NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

```
(NASA-CR-164040)
CONVECILVE (Chicago univ.)
Aug. 1979 - 31 JuI. CSCL O4B
52 P HC A04/MF AO1
(NASA-CR-164640) PRECIPITATION GROWTH IN
```

 \(581-28667\)

Final Technical Report

NASA NSG 5402

PRECIPITATION GROWTH IN CONVECTIVE CLOUDS.

PRECIPITATION GROWTH IN CONVECTIVECLOUDS
FINAL REPORT
Principal Investigator: R.C. Srivastava
Period Covered: August 1,1979 to July 31, 1981
Grantee Institution: The University of Chicago5801 South Ellis AvenueChicago, lllinois 60637
Grant Number: NSG - 5402

1. Introduction:

Several investigations were carried out. In the following I shall give: a list of publications, highlights of the findings, and research in progress not yet written up for publication.
2. Publications:

The reserech resulted in the following papers which have been submitted for publication:
a: Robinson, W.O., and R.C. Srivastava, 1981: Calculations of Hallytone Growth in a Sloping Steady Updraft. Submitted to Atmosphere - Ocean. Also LAP TR \#44.
b: Srivastava, R.C., 1981: A Simple Model of Particle Coalescence and Breakup. Submitted to the Journal of Atmospheric Sciences. Also LAP TR \#44.
c: Matejka, T.J. and R.C. Srivastava, 1981: Doppler Radar Study of a Region of Widespread Precipitation Trailing a Mid-Latitude Squall Line. To appear in the Preprints of the 20th Conference on Radar Meteorology. (A more detailed paper will also be submitted for journal publication.) Also LAP TN \#10.

It may be mentioned liat most of the work for (a) was done under an NSF grant. The NASA grant provided the opportunity and support for organizing the results of the research and writing it up for journal publication. The work for (b) was supported by NASA and NSF. The data collection on which (c) is based was supported by NSF; NASA and NSF provided support for the data analysis and research.

3. Results

Full details of the results of the investigations may be found in the above papers (copies attached). In the following 1 shall summarize the main results and their significance.

3.1 Hail Growth:

Sustained falls of large hall are usually associated with clouds having a sloping updraft which can be regarded as quasi-steady. A number of studies have demonstrated that the trajectory of the growing hail is important in considerations of hail growth and artificial modification of hail processes.

A simple model of a sloping updraft and hail growth was set up for which analytical soiutions could be obtained. it was found that the starting position of the hail embryo has an important effect on its subsequent growth. Three regions of embryo starting positions were distinguished. Embryos starting in the central portions of the updraft are carried up rapidly and displaced far from the updraft into the anvil. Most of these particles cannot survive during fall to the ground. Embryos starting near the upshear edge of the updraft have a sinple arcing up and down trajectory and produce hailstones most of which can be expected to melt before reaching the ground. Embryos starting in the third region, namely, the region near the downshear edge of the updraft give rise to the largest hailstones and have predominantly re-circulating trajectories.

It is believed that the subjert deserves further study; an investigation of the general properties of particle trajectories in model flow fields can give insights into hail growth processes which will be difficult, if not impossible, to obtain from numerical models.

3.2 Particle Coalescence and Breakup

The processes of particie coalescence end breakup, spontaneous and collisional, are important in determining the evolution of particle size spectra. A firm understanding of the evolution of particla sizes is impertant for a number of reasons: The particle size distribution is involved in various methods for measuring presipitation rates and in numerical studies of cloud dynamics.

Previous studies have identified, to some extent, the roles of the various processes in shaping particle size spectra. Coalescence tends to produce particles of larger sizes and exponential spectra of the kind observed in nature. Coalescence and breakup tend to produce stationary exponential distributions. The effects of collisional disintegration dominate over those of spontaneous disintegration as the precipitation content increases, and the equilibrium spectra tend to be parallel to each other.

The above findings from numerical models are verified by analytical solutions of the kinetic equation for the particle size distribution for simplified forms of the collection and breakup functions in paper (b). The exact analytical solutions provide insights into the processes governing the forms of particle size spectra not available from numerical calculations.
3.3 Precipitation Associated with a Squall Line

During PROJECT NIMRJD, extensive Doppler radar observations of squall lines were obtained in lllinois. Paper (c) discusses observations of a region of widespread precipitation trailing a squali line. Such regions of widespread precipitation are often observed in association with midlatitude squall lines and more generally in the case of tropical squall lines. Physical considerations suggest that the region of widespread
precipitation may have meso-scale vertical motions in it which could be important dynamically as well as for budgets of various quantities. An important budget quantity is the rainfall. It is often observed that while the intense rain associated with the convective cores of a squall line is relatively spotty and short-lived, the light rain associated with the region of widespread cloudiness last for a long time and extends over a much larger area. It has been estimated that the precipitation associated with the region of widespread cloudiness often contributes a significant fraction (≈ 0.5) of the total precipitation from the squall line system. This also supports the idea that vertical motions exist In the region of widespread precipitation.

In paper (c), we have extended the VAD method to obtain accurate estimates of small vertical motions ($\omega \simeq 10 \mathrm{~cm} \mathrm{~s} s^{-1}$) and applied it to observations of widespread precipitation associated with a squall line system. The results show generally ascending motions in the upper parts of the cloud and descending motions in the lower parts of the cloud. It is suggested that precipitation evaporation associated with the descent, and precipitation production associated with the ascent help maintain the observed vertical: air motions.
4. Research in Progress

Work discussed in 3.3 is continuing. We anticipate obtaining quantitative estimates of the rain output from the squall line system using data from a dense network of raingauges (average spacing $\simeq 3 \mathrm{~km}$).
5. Copies of the papers mentioned in Section 2 are attached.

Calculations of Hailstone Growth In a Sloping Steady Updraft
by
Vi. D. Robinson; and R. C. Srivastava
Department of Geophysical Sciences
The University of Chicago Chicago, lllinois 60637

ipresent affiliation: Computer Sciences Corporation, Washington, D.C.

Abstract
Analytical solutions to the equations of growth and motion of hailstones in updrafts and : loud water contents which vary linearly with height are used to investigate hall growth in a model cloud. The model storm is steady and two-dimensional and is constructed by compositing sections with linear variations of vertical air velocity and cloud water content so as to approximate the fleming storm. Hail embryos are introduced at various positions in the updraft and their subsequent history calculated. A strong corpelation is found between the embryo starting position and its trajectory and final size. Embryos starting in the central portions of the updraft are carried up rapidly and displaced far from the updraft. Embryos starting near the upshear edge of the updraft have a simple arcing up and down trajectory and produce small hailstones which can be expected to melt before reaching the ground, Embryos starting near the downshear edge of the updraft give rise to the largest hailstones and have predominantly recirculating trajectories. Effects of changing some of the model parameters are investigated.

1. introduction

The foundations of the theory of hail growth were laid by Schumann (1938) and Ludlam (1958). Ludlam showed that the requirement of heatbalance does not always allow all the water accreted by a hallstone to freeze. In Ludlam's model, the excess (unfrozen) water was shed; this limited the maximum size to whic, a hailstone could grow to a diameter of about 4 cm . However, experiments by List (1959) showed that the unfrozen water need not be shed from the growing hailstone but rather that the hailstone can grow in a "spongy" mode. By assuming that no water is shed from a growing hailstone, Hitschfeld and Douglas (1963) showed that large hailstones can grow in a one-dimensional (vertical) cloud, in tines consistent with observations, provided high concentrations of water are present as postulated by Marshall (1961). In their work on hail growth, Sulakvelidze et al. (1967) also considered reyions of high water content or accumulation zones.

Building on the above pioneering work, and spurred by possible application to artificial modification of hail, a considerable volume of research on hail growth has been reported in the recent literature. The simplest models of hail growth are one-dimensional models in which the vertical air velocity and cloud microphysical properties are prescribed functions of height or height and time. (e.g. List et al., 1968; Musil, 1970; and Dennis and Musil, 1973). A somewhak more complex but still a one-dimensional model of hail growth considers interacting dynamics and microphysics (e.g., Wisner et al., 1972 and Danielsen et al., 1972).

A cricicism of one-dimensional models is that the storm dynamics are not adequately modeled or simulated in one dimension. Further, observations show that, at least in middle lotitudes, storms producing sustalned large hail occur in an environment having a vertical shear of the horizontal wind, suggesting that the horizontal dimension plays an important role in the hail process. This has been stressed by Ludlam (1963) and others,

Calculations of hail growth in two-dimensional models were reported by English (1973), Orville and Kopp (1977) and others. Guided by certain observed characteristics of Alberta hailstorms, English prescribed the vertical air velocity and water content as functions of vertical and horizontal distance, and showed that hail of observed sizes could be grown in the clouds in reasonable times. The liquid fraction of the hailstones grown in the model were reasonable and not excessive as in the one-dimensional model of Hitschfeld and Douglas. Orville and Kopp considered a twodimensional model with highly parameterized microphysics. It is doubtful that the dynamics are properly simulated in two dimensions and the calculation of hail growth suffers because of the extensive parameterization of microphysic:. However, the simplifications of two-dimensionality and the microphysical parameterizations were dictated by computer limitations.

