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SUMMARY

A nominal 6-V state-of-the-art lead-acid battery in current use by the

electric vehicle industry as a baseline battery was tested at the NASA Lewis

Research Center under laboratory conditions. The primary objective of this
work was to determine the effectiveness of regenerative braking in increasing

the range of an electric vehicle over the various SAE J227a driving sched-

ules. The current required from an electric vehicle battery depends heavily

on the velocity-time profile of the vehicle, the shape and weight of the vehi-
cle, the type of tires used, the efficiency of the propulsion system, the size

(voltage) of the battery, and the basic characteristics of the battery (power
versus current). Each of these variables is defined in this report with the

final resulting current-time profile being representative of the demands

placed on a typical state-of-the-art electric vehicle lead-acid battery. The

secondary test objective was to obtain the required information on overall

battery performance for battery performance modeling.
The velocity-time profiles chosen are defined in the SAE J227a specifica-

tion, for a hypothetical vehicle with the following characteristics: weight,

1701 kg (3750 ib); product of aerodynamic drag coefficient and projected fron-

tal area CDA, 0.84 m 2 (9 ft2); and tire coefficient, l.lxl0-2. The
electric vehicle battery pack is a 120-V system consisting of twenty 6-V lead-

acid modules. The propulsion system was assumed to have 70 percent efficiency

during acceleration and cruise and 50 percent efficiency during regenerative
deceleration.

INTRODUCTION

Many of the performance limitations of an electric vehicle are due to the

battery. Not only the cycle life and battery cost but also the range and per-
formance attainable are important. The range of an electric vehicle is also

dependent on the type of propulsion system used with the battery. Current
propulsion systems under consideration include electrically regenerative and

nonregenerative braking systems. Coupled with these two systems are the re-

cuperation effects of the battery and its influence on the performance and

range of a vehicle. Another important aspect from the standpoint of the elec-
tric vehicle designer is the ability to predict the performance of a lead-acid

battery used in an electric vehicle with the propulsion systems mentioned

above. This paper addresses the interactions of the propulsion systems with

the battery and the prediction of performance and range capability.

Under the sponsorship of the DOE Electric and Hybrid Vehicle Program, the

NASA Lewis Research Center has been involved in quantifying the performance of
a state-of-the-art lead-acid battery with various electric vehicle propulsion

systems. The following are some of the questions that are addressed and dis-

cussed in this paper: Does electrically regenerative braking extend the range
and performance of an electric vehicle over those of a nonregenerative sys-

tem? Is there an increase or decrease in range when electrical regeneration
is applied to the coast or braking portions of the driving cycles? Can some
recuperation extend range when used with a nonregenerative or electrically

regenerative propulsion system? What effects on range and performance do

other driving schedules have? And finally, can the performance of the battery

be predicted with reasonable accuracy for all these situations. Answers to

these questions will help in the selection of an optimized electric vehicle

propulsion system that not only will be inexpensive but also will be coupled
with a battery system that can optimize performance for most driving schedules.



DETERMINATION OF SAE J227a TESTING PARAMETERS

Velocity-Time Profile

The power and current required from the battery in an electric vehicle

depends heavily on the design of the vehicle and the velocity-time profile
over which the vehicle travels. A series of velocity-time profiles are given
in SAE J227a (ref. I). These were used as a basis for calculating the power

and current requirements of an electric vehicle battery. The velocity-time

profiles chosen are shown in figure i. The highest vehicle speed for the B
schedule is 32.2 km/hr (20 mph); for the C schedule it is 48.3 km/hr (30 mph);

and for the D schedule, 72.4 km/hr (45 mph).

Power Profile at Wheels

To determine the power-time profile for the battery, the power-time

profile at the wheels of the vehicle must first be calculated. Once the
power-time profile at the wheels is determined, the power-time profile of the

vehicle battery can be easily obtained by assuming a propulsion system power

efficiency.

The power at the wheels required to move a vehicle can be expressed as

PR = (2"74xi0-3 TWV + 3.49xi0 -6 TWV 2 + 2.73xi0 -8 TWV 3)

+ (1.32xi0 -5 CDAV3) + (7.81xi0 -5 WaY)

+ (2.42xi0 -3 WV sin 0) (1)

The first three terms represent the tire loading (road load). The nex_ terms

represent the aerodynamic loads and the acceleration and grade requirements.
The tire loading and aerodynamic load terms were obtained from reference 2.

The last two terms, acceleration and grade, are self-evident. For equation

(i), PR in kilowatts is the wheel power, T is the tire coefficient, W is
the weight of the vehicle in kilograms, V is the velocity in kilometers per

hour, CD is the aerodynamic drag coefficient, A is the projected frontal

area in square meters, a is the acceleration in kilometers per hour per sec-
ond and e is the grade of the road, in degrees, on which the vehicle is

traveling. The grade requirements were not implemented in this report because

the power-time requirements of the battery were assumed to be representative
of a vehicle operating on a level road. The baseline vehicle was assumed to

have the following characteristics:

W = 1701 kg (3750 Ibm)

CD = 0.45

A = 1.86 m 2 (20 ft2)

T = 0.011



To calculate the wheel power, the velocity-time profile of the vehicle must be

known. As mentioned earlier, the SAE J227a driving schedules were used. The
calculation of wheel power is discussed in three parts. Each part or phase

reflects one of the three phases of the velocity-time profiles specified in
SAE J227a in which the vehicle is in motion (i.e., acceleration, cruise, and

deceleration). The deceleration phase includes the coast and braking periods,

which may or may not include electrically regenerative braking.

