NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA Contractor Report 159221

(NASA-Cr-159221) LSSYS: an INTLGaATED SYNERGISTIC SVNTuESi.) jYjič (Kentron International, $1 H C .12 \zeta 7 \% \mathrm{AC} A 12 / \mathrm{MF} A 01$ \(\begin{array}{lll}rSLL v9ín \& \& Juclas
\& G3/01 312\end{array}\)
ISSYS - AN InTEGRATED SYnergistic sYnthesis SYSTEM

A. R. Dovi

KENTRON INTERNATIONAL, INC.
Hampton Technical Center
an LTV company
Hampton, Virginia 23666

CONTRACT NASI-13500
February 1980

National Aeronautics and Space Administration
Langley Research Center Hampton. Virgnia 23665

A computer aided design system called ISSYS is described. System concepts, usage and major elements of the system are presented. ISSYS controls the sequence of execution of the independent computer codes utilized. A common link between the independent computer codes is an independently constructed data base of information accessed by ISSYS. This data is constructed in a key-name format required by ISSYS. Data blocks are chained (linked) together via executive software. Complcer code execution and data management are automatically handled by ISSYS. The system is broken down into major elements and described in their respective sections of this report.

The purpose of the system is threefold:

- The support of structural design studies on advanced and experimental aircraft concepts.
- The investigation of multidisciplinary, computer aided design and analysis methodology.
- The provision of detailed structural data for the evaluation of advanced analytica! methods.

This report defines the ma.jor functions and rules of the ISSYS system. It is not intended as a stand-alone user's guide. It is assumed that the ussi: is familiar with the Control Data Corporation Network Operating System (NOS) and associated software utilities. External computer codes utilized by the ISSYS system are documented by the developers. A bibliography is contained in this report for further reference by the user on these programs and other topics of interest.

This document has been prepared for the Structures and Dynamics Division, Design Methods Section, NASA Langley Research Center, by Kentron International, Inc., Hampton Technical Center. The purpose of this doc "nent is to present to the user a description and usage of the major subsections of the ISSYS system. Several job control examples as well as a schema for generating data for the system are presented in Appendix A.

Hampton Technical Center provides technical integration assistance to -ue Structures and Djnamics Division, Aeroelastic Optimization Office under Contract NASI-16000. This report was prepared by Mr. A. R. Dovi with significant contributions from Messrs. W. H. Greene, D. W. Gross, W. L. Kurtze, E. W. Shields, and G. A. Wrenn. Special acknowledgement is given to the pioneering efforts of Mr. L. A. McCullers in the development of the ISSYS system.
Section Page No.
LIST OF FIGURES $v 1$

1. INTRODUCTION
1.1 PURPOSE 1.1-1
1.2 SYSTEM CONCEPT 1.2-1
2. SYSTEM DESCRIPTION
2.1 MAJOR ELEMENTS 2.1-1
2.2 SYSTEM LIBRARY 2.2-1
2.3 THE ISSYS COMMAND 2.3-1
2.4 THE LBEDT COMMAND 2.4-1
2.5 ISSYS NOTES AND REGULATIONS 2.5-1
3. TASK PROCEDURES
3.1 INTRODUCTION 3.1-1
3.2 ALPHABETICAL INDEX OF TASK PROCEDURES 3.2-1
3.3 TASK PROCEDURE DESCRIPTIONS 3.3-1
4. LOCAL FILES
4.1 INTRODUCTION 4.1-1
4.2 FILE DESCRIPTIONS 4.2-1
5. LOCAL DATABASE (LBASE)
5.1 INTRODUCTION 5.1-1
5.2 ALPHABETICAL INDEX OF DATA BLOCKS 5.2-1

- 5.3 DATA BLOCK DESCRIPTIONS 5.3-1

6. DATA PROCESSORS
6.1 INTRODUCTION 6.1-1
6.2 ALPHABETICAL INDEX OF DATA PROCESSORS 6.2-1
6.3 DATA PROCESSOR DESCRIPTIONS 6.3-1