It appears that the dynamics, microphysics and the horizontal and vertical dimensions all are important in the problem of sustained falls of large hail. A detailed numerical calculation considering all the parameters cannot be performed on present-day computers. Also it is doubtful that such a calculation would be very illuminating. Therefore, qualitative models based on physical considerations ard observations become important. Among such models, we mention those of Browning $(1963,1964,1977)$ and Browning
and Foote (1976) which clearly demonstrate that both the vertical and the horizontal dimensions are important in the process of hail growth.

In this paper, we present a two-dimensional, steady-state model of hail growth in a sloping updraft which is simplified to the point that analytical solutions for hailstone growth and trajectory become possible. In spite of its simplicity, the model illu:rrates the effects of particle trajectory on its growth and reproduces certain aspects of the qualitative rodels mentiones in the previous paragraph. The model used here is an extension of the two-dimensional model of precipitation growth in an upright axially-symmetric steady-state updraft presented by Srivastava and Atlas (1969). Other two and three-dimensional models which compute hall or precipitation particle trajectory and growth are those of English (1973), Sartor and Cannon (1976) and Paluch (1978).

2. THE MODEL

We consider a steady-state two-dimensional model of a storm. The model storm consists of a number of "sections" in the horizontal and the vertical in each of which the vertical air velocity and the "effective" cloud water content are linear or piece-wise linear functions of the height and constant in the horizontal direction. Discontinuous changes in certain parameters are permitted between horizontal sections. These assumptions allow analytical solutions to be obtained for the particle size and position. We shall now present the equations for the model.

2.1 Equations

The following equations apply to a portion of the model cloud in which the cioud properties vary linearly with height and are constant in the
horizontal. Detalls of some of the derivations can be found in Srivastava and Atlas (19iy).

The vertical air velocity is given by

$$
\begin{equation*}
w=w_{0}+\alpha z \tag{1}
\end{equation*}
$$

where w_{0} and a are constants and z is the vertical coordinate. The "effective" liquid water content for hail growth is considered to be the product of M, the cloud water content, and E, the collection efiiciency of hail; we assume

$$
\begin{equation*}
M E=\gamma_{0}+\gamma_{1} z \tag{2}
\end{equation*}
$$

where γ_{0} and γ_{1} are constants. The terminal velocity V of hail of diameter D is taken as

$$
\begin{equation*}
v^{2}=K D \tag{3}
\end{equation*}
$$

where $K\left(\cong 2 \times 10^{6} \mathrm{~cm} \mathrm{~s}^{-2}\right)$ is a constant. This should be acceptable for $D 2$ i mm. The continuous collection equation for hail growth is

$$
\begin{equation*}
\frac{d D}{d t}=\frac{M E}{2 p} V \tag{4}
\end{equation*}
$$

where $\rho\left(\right.$ taken $\left.2.50 .9 \mathrm{~g} \mathrm{~cm}^{-3}\right)$, is the density of the hailstone, it is assumed that no water is shed from the hailstone. A weakness of this model is that the liquid fraction of the hailstone is not calculated. The vertical position of the particle is given by:

$$
\begin{equation*}
\frac{d z}{d t}=w \cdot v \tag{5}
\end{equation*}
$$

The above equations can be combined to yield the following equation for the z and V of a growing particle:

$$
\begin{equation*}
\frac{d^{2} z}{d t^{2}}-\alpha \frac{d z}{d t}+\beta_{1} z=-\beta_{0} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} V}{d t^{2}}-\alpha \frac{d V}{d t}+\beta_{1} V=\beta_{1} W_{0}-\alpha \beta_{0} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{0}=\frac{K}{4 \rho} \gamma_{0} \quad, \quad \beta_{1}=\frac{K}{4 p} \gamma_{1} \tag{8}
\end{equation*}
$$

are constants. Analytical solutions for the above second order linear differential equations with constant coefficients can be easily obtained.

We now consider the horizontal rosition x of the particle. It is given by

$$
\begin{equation*}
\frac{d x}{d t}=u \tag{9}
\end{equation*}
$$

where u is the horizontal velocity, For slat symmetry u is given by

$$
\begin{equation*}
\rho_{a} \frac{\partial u}{\partial z}+\frac{\partial\left(\rho_{a} w\right)}{\partial z}=0 \tag{10}
\end{equation*}
$$

The air density ρ_{a} is assumed to be

$$
\begin{equation*}
\rho_{a}=\rho_{o} \exp (-\lambda z) \tag{11}
\end{equation*}
$$

where λ is a constant, we take

$$
\begin{equation*}
\lambda=\left(\frac{g}{R}-\bar{Y}\right) / \bar{T} \tag{12}
\end{equation*}
$$

where g is the acceleration due to gravity, R is the gas constant for air and $\bar{\gamma}$ the mean lapse raie of temperature and \bar{T} the mean temperature. From the above equations, we have

$$
\begin{equation*}
\frac{d x}{d t}=x \cdot[\lambda w-\alpha] \tag{13}
\end{equation*}
$$

The above equation can be Integrated to give the trajectory of an air particle starting at $\left(x_{0}, z_{0}\right)$

$$
\begin{equation*}
x=x_{0} \cdot \frac{w_{0}+\alpha z_{0}}{w_{0}+\alpha z} \cdot \exp \left[\lambda\left(z-z_{0}\right)\right] \tag{14}
\end{equation*}
$$

and the position of a growing hail particle

$$
\begin{align*}
& x=x_{0} \exp \left[\left(\lambda w_{0} \alpha-\alpha-\frac{\lambda \beta_{0} \alpha}{\beta_{1}}\right) t+\frac{\lambda \alpha}{\beta_{1}}\left(v-v_{0}\right)\right], \beta_{1} \neq 0 \\
& x_{0}=x_{0} \exp \left[\frac{\lambda \beta_{0} t^{2}}{2}+\left(\lambda v_{0}-\alpha\right) t+\lambda\left(z-z_{0}\right)\right], \beta_{1}=0 \tag{15}
\end{align*}
$$

where V_{0} is the initial fall speed of the particle at $\left(x_{0}, z_{0}\right)$.
The solution of (6), (7) and (15) gives the particle fall speed and vertical and horizontal positions in terms of the initial conditions $\left(V_{0}, x_{0}, z_{0}\right)$ and the model parameters $\left(w_{0}, \alpha, \beta_{0}, \beta_{1}, \lambda\right)$.

2.2 Model Composition

The cloud described in the equations of Section 2.1 does not have enough flexibility to model realistic sloping updrafts. The airflow to the right of the plane or symmetry of such a model is shown schematically in Fig. I. At the lower levels, air converges inward and at the higher levels, the air diverges outward into the anvil. By appropriately piecing together portions of the model of fig. 1 , with other portions of this model, or portions of models with different parameters, it is possible to approximate fairly general sloping updrafts. Thus we can take the portion $A B C D$ of fig. l and join it with a portion from a different model at the top or the sides, and continue the process to get a composite model. Certain constraints must be observed in this compositing process. Continuity of mass must be considered at the interfaces. The stream! ines (Eq. 14) are such that no air crosses them. Thus the choice of left and right edges of a section is the streamiine at the edge. It can be seen from Eqn, (14) that the streamlines do not change if w_{0} / α remains constant. Thus sections

Figure 2.
Schematic air particle trajectories in a slab symmetric cloud.

Figure 2. (a) The updraft shape, and the distributions of (b) vertical air velocity and (c) effective cloud water content in the model Fleming storm.
can be placed side by side if they hotve the same value of w_{0} / α. Still air sections have no streamline constraints. In piecing sections vertically, we require continuity of mass flux. The vertical mass flux through a horizontal boundary is $w L$, where L is the length of the hoizontal boundary. In this model, vertically adjacent sections have the same: L; thus the vertical velocity is required to be continuous at the horizontal interfaces between sections.

2.3 Model parameters

The parameters of the model storm will be selected to approximate the quasi-steady-state phase of the Fleming Storm (Erowning and Foote, 1976). The model storm consists of three adjacent sections (fig. 2). The updraft velocity in the three sections is shown by the correspondingly numbered curves in fig. 2b. Section 3 is composed of still air, Section 2 is a transition region between the core of the updraft, Section 1, and the still air section. The vertical velocity in Section 2 is $1 / 3$ of that In Section 1. In each of the sections, the updraft and effective liqu'd water content are piecewiso linear functions of the vertical coordinate and constant in the horizontal. The vertical air velocity in the core of the updraft near the cloud base is $11.2 \mathrm{~m} \mathrm{~s}^{-1}$ and is comparable to the vertical air velocity measured by instrumented aircraft near the base of the fleming cloud. The vertical velocity in the fodel is zero near the observed top of the Fleming cloud. No measurements of the vertical air velocity were available in the body of the Fleming cloud, Using parcel theory (with no water loading) the temperature sounding data yielded the updraft shown by the continuous curve. The model updraft assumes a lower maximum vertical air velocity located near the midule of the cloud rather than near the
cloud top. According to Sulakvelide et al. (1967) and Marwitz (1972), the maximum vertical air velocity occurs in the middle levels of cloud.

The assumed effective liquid water content in the model cloud
(fig. 2c) is an approximation to the computed adiabatic effective liyuid water content (continuous curve) except at the higher levels. The sharp cutoff at the higher levels is due to the reduced collection efficiency of hail because of glaciation. No collection takes place above the level of the -40C isotherm (10 km).

The slope of the updraft corresponds roughly to what is known about the Fleming storm (cf. fig. 11 of Brownirg and Foote), The width of the updraft at cloud base is taken as 8 km (core width -6 km). At a height of 9 km , the model updraft narrows to about half its width at the cloud base.