Acceleration

During the acceleration phase of the driving schedule it was assumed that
the vehicle accelerates at a constant wheel power from 8 km/hr (5 mph) to the

cruise speed. Below 8 km/hr, acceleration is constant.

A computer program was developed to determine the wheel power that would
meet the acceleration times specified in the SAE J227a driving schedules

(fig. i). The computer program also required that the wheel power at the end

of the constant-acceleration portion of the acceleration phase, 8 km/hr

(5 mph), match the wheel power during the constant-wheel-power portion of the

acceleration phase, _8 km/hr (_5 mph). The resultant wheel power - time re-

quirements are shown in figure 2 for a representative driving schedule (SAE

J227a B). The wheel energy from 0 to 8 km/hr (5 mph) is small when compared

with the total energy required during the acceleration period. For driving
schedules C and D the 0 to 8 km/hr (5 mph) energy requirements are even

smaller when compared with the total acceleration energy. Therefore, to

facilitate testing, the power required from 8 km/hr (5 mph) to the cruise

speed was extended back to 0 km/hr.
The power requirements for the acceleration phase of the SAE J227a driv-

ing schedules are given in table I.

Cruise

The wheel power during the cruise phase can be calculated easily from

equation (i). Table II contains the wheel power for the various cruise
conditions.

Deceleration

During the deceleration phase of the driving schedules (coast and braking

periods), electrical regeneration may occur. Depending on the design of the

vehicle, electrical regeneration may occur during the coast and braking

period, just during the braking period, or not at all.
If the vehicle does not have an electrical regeneration capability, the

kinetic energy of the vehicle is dissipated totally in the friction brakes and

in heating the tires and vehicle skin. If the vehicle is designed such that
electrical regeneration occurs during the braking period only, the kinetic

energy of the vehicle will be partially dissipated during the coast period.
This will result in less energy available for electrical regeneration than

when regeneration occurs during the coast and braking periods.
A computer program was developed to determine the wheel power available

for electrical regeneration when regeneration occurs during the braking period

of the velocity-time profile or during the coast and braking periods of each

SAE J227a driving schedule. To facilitate calculations and testing, regenera-

tive wheel power was assumed to be constant. In the computer program the

regenerative wheel power was calculated from the differences between the ever-



decreasing kinetic energy of the vehicle as it decelerates and the energy
dissipated in heating the vehicle's skin and tires as the vehicle decelerates

The algorithm used in the computer program is given in equation (2).

Ek(V n) - Ek(Vn+ I) = [PR(_) - Preg] (Tn+ I - tn) (2)

Here Ek(V n) and Ek(Vn+ I) are the kinetic energies of the vehicle at

velocities of Vn and Vn+l, respectively. The velocity Vn is the

velocity of the vehicle at time tn; Vn+ I is the velocity at time

tn+ I. The velocity Vn is always greater than Vn+ I since the vehicle

is decelerating in the time period tn to tn+ I. The term PR(_) re-

presents the wheel power (eq. (i)) at the mean velocity between Vn and

Vn+l, and Preg is the regeneration wheel power, which is held constant.
Equation (2) was reduced to equation (3).

Vfinal

tfinal _'_ Ek(V n) - Ek(Vn+ I)

TT = _ (tn+ I - t ) = _._ (3)n PR(_) - Pregtinitial V.
initial

Here TT is the time required to decelerate the vehicle from an initial

velocity Vinitia I to the final velocity Vfinal, usually 0 km/hr. Also
tinitia I is the time regeneration starts, and tfina I is the time re-
generatlon stops. By testing values of Pre _ and calculating the result-

ant TT, the proper value of Preg can be obtained such that the result-
ant value of TT matches the regeneration time specified in the SAE J227a
driving schedule.

The results of the computer calculations are given in table III. As ex-

pected, the regeneration power at the wheels during the short regeneration
period (regeneration during braking period only) was a factor of 2 higher than

that during the long regeneration period (regeneration during coast and brak-

ing periods). The energy difference was that energy lost in heating the tires
and vehicle skin during the coast period.

WHEEL POWER SUMMARY

The analysis of the three SAE J227a driving shcedules (B, C, and D), when

applied to the baseline vehicle, results in the wheel power - time profiles
shown in figure 3 and table IV. The negative values in table IV and figure 3

are the regenerative wheel power and energy for a short or long regeneration
period.

POWER PROFILE AT BATTERY

Once the wheel power was calculated, the battery power was easily ob-

tained by making a few assumptions about the vehicle battery pack design and
the propulsion system efficiency.