TABLE OF CONTENTS (continued)
Section Page No.
7. PROGRAMS
7.1 INTRODUCTION 7.1-1
7.2 ALPHABETICAL INDEX OF PROGRAMS 7.2-1
7.3 PROGRAM DESCRIPTIONS 7.3-1
8. AUXILIARY PROCEDURES
8.1 INTRODUCTION 8.1-1
8.2 ALPHABETICAL INDEX OF AUXILIARY PROCEDURES 8.2-1
8.3 AUXILIARY PROCEDURE DESCRIPTIONS 8.3-1
9. PLOTTING PROCEDURES
9.1 INTRODUCTION 9.1-1
9.2 ALPHABETICAL INDEX OF PLOTTING PROCEDURES 9.2-1
9.3 PLOTTING PROCEDURE DESCRIPTIONS 9.3-1
10. DATA MODIFICATION PROCEDURES
10.1 INTRODUCTION 10.1-1
10.2 ALPHABETICAL INDEX OF DATA MODIFICATION PROCEDURES 10.2-1
10.3 DATA MODIFICATION PROCEDURE DESCRIPTIONS 10.3-1
11. UTILITY PROCEDURES
11.1 INTRODUCTION 11.1-1
11.2 ALPHABETICAL INDEX OF UTILITY PROCEDURES 11.2-1
11.3 UTILITY PROCEDURE DESCRIPTIONS 11.3-1
12.-JOB CONTROL
12.1 DESCRIPTION 12.1-1
12.2 EXAMPLES 12.2-1
13. BIBLIOGRAPHY 13.1

Section
APPENDIX A - MODIFY DATA LIBRARY REQUIRED BY ISSYS TO BUILD LBASE
A. 1 SCHEMA FOR GENERATING A MODIFIED LIBRARY
A. 2 LBASE GENERATION BY ISSYS

APPENDIX B - ISSHLP FILE

Page No.
A.1-2
A. 2-1
B.1-1

LIST OF FIGURES

Figure		Page No.
2.1-1	ISSYS EXECUTION AND DATA FLOW	$2.1-2$
$2.2-1$	ISSYS LIBRARY ORGANIZATION	$2.2-2$
2.2-2	USER MODIFICATIONS OR ADDITIONS	$2.2-3$
A-1	MODIFY DATA LIBARARY	A.2-2
A-2	BATCH JOB CONTROL SEOUENCE TO CREATE LBASE	A.2-3
A-3	LBASE STRUCTURE FOR *DEFINE BPLATE;	A.2-5

1. INTRODUCTION

1.1 PURPOSE

The Integrated Synergistic Synthesis System (ISSYS) is a flexible, user oriented, data independent system of computer codes and executive software procedures associated with the design and analysis of aircraft structures. Current capabilities include: the generation of aeroelastic loads, trimming to a desired fuel mass and center of gravity, static analysis, structural sizing for multiple load conditions, dynamic and flutter calculations, gust response computations and active controls design and analysis.

The purpose of ISSYS is threefold:

- The support of structural design studies on advanced and experimental aircraft concepts.
- The investigation of multidisciplinary, computer aided design and analysis methodology.
- The provision of detailed structural data for the evaluation of advanced analytical methods.

The computer codes perform specific calculations, such as finite element structural analysis or the computation of aerodynamic influence coefficients. Executive software utilizes the Control Data CYBER series computer under the Network Operating System (NOS). Pre- and post-processor codes, which are part of the system, provide data management to integrate computer code inputoutput data sets. A database complex (LBASE) may be generated by the ISSYS System via executive software data processors. This complex provides required input data files to the various computer codes utilized during an analysis. Data may be input or retrieved from the database during the execution of each task via executive software.

INTRODUCTION

1.2 SYSTEM CONCEPT

The ISSYS concept is to interface separate, stand-alone computer codes; integrating them into procedures which perform significant, independent tasks such as calculating new structural element sizes or performing a flutter analysis. Maximum use is made of existing computer programs (developed outside of the ISSYS team) and the capabilities of Control Data Corporation's Network Operating System (NOS). Relying on external sources in this manner decreases ISSYS development time, increases reliability and flexibility, and facilitates the incorporation of new capabilities. However, responsiveness to changes in the operating system or in externally maintained programs becomes crucial to keeping ISSYS operational.

Utilization of NOS Job Control Language as executive software permits easy, straightforward modification to executive software and allows the execution of user generated procedures and programs intermixed with ISSYS tasks. Using ISSYS Utility Procedures, any part of the system can be modified for a single run (during that run) for a special purpose application, or to checkout a proposed modification. Wi hh NOS executive software an existing capability can be modified or a new capability can be developed and checked out without changing the production version of ISSYS. This has produced a flexible, open-ended system which is being improved and expanded almost continuously.

ISSYS control is directed by the user and consists of a sequence of ISSYS and NOS control language commands. Selected examples are presented in the section titled JOB CONTROL.