3. CALCUI.ATIONS AND RESULTS

Hailstonas are initiated on embryos of diameter $0,1 \mathrm{~cm}$. The embryos are placed inside the updraft with even spacing in the vertical and horizontal of 1 and $1 / 2 \mathrm{~km}$ respectively. The embryo placement covers the height range from 5 to 10 km ; the latter is the height of the -40 C isotherm while embryos of the assumed size are considered unlikely to occur below the former height. The growth and motion of the embryos is followed using analytical solutions of the equations given in Section 2. More embryos are subsequently placed in regions requiring greater resolution. During the computations embryos which move out of the computational box (fig. 2a) are excluded from further consideration and are designated "out of cloud particles."

3.1 Results for the model Fleming storm

Some representative hailstone trajectories are shown in fig. 3. of the 57 evenly spaced embryos, 38 fall out of the computational box; thus 2/3 of the embryos are designated "out of riloud." Most of these particles grow only for a short time in their upward trajectory before entering the no-growth region above 10 km height and being expelled from the computational box (e.g. trajectory 2 in fig. 3). A similar feature can also be seen in Robertson's model (Robertson, 1975). The final diameters (at OC level) of these particles are less than 0.3 cm . The starting region of these embryos is indicated by the shading in Fiy. 4.

Ten of the 19 embryos, which fall inside the computational box, display a simple arcing up and down trajectory (e.g. tiajectory 1 , fig. 3). These particles start to the left of the shaded "out of cloud" region (see fig. 4). None of these particles attained a diameter greater than 0.5 cm at the $O C$ level. These particles should melt completely before reaching the ground. The growth time of these particles is about 10 to 20 minutes (shown by the full curves in fig. 4).

Hail of diameter about 1 cm and larger originates on embryos which start in a narrow region on the right side of the updraft (trajectories 3 and 4, fig. 3). This region is small; it contains only 9 of the 57 embryos. Most of the embryos starting in this region execute one or more recirculations. The number of recirculations increases as the embryo starting position approaches the right edge of the updraft, and the particles with the largest number of recirculations start at the 9 km height, which is the height at which the updraft turns over. Many of the particles spend over half of their time in the recirculation region and grow to half their

- Figure 3. Representative particle trajectomies in the model Fleming storm. The dicmeter and elapsed time (both at the $O C$ level) are indicated.

Figure 4. (Top) Contours (dashed) of hail diameter, am, and elapsed time, minutes (solid). (Bottom) Fall-out location and diameter of hailstone. The diameter and time refer to the OC level.
final size there. The final diameters of these particles range between 1.7 and 5.7 cm , and the growth times range between 40 and 60 minutes (see fig. 4). The maximum size (5.7 cm diameter) is in good agreement with the baseball size hailstones reported for the Fleming storm during its quasi-steady phase lasiing over 3 hrs.

Histograms of final diameters at the OC level and elapsed times (fig. 5) show the number of embryos producing the hail of indicated size and the time taken for the hail to reach that level. The elapsed time histogram shows a bimodal distribution; the low mode is composed of embryos originating on the left side of the updraft while the high mode is due to the particles originating on the right side of the updraft. The final diameter histogram is similar to the elapsed time histogram. A large fraction of the embryos produce hail of diameter less than 1 cm . These embryos start on the left side of the updraft. There is a drop in particle number around 1 cm diameter and then a lower peak occurs. This peak is due to embryos starting on the right side of the updraft.

An interesting correlation was found between the fall-out location and the final diameter of the hail. The major portion of the hailfall begins about 2 km behind the updraft with exclusively large hail. The largest hail size decreases with increasing distance behind the updraft edge (see bottom portion of fig. 4). Figure 4 (bottom) also shows a tendency for hail of diameter greater than 1 cm to bunch together into groups behind the updraft. The bunching persisted even when the embryos were distributed with a finer spacing. It is possible that the bunching is an intrinsic property of particle soring

Figure 5. (a) Relative numbers of embryos (initially, uniformly distributed over the updraft, see text) and their final diameters. (b) relative numbers of embryos and elapsed time. The diameters and times refer to the OC level.
in patterns of sloping updrafts. With a moving storm, the bunching could perhaps give rise to a streaky pattern of hail fall at the ground. Towery and Morgan (1977) and others have reported streaky fatterns of hail at the ground.

3.2 Variations on the model Fleming storm

To test the sensitivity of the results to the model input we repeated the calculations changing the values of some of the parameters. In the results presented in figs. 6 and 7 , the model is similar to the model Fleming storm, except that the maximum vertical air velocity has beer reduced from $40 \mathrm{~ms}^{-1}$ to $30 \mathrm{~m} \mathrm{~s}^{-1}$ and $20 \mathrm{~ms}^{-1}$ respectively,

The case with the maximum vertical velocity of $30 \mathrm{~m}^{-1}$ is similar in many respects to the model fleming case. However, the region of the updraft contributing to "out-of-cloud" particles decreases. The maximum hailstone size does not change significantly. The case with the $20 \mathrm{~m} \mathrm{~s}^{-1}$ maximum vertical air velocity has a much smaller "out-of-cloud" region. This case has a recirculation-mode region which gives rise to large hailstones as in the case of the model Fleming storm. But it also shows another region from which large hailstones originate. This region is on the right side of the updraft near its base and yields hailstones with maximum diameter of about 4 cm in about 25 minutes. The trajectories of embryos starting in this region is an up, across and down arc with a small loop. The hailstones are able to balance in the high liquid water content region and grow rapidly. This case also yields 1 cm diameter hailstones in 15 minutes and 2 cm diameter stones in 20 minutes via arcing trajectories. The results for this case bear a great deal of resemblance to the results of Paluch (1978).

Figure 6. Similar to Fig. 4 but with the maximan vertical air velocity reduced to $30 \mathrm{~m}^{-1}$.

A calculation was also performed by changing the width of the updraft of the model fleming storm from 8 km to 6 km (the width of the transition region was kept the same). In this case, the elapsed time for trajectories was similar to that in the case of the model fleming storm. However, the maximum hailstone diameter decreased from 5.7 to 3.6 cm . This decrease Was due to a decrease in the number of recirculations of hailstones. The general results of this case are similar to those of English (1973).

3.3 Particle trajectories

Three types of particle trajectories have been encountered in the model fleming storm depending upon the starting position of the embryo. These trajectories are summarized in fig. Ee and compared with the results of Paluch (1978), fig. $8(a)$ through $8(d)$. Paluch used three-dimensional motion fields obtained from Doppler radar observations and calculated particle growth and trajectories assuming the motion field to be steady; the microphysical parameters were also prescribed and assumed to be steady. The trajectory types obtalned by Paluch (fig. 8a, b, and c) are basically similar to che trajectory types 1,3 and 4 (fig. 8 e) obtained by us, Hence, it appears that our conclusions, for the model fleming storm, might be applicable more generally to storms with sloping updrafts.
4. SUMMARY AND CONCLUSIONS

Analytical solutions to the equations of growth and motion of hailstones have been obtained for steady-state linear variations of the vertical air velocity and effective cloud water content (product of collection effiviency and cloud water content) with height. Fairly general models of quasi-steady storms with sloping updraft can be constructed by piecing

Figure 8. A summary of particle trajectories obtained by Paluch, 1978 (a, k, c and d), and those obtained here (e). Wote that d refers to a plane perpendicular to that of a, b and c.
together sections with piece-wise linear variations of updraft and effective cloud water content. In this way a model of the Fleming storm has been set up and the growth and motion of hail embryos in the storm computed. Three distinct situations arise depending upon the starting position of the hail embryo. Embryos starting in the middle portion of the updraft travel far from the main updraft and attain only small sizes; most of these hailstones are not expected to survive the fall from the $O C$ isotherm to the ground. Embryos starting on the upshear edge of the updraft undergo an arcing up, over and down trajectory and give rise to hailstones of diameter less than 0.5 cm ; these particles also are not expected to survive the fall from the OC level. Embryos starting on the downshear edge of the updrafic give rise to hail of diameter greater than 1 cm , the maximum diameter being 5.7 cm , These embryos execute recirculations, with the number of recirculations and the final hailstone size increasing with the proximity of the embryo starting position to the turn-over location of ihe updraft. The existence and location of this region (temperature, vertical air velocity) are believed to be important for the growth of large hail. It is belleved that the three eypes of particle trajectories identified here, and the associated growth patterns would obtain in most cases of quasisteady sloping updrafts.

Acknowledgments: This research was supported by grants NSF ATM 78-01011 and NASA NSG-5402. Thanks are due to Ms. Gail Barton for her excellent typing of the manuscript.

References

Browning, K.A. (1963) The growth of large hail within a steady updraught. Quart. J. Roy. Meteor. Soc.: 89, 490-506.

Brosning, K.A. (1964) Airflow and prczipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci.. 21, 634-639.

Browning, K.A. (1977) The structure and mechanisms of hailstornis. Hail:
A Review of Hail Science and Hail Suppression. G.B. Foote and C.A. Knight, Eds., Meteor. Monogr., No. 38, 1-43.

Browning, K.A. and G.B. Foote (1976) Airflow and hail growth in supercel? storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499-533.

Danielsen, Edwin F., R. Bleck and D.A. Morris (1972) Hail growth by stochastic collection in a cumulus model. J. Atmos. Sci., 29, 135-155.