The propulsion system efficiency was assumed to be 70 percent during

acceleration and cruise. It was assumed to drop to 50 percent during re-

generation. This drop of 20 percentage points is due to the expected lower
efficiency when the propulsion system runs in reverse. Also, in actual driv-
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ing conditions some of the vehicle's kinetic energy would be absorbed by the

friction brakes acting as a fine control during braking.
The electric vehicle battery was assumed to be a nominal 120-V system.

Since only a 6-V battery module was to be tested in the laboratory, an equiva-

lent power profile for the 6-V module would be 1/20th that of the electric

vehicle propulsion battery.

Combining the effects of a 70 percent/50 percent efficient propulsion

system with the fact that only 1/20th of the vehicle battery pack was to be
tested resulted in the power profile to which the 6-V module should be tested,

shown in figure 4.

CURRENT PROFILES

Since the laboratory facility in which the 6-V module was to be tested

could only control current from the battery, the power profiles were trans-
formed into equivalent current profiles.

Before this could be done, a relationship between battery module current

and battery module power was required. As discussed later, the relationship

was established experimentally. These experiments included (i) discharge
characterization tests, a discharge at constant current to a voltage cutoff

and (2) charge characterization tests, a controlled current charge (20-sec

pulses) at various depth of discharge. As a result of these tests the rela-
tionship between power and current was obtained for the 6-V module:

Discharge:

P(watts) = 8.93 10.8963 (4)

Charge (regeneration):

P(watts) = 4.34 11"104 (5)

From these equations the current-time profiles shown in figure 5 were
calculated. It was to those values of current that the 6-V battery was dis-

charged in the laboratory. The two current values during regeneration re-

present regeneration during the braking period only (short) and regeneration
during the coast and braking periods (long).

ADDITIONAL CURRENT PROFILES

The previous discussion established the current-time profiles that a 6-V

module should experience in the laboratory when simulating the various

velocity-time driving schedules. Recent publications (refs. 3 to 5) indicate

that the number of profiles possible is a function of rest time. As shown

in figure 5, there exist periods where no current is extracted from or re-

generated into the battery. To quantify the effects of these rest periods,
referred to as recuperation effects, a series of tests were performed. These
tests eliminated all rest and regeneration effects. The current-time profiles

for these tests are shown in figure 6.



TESTING PROCEDURE

Battery Formation

Usually, three to five charge-discharge cycles were required to complete-

ly form the battery. Formation is done to stabilize the battery's output

capacity in (ampere-hours (AH)). For this battery the rated capacity is

132.5 AH when the battery is discharged at a constant current of 75 A to a

battery termination voltage of 5.25 V, or 1.75 V/cell. For the charging por-

tion of the formation cycle a constant-potential method was used with an

initial charge current of 20 to 25 A. An overcharge of I0 to 15 percent of
the removed capacity was used.

Discharge Characterization

Discharge characterization tests give the output capacities at various

discharge currents to a voltage cutoff. The discharge constant currents used

to characterize the test battery were 50, i00, 200, 300, 400, and 500 A, with

repeats for each current. The battery was discharged at each current to a

voltage cutoff of 3.9 V, or 1.3 V/cell.

Charge Characterization

This test was an alternate charge and discharge of a battery at a speci-

fied depth of discharge (DOD). The charge characterization tests were per-
formed at DOD's of 5, 20, 50, 80, and i00 percent, where DOD is based on the

rated capacity of the test battery (132.5 AH). The following was a typical
charge characterization test:

Discharged at 75 A to a DOD of 5 percent of rated capacity (6.625 AH),

then charged at 25 A for 20 sec,

discharged at 75 A for 60 sec,
charged at 50 A for 20 sec,
discharged at 75 A for 60 sec,

charged at I00 A for 20 sec,

discharged at 75 A for 60 sec,

charged at 200 A for 20 sec,

discharged at 75 A for 60 sec,

charged at 300 A for 20 sec, and

discharged at 75 A for 60 sec.

The battery was then discharged at 75 A to the next D0D (20 percent, or

26.5 AH) and the above test repeated. These tests were repeated for

additional DOD's of 50, 80, and i00 percent of rated battery capacity.

SAE Driving Cycle Tests

The next three sets of tests were the SAE J227a driving schedules D, C,

and B. A schedule consists of five periods that simulate the electric vehi-

cle's acceleration, cruise, coast, braking, and idle periods. Figures 5 and 6
show the three driving schedules and the current levels for each of the five

periods.

