dur*ng the first year was to investigate the

modified electronic band structure of hypothetical silicon superlattice struc-

tures including, but not confined to, the heterostructure system of most direct

interest: Si-Si l-xGex .	 Toward this end, we have now studied rather extensively

three general prototype models of increasing complexity:

M a one-dimensional superlattice in an ideal one-dimensional model

host: superlattice (1)

(ii) a two-dimensional superlattice in an ideal two-dimensional host:

superlattice (2)

(iii) a one-dimensional superlattice in a real three-dimensional silicon

host: superlattice (3)

In each case, we have examined in detail how the fundamental band gap, effective

masses and related features of the electronic structure are altered from the

host. These studies are discussed at length in Sec. II below. Our conclusions

n R
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II. COMPLETED RESEARCH

A. Electronic Structure of Model One-and Two-Dimensional Superlattices.

The model host in superlattices (1) and (2) was chosen to simulate a

semiconductor like silicon yet retain a large degree of physical and mathemat-

ical simplicity. Conceptually, the superlattice is formed by substitutionally

replacing host atoms by "impurity" atoms in a periodic fashion, where the

underlying linear or square host crystal structure has a lattice constant

a , and two atoms per primative call. The latter are separated by a distance

d (the bond length). It is further assumed that the electron potential of the

impurity atoms is characterized by a constant energy shift V ,S from the host.

Otherwise, the nature of the impurity atoms is arbitrary and need not be con-

sidered further. If the second atom in the primative cell is located at the

point of highest symmetry, the geometry of superlattices (1) and (2) is speci-

fied by only two numbers: n s , the total number of host primative cells (each

with either 2 host or 2 impurity atoms) contained in a given (100) plane of

the superlattice primative cell; and n b , the number of those host primative

cells which contain only impurity a.-oms. The geometry and electron potential

of superlattice (1) are schematically illustrated in Fig. 1 for the case ns=3

and nb=1. Here

s=nsa	
(1)

is the lattice constant of the superlattice and

np=2ns	(2)

is the number of atoms in the superlattice primative cell. In reciprocal space,

the size of the Brillouin zone is correspondingly shrunk by a factor of n
s
 and

the boundaries of the "minizone" for superlattice (1) are thus given by

_S < k < S'	 (3)

F
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In order to treat the electronic structure of superlattices (1) and (2),

an appropriate LCAO (linear combination of atomic orbitals) approach was

developed. This technique was adopted both for its basic simplicity and

because of the important ee" A,vance of the LCAO method to real tetrahedrally-

bonded solids like silicon, 
17 

as discussed in Sec. II B below. In our LCAO

description, a minimal basis set of two atomic-like orbitals, ja > and I$>,

was chosen. These orbitals were assumed to be orthonormal and both of s

symmetry. If the bond length is a/2 in superlattice (1) andNf2" a/2 in super-

lattice (2), each host atom experiences equivalent nearest-neighbor interactions.

Neglecting distant-neighbor couplings, this leads to five basic LCAO parameters

for the host atoms: two diagonal energies

ea = <a lHla>	 (4)

and

es = < $OHIO > ;	 (5)

and three interatomic matrix elements

Vaal _ <ajHja I > ,	 ( 6)

VSS` _ <R,Hjs'>,	 (7)

and

Vas, = < aIHIS' > ,	 (8)

where the prime denotes that the orbital is centered on a different site. For

the impurity atoms, ea and a are shifted to

ea = ea + Vs	(9)	

s
and

+ Vs .	 (10)
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while Vad „ 
V 00 

and Vas , remain unchanged. The host electronic structure

(Vs-0) is established by a (4 x 4) secular determinant which may be solved

analytically for the energy bands E(k). Our approach was to arbitrarily fix

the five LCAO parameters at convenient values and study the change in the

electronic structure as the superlattice parameters Vs , ns and nb were varied.

The LCAO parameters adopted were

Ea = 2V,	 (11)

es = 6V,	 (12)

and

Vaa, - V 00 - Vas' a -V,	 (13)

where

V - r'h2 
[MI2
	 (14)

F a

is the natural unit of energy an-d r is a dimensionless scaling constant. These

parameters lead to symmetrical valence and conduction bands with a direct band

gap of magnitude E9 located at the zone center (k=0) in both superlattices (1)

and (2). The matrix element Vas , insures coupling between the valence and

conduction bands and a finite E 9 which scales uirectly with r. The correspond-

ing valence-and conduction-band-edge effective masses are equal in this model,

*	 *	
(15)mh=me=m,

and scale as 1/r. The host values of E g and m*/m for the cases of interest

are summarized in Table I.