Dennis, A.S. and D.J. Musil (1973) Calculations of hailstone growth and trajectories in a simple cloud model. J. Atmos. Sci., 30, 278-288.

Engiish, M. (1973) Aiberta hailstorms, Part II: Growth of large hail in the storm. Meteor. Monogr. No. 36, Amer. Meteor. Soc., 98 pp.

Hitschfeld, W. and R.H. Douglas (1963) A theory of hail growth based on studies of Alberta storms. 2. Angew. Math. Phys., 14, 554-562.

List, R. (1959) Wachstum von Eis-Wassergemischem im Hageiver Suchskanal. Helv. Phys. Acta, 32, 293-296.

List, R., R.B. Charlton and P.I. Buttuls (1968) A numerical experiment on the growth and feedback mechanisms of hailstones in a one-dimensional steady-state model cloud. J. Atmos. Sci., 25, 1061-1074.

Ludlam, F.H, (1958) The hail problem. Nubila, 1, 1-96.
Ludlam, F.H. (1963) Severe local storms: A review. Meteor. Monogr., 5, no. 27, 1-30, Boston , Amer. Meteor. Soc. $^{\text {. }}$

Harshall, J.S. (1961) Inter-relation of the fall speed of rain and the updraft in hail formation. Nubila, 4, 59-62.

Marwitz, J.D. (1972) The structure and motion of severe hailstorms.
Part 111: Severely sheared storms. J. Atmos. Sci., 11, 189-201.
Musil, Dennis J. (1970) Computer modeling of hailstone growth in feeder clouds. J. Atmos. Sci., 27, 474-482.

Orville, H.D. and fred J. Kopp (1977) Numerical simulation of the life history of a hailstorm. J. Atmos. Sci., 34, 1596-1618,

Paluch, Ilga R. (1978) Size sorting of hail in a three-dimensional updraft and implications for hail suppression, J. Appl. Met., 17, 763-777.

Robertson. D. (1975) The trajectories of particles growing by accretion of cloud droplets. Sci. Rep. MW-87, Stormy Weather Group, McGill University, 13 pp.

Sartor, J.D. and T.W. Cannon (1977) The observed and computed microstructure of hail-producing clouds in northeastern Colorado. J. Appl. Meteor., 16, 710-714.

Schumann, T.W. (1938) The theory of hailstone formation. Quart. J. Roy. Meteor. Soc., 64, 3-21.

Srivastava, R.C. and D. Atlas (1969) Growth, motion and concentration of precipitation particles in convective storms. J. Atmos. Sci., 26, 535-544.

Sulakvelidze, G.K., H.Sh Bibilashvili, and V.F. Lapcheva (1967) Formation of precipitation and modification of hail processes. Translated by Israel Program for Scientific Translations, Jerusalem, 208 pp.

Towery, N.G. and G.M. Morgan, Jr. (1977) Hailstripes. Bull. Amer. Meteor. Soc., 59, 588-591.

Wisner, Chester, H,D. Orville and Carol Myers (1972) A numerical model of a hail-bearing cloud. J. Atmos. Sci., 29, 1160-1181.A Simple Model of Particle Coalescenceand Breakup
by
R. C. SrivastavaDepartment of Geophysical SciencesThe University of ChicagoChicago, lllinois 60637
25 July 1981

ABSTRACT:

A simple model of the evolution of particle size distributions by coalescence and spontaneous and binary disintegrations is formulated. Spontaneous disintegration involves single particles, while coalescence and binary disintegrations involve pairs of particles. Analytical solutions for the mean mass of the distribution and the equilibrium size distribution are obtained for the case of constant collection kernel and disintegration parameters. At equilibrium, the forms of the size distributions are identical under the action of coalescence and either or both disintegration processes; the particle concentration is proportional to the total mass concentration (M) and the mean mass of the distribution is independent of M when only coalescence and binary disintegrations are operative. At small values of M, the effects of spontaneous disintegrations dominate over those of binary disintegrations while the reverse is the case at large values of M. Some of the findings of the present simple model are in qualitative agreement with the results of numerical calculations of the evolution of raindrop size spectra with realistic formulations of drop coalescence and breakup.

1. INTRODUCTION

Coalescence and breakup are among the important processes greerning the evolution of precipitation particle size spectra. Coalescence alone tends to increase the concentration of the larger particles, and decrease that of smaller particles. Particle breakup opposes this tendency of coalescence and it is conceivable that a combination of coalescence and breakup would produce stationary particle size distributions. Indeed this was found to be the case in a number of numerical studies of the evolution of particle size spectra. Srivastava (1971) found equilibrium size spectra resulting from the action of coalescence and spontaneous breakup of raindrops. Studics of coalescence and spontaneous and collisional breakup (e.g. Gillespie and List 1978, Srivastava 1978 and Young 1975) also showed the development of an equilibrium size distribution for raindrops. Furthermore, it was found that: (i) the effect of collisional breakup dominates over that of spontaneous breakup at large precipitation mass contents (M), while the reverse is the case at small M, and ($i i$) the equilibrium size distributions resulting from coalescence and collisional breakup are parallel to each other, or more explicitly, at equilibrium, the particles concentrations are proportional to M.

In this paper, we set up a simple formulation of particle coalescence and break! which admits of analytical solutions. These solutions show explicit!y the approach to equilibrium and the relative importance of spontaneous and collisional breakup in determining the particle size distributions. The solutions also reproduce qualitatively some of the results found in the numerical calculations cited above.

2. MODEL \& EQUATIONS

We consider a discrete size distribution, the particle masses being taken as the integers. The process of coalescence cannot produce particles of non-integral mass. The process of particle breakup will be formulated so that it too cannot produce particles of non-integral mass.

The usual formulation of particle coalescence will be adopted, that is, the rate at which particles of masses j and is combine to increase the concentration of particles of mass $(j+k)$ will be taken as $k(j, k) p_{j} p_{k}$, where p_{j} is the concentration of particles of mass j and $k(j, k)$ is the collection kernel.

Two modes of particle breakup will be considered. First, spontaneous breakup of particles of mass k will be assumed to occur at a rate αp_{k}, where α, the spontaneous disintegration parameter, can in general be a function of k. The second mode of particle breakup, involving a pair of particles, is similar to collisional breakup and will be referred to as binary breakup. Binary breakup involving particles of masses j and k will be assumed to proceed at a rate $\beta p_{j} p_{k}$ where the binary disintegration parameter β can in general be a (symmetrical) function of j and k. All fragments resulting from disintegrations will be assumed to be of unit size.

The time rate of change of particle concentration is given by

$$
\begin{align*}
\frac{d p_{k}}{d t} & =\frac{1}{2}{ }_{j=1}^{\infty} k(j, k-j) p_{k-j} p_{j} \tag{1a}\\
& -p_{k} \sum_{j=1}^{\infty} k(j, k) p_{j}-\alpha(k) p_{k}-p_{k} \sum_{j=1}^{\infty} \beta(j, k) p_{j}, k \geq 2
\end{align*}
$$

$$
\frac{d p_{1}}{d t}=-{ }_{j=1}^{\infty} k(1, j) p_{1} p_{j}+\sum_{j=2}^{\infty} \alpha(j) j p_{j}
$$

$$
\begin{equation*}
+\frac{1}{2} \sum_{j=1}^{\infty} \sum_{k=1}^{\varrho=1} \beta(j, k)(j+k) p_{j} p_{k}-p_{1} \sum_{j=1}^{\infty} \beta(1, j) p_{j} \tag{1b}
\end{equation*}
$$

For $k \geq 2$, the first two terms on the right hand side of Equation (la) represend respectively the rates of gain and loss of particles of size k by
coalescence, the third term represents the loss of particles by spontaneous disintegration and the last term represents the rate of loss of particles by binary disintegrations. Equation (1b) gives the rate of change of concentration of particles of unit size. The first term on the right hand side of the equation represents the loss of particles by coalescence. The second term represents the gain in particle concentration by spontaneous breakup, while the third and fourth terms represent the gain by binary disintegrations.

It can be shown that Equations (1) ensure the conservation of total mass concentration

$$
\begin{equation*}
M=\sum_{=1}^{\infty} k p_{k} \tag{2}
\end{equation*}
$$

in the system provided K and β are symmetric functions of their arguments.
A general solution of equations (1) is not possible. For the coalescence oniy $(\alpha=\beta=0)$ probiem, analytical solutions were reported in the literature (e.g. Scott, l968) for special forms of the collection kernel, namely, a constant kernel, a kernel proportional to the sum of particle masses, a kernel proportional to the product of particle masses, and a kernel which is a linear combination of the three foregoing kernels. In the followirg, we shall give an analytical solution of Equations (1) for a constant collection kernel K and constant breakup parameters α and β. Other forms of k, and α and β will be briefly considered in Section 4.
3. SOLUTION OF EQUATIONS AND RESULTS
3.1. Constant Kernel and Breakup Parameters

We introduce the generating function

$$
\begin{equation*}
G(z, t)=\sum_{k=1}^{\infty} P_{k}(t) z^{k} \tag{3}
\end{equation*}
$$

It can be shown that for constant $K(=c), \alpha$ and β, the generating function satisfies:

$$
\begin{equation*}
\partial G / \partial t+(c N+\beta N+\alpha) G=(c / 2) G^{2}+M(\alpha+\beta N) z \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
N=N(t)=\sum_{k=1}^{\infty} P_{k}(t)=G(1, t) \tag{5}
\end{equation*}
$$

is the total particle concentration. The following scaled variables will be used.

$$
\begin{align*}
r & =c M t \\
\alpha_{k} & =\alpha / c M \\
B_{i t} & =B / c \\
P_{k}(t) & =P_{k}(t) / M \tag{6}\\
g(z, t) & =G(z, t) / M={ }_{k=1}^{\infty} P_{k}(t) z^{k}
\end{align*}
$$

The mean mass of the distribution m is given by:

$$
\begin{equation*}
m(t)=M / N(t)=1 / g(1, t) . \tag{7}
\end{equation*}
$$

If an equilibrium solution results, the equilibrium quantities will be dist!rigushed by a subscript E. In terms of the scaled quantities, Equation (4) may be rewritten as:

$$
\begin{equation*}
\partial g / \partial \tau+\left(\alpha_{*}+\beta_{\%} / \pi+1 / \pi\right)_{g}=g^{2} / 2+\left(\alpha_{*}+\beta_{\mu} / m\right) z \tag{8}
\end{equation*}
$$

We shall now consider the behavior of the mean mass and the equilibrium particle size distribution.