To quantify the effects of regeneration (long versus short versus none)
and the effects of recuperation, four tests were performed on each driving



schedule. In the first test, designated mode "a," the 6-V module was dis-

charged during the acceleration and cruise periods but was allowed to rest

during the coast, braking, and idle periods. In the second test, designated

mode "b," the module was discharged during the acceleration and cruise periods
but was not allowed to rest. A cruise discharge was immediately followed by

an acceleration discharge. Comparing test results from mode a to mode b gave

a quantitative measure of the effects of recuperation. In the third test,

designated mode "c," the 6-V module was discharged during the acceleration and

cruise periods, charged during the coast and braking periods (long regenera-

tion), and rested during the idle periods. The fourth test, designated mode
"d," is similar to the mode c test except that the module was allowed to rest

during the coast and idle periods but was charged during the braking period
(short regeneration). Comparing the mode c test results to the mode d test

results gave a quantitative measure of the effect of two types of regenerative

propulsion system designs (long versus short). Comparing the results of modes
c and d to mode a gave a quantitative measure of the effect regeneration has

on the performance of an electric vehicle.

The experimental results of driving schedule D modes a, b, c, and d were

used to verify mathematical predictions of a vehicle's range with and without

regeneration (ref. 6).

DESCRIPTION OF FACILITY

The SAE cycling facility at the NASA Lewis Research Center, described in

an unpublished paper by R. L. Cataldo of Lewis, was first designed to do

simple two-step constant-current cycling discharges. It was later modified
for contant-current battery characteristic discharges up to 500 A. Later

modifications included the ability for charge characterization tests and SAE

J227a driving schedule tests that included regeneration. All these modifica-

tions were for constant-current operation. The test facility utilizes a

Heuricon programmable sequence timer that has up to 64 programmable time

periods. The Heuricon timer with additional circuits controls the charge or
discharge periods for the battery under test. The facility includes a 350-A

dc power supply for either charge or regeneration and five electronic loads

connected in parallel for discharge operation (up to 500 A). Figure 7 shows

the SAE cycling facility as it is presently configured.

DATA ACQUISITION

The data acquisition for the facility is semiautomatic. Battery specific

gravity measurements before and after charge were made with a hydrometer com-
pensated for battery electrolyte temperature. Room temperature and module

middle cell temperatures were also recorded before and after tests with a

thermometer. The battery terminal voltage and current were recorded continu-
ously on strip-chart recorders. Total ampere-hours accumulated for either

charge or discharge were measured with current integrators. A counter was
used to record the number of driving cycles completed for a driving schedule
test.



TEST RESULTS AND DISCUSSION

Discharge Characterization

The discharge characteristic curves for the 6-V module under test are

shown in figure 8. All discharges were done at constant current, and the re-

suits were plotted with battery terminal voltage as a function of ampere-hours

out. The discharge rates were 50, i00, 200, 300, 400, and 500 A constant cur-

rent. All discharges were terminated at 3.9-V battery terminal voltage.

Below 3.9-V, very little capacity can be removed from the,module.

Additional information obtained from the discharge characterization tests

is presented in table V. For each discharge rate the time and ampere-hour
capacity to discharge the battery to 3.9-V is shown. Also shown are the ini-

tial and final electrolyte temperatures and specific gravities.

From the data presented in figure 8, another characteristic curve was

generated, analogous to a Peukert curve (ref. 7). This curve (fig. 9) gives

the discharge time, in minutes, to a specified cutoff voltage, 3.9 or 5.25 V,
for discharge current ranging from 50 to 500 A. The data presented in

figure 9 are also given in tabular form in table VI. At 75 A to a cutoff

voltage of 5.25 V the 6-V module tested was capable of delivering 136 All,

which compares favorably to the module manufacturer's rating of 132.5 AH.

Figure 9 also shows graphically the effect high cutoff voltages had on

the length of time the module was able to be discharged. Beyond 200 A the

discharge time to the 5.25-V cutoff dropped drastically from that for the
3.9-V cutoff.

The discharge characteristic curves (fig. 8) were also used to calculate

the time-averaged power available from the battery at a specific current. The
area under each curve in figure 8 for a specific current was measured and the

average voltage calculated. By multiplying this voltage by the current, the
time-averaged power was calculated for that current. Figure 10 shows the

module's time-averaged power as a function of discharge current.

Charge Characterization

The charge characterization tests described earlier in the report show

the effect on the module terminal voltage of various charge rates from 25 to

300 A at various ampere-hour capacities (DOD) (fig. II). These charge rates

are comparable to the regenerative braking rates seen in many electric vehi-

cles. At the low charge rates of 25 to I00 A, battery terminal voltage in-

creased minimally between 13.2 to 132.5 AH removed. However, for charge rates

above 200 A battery terminal voltage increased substantially for the same
range of ampere-hours removed. At the lower ampere-hour capacities for the

200 A charge rate and above, the battery terminal voltage was between 8.0 and
8.6 V. These higher battery voltages at the high charge rates could cause

excessive gassing and/or spewing of electrolyte, shortening the life of the bat-

tery. Also, these higher charge rates may promote grid corrosion in the

plates, also shortening battery life. With 66.25 AH removed from the battery,
or a 50 percent DOD, the battery terminal voltage dropped significantly for

the higher charge rates as compared with the lower DOD's (I0 percent). Since

the charge rates (25 to 300 A) are comparable to the regenerative braking
rates seen in many electric vehicles, the high current regeneration for an

electric vehicle application should only be permitted after 50 percent of its

capacity has been removed. Regeneration can be used at the lower charge
rates, below i00 A, at any DOD.