2. SYSTEM DESCRIPTION

2.1 MAUOR ELEMENTS

The two major elements of ISSYS are the Executive Software and Computer Codes. Executive Software is based on Control Data Network Operating System (NOS) C.ontrol Language and NOS Control Statements as the host language. Executive Software consists of the following elements:

- TASK PROCEDURES
- UTILITY PROCEDURES
- aUXILIARY PROCEDURES
- DATA PROCESSORS
- PLOTTING PROCEDURES
- DATA MODIFICATION PROCEDURES

Each of the above elements is described in its respective section of this document.

Computer Codes utilized by, or contained in, the ISSYS System Library for engineering design/analysis are generally existing checked out computer codes, for which no program development is ustially required. Each Computer Code performs analysis for an engineering discipline. Computer Codes utilized by ISSYS are described in the section titled PROGRAMS.

Job control of an engineering analysis/design with ISSYS is directed by the user/arialyst via the ISSYS Command described in the section titled, THE ISSYS COMMAND. The user must supply a Local Database under the file name LBASE, or information required to create it. The LBASE must be in a text/key-name format as described in NOTE 3 of the Sub-Section titled, ISSYS NOTES AND REGULATIONS. The key-name allows ISSYS Data Processor Procedures to prepare required data for codes to te run.

Relationships between the elements of ISSYS during a job execution as well as the data flow are shown schematically in Figure 2.1-1.

\Longrightarrow Data Transfer
$====\Rightarrow$ Optional Data Transfer
\longrightarrow Execution

The execution sequence is specified by a series of ISSYS Commands in the Job Control file. Area (A) in Figure 2.1-1 shows how user-supplied MODIFY instructions and a permanent file data library are used by the CDC MODIFY Utility (called by Auxiliary Procedure MDBASE) to create the Local Database (LBASE). With LBASE established, the Job Control Deck can execute analysis and design Task Procedures. These typically execute Data Processors, Programs, and other Task Procedures (B). A Data Processor uses Data Blocks from LBASE to form an input file for a Program (C). The Program generates output files (D) which are normally used by the next Data Processor. etc.

Some output files, however, are put into LBASE usually after processing (E) by the calling Task Procedure. They can also be used in other Data Processors or directly in other Programs (F). The files used to transfer data from one user-called Task Procedure to another are described in the section on LOCAL FILES.

Executive software elements based on the host computer's operating system provide the capability to model similar techniques on other systems; both large and small computer mainframes. The ISSYS system concept may be hardware or software based. In the open-ended ISSYS system, tasks are linked together by the user/analyst via ISSYS Commands,

$$
\text { i.e., CALL (ISSYS (XQ }=\text { CMD NAME, } A=a r g_{1}, B=a r g_{2} . \cdots
$$

ISSYS Commands direct the system to perform specific analysis tasks utilizing data supplied by the user via LBASE in a specified schema compatable to the ISSYS system. A detailed description of the ISSYS Command is presented in the subsection titled THE ISSYS COMMAND.

SYSTEM DESCRIPTION

2.2 SYSTEM LIRRARY

The ISSYS System Library resides as a single permanent file divided into four NOS-LIBEDIT type sub-libraries as shown in Figure 2.2-1. The first two consist of TEXT type records containing the ISSYS Procedures (LIBI) and the Data Processors (LIB2). The third sub-library (LIB3) consists of MODIFY-OPL type records containing input instructions for Programs such as AUTOLAY (used to assemble binary files for programs) and SORTMRG (used in alphabetizing records in a library). The fourth sub-library (ISSLIB) is a ULIB type user library. It is further sub-divided into two sub-libraries containing REL type relocatable binary records for each program and subroutine and TEXT type source decks, respectively.

The ISSYS Procedures in LIBI can be classified into three categories; Task, Utility, and Auxiliary Procedures. Task Procedures, in general, perform engineering calculations as part of an analysis or design exercise. Utility Procedures are used in the maintenance of a permanent data base or of ISSYS itself--modifying or adding to any part of the system. Auxiliary Procedures are used by ISSYS to perform file manipulation or special output functions. The major elements that comprise the system are described in the following sections of this document.

User interface to the system lit. ary is via ISSYS Commands as defined in the section titled, THE ISSYS COMMAND. Optionally, the user may supply to the ISSYS library external computer codes, or other modifications/ additions to the system as shown in Figure 2.2-2. As directed by Cormands, ISSYS will replace existing elements (Procedures, Codes, OPL's, REL's, TEXT) or add new elements to appropriate libraries. The local data base (LBASE), which is accessed and edited by ISSYS to supply input to various computer codes, is irdependent of the ISSYS libraries and is supplied by the user or generated at execution time by ISSYS. LBASE is kept in memory as a local text file. After all ISSYS Commands are complete, LBASE is released.