The superlattice band structure here is determined by a (2n p x 2np ) secular

determinant which can only be solved numerically in general. A full computer program

for this purpose has been developed and was used to obtain the results discussed

below. Within the confines of the above model the *Iectrcnic structure of

r
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Table I. Parameters of the model hosts in superlattices (1) and (2) for the

choice of parameters ca = 2V, ES = 6V and V=, = Vow _ -V, where V = r712 M2.
a

Superlattice	 Va$I	 E9	 m*/m

(1)	 0	 0	 0.4051

(1) -V	 1.66V	 1.3844

(2) -V	 0.94V	 1.9191
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superlattices (1) and (2) was studied as a function of the parameters Vs,

ns and nb . Calculations on superlattice (1) were performed over the pare-

meter ranges
0 < Vs/V < 4.0,	 (16)

2<ns <89	 (17)

and
1/8 < nb/ns < 1/2.	 (18)

The secular determinant in superlattice (1) is (4n s x 4ns ) and hence varied

from (8 x 8) to (32 x 32) over the range of n y given in Eq. (17). Typical

results for the superlattice energy bands are plotted in Fig. 2 for the case

ns * 2 and nb = 1 and five values of V s/V. The fer left-hand panel shows the

host bands folded into the minizone of the superlattice. As V s is increased

from zero, the host energy bands are separated, narrowed, and pushed up in

energy with "minigaps" formed at the minizone boundaries. The quantitative

magnitude of these effects, however, is clearly band dependent. As the size

of the minigaps increases, the narrowed superlattice energy bands may in some

cases being to be pushed towards one another leading to new strong interactions.

In 'rig. 2 this can be seen to occur for the lowest lying conduction band and

the highest lying valence band. The superlattice band gap closes continuously

as the strength of the superlattice potential V s is increased. As illustrated

in Figs. 3 and 4, the band gap closes more quickly with V s when ns is raised

for fixed nb or when nb/ns is raised for fixed ns.

The corresponding band-edge effective mass m* is also found to vary rapidly

with Vs . Initially, m* increases sharply because both the valence and conduc-

tion bands are flattened, but as Eg becomes smaller the bands interact strongly

and m* decreases to a minimum value as E g+O. This behavior is shown in Fig. 5



O	 O	 O

.^G

.Q
N

.7
C ^
W ^

OO
O N

;x

N	 O	 co	 CO 
/^ / 6 -
	 N

r	 r-	

/ \/

ORIGINAL PAGE 18

OF 130177
<:zR-.g ^^;^s0

..Lw	 __y^^aGl' ^yPwaY^3PS.ttlM:YF&S NNE r.asdL .^.a..X^9u.....r.^.__e.^4a.L...a..^fa.L...Jw»..e.^ 	 _. ^_._



1®

m1

r

CO

00?

,^ C

4? ^
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for the case ns = 2 and nb = 1 (and r = 1). More rapid variations occur as

either ns' is increased for fixed nb or as nb/ns is increased for fixed ns.

The actual minimum m* achieved at band-gap closing increases with n s and also

slightly with nb/ns . Thus small values of effective mass (and hence high

carrier mobilities) can only be achieved for relatively strong superlattice

potentials. To obtain m*/(m*
host ` 

1.384) < 0.2, one requires V s > ,Eghost-1.66V

in all cases studied with this model.

Saturation of the above effects occurs rapidly as n s increases. In the

hypothetical limit n s+ co, one expects the band gap to first close when

Vs = Ohost = 1.66 V.	 (19)

the value of the superlattice potential which would move the valence-band edge

of the host to the position of the conduction-band edge. This value of Vs is

only slightly less than the one we have obtained for n s = 8, so that we expect

little significant change in the above results for ns > 8.

In the case of superlattice (2), we have considered structures with both

square (SQk) and face-centered (FC) two-dimensional symmetry. The symmetry and

dimensions of the real-space superlattices and the reciprocal-space minizones

are illustrated in the left-and right-hand portions of Fig. 6, respectively.