SAE J227a Tests

The relationship between charge rate in amperes and power in watts was

obtained by a regression analysis of all available data gathered in the charge
characterization tests. Although the power at a specific charge rate depends

on the DOD (voltage variations with DOD in fig. ii), the spread was judged to

be small. The resultant power versus charge current is given in figure 12.

As mentioned previously in this report, three driving schedules with four

modes of operation within each schedule were tested. Table VII gives re-

presentative data for all schedules and modes and includes the time and
ampere-hours removed to a terminal voltage of 3.9 _V. Also given in table VII

are the initial and final electrolyte temperatures, the initial and final

average specific gravities, and the number of profiles completed. For all

schedules the number of profiles completed was greater when regeneration was
used than when the nonregenerative modes (a and b) were used. Also, more pro-

files were completed for all schedules that had acceleration, cruise, and rest
than with the acceleration and cruise profile (mode a versus mode b). Obvious-

ly, mode b operation within each SAE J227a driving schedule is the worst case,

giving lower profiles than mode a, c, or d. There seems to be little differ-
ence between modes c and d for all schedules as far as the number of profiles

completed (long versus short regeneration). Therefore regeneration can occur

during braking only or during braking and coast without influencing the number
of completed profiles. Table VIII summarizes all the driving cycle tests.
Included in this table are the number of tests, the number of profiles com-

pleted, the average number of profiles completed, and the equivalent range.

The reproducibility of the tests was judged to be excellent. The maximum

deviation was +3.4 percent, which occurred during the most stressful tests

(i.e., the SAE J227a driving schedule D with high current regeneration during

the braking period (short regeneration period, mode d)). The table shows no
substantial difference between the range of an electric vehicle with a propul-

sion system designed to regenerate during the braking period only (short) and

a propulsion system permitting regeneration during the coast and braking

periods (long). All mode c and mode d tests resulted in ranges that were

equal within experimental error.
An electric vehicle having a propulsion system allowing regeneration was

shown to have a range substantially greater than one not having regeneration.

The average range for the regenerative tests (mode c and mode d tests) when

compared with the nonregenerative tests (mode a) showed a 12.5 percent in-
crease in range due to regeneration for the D driving schedule. For the C and

B driving schedules the range increases were 20.1 and 24.7 percent, respec-

tively. The difference in the percentage of range increase between the D

driving schedule and the C and B driving schedules is primarily due to (I) the

amount of capacity returned to the battery during regeneration as aompared

with the capacity removed during the acceleration and cruise phases of the
profile and (2) the number of stops per kilometer traveled. The D driving

schedule returned about 8 percent of the discharged capacity per profile; the

C and B driving schedules returned about 14 percent (refer to table VII). The
D driving schedule has 0.62 stop/km (I stop/mile); the C driving schedule has

1.7 stops/km (2.7 stops/mile), and the B driving schedule has 2.9 stops/km

(4.5 stops/mile). Therefore the C and B driving schedules returned a higher

percentage of capacity removed from the battery per unit distance traveled

than did the D driving schedule.

Recuperation of the battery during rest periods will increase the range
of an electric vehicle. All mode a tests that had a rest phase during the
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coast, braking, and idle periods resulted in a greater electric vehicle range

than all mode b tests. The SAE J227a D driving schedule test had a I0. I per-

cent increase in range with recuperation over the range measured without re-

cuperation. The C and B driving schedules had 12.0 and 5.4 percent increases,
respectively. The substantially lower increase for the B driving schedule was

probably due to the low recuperation period of 34 sec as compared with 44 and

42 sec for the D and C driving schedules. Recuperation effects were also ex-

pected to be reduced when the discharge levels prior to rest periods were
low. The time-averaged current during the acceleration and cruise periods of

the driving schedule were 153.7, 90.6, and 40.0 A for the SAE J227a D, C, and

B driving schedules, respectively.
Figure 13 shows the battery terminal voltage as a function of the number

of profiles for the four test modes of SAE J227a driving schedule D. All

tests were terminated when the battery voltage reached 3.9 V. In all cases
the tests were terminated during the acceleration portion of the profile. The

data presented in figure 13 were used to verify the mathematical model pro-

posed in the latter part of this report.

Battery Model Predictions

The averaging battery model, fully explained in reference 3, was used to

predict the performance limits of the lead-acid battery module tested. The

algorithm of the averaging battery model, in its simplest form, is equation
(6) (eq. (8) in ref. 3).

C

Number of profiles = (AHD)Iprofilel _ _itAHR)Iprofile (6)

where C is the capacity available from the battery at the time-averaged dis-

charge current. The denominator of the equation is the discharge capacity

removed per profile (AHD)/profile and the capacity returned to the battery

during regeneration per profile (AHR)/profile. The model as described in
reference 3 has been expanded in this report to include not only a prediction
of the number of SAE J227a driving profiles possible, but also a prediction of
the voltage of the battery as the discharge progresses. The discussion that

follows is divided accordingly.