LBASE is accessed by ISSYS via the LBEDT Command described in the section titled THE LBEDI COMMAND. Interface with the host computers operating sysem and Utility Software is via ISSYS Executive Software. Major elements are presented in the section titled Major Elements.

Figure 2.2-1 ISSYS library organization
OPTIONAL MODIFICATIOWS
OR ADDITIONS TO ISSYS

Figure 2.2-2 User modifications or additions.
ByYMLJOS 3A1InJ3x 3 (SASSI)
GJVIy3INI WILSAS 9NIIVAJdO
(SON) W3ISAS 9NILWU3dO

SYSTEM DESCRIPTION

2.3 THE ISSYS COMMAND

Function: This is the user's control directive of the ISSYS system. The specified ISSYS Command Name (CMD NAME) is retrieved from the ISSYS file and executed with the parameters supplied by the user.

Auxiliary Files Used: ISSYS, ISSLIB, LBEDT, GETLB, COST, XQ, I, L, A, B, C, D, E, R, "CMD NAME", XI, XL, XA, XB, XC, XD, XE, XR, $X X, A A, B B, L L, X O, D I N, I S E X O$, NOPRINT, ISERR, XEDIT. (See also the specific commands).

Description:
CALL (ISSYS ($X Q=C M D$ NAME, $I=I N N, L=O U T, A=A A A, B=B B B, C=C C C, D=D D D, E=E E E, R=R F L$)
$X Q \quad=$ ISSYS "CMD NAME". If a file exists with the same name as "CMD NAME", the local file will be used in place of the ISSYS "CMD NAME".

I
= Input file name. Used for XEDIT, MODIFY, LIBEDIT, etc., instructions only. Not used for source decks or data blocks. Not used by TASK Commands.

L
. File for printed output. For TASK Commands, only the "optional" output is on the Lile (default: L=ISERR).
$A, B, C, D, E=$ Parameters/file names required by the Command.
$R \quad=$ Optional RFL value. Used to change the field length from the default values set by the Command.

SYSTEM DESCRIPTION

2.4 THE LBEDT COMMAND

Function: This is the link between the ISSYS Commands and the Data Processors. The specified Processor is retrieved from the ISSYS file and executed with the parameters supplied by the Command Procedure.

Auxiliary Files Used: ISAVE, ISDAT, IBASE, ISEDT, NOPRINT, ISEXO, XX, PIN, AA, BB, LL, XL, XO, XA, XB, plus files used by the specific processors.

Description:
CALL (LBEDT ($x X=O P R O C, L L=O U T, A A=A A A, B B=B B B, D I N=F I L E)$
XX $\quad=$ Datd Processor name.
LL = File for printed output. (Default=ISERF).
$A A, B B=$ Parameters/file names required by the Processor.
DIN \quad File to contain generated input data.

SYSTEM DESCRIPTION

2.5 ISSYS NOTES AND REGULATIONS

Notes and regulations are presented in this section to provide a reference concerning the disposition of certain files and rules established for the maintenance and operation of the system. A clear understanding of these notes and regulations will avoid minor user errors in the future.

NOTES:

1. All modifications and changes made by ISSYS COMMANDS affect local files only, permanent files must be replaced by the user.
2. If a locai Procedure File exists with the same name as ari ISSYS COMMAND the local file will be utilized in place of the iSSYS COMMAND version.
3. If a local file exists with the name LBASE, ISSYS COMMAND MDBASE is not required to process data. The local LBASE will be utilized by ISSYS; (see REGULATION 5).

The LBASE supplied must be in the following key-name format.
\$\$XXXXX
(logical data block 1)
-EOR-
\$\$XXXXX
(logical data block 2)
-EOR-

-EOR-
\$\$XXXXX
(logical data block n)
4. If a local data file in key-name format exists with the same rame as an ISSYS DATA PROCESSOR, the local file will be used in plare of the data on LBASE generated by the DATA PROCESSOR. No editurg is done by ISSYS to the local file.
5. Relocatable binary programs or subroutines present on file ISREL will be used in place of programs or subroutines with the same names on the ISSYS library.
6. All ISSYS LIST--- type utility commands generate a local, sorted copy of the file being listed. This sorted copy is suitable for replacement of the original file if desired.