The effective superlattice constant is again s = n
s
 a. In the SRQ superlattice,

the number of atoms per primative cell is

np = 2n s2 9 	(20)

while in the FC superlattice one has

np = ns2 .	 (21)

The maximum fraction of impurity atoms in the primative cell is 1/4 for the

SQR configuration, but still 1/2 for the FC configuration, as it is for super-

lattice (1). The size of the secular determinant to be solved for the electronic
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structure is now increased to (4ns
2
 x 4ns2 ) and (2ns2 x 2ns2 ), respectively.

We have performed calculations on the 5QR and FC cases of superlattice

(2) over the parameter ranges

0 < Vs/V < 5.0 1	(22)

2 < ns < 4,	 (23)

and

1/8 < nb/ns < 1/2.	 (24)

The behavior of the energy bands with varying V s , n s and nb show basic similari-

ties with that of superlattice (1), but a few noteworthy differences as well.

There is again a continuous closing of the fundamental band gap as V s is in-

creased from zero in all cases considered except FCC, n s - 2, nb - 1 1 where

the gap first broadens slightly for small V s . This behavior is shown in Fig.

7. As in the case of superlattice (1), the rate at which E 9 approaches zero

generally increases with n s and the fraction of impurity atoms in the primative

cell, nb/np . In this regard, the FC congifuration is clearly more efficient

than the SQR one because n b/ng is larger for given values of n s and nb . Un-

like superlattice (7), however, the nature of the fundamental band gap (direct

or indirect) can change as V s is increased. In superlattice (1), the gap is

direct at k=0 for all values of Vs . In superlattice (2), the gap is direct at

k=0 only for small V s . One or more changes to either an indirect gap (indicated

by an arrow and a numeral II in Fig. 7) or to a direct gap away from the zone

center (indicated by an arrow and a numeral I in Fig. 7) occur in every case.

In addition, when a band edge moves away from k=0, both longitudinal and trans-

verse effective masses arise. Only the longitudinal masses were investigated

in detail and these w1are found to depend on Vs in much the same manner as m*

in superlattice (1).



O
to

O
It

O
vi

O•^

O
N

O

O
10

n^ fi

16



B. Electronic Structure of One-Dimensional Silicon Superlattices

In superlattice (3), we replaced the simple model host by a full three-

dimensional diamond structure. The superlattice itself was formed by replac-

ing adjacent pairs of (100) planes of silicon atoms with impurity atoms, so

that the periodicity in the y and z directions is unchanged, but in the x

direction becomes

s = ns a	 (25)

where a is the host silicon lattice constant which is assumed to stay fixed.

In addition, we chose n s to be an even integer, so that the superlattice always

has simple tetragonal symmetry and the number of atoms per primative cell is

np = 2ns .	 (26)

The minizone in reciprocal space is then in the shape of a square prism

rotated 45 0 about the x axis, as shown in the bottom portion of Fig. 8.

The simple minimal-basis LCAO method discussed above had to be suitable

generalized for superlattice (3). In real covalent semiconductors like silicon,

a minimal basis set consists of one s-like and three p like atomic orbitals. A

careful study of the electronic structure of pure silicon revealed that in this

basis one must retain both nearest-neighbor and second-neighbor interatomic

interactions to obtain a satisfactory description of the energy bands in the

vicinity of the fundamental energy-band gap. The interatomic matrix elements

which enter the band structure calculation can always be written as linear com-

binations of the basic forms Vssa, Vs pa, Vppa and VPp7,. Furthermore, these

quantities are primarily functions of bond length d =43 a/4 in the solid

and, following Harrison, 
17 

may be expressed in the form

V.ZVm - n19"mt2/(md2)1	 (27)

17

a
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where 1.4 1 s s or p and the subscript m is either o or Tr. The dimensionless

parameters 
nxi'm 

were fixed by an empirical fitting of the known pure silicon

energy bands. The best set of values that we thereby obtained are listed in

Table II.