Profile Predictions

Table IX gives the results of applying the averaging battery model and a

comparison with the laboratory tests reported earlier in this report. Columns
I and 2 in table IX give the SAE J227a driving schedules and their associated

modes. Column 3 gives the average number of discharge profile completed in

the laboratory test (table VIII). Columns 4 and 5 show the design capacity
removed per profile and the design capacity per profile returned to the module

during regeneration. Column 7 gives the calculated time-averaged discharge

current. This current was obtained by simply dividing the values in column 4

by the time required to complete one profile, column 6. The net capacity

available, column 8, was calculated from the current-capacity relationship

presented in figure 14. The experimental data for the current-capacity rela-
tionships, obtained from table V, were fitted to a curve with the following
equation:

C = 309.87 - 39.29 in I (7)

I0



where C is the capacity in ampere-hours possible at a current I in

amperes. By applying equation (7) to the time-averaged current in column 7,

the capacity available C was calculated. Column 9 presents the number of

profiles possible for the various SAE J227a driving schedules calculated from

equation (6). Column I0 presents the percentage deviation between the cal-
culated and experimental results.

As can be seen in table IX, a deviation of nearly I0 percent occurs only

for SAE J227a driving schedule B. Unfortunately the average current for this

profile is substantially less than the lowest experimental current in the dis-

charge characterization tests, which was used to generate equation (7).
Therefore an extrapolation was used to calculate the net capacity available,
which could be in error.

Voltage Predictions

The basic theses on which the calculation of battery voltage is based are

(I) Battery discharge voltage depends on the instantaneous discharge
rate and the state of charge of the battery at the time of interest.

(2) Battery charge voltage (i.e., regenerative voltage) depends on the
instantaneous charge rate and the capacity removed at the time of interest.

The state of charge of a battery is defined as

_0 n _0 t
iDdt - iRdt

(8)
Fl(t) = C

Here Fl(t) is the state of charge at time t, iD is the discharge cur-

rent, iR is the regeneration current, and C is the capacity available at
the time-averaged current. This is a restatement of the state of charge de-
fined in reference 3 (eq. (6)) assuming a regenerative effectiveness of i.

From this definition of state of charge, the data presented in figure 8

were replotted in figure 15 as a function of state of charge. Here zero-

percent state of charge is the capacity removed to a cutoff voltage of 3.9 V

at a specific current. Other states of charge at that current are the ratio

of the capacity removed to the capacity at zero-percent state of charge. For

example, at 50 A the battery delivers 152 AH to 3.9 V. At i00 AH removed, the

state of charge is 100/152, or 65.8 percent. Therefore the voltage of the

battery at 65.8 percent state of charge is 5.9 V.
To demonstrate the efficacy of the two basic theses, the SAE J227a driv-

ing schedule D laboratory tests were analyzed and the predicted voltages com-

pared with the experimental voltages. The two theses require data of current
versus voltage versus state of charge for contant-current discharges and data

on the voltage at a specific charge current and capacity removed at the time

charge occurs. The D driving schedule tests have two levels of discharge, 234
and 109 A, and two levels of regeneration, 54 and 96 A. The experimental data

in figures 15 and Ii are replotted for these currents and presented in figures
16 and 17 for discharge and charge (regeneration), respectively.

A calculator was programmed to determine the state of charge and capacity

removed as a function of the number of D profiles completed. The calculated

and experimental voltages are compared in figure 18. The data points are cal-
culated values; the continuous curves are experimental data.

As can be seen, for schedule D, modes a and b (figs. 21 and 22, respec-

tively), there is good agreement between calculated and experimental data.
For schedule D, modes c and d (figs. 18(c) and (d), respectively), the agree-
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ment is less desirable but judged to be adequate. The error in these last two

tests is no greater than 0.25 V out of about 6 V, or 4 percent. Much of this
error may be attributed to the experimental variation of battery voltage
during the discharge characterization tests.

CONCLUSIONS

Charge Characterization

Charge (regeneration) has the effect of increasing the battery terminal

voltage at any depth of discharge (DOD). At the lower charge (regeneration)

rates of between 25 to I00 A, a small increase in battery voltage results be-
tween DOD's of I0 to I00 percent. However, for charge (regeneration) currents

above i00 A the battery terminal voltage is substantially increased. These

higher battery voltages at the higher charge rates could affect battery life

and performance by causing corrosion of the battery plate grids. Also, these

higher rates may cause spewing of the electrolyte from the battery vent caps.

Excessive gassing can also occur, requiring more water than normal. A general
conclusion from these tests is that the regeneration rate should be at I00 A
or lower at all DOD's.

Driving Schedule Tests

For all SAE J227a driving schedules, both regeneration and recuperation

increase the range of an electric vehicle. For the D driving schedule the
increase due to regeneration (average of the long and short regeneration) was

12.5 percent. For the C driving schedule it was 20.1 percent, and for the B
driving schedule it was 24.7 percent. For the D driving schedule the increase

due to recuperation was i0.i percent. For the C schedule it is 12.0 percent,
and for the B driving schedule it was 5.4 percent.