SYSTEM DESCRIPTION

2.5 ISSYS NOTES AND REGULATIONS (continued)

7. For all PUT--- and GP--- type ISSYS COMMANDS, if the input (I) file is not local, it will be assigned to the keyboard for TELEX jobs. For all GP--- ISSYS COMMANO, if (I) file is an alternate file supplied by the user, it will be rewound.

REGULATIONS:

1. ISSYS COMMAND Procedures will not use NOS sense switches or R-Registers except EF (Error Flag).
2. Use of GOTO's for control skipping and looping is strongly discouraged.
3. MODIFY OPL's operated on using ISSYS will not use "\#" as a prefix character.
4. All data management performed by the ISSYS system will be based on a logical record, TYPE/NAME relationship.
5. The data base complex operated on by ISSYS must have the name LBASE at execution time, see NOTE 3 above.

3.1 INTRODUCTION

The Task Procedure is the user's execution control of ISSYS for an engineering analysis. Calls to these Procedures provide the user with a Network Operating System (NOS) based executive language. Tasks to be performed and the order in which they are executed are user controlled. Procedure calls may be interspersed with NOS control language supplied by a user.

The modularity of this document is maintained in each Procedure's description. For descriptions of procedures called, refer to that Procedure. Logical data blocks required are documented in the section titled DATA PROCESSORS.

Files required, and files created, are those used only by the Procedure being described. All Task Procedures require the presence of the database library LBASE. LBASE is automatically generated by ISSYS, see Appendix A, or may be supplied by the user, see the section titled ISSYS NOTES AND REGULATIONS.

3.2	ALPHABETICAL INDEX OF
SECTION NLASKER PROCEDURES	
3.3 .1	MODULE NAME
3.3 .2	OLAT
3.3 .3	DLIN
3.3 .4	DYNAM
3.3 .5	DYNAR
3.3 .6	FINL
3.3 .7	FLTSK
3.3 .8	FLTWT
3.3 .9	INIT
3.3 .10	INITC
3.3 .11	INITR
3.3 .12	LLOOP
3.3 .13	LOOP
3.3 .14	MDBASE
3.3 .15	MMINRT
3.3 .16	RESE23
3.3 .17	RSZG
3.3 .18	SETPR
3.3 .19	SETSK
3.3 .20	SETUP
3.3 .21	SPARI
3.3 .22	SPARPLT
3.3 .23	SPARR
3.3 .24	TOTL
3.3 .25	TOTLC
3.3 .26	TOTLR
3.3 .27	TRSC
3.3 .28	TRSG
	TRSM

3.3 TASK PROCEDURE DESCRIPTIONS

Each Task Procedure, including files required for execution and those created, is described in this section. Task procedures typically execute Data Processors, Programs (computer codes), and other Task Procedures required for an engineering analysis.

The Task Procedure functions are presented, whether they are called by the user or by other Task Procedures. The description includes an explanation of the arguments in the ISSYS COMMAND and a step by step indication of the major operations performed.

LBEDT ($x x x$) indicates a call to the ioc,l-database-editor Auxiliary Procedure to use Data Processor ($x x x$) to prepare an input file for a program execution. ISSYS(XQ=yyy) indicates a call to ISSYS Procedure (yyy) or to an ISSYS Auxiliary Procedure using the ISSYS COMMAND to perform the specified operation.

3.3.1 DLAT - TASK PROCEDURE

Function: Generates generalized aerodynamic force matrices using the DLAT module of the Interaction of Structures, Aerodynamics, and Controls (ISAC), ref. NASA TII-80040.

Procedures Called: LDO
Called By: User
Files Required: LBASE (Tries to get it if not avallable.)
TAPE5; TAPE9 (data base complex of ISAC).
Files Created: TAPE9 (Add data to data base complex.); DLATPLT
Parameters: $C=$ File name of TAPE5 data (option).
D $\quad=$ User number where the file resides (option).
MOTE: Both C and D must be specified if this option is used.