As mentioned above, the bond 'length is assumed fixed when the superlattice

is formed, so that the 
V19'm 

are unchanged. The silicon intra-atomic energies

CS
 and ep , on the other hand, become

e
s
 + V 

s 
(s)	 (28)

and

Cp	 5
+ y ( P)	 (29)

for the substitutional impurity in the superlattice. Fitting of the bulk sili-

con bands gave a value e  - E s = 4.786 eV which also remains fixed. The effect

of the superlattice potential is thus incorporated into two constants, Vs(s)

and Vs (P) , and represents, in general, a different potential seen by s and

by p electrons. The special lase

Vs	 s	 s
= V (s) = V (P)	 (30)

corresponds to the situation envisaged above in superlattices (1) and (2)

where the impurity potential is rigidly raised or lowered by a constant value

Vs . In the context of superlattice (3), we have designated this as type-I

behavior. Another interesting limiting case occurs for

Vs	 s
= -V ( 5 ) = V s (P)	 (31)

in which case s and p electrons effectively see equal and opposite superlattice

potentials. Detailed consideration of the electronic structure of Ge has

suggested that this behavior, which we have designated as type-II, is to be

expected in the Si-Si l _xGex heterostructure superlattice. Our studies have

further shown that a very approximate relation between the superlattice potential

ti



I
20

Table II. Parameters nUsm in Eq. (27) obtained from a best fit to the bulk

silicon band gap

r1julm	
Nearest neighbor	 Second Neighbor

ssa	 -1.491	 0.029

spa	 1.308	 0.051

ppa	 1.485	 0.351

pptr	 -0.276	 -0.036
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Vs and the Ge concentration x is

Vs - 0.5x (in W.	 (32)

Electronic structure calculations have been performed on superlattice

(3) in both the longitudinal [100] direction and the transverse [001] direc-

tion in type-I as well as type-II cases over the parameter ranges

0 < Vs < 1.0 eV	 (33)

and

2 < ns < 8	 (34)

In order to maximize the effective strength of the superlattice potential in

each case, the ratio of impurity-layer to silicon-layer thickness was held

constant at unity (corresponding to nb/ns - 1/2), as suggested by our model

O
studies. For n s = 8, this represents layers of about 11A in thickness or a

O
superlattice period of s e 22A. Since the size of our secular- determinant is

(8n s x 8ns ), direct calculation on thicker systems would require determinants

larger than (64 x 64).

Typical results that we have obtained for the band structure in the

vicinity of the fundamental energy gap are illustrated in Fig. 9. The top

panel shows the pure silicon bands with the characteristic indirect gap and

conduction band edges along the <100>  directions out toward the zone bound-

aries. The center panel shows the effect of folding the bands back into the

ns - 4 minizone for Vs = 0. Four of the conduction-band minima remain fixed,

but the remaining two along the [100] and [T00] directions are displaced to

positions near k - 0. When the suplerlattice potential V s is increased from

zero, the bands split apart, the fundamental gap closes and the [100] and [T00]

minima are further displaced, as shown in the bottom panel of Fig. 9. For the

case illustrated (Vs = O.SeV; type-II), the minima in fact have moved to the



c

22

2.0

1.0
E9
	 Silicon

L

0.0

—10

2.0

OOMW 1.0
aD

w 0.0

—1.0

2.0

10011	 [ oo]

[0011	 [10(

Superlattice
ns= 4

VS=0.0

1.0

0.0

10

Superlattice
ns= 4

VS= 0.5eV
Type i!

[001]	 [100]
ORIGINAL PAGE IS

Fig. 9.	 OF POOR QUALITY



n %

«	 23

zone center and the gap has become direct.

As expected from our model superlattice studies, the fundamental band

gap was found to decrease continuously as Vs is increased in all cases. The

rate of change with V s is significantly faster in the type-II case than in

the type-I case, as shown in Fig. 10 for n s = 2. This is to be expected on

the basis of Eqs. (28)-(31), since the s and p energies are pushed together

in the impurity layers for the type - II superlattice. The band gap in the

type-1 case remains indirect over the entire parameter range of Eqs. (33) and

(34). In the type-II case, on the other hand, there is a tendency for the gap

to become direct (at the zone center) for large Vs , as can be seen in Figs. 9

11. (In Figs. 10 and 11, the region between the arrows is that for which the

gap is direct at k = 0). Also as in the model studies, the gap E g was found

to decrease more rapidly with Vs as ns is increased. This is shoran in Fig.