3.1.1 Mean Mass

Putting $z=1$ in Eq. (8), we have for the mean mass of the distribution:

$$
\begin{equation*}
\frac{d m}{d t}=\left(1 / 2+\beta_{*}\right)+\left(\alpha_{*}-\beta_{\psi}\right) m-\alpha_{*} m^{2} \tag{9}
\end{equation*}
$$

First, we consider certain special cases. For the case of coalescence only, we have:
$m(\tau)=m(o)+\tau / 2$
Thus the mean mass of the system increases linearly and the concentration tends to vanish with increasing time.

If coalescence and spontaneous breakup are considered, the solution of Equation (9) is

$$
\begin{equation*}
y=\left(y_{0}+\tanh x\right) /\left(1+y_{0} \tanh x\right) \tag{11}
\end{equation*}
$$

where y and x are related to m_{0} and T by Equations (15) and (16) repsectively but with $\beta_{*}=0$. The initial condition is $y=y_{o}$ at $r=0$. It is seen from Equation (11) that as $x \rightarrow \infty, y+1$; thus as $\tau \rightarrow \infty$, an equilibrium mean mass is approached which is given by the following equation

$$
\begin{equation*}
m_{E}=1 / 2+\left(1 / 4+1 / 2 \alpha_{*}\right) 1 / 2 \tag{12}
\end{equation*}
$$

As might have been anticipated, the equilibrium mean mass decreases with increasing value of the scaled breakup parameter $\alpha_{\lambda_{2}}$. As $\alpha_{*} \rightarrow \infty, m_{E}+1$, that is all particles tend to be of unit size. Equation (12) also implies that for fixed $\alpha / c, m_{E}$ increases with M. For M large, or more precisely, for

$$
\operatorname{cN}(0) \quad / 2 \alpha \gg 1, \quad m_{E} \cong(c / 2 \alpha) M^{1 / 2}
$$

it can be shown that the approach to equilibrium takes place monotorically. An example is shown in Fig. I. In this example $m_{E}=215$. For an initial $m(0)=450, m_{E}$ is approached to within 10% at $\tau=400$. Coalescence alone would have doubled the mean mass at $\tau=200$. It can also be shown that the equilibrium is stable, that is, perturbations of m about its equilibrium value tend to return m to the equilibrium value.

If only coalescence and binary disintegration are considered, the solution of (9) is:

$$
\begin{equation*}
m(\tau)=m(0) \bar{e}^{\beta_{\%} \tau}+\left(1+1 / 2 \beta_{;}\right)\left(1-\bar{e}^{*} \beta_{i} \tau\right) \tag{13}
\end{equation*}
$$

As $\tau+\infty$, the following equilibrium mean mass is approached:

$$
\begin{equation*}
m_{E}=1+1 / 2 \beta_{\hbar}=1+c / 2 \beta \tag{14}
\end{equation*}
$$

The equilibrium mean mass tends to 1 as $\beta_{*} \rightarrow \infty$. In contrast to the previous case, m_{E} is independent of the mass concentration. This suggests that at equilibrium, plots of the size distribution for different mass concentrations will be parallel to each other. This is verified later. It can also be shown that, as in the previous case, the approach to equilibrium is monotonic and the equilibrium is stable.

Figure 1. Two examples of the variation of mean mass with scaled time for coalescence and spontaneous and binary breakup $\left(\alpha_{\star}=10^{-5}, \beta_{*}=10^{-4}\right)$.

In the general case of coalescence and spontaneous and binary disintegrations the solution of (9) is given by (11) where y and x are related to m and τ by

$$
\begin{align*}
& y=\left(m-\frac{\alpha_{k}-\beta_{*}}{2 \alpha_{*}}\right) /\left[\left(1 / 2 \alpha_{*}+\beta_{*} / \alpha_{*}\right)+\left(\alpha_{*}-\beta_{*}\right)^{2} / 4 \alpha_{*}^{2}\right]^{1 / 2} \tag{15}\\
& x=\tau \cdot \alpha_{*}\left[\left(1 / 2 \alpha_{*}+\beta_{*} / \alpha_{*}\right)+\left(\alpha_{\hbar}-\beta_{*}\right)^{2} / 4 \alpha_{*}^{2}\right]^{1 / 2} \tag{16}
\end{align*}
$$

and y_{0} is the initial value of y. As $\tau \rightarrow \infty$, an equilibrium mean mass is approached:

$$
\begin{equation*}
m_{E}=\left(\alpha_{*}-\beta_{\pi}\right) / 2 \alpha_{\pi}+\left[\left(1 / 2 \alpha_{H}+\beta_{\pi} / \alpha_{\pi}\right)+\left(\alpha_{i t}-\beta_{\pi}\right)^{2} / 4 \alpha_{*}^{2}\right]^{1 / 2} \tag{17}
\end{equation*}
$$

It may be noted that (12) is a special case of (17), obtalned by putting $\beta_{*}=0$ in the latter. Also the limit of (17) as $\alpha_{t} \rightarrow 0$ gives equation (14). Again, it can be shown that the approach to equilibrium is monotonic and the equilibrium is stable.

The behavior of m_{E} is summarized in Fig. 2. The thin curves show the varialion of m_{E} with α_{*} for selected β_{*}. The thick curve shows m_{E} as a function of $\beta_{;}$for $\alpha_{k}=0$. It is seen that m_{E} decreases with increases in both $\alpha_{i k}$ and β_{n}.

It may be recalled that the scaled spontaneous disintegration parameter $\alpha_{i n}\left(=\alpha_{0} / C M\right)$ involves the mass concentration M. It is perhaps more instructive to consider the behavior of m_{E} with M for $f i x e d ~ \alpha / c$ and β / c. This is done in Fig. 3. With coalescence and binary disintegration ($\alpha_{\gamma}=0$), m_{E} is independent of M (dotted curve). With coalescence and spontaneous disintegration ($\beta_{*}=0$), m_{E} varies approximately as $M^{1 / 2}$ (dashed curve). The full curve is for coalescence and both types of disintegrations. At samll M, this curve approaches the spontaneous breakup curve, and at large M, it approaches the binary disintegration curve. Thus, at small M, the effect of spontaneous disintegration predominates over the effect of binary disintegrations; as M

Figure 3. Vamiation of mean mass with total mass concentration for selected values of the disintegration parameters.
increases, however, the reverse is the case. A similar effect occurs for realistic formulations of collection and breakup of raindrops (Srivastava 1978).

3.1.2 Equilibrium Particle Size Distribution

The scaled equilibrium generating function is found by putting $\partial / \partial \tau=0$ in Equation (8):

$$
\begin{equation*}
9_{E}^{2} / 2-g_{E}\left(\alpha_{i t}+\beta_{i k} / m_{E}+1 / m_{E}\right)+\left(\alpha_{H}+\beta_{k} / m_{E}\right) z=0 \tag{18}
\end{equation*}
$$

considering the coefficients of z in (18) we find:

$$
\begin{equation*}
P_{I E}=\left(\alpha_{t}+\beta_{t} / m_{E}\right) /\left(\alpha_{t}+\beta_{t} / m_{E}+1 / m_{E}\right) \tag{19}
\end{equation*}
$$

or, using Equation (17)

$$
\begin{equation*}
P_{1 E}=1 /\left(2 m_{E}-1\right) \tag{20}
\end{equation*}
$$

Solving Equation (18) for g_{E}, differentiating the result repeatedly with respect to z, and putting $z=1$, we find the following recursion equation for $P_{k E}$:

$$
\begin{equation*}
P_{k E} / P_{k-1, E}=\frac{2 k-3}{2 k} \cdot \frac{m_{E}^{2}-m_{E}}{\left(m_{E}-1 / 2\right)^{2}} \tag{21}
\end{equation*}
$$

Equation (21) can also be written as:

$$
\begin{equation*}
P_{k E}=\frac{(2 k-2)!}{k!(k-1)!} \frac{1}{2^{2 k-1}} \frac{\left(m_{E}^{2}-m_{E}\right)^{k-1}}{\left(m_{E}-1 / 2\right)^{2 k-1}} . \tag{22}
\end{equation*}
$$

From Equation (22), it is seen that the equilibrium size distribution depends explicitly only on m_{E}. The dependence on the parameters α_{*} and $\beta_{\%}$ is implicit through the dependence of m_{E} on those parameters. In other words, the form of the equilibrium size distribution is the same for (i) coalescence and spontaneous disintegration, (ii) coalescence and binary disintegration, and (iii) coalescence, spontaneous and binary disintegration. Consideration of the particular forms of m_{E} shows further that in case (ii), the equilibrium distributions for given β_{x} and different M are parallel to each other, the
particle concentrations being proportional to M. This is no so in cases (i) and ($\mathrm{i} i \mathrm{i}$). This result is understandable. In the case of coalescence and binary disintegration, all terins in the equation for the equilibrium distribution are proportional to the products of particle concentrations. Therefore if one solution $P_{k E}$ for a mass concentration M has been found, A $P_{k E}$ is a possible solution for a mass concentration $A M$ where A is a constant. In the case of coalescence and spontaneous breakup, nowever, the particle concentrations enter into the equation both linearly and quadratically and hence we do not anticipate size distributions which are parallel to each other. Gillespie and List (1978) and Srivastava (1978) found similar behavior with realistic formulations of coalescence and spontaneous and collisional breakup.