The laboratory test data indicate that regeneration during the driving

profile's coast and braking periods or during the braking period alone has

little effect on the number of profiles completed. In all SAE J227a driving
schedules the number of profiles completed for long and short regeneration

periods were equal within experimental reproducibility.

Model Predictions

The time-averaging battery performance model has successfully predicted

the performance, both performance limit and voltage, of a lead-acid battery.

When the lead-acid battery was subjected, in the laboratory, to the demands
approximating an electric vehicle driven of the various SAE J227a driving

scheules, the model predicted the performance limit within +2.4 percent to

-3.7 percent for the D schedule, +0.5 to -7.1 percent for the C schedule, and

better than -11.4 percent for the B schedule. The time-averaging battery
performance model was also able to predict the battery voltage, during the

acceleration, cruise, and regeneration periods of the driving schedules, to

within 250 mV (4 percent) of the experimental values.
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TABLE 1. - ACCELERATION WIIEEL POWER

SAE J227a Acceleration specifications Wheel

driving power,
schedule kW

B 0 to 32.2 km/hr (20 mph) in 19 sec 4.7

C 0 to 48.3 km/hr (30 mph) in 18 sec 10.4

D 0 to 72.4 km/hr (90 mph) in 28 sec 16.6

TABLE II. - CRUISE WHEEL POWER

SAE J227a Cruise specifications Wheel

driving power,

schedu le km/hr mph kW

B 32.2 20 2.1

C 48.3 30 3.9
D 72.4 45 8.4

TABLE III. - REGENERATIVE BRAKING

WHEEL POWER AND ENERGY

SAE J227a Regeneration Regeneration

driving wheel power, wheel energy,
schedule kW

kJ kW-hr

B a6.4 58 0.016
blO.9 54 .015

C a6.9 112 .031

b12.0 97 .027

D a14. I 266 .074

b26.7 241 .067

aElectrical regeneration occurs

during coast and braking periods
of driving schedule (long).

bElectrical regeneration occurs

only during braking period (short).
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TABLE IV. - WIIEEL POWER REQUIRED FOR SAE J227a

DRIVING SCHEDULES

SAE J227a Driving phase a Elapsed Power, Energy,

driving time, kW
schedule sec kJ kW-hr

B Acceleration 0 to 19 4.7 90 0.025

Cruise 19 to 38 2.1 40 .011

Long regenera- 38 to 47 -6.4 -58 -.016
- tion

Short regenera- 42 to 47 -10.9 -54 -.015
tion

C Acceleration 0 to 18 10.4 187 0.052

Cruise 18 to 38 3.9 79 .022

Long regenera- 38 to 54 -6.9 -112 -.031
tion

Short regenera- 46 to 54 -12.0 -97 -.027
tion

D Acceleration 0 to 28 16.6 464 0.129

Cruise 28 to 78 8.4 421 .117

Long regenera- 78 to 97 -14.1 -266 -.074
tion

Short regenera- 88 to 97 -26.7 -241 -.067
tion

aRefer to'table iii for definitions of long and short
regeneration.

TABLE V. - DISCHARGE CHARACTERIZATION

Test Mode Discharge Ampere-hour Temperature, °C Specific gravity

time, capacity to (average)
min discharge, a initial Final

AH initial Final

i 50-A discharge 182.4 151.8 24 25 1.281 1.130

2 IO0-A discharge 77.6 129.2 26 29 1.284 1.164
3 200-A discharge 30.5 101.5 24 31 1.286 1.193

4 300-A discharge 16.9 84.8 23 33 1.284 1.209
5 400-A discharge 11.4 74.8 22 35 1.279 1.209

6 500-A discharge 8.1 67.6 24 40 1.284 1.226

aTo 3.9 V battery terminal voltage.
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TABLE VI. - PEUKERT CURVE DATA

Current, Voltage cutoff, V
A ' '

5.25 3.9

Time, min

50 165.6 182.4

I00 71.4 77.6

200 24.6 30.5
300 5.0 16.9

400 .22 11.4

50O .06 8.1

TABLE VII. - SAE J227a DRIVING SCIlEDULE TEST RESULTS

SAE J227a Mode Total Temperature, *C Ampere-hour capacity Specific gravity I Number of Range*
driving discharge, profiles

schedule tir_e, I nitial FinaI Removed Regenerated Initial Final completed km miles
min

D a 77.3 23 29 126.8 0 1.284 1.161 38 ab5 40.3
b 46.8 25 34 115.5 O 1.283 1.170 34 bSB.l 3b.O
c 87.4 27 39 145.2 12.3 1.296 1.169 43 c73.5 45.6

d B5.4 23 34 138.1 I0.I 1.297 1.169 42 d71.8 44.5

C a 213.3 23.5 30.5 156.3 0 1.296 1.130 162 "91.2 59.9
b 93.7 24 31.5 143.3 0 1.296 1.146 148 1_8.8 54.8
c 264.6 24.5 34 115.2 25.13 1.296 1.130 201 g121 14.4
d 268.6 27 34 177.I 21.0 1.304 1.130 204 h122 75.5