11. The effect is not as large as in superlattice (1) (compare Fig. 11 with

Fig. 3), nor, in fact, did we find any clear evidence of saturation as ns

was increased from 2 to 4 to 6 to 8. Presumably, saturation will occur, but

evidently thicker layers must be examined to see its onset.

The band edge longitudinal and transverse effective masses in superlattice

(3) display rather complicated behavior, in general, due to the indirect nature

of the band gap. A clearer picture emerges by examining only the effective

masses at the zone center k 
s 

0. This k point, of course, marks the valence-

band maximum in all cases and hence is appropriate to the actual hole effective

mass in the superlattice. But k = 0 also marks the position of the conduction-

band minimum in type-II superlattices for large V s , as mentioned above, in

which case this point is directly relevant to the electron effective mass.

At k = 0 it was found that the longitudinal mass always increases while the
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transverse mass decreases with increasing V s . The former behavior is qualita-

tively in accord with our model studies, while the latter is a new three-dimen-

sional effect and one which clearly bodes well for a mobility enhancement in

the transverse dirt.tion. Details of the variation of the longitudinal and

transverse hole masses, mht and mht, with Vs are shown in Figs. 12 and 13.

Figure 12 also illustrates the relatively stronger behavior in the type-II case

than the type-I case. (The arrow denoting the cusps in the type-II curve in

Fig. '12 marks the value of Vs beyond which the valence-band maxima moves away

from 1; n D.) As seen in Fig. 13, the initial rate of decrease of mht increases

with ns and hence layer thickness. While the net effect is not extremely large

on the scale of the expected V s in the Si-Sit-xGex superlattice, saturation is

again not yet in evidence and a bigger effect can be expected in thicker systems.

(Note in Fig. 13 that the effective mass is given in units of the bulk silicon

heavy-hole mass mht.)
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III. CONCLUSIONS

The theoretical studies described above have led to a number of useful

findings and should greatly help focus the direction of future investigations

on silicon superlattices. We have found a wide range of interesting behavior

possible including the desirable features of smaller fundamental energy band

gaps and reduced effective masses. Such effects correlate strongly with both

the chemical (i.e., the magnitude of the superlattice potential V s ) and geo-

metrical (i.e., layer thicknes parameters n s and nb/ns ) nature of the super-

lattice. While details vary, the following general trends are in evidence:

(i) The effective strength of superlattice varies directly with Vs , ns,

and nb/n s . In one-dimensional silicon superlattices one can conve-

niently choose equal layer thicknesses to maximize n b/ns at 1/2.

Saturation of the superlattice strength with increasing n  (for

fixed Vs) is expected and was found to occur rapidly in the model

superlattices studied. Ir the real silicon superlattice, however,
0

saturation effects were not observed for layer thicknesses uptollA.

(ii) The fundamental hand gap Eg of the superlattice continuously decreases

with increasing superlattice strength. The direct or indirect nature

E
	 of the gap can readily change in multi-dimensioned systems. In the

real silicon superlattice, a definite trend toward a direct gap with

increasing superlattice strength was observed.

(iii) The band-edge effective mass in the superlattice or longitudinal

direction initially increases with increasing superlattice strength.

As shown in the model superlattice studies, only for very large (and

probably physically inaccessible) Vs can the trend be reversed and

the longitudinal mass be made to decrease below its value for V s = 0.
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(iv) The band-edge effective mass in the transverse direction, on the

other hand, decreases with increasing superlattice strength. In

the real silicon superlattice studied, the effect was found to

increase with increasing layer thickness.

Future theoretical work on silicon superlattices will investigate thicker-

layer silicon systems as well as variable orientations (i.e., [110] and [111]

as well as [100]) of the superlattice. Thick-layer calculations, however, will

require modifications in the theoretical methods used here. Promising wave-

function-matching techniques are currently being developed in the context of

III-V semiconductor superlattices. 18-20
 Such methods should have applicability

to silicon .,Ouperlattices.

A complementary experimental program aimed at studying Si-Si t-xGex super-

lattices has recently been initiated at Rockwell International and preliminary

results do show an enhanced electron mobility in the transverse direction. 21

In light of our findings, it would be extremely interesting to investigate

whether or not this arises from a decreased transverse effective mass.

Some of work described in Sec. II B of this report was presented at the

1981 March Meeting of the American Physical Society held in Phoenix, Arizona. 22

A paper summarzing this research is also currently in preparation. 23
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