For large k, we can approximate $P_{k E}$ in Equation (22) by

$$
\begin{equation*}
P_{k E}=\frac{\left(m_{E}-1 / 2\right)}{\left(m_{E}^{2}-m_{E}\right)}\left[\frac{m_{E}^{2}-m_{E}}{\left(m_{E}-1 / 2\right)^{2}}\right] k k^{-3 / 2 / 2 \pi]^{1 / 2}} \tag{23}
\end{equation*}
$$

Lushnikov and Piskunov (1977) considered the problem of coalescence and spontaneous disintegration and obtained equations similar to our Equations (21), (22) and (23). Here we have shown that these results are also valid for coalescence and binary disintegration and 2 combination of coalescence, spontaneous and binary disintegration processes provided the appropriate m_{E} is used in Equations (20) through (23).

Fig. 4 shows a plot of the equilibrium distribution for $m_{E}=50$, computed from Equation (22). Although indicated as a continuous curve, the distribution is discrete. On this figure, the asymptotic form (23) is indistinguishable from the exact solution for $k \geq 8$. For cloud physical purposes, it is perhaps more interesting to see the distributions plotted as $\log \left(p_{k} . k^{2 / 3}\right)$ against $k^{1 / 3}$ (Fig. 5) which corresponds essentially

Figure 4. Scaled equilibrium size distribution (full line) for an equilibrium mean mass $m_{E}=50$ compared with the asymptotic solution (dashed line).
to a plot of $\log N(D)$ vs D where D is the particle diameter and $N(D)$ the particle concentration density. In Fig. 5, the scaling has been removed and the equilibrium distributions for coalescence and spontaneous breakup $(\alpha / c=0.1 \beta=0)$ have veen shown for the indicated mass concentrations. Curves identical in form to those in Fig. 5 would be obtained for other cases provided the m_{E} are identical. As an example, let us consider the $M=2$ curve in Fig. 4. This curve has $m_{E}=3.70$ (Eq. 12). Under the action of coalescence and binary breakup, the same m_{E} would be obtained for $\beta / c=0.185$ (Eq. 14). Hence the $M=2$ curve in Fig. 5 is also the equilibrium distribution for coalescence and collisional breakup for $\beta / c=0.185$, and $M=2$. However, if M is changed with β / c kept fixed, the equilibrium distribution will be displaced parallel to itself.
3.2 Other forms of the collection kernel and breakup parameters.

Solutions have also been obtained for constant breakup parameters and (a) collection kernel proportional to the sum of particle masses and (b) colleci: on kernel proportional to the product of particle masses. A detailed discussion of these solutions will not be given here. Only certain new features which emerge in the behavior of the particle mean mass are summarized below.

As the power of the collection kernel increases, an equilibrium mean mass is not always possible. In case (a), an equilibrium mean mass is always obtained with coalescence and spontaneous breakup. With coalescence and binary breakup, however, an equilibrium M occurs only for $\beta_{\star}>1$ and the equilibrium value is independent of the mass content M. For $\beta_{*}<1$, coalescence dominates, that is $m \rightarrow \infty$ as $T \rightarrow \infty$.

In cases (b), mexhibits three distinct kinds of behavior. In a region of relatively large α_{*} and β_{\star} an equilibrium m is always attained. In a region of small α_{*} and β_{*}, coalescence dominates in a finite time τ_{c},

i.e., $m \rightarrow \infty$ as $\tau \rightarrow \tau_{c}$. In a third region of small $\alpha_{;}$but relatively large $\beta_{i=}$, the tehavior of m depends upon the initial condition. For small initial m an equilibrium m is attained while for large initial m, coalescence dominates. Moreover, two equilibrium values of m are possible. The smaller m is stable with respect to small perturbations, while the equilibrium point with the larger m is unstable. In the latter case, a small positive perturbation causes coalescence to dominate while a small negative perturbation causes the m to move to the stable equilibrium point. In this case also the equilibrium m is independent of M for coalescence and binary breakup. Besides the above, it is also possible to obtain solutions for certain forms of variable breakup parameters. For example, we can consider

$$
\begin{aligned}
k(j, k) & =c j k \\
u(k) & =\alpha_{0} k \\
\beta(j, k) & =\beta_{0} j k
\end{aligned}
$$

where c, α_{0} and β_{0} are constants. A reference to Equations (1) will show that in this case, at equilibrium, the quantity $j p_{j}$ obeys the same equation as the quantity p_{j} in the case of a constant kernel and breakup parameters. Hence the solution to this problem is immediate.

4. CONCLUSIONS

The equations for a simple model of particle coalescence and breakup have been formulated. Analytical solutions of the equations have been obtained for a cunstant collection kernel and constant spontaneous and binary disintegration parameters. The behavior of the solutions is qualitatively similar to that of numerical solutions of the equations for the evolution of raindrop size distributions for realistic fcrmulations of coalescence and breakup. An equilibriumparticle size distribution is attained. For given breakup parameters, the effect of spontaneous disintegration dominates over that of binary disintegration at small mass contents, M, while the
reverse is the case at large M. With coalescence and only spontaneous disintegration, the equilibrium mean mass m_{E} increases with M while it is independent of M when coalescence and only binary disintegration are considcred. In the latter case, the equilibrium particle size distributions for different M are parallel to each other.

ACKNOWLEDGEMENTS: The research reported here was supported by grants NASA-NSG-5402 and NSF-ATM-80-16150. I wish to acknowledge the help of Mr. Tim Lorello in the calculations. Thanks are due to Ms. Carolyn Gay for typing the manuscript of the paper.

REFERENCES:

Gillespie, J.R. and R. List, 1978: Effects of Collision-induced Breakup on Drop Size Distributions in Steady Rain Shafts. Pageoph, 117, 599-626.

Lushnikov, A.A., and U.N. Piskunov, 1977: Formation of Steady-State Distributions in Coagulating Systems with Disintegrating Particles. Colloid Journal, 39, 760-764.

Scott, W.T., 1968: Analytic Studies of Cloud Droplet Coalescence. J. Atmos. Sci., 25, 54-65.

Srivastava, R.C., 1971: Size Distribution of Raindrops Generated by their Breakup and Coalescence. J. Atmos. Sci., 28, 410-415.

Srivastava, R.C., 1978: Parameterization of Raindrop Size Distributions. J. Atmos. Sci., 35, 108-117.

Young, K.C., 1975: The Evolution of Drop Spectra due to Condensation, Coalescence and Breakup. J. Atmos. Sci., 32, 965-973.

DOPPLER RADAR STUDY OF A REGION OF WIDESPREAD PRECIPITATION TRAILING A MID-LATITUDE SQUALL LINE
by

Thomas J. Matejka and Ramesh C. Srivastava
 Department of Geophysical Sciences
 The University of Chicago
 Chicago, Illinois 60637

25 July 1981

DOPPLER RADAR STUDY OF A REGION OF WIDESPREAD
PRECIPITATION TRAILING A MID-LATITUDE SQUALL LINE

Thome J. Eneegta and Remesh C. Sxivaseava Depertent of Geophyeleni scienoen
The Tofivareley of Chicapo
Chicago, III Laote

1. Eitmonecton

Lag-14ved intenee squall Lran are mutalnod and propageted by the laitiation of口f coorvection on chatr leading faom. to the chunderseopm aesoctated with the em convection anture and disaipate, they now to the rear of the propageting lins. Under certain conditione not vall undaratood at cha prament eime, the arolis and dabrte aneoclaced utth the diaelpating chundarstorm ena marge together co produce a large zesemede sugdon (area $10^{4} \mathrm{~km}^{2}$) of daap and raletively homgeneous precipitacton vhl, ch eratla the lina of encive comvecelon. Such squall Linea have been described by 21 pear (2969, 2977) and Houct (1977).

Obaervacions and theorericil conaidarations suggent thet the regton of cradilag precipieacion gy be dyamically cecive and concain manomele vartical alr motions. This io suggented by the long life of the gagion and the fact that it sometras accounte for a large fraction (0.4) of the tocal precipication of the squall line syscem (Houxe, 1977). Physically, ic can be sean why vertical motion occur in the region of uldeapread prectpitacion if condit lone are favorable for evaporation in the lowar layers; the cooling essoctated with the ovaporation (parhape anguanced by the alting of ica) can give riae to preanure falla and corvergeace in the adddle tropoophate, which should reault in ascant in the uppar lavale and descent in the lover lovals. The aecent could laed to the production of no:n pracipication and parhape a calf-euntaining syetem.