B a 549.6 23 27 199.4 0 1.307 1.130 458 i160 100.8
b 276.8 24 28 188.8 0 1.307 1.130 437 3153 96.1
c 682.8 25 29 208.1 35.28 1.309 1.130 569 k199 125.2
d 678.0 24 29 209.8 33.34 1.311 1.130 505 1197 124.3

a72-km/hr top speed - no regeneration with recuperation during coast, braking, and idle periods.
b72-km/hr top speed - no regeneration and no recuperation.

c72-km/hr top speed - regeneration during braking and coast periods with recuperation during idle periods.
d72-km/hr top speed - regeneration during braking periods with recuperation during coast and idle periods.
e48-km/hr top speed - no regeneration with recuperation during coast, braking, and idle periods.
f48-km/hr top speed - no regeneration and no recuperation.

g4B-km/hr top speed - regeneration during braking and coast periods with recuperation during idle periods.
h48-km/hr top speed - regeneration during braking periods with recuperation during coast and idle periods.
i32-km/hr top speed - no regeneration with recuperation during coast, braking, and idle periods.
J32-km/hr top speed - no regeneration and no recuperation.

k32-km/hr top speed - regeneration during braking and coast periods with recuperation during idle periods.

132-km/hr top speed - regeneration during braking periods with recuperation during coast and idle periods.
*Based on 0.35 km (0.22 mile) per B schedule; 0.60 km (0.37 mile) per C schedule; l.Tl km {1.06 mile)per D schedule.
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TABLE VIII. - SUMMARY OF ALL DRIVING SCHEDULE TESTS

SAE J227a Mode Number Number of Average number of Range a + percent

driving . of profiles profiles com- -

schedule tests completed pleted+ percent km" miles

D a 3 38, 38, 38 38+0 65.0+0 40.3¥0

b 35, 34 3475+1.4 59.051.4 36.651.4

c 43, 41 42+273 71.872.3 44.572.3
d '[ 45, 42 43_5+3.4 74.453.9 46.173.4

C a 3 162, 173 167.5+3.3 101+3.3 62.0+3.3

b 148, 151 149.571.0 89._+i.0 55.371.0

c 201, 207 204+175 122+_.5 74.551.5

d 204, 193 19875+2.8 11971+2.8 73.472.8

B a 3 458, 472 465+1.5 "163+I,_ 102+1.5
b 437, 445 44171.0 15471.0 97.0+i.0

c 569, 594 58172.1 20372.1 128+3.1

d 565, 593 57972.4 20372.4 12752.4

aSee table VII notes.

TABLE IX. - COMPARISON OF CALCULATEDAND EXPERIMENTAL SAE J227a BATTERY PERFORMANCE

SAE J227a Mode Average number Gross discharge Regeneration Time per Time- Calculated net' Calculated Deviation

driving of laboratory capacity per capacity per profile, averaged capacity per profiles percent
schedule profiles profile, profile, sec current, discharge, possible

completed AH All A _H

D aa 3810 3.33 122 98.3 129.6 38.9 _2.4

bb 36.5+1.4 / 78 153.7 112.0 33.6 -2.6
c c 42+2_3 0.285 122 98.3 129.6 42.6 ' +1.4
dd 43_5!3.4 _ .240 122 98.3 129.6 41.9 -3.7

C a e 167_5+3.3 0.956 78 44.1 161.1 168.5 +0.5
b f 149.571.0_ | 38 90;6 132.8 138.9 -7.1

cg 204+1.5 _ 0.124 78 44.1 161.1 193.6 -5.1dh 198_512.8 .102 78 44.1 lbl.l 188.6 -5.0

8 a i 465+1_5 0.422 72 21.1 190.1 450.5 -3.1

bJ 441_1.5 / 38 40.0 164.9 390.8 -11.4

ck 581_5+2.1 _ 0.0625 72 21.1 190.1 528.8 -9.1dl 579!2_4 .0597 72 21.1 190.1 523.8 -9.5

a72-km/hr top speed - no regeneration with recuperation during coast, braking, and idle periods.
b72-km/hr top speed - no regeneration and no recuperation.

e72-km/hr top speed - regeneration during braking and coast periods with recuperation during idle periods.
d72-kra/hr top speed - regeneration during braking periods with recuperation during coast and idle periods.
e48-km/hr top speed - no regeneration with recuperation during coast, braking, and idle periods.
f48-km/br top speed - no regeneration and no recuperation.

848-km/hr top speed - regeneration during braking and coast periods with recuperation during idle periods.
h48-km/hr top speed - regeneration during braking periods with recuperation during coast and idle periods.
132-km/hr top speed - no regeneration with recuperation during coast, brakingp and idle periods.

I J32-km/hr top speed - no regeneration and no recuperation.

I k32-km/hr top speed - regeneration during braking and coast periods with recuperation during idle periods.
i 132-km/hr top speed - regeneration during braking periods with recuperation during coast and idle periods.
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