In thie paper, ve preseat Doppler radar obecrvation of a region of rldesprend precipitacion trailing an iuceneo equali lina. The obsearvecione ware nbeatned durins Project NDIROD, conducted in Illinols durlag Miny and June 1978. Three Dopplar radare (the MCAP CP3.and PP4 and the Onivaraity of Chicego - Illinote Scace Wacer Surver CaIfi, unre ued besides surface instrumatacion (che NCAR PAM aypten and the ISWS ratngange networik) and frequent rawinsonde ascents. Bere wo ball present obsarvecions from only one radar (CP3), which verv uned to calculate high-rasoluedon varcical protitan of particle fall upend, horiscatel divergence, and verticial valoctify by a modant crtension of tha VAD anthod (Browntag and Werler, 2968).

2. BEIEF DESCROPTION OF TEE SQUALI LINE

The bund of intenea prectpicacion
from the squall line, followed by the region of light, widespread precipleacion, pasced through northern Illinois betwen 2200 CDT (all times are Cancral Daylighe T1me), 17 Juna and 0200, 18 Junc 1978.

Fig. Le is a PFI diaplay of medne rellectivity factor at 2215 and ebow the equall Line es atage vem the videspreed prectpication to the rear of tid scelve lim was junt baginning to becon cremsiave. By 2346, the convective line had matraned coaniderabiy, and the area of videepread prectpiencion had emarted, ertending aloft behlad the line for diatence of 140 km (Fig. ib). By this tim aleo the ilne of inemea activity had becon detached from th/ axan of intenee precipieation by a gep at over 20 (Flg. Lb). Since light, videtpread precipitation continued for two more houra. the adecence of mancale ancent to provide addieloan condemate sem likely.

3. EDEMDID METYBOD OF VAD AKLALTSLS

In a region of bortsonteiiy atractiled precipleation with linent variacions of the horisontal wiad, the Doppler radial velocity as a constent alevation mgle $a_{\text {a }}$ and conetant alant range Q (horizoncal range r) is related to the aslwach angle (beceured clockrise from north) by che equation (Browning and Wmeler, 1968)
$V=a_{0}+a_{1} \cos \phi+a_{2} \sin \phi+b_{2} \cos 2 \phi+b_{2} \sin 2 \phi$
whara
co $\frac{\text { rcona }}{2}$ Div - F in a
a_{1} - veos $a \cdot a_{2}$ - ucos a.
Hare DIf is the average divergence of the horizoncal utad over the wrea of the VAD circle, f io the everage particle fall npeed (positive downuards) over the circuaferance of the VAD circle, and u and v are rempeceivaly the answard and nortkward componancs of the ulad velocity over the radar. The coefficsente b_{1} and b_{2} is (1) are relaced to the doformation of the hotisurtal utiod and will not be used hara. The unual pracetce in VAD malysis hat been to eaice obearvectons of V, as a funceion of the atimach ϕ, at one alevation angla and to calculate the coefflciente $a_{n}, a_{7}, a_{2}, b_{7}, b_{2}$ eleher by hasmate anelyeds of the $\hat{\forall}(\phi)$ or by a ${ }^{2}$ latet-aquares fitting procadure. Observetion in differme range bina, correaponding to different A (and thu beving different r and beight h), thea give the helght profilie of the coefflcience. The confilelent a con be ued to daternine the vertical profile of horisontal divargence, and thence by integration the profile of the vertical alr
 ongle Q ie small anough to naglect the leet term in Equacion (2); in mose prosious work, a val kapt eand so that the lattar was the case.

Here wa have axtended the VAD method. so that obaarvacions of $\nabla(\phi)$, at a nuber of elevacion anglan, can be uead to deduce both che divergance and the fall spaed, find it is not neceseary (in fact, it is not deairable) to remerict the VAD scana to seall alavation anglus.

$$
\begin{align*}
& \text { Lat us reurite 2a. (2) as followa : } \\
& \frac{2 \mathrm{cos} a}{}-D 1 v-2 F \frac{\operatorname{cana}}{\mathrm{r}} \tag{4}
\end{align*}
$$

The VAD scans at different alevation angles can be used co deternine che a^{\prime} and che quancity on the left hand side of (i) for che range gatee that fall inco a nartom height incerval. The

Fig. A. PPI displays of Cp-3 radar refleotivity factor. Black >40, hatohed 30-40, denssly stippled $20-30$, sparesely stippled $<20 \mathrm{dBz}$. Cross indicates position of rador. Marimum range is 108 km . (a) 2215 CDT ; elevation 4.5°; squall line is to northwest. (b) 2346 CDT ; elevation 3.5°; squall line is far to southeast. In (b), marima 50 km to the north and southesest are associated with the nelting band.
left hand side of (4) Lhen has a distinctive dependence on a wich can be used to seperete the Div and F. Besides requiring the assumptions asede in the usual VAD analyeis (Vis., horizontal uniforaity of prscipitation and linear variations of the rinds in horizoncal layers), the present mehod is more scriagenc in cerns of requiring cemporal uniforalty of the phenomenon becausa many VAD scans munt be utilized in the analyals procedure. However, che method does concaln an internal test of consistency through the requiresent of an explicit dependence of ($s_{0} /$ rcosa) on a.

In the preseat analysis, data from 21 complece asimuthal scans, ranging in elevation angle from 0.5° to 84.5°, have been used. The time period for these radar scans was from 2345 to 2355. Each agimuchal scan had approximately 470 observations of Doppler velocity. Only the data for the range bins within ≤ 40 la of the radar vere utilized.

The data were firat edited to remove "clutter" pointa (absolute value of radial velocity less than 1 mes ${ }^{-1}$) and velocities which were observed in the antenna's side lobe due to "shadowing" effects. The radial velocities were unfolded by comparison with the bodograph from a ravinsonde ascens at 2356 CDT from the CP3 radar site. A first itt of type (1) was aade by a least-squares mathod for each azimuthal scan and range bin subject to the range constraint ment loned above. (Approximately 2500 fits were made.) The Doppler velocities were then "cleaned" by removing velocities which deviated from the fit by more than twice the standard error of the first fit. The "cleaning" had the effect of removing spurious observations rather than meteorologi eally significant data. A second least-squares fit was then made on the "cleaned" points to determine the coefficients in (1) for each elevation angle and range bin.

The next analysis step consisted of stracifying the a's in narrow height intervals (500m). A least squares fit, according to Eq. (4), was performed to determine Div and F for each of the layers. An integration was then carried out to determine the vertical air velocity. The detalls of this are described later.

Por the sake of brevity, we have onitted, in the above, certain details of the analysis procedures. These are: (1) height and elevation angla correction for ray-curvature (the latter correction was a small fraction of a degree at the farthest ranqe considered) and (11) an extension of the fit of Eq. (4) to include quadratic height variations o: Jiv and F within a layer; this was done to account better for sharp variations, such as through the melting layer.

4. DISCUSSION OF RESULTS

4.1 Winds, temperature, and humidity

Vertical profiles of wind speed and direction obtained from the VAD analysis in the region of widespread precipitation behind the squall line and frow a rawinsonde launched from the CP3 radar site at 2356 are shown in Fig. 2. Vertical profiles of temperature and dew-point cemperature are also shown.

(b)

Pig.2. (a) Vertioal profiles of temperature (solid line) and dan-point temperature (dashed lina) from rewineonde sounding. (b) vertioal profiles of wind dirsotion (solid line) and wind speed (dashed line) from the VAD analysis; also from rawinsonde sounding (+ and 2). The vertioal aris is altis tude above sea lavel. Ground lavel was 226 m .

The chermal structure of the atmosphere resembled the soundings behind tropical lines described by 2ipser (1977) and behind an Oklahoes squall line described by Ogura and Liou (1980). Below 4 km , the sounding was consistent with the occurrence of evaporation of precipitation and unsaturated descent (Leary, 1980). Above 4.0 km , the atmosphere was saturated with respect to ice. Between 4.0 and 8.7 km and above 11.0 km , the atmosphere was stable. Between 8.7 and 11.0 km , it wes conditionally unscable. The layer from the surface to about 1 la was very stable. The wet bulb potential temperature in this layer was 292 g . In the layer from 1 to 4 kn it was mostly between 290.5 and 291.5. This contrast supports 21pser's (1977) conclusion that the air in these two layers has different origing.
4.2 Hydrometeor fall speed and reflectivity factor

The vertical profile of hydromeceor fall speed obtained from our extension of the VAD method is shown in Fig. 3. The profiles of average fall speed and reflectivity factor masured while the radar was in the vertically pointing mode during the 5.5 min imadiately following the VAD scans are also shown. The two sets of fall speeds are in good agreement: especially noteworthy is the agreement through the sharp transition in the melting zone between the altitudes of about 3 and 4 in. This agreement supports our mechod of sepa-

Pig. 3. Veritioal profiles of hydrometeor fallspeed from the $\nabla A D$ aralysis (solid line) and from rador data sollected in verticaily-pointing mode (VPM) (+) and of radar reflectivity factor from VPM (dashed line).
rating the fail speed and divergence from the "average" of the VAD velocities (a) and also gives credence to the assumptions underlying the use of the method.

Fron 11 kam down to 6.5 km , the fall speeds generally increased from 1 to $2 \mathrm{~ms}^{-1}$. These fall spects are typical of snow. The increase of the fall speed and of the reflectivity factor imply the occurrence of particle growth by some or all of the following processes: deposition, riming and aggregation. Between 6.5 and 4.2 km , the increase of fall speed was arrested, and the rate of increase of reflectivity factor also diminished. The former could have been due to the formation of large aggregates, whose fall speeds are a very weak function of their mass. The latter could perhaps have been due to the cesmation of some of the growth processes operaciva above 6.5 km .

The fall speeds increased rapidly from about 2 to 9 mg 1 r the melting region and then decreased dowawards to approximately 7.5-8 ${ }^{-1}$. The reflectivity factor increased sharply from about 28 to 41 dBz and then fell again to 29 dBz . This implies a preponderance of considerable particle aggregation above, and breakup below, the peak of the reflectivity curve. The peak fall speed of about $9 \mathrm{~ms}^{-1}$ was unusually high for a relting-band situation. It implies the existence of rather massive partities in the forms of aggregates or rimed particles; these particles

Fig. 4. Vertioal profile of horiaontal divergenoe from VAD analyois. The dashed line represente an extraphlation of the propile to sloud top.
could even have been derived frow the debris of the intense convection. The decrease of the fall velucity to $=7.5-8 \mathrm{~ms}^{-1}$ in lover levels is consistent with continued particle breakup ind raindrop size distributions having the measured reflectivity factors.
4.3 Horizontal divergence and vertical alr velocity

The vertical profile of the horizontal divergence obcained from the VAD analysis is shown in Fig. 4. A discrece form of the approximate continulty equation
Div $+\partial(\rho w) / \partial h=0$
was integrated to obtain the vertical air velocity w. The air density ρ was taken from the rawinsonde ascent. Three alternative boundary conditions gave the three vertical air velocity profiles shown in Fig. 5. For curve (A), w was taken to be 0 at ground level. This was fustifted by the observed low-level winds and the known terrain of the area. Curve (B) was obcatned by assuming that w - 0 at $h=11.1 \mathrm{~km}$, the top of the radar data used to obtain the divergence profile. Above this height, the radar data were spotty, and it was difficult to calculate a rellable value of the horizontal divergence. However, the cloud did extend roove this level. This is supported by the presence of upward motion at this height in curve (A) and by satellite data. The cloud top was estimated

itig. 5. Vertioal profiles of vertioal air velooities, computad from integratione of the divergence profile (Fig. 4).
to be at $h=12.7 \mathrm{~km}$ from infrared sacellite imagery. The third integration cherefore assumed $w=0$ at h - 12.7 km and produced curve (C) of Fig. 5. For this integration, the divergence profile of Fig. 4 was extrapolated linearly to bigherlevels, giving DIv $=3.1 \times 10^{-4} \mathrm{~s}^{-1}$ at $h=12.7 \mathrm{~km}$. (This extrapolation 1 s shown by the dashed line in Fig. 4) at this time, we belleve profile (C) to be nearer the actual vertical motion than elther of the other profiles. It may be remarked here that small changes in the assumed boundary condition at a low level give large changes in the integrated wat high levels, while small changes in the assumed boundary condition at a high level give rise to only samall changes in the computed w at low ievels (Bohne and Srivastava, 1976).

The maximum convergence, $-1.5 \times 10^{-4} \mathrm{~s}^{-1}$, occurred at $h=3.5$ kin in the melting zone. Above 3.5 km , the wind field was convergent up to $h \approx 9.9 \mathrm{~km}$, above which it became rapidly divergent. Below 3.5 km , the convergence changed very rapidly to a strong divergent field through the meiting layer with a maximum divergence of about $4 \times 10^{-4} \mathrm{~s}^{-1}$ at 1.0 km . In the 270 a laver nearest the ground, the wind field again became convergene. This result was also indicated by in objective analysis of PAM network observat!ons, which yielded a convergent wind field although of much smaller magnitude, $-3 \times 10^{-5} \mathrm{~s}^{-1}$.

The vertical velocity profilee shou chat che tropoephere wae characterized by a deap Layer of deacent below and a deop layer of ancent above. A raxime dovmard velociey of -25 to - 15 cm m^{-1} occurred at $\mathrm{h} \geqslant 3 \mathrm{~km}$. Proan near the $O C$ level ($\mathrm{h} \geqslant 3 \mathrm{ka}$) to sbout 7 ka hatghe, chg compucod vortical moticon are easll ($=10 \mathrm{~cm} \mathrm{c}^{-2}$) fad perhapa near the lifite of accuracy of the analysis. Above 7 lm , cecent ofcurred uith a madinu of betwea 10 and $35 \mathrm{~cm} \mathrm{e}^{-1}$. The protilee are consistent with 21peer (1977), who concluded that che masoscale dowadraft air penctrated $c 0$ vithtn 1 in of, but doee not reach, the surface.

T"w compucad profile of vertical ast velocity are consiatent irith the profiles of temperature and dew-poiat temperature. 1.e., the region of descent vas unaturaced, while the region of ament was near saturacion.

The profiles of divergence and vertical air valociey are remarkably coseletant with the profiles of these quanticies pontulated, or deduced from indirece evidence, by Zipeer (1969. 1977) and Houze (1977) for che ragion of widespread precipitacion behind tropical squali lines. Ogura and Liou (1980) analyzed radiosonde daca for an Oklahoma squall line and obrateed protilee of divergence and vertical alr velocicy in che rear portion of the equall 1 inen very similar to those obcalaed here. A adamerical model (Brorn, 1979) of the region of uldeapreed precipitation, with parmaterization of the intenee convection, also gielded areas of upwerd and downard air moriona of atmilar intensity and diacribucion in height.

5. SUMMARY AND CONCLUDIIGG REMARKS

An extevalou of the VAD mathod how been developed which enubles the colculation of high-resolution vertical profiles of particle Eall speed and horizontal divergence (and, therefore, the vertical air velocity). The method utilizea azimuthal scana of Doppler valocity at a number of elavacion angles. The machod has been applied co the study of a region of wideapread precipitation trailing an intansa squali lina during Project NIMROD. The excended VAD analyais geve vartical profilas of parcicle fall apead in excellent agreament with the profilee obtained by vartically pointing obeervacions, aven tirrough the region of thatp changes in the malting layer. The compuced verticel alr velocitiee showed general descent below the OC leotherm, gemarel ascent above $h=7 \mathrm{~km}$, and gmall vartical ait motions in che Lutamadiate layer. The profile of vertical air velucity dis consiatent with what hea been deduced to occur behind tropical squall lines and in an Oklahoma squall line from indirect evidance and from radiosonde observacions, respectively. This study gives the first direct evidence of the vertical air velocities in the ragion of uidespread precipitation associated with a squall lite.

Quentirative knowledge of the characteriacics of the region of widespread precipication is important for a number of reanone. In this stidy we obtalned vertical ast motione of ordar $10 \mathrm{~cm} s$-l over the analyzed area of radius 40 km (che actual ares could be larger). The trannpores effected by such ascent are equivalent
to the eranepores which would be effecead by 16 elemence each of radiun 1 . We having a vercical air velocicy of 10 mol . Hence the mancale vertical motione in the region behind the active convection in the equall line annot be imored in coasiderations of budgets of the squall ilas. The vereical mocions could also heve dyacelcal elgniflcance for the life hiatory of the squall line.

The research reported here was aupported by the Atmoapheric Sciences Seceion of the National Science Foundection (ATY-80-16150) and by the Nactonal Aaromacics and Space Adminiatration (NSC-5402). The Fiall Obeerviag Facil1ty, NCAR, operated the CP3, CF4 radars and the Portabla Automated Maso-network duriag Project NIMROD. The computasione were perforned on the CDC-7600 computer at the National Center for Atmosheric Research and this laboratory's minicomputer. Mr. Tim Lorelio helped in the developrent and erecution of mont of the computar prograns uned in this research. The manuscript wae expertly typed by Me. Carolyn Gay.

RFFERENCES

Bohne, A.R., and R.C. Srivastava, 1976: Random errors in wind and precipication fall speed meaurement by a EE1ple Doppler zadar syetem. Preprines, 17 Cont. on Radar Maceor., Amar. Mateor. Soc. Bonton, MA, 7-14.

3rown, J.M., 1979: Masoscale unsaturated downdrafes driven by rainfall evaporation: a numerical study. J. Atmon. Sci., 36, 313318.

Browning, K.A. And R. Wexler, 1968: A decermination of winematic propertien of a wind field ueing Doppler radur. J. Appl. Meteor., I, 105-113.

Houze, R.A., Jr., 1977: Structure and dynamics of a eropical squali-line system. Mon. Wan. Rev. . 105, 1540-1567.

Leary, C.A., 1980: emperacure and humidity profiles in masosc ule unasturated downdrafte. J. Atmon. Sci., 37, 1005-1012.

Ogura, Y., and M.-T. Liou, 1980: The structure of a midlatitude squall line: s case study. J. Atmos. Sc1., 37, 553-567.

Z1spar, E.J. 1969: The role of organized unsacurated coavective dowadrafte in the structure and rapid decay of an uquitorial diacurbance. J. Appl. Mateor., 8, 799-814.

- 1977: Kesoscale and convective scale downdrafts an diatinct components of squall line structure. Mon. Wee. Rev., 205, 15681589.

OF PGMR ULABTMY