Ex: \quad CALL (ISSYS (XO $=$ DLAT $, C=S C A R 5, D=227940 C)$
Description:

- Tries to get TAPE5 via parameters C and D if this option is utilized. If TAPE5 is a local file it will be used. If TAPE5 is not assigned via the above methods ISSYS will generate it from LBASE.
- LBEDT(DLTDAT) - Extracts DLAT data block \$\$DLTFL from LBASE.
- ISSYS(XQ=LDO) - Create DLAT absolute binary file. DLAT - Generate AIC matrices and gust loads for a non-planar surface.
- If plots are requested a plot vector file DLATPLT is generated.
3.3.2 DLIN - TASK PROCEDURE
Function: Generates structural to aerodynamic transformation matrix utilizingthe surface spline interpolation method using the DLIN module ofthe Interaction of Structures, Aerodynamics, and Controls (ISAC),ref. NASA TM-80040.
Procedures Called: LDO
Called By: User
Files Required: LBASE (tries to get it if not available),GSTIN (generated by Task Procedure DYNAM)
Files Created: TAPE9 (Data base complex of ISAC), TAPE5, DLINPLT
Paraneters: None
Ex: CALL(ISSYS(XQ=OLIN)
Description:Prepares input files and executes the ISAC DLIN module- LBEDT (DLNDAT) - Extracts DLIN data block \$\$DLNFL from LBASE.
ISSYS (XQ=LDO) - Create DLIN absolute binary file.DLIA. - Downwash and integration matrices are stored- If plots are requested, a ploi vector file DLINPLT is generated.

3.3.3 DYNAM - TASK PROCEDURE

Function: Generates natural modes and frequencies using the SPAR structural analysis system and prepares them for gust and flutter analysis.

Procedures Called: LDOYN, MMINRT, SPARPLT
Calied By: User
Files Required: LBASE (tries to GET it if not available)
Files Created: FLTII!, GSTIN
Parameters: $A=$ Number of modes processed $B=$ Turns on gust oftion

Ex: CALL (ISSYS (XD=:YNAM, $A=12, B=1)$
Description:

- LBEDT(CHGSETP) - Extracts Design data blocks \$\$DSNDM; \$SDCVDM; \$\$DCVPR; $\$$ SDSWPR from LBASE.
- Attaches SPAP and DCU programs.
- ISSYS (XQ=LDDYN) - Senerates Executable files of CGMASS; MDPROC; MODSEP; STPROC; TRANP.
- LBEDT(CHGDYNI) - Extract data blocks \$\$CONDH; \$\$CGRID; \$\$RODPR; \$\$CCVPR; \$\$SWCON; S\$CLHSS; \$\$UPROD; \$\$STDEF from LBASE.

SPAR - Generates stiffness and mass matrices.

- ISSYS (XO= MMINRT) - Task Procedure to calculate fuel, mass, and aircraft inertia data.
- LBENT(CHGDYN2) - Calculate modes, frequencies, and gust stress SPAR coefficients using data blocks \$\$STNML; S\$DYANL from LBASE.
- ISSYS(XQ=SPARPLT) - If plots are requested a plot vector file SPLT is generated.
- $\operatorname{LBEDT}($ PIDIN,$A A=A)$ - Translate SPAR modes and frequencies to FTN
MDPROC
format using data block $\$ \$ M D I N$ from LBASE.
- LBEDT(MSIN,AA=A) - Separate modes into wing, tail, etc. components. MODSEP
- STPROC - Separates stress into shear, monent, and torque components for each mode.

TASK PROCEDURE DESCRIPTIONS

3.3.4 DYNAR - TASK PROCEDURE

Function: Performs a dynamic response flutter and gust analysis using the DYNARES module of the Interaction of Structures. Aerodynamics, and Controls (ISAC), ref. ILASA TM-80040.

Procentures Called: LDO
Called Bㅡ: User
Files Required: LBASE (tries to get it if not available), GSTIN, TAPE9 (Data base complex of ISAC).

Files Created: RIISTR (RHIS stress file)
Parameters: $C \quad=$ File name ($f n$) of TAPE9 data (option).
$D \quad=$ User number where the file (fn) resides (option).
NOTE: Both C and D must be specified if this option is used.
EX: \quad CALL $(I S S Y S(X Q=D Y N A R, C=S C A R 9, D=227940 C)$
Description:

- LBEDT(DGMDAT) - Extracts DGMBI data block \$\$DGMFL from LBASE. DGMBN. - Generates generalized mass matrix (TAPE7) and damping coefficients (TAPEB).
- LBEDT(DYNDAT) - Extracts DYNARES data block \$\$DYNAR from LBASE.
- ISSYS $X Q=L D O$) - Create DYMARES absolute binary file. DYNARES. - Perform flutter and gust analyses.

3.3.5 FINL - TASK PROCEDURE

Function: Perform maneuver loads update and generate stress data. Procedures Called: LLOOP, GSPIN, LBASE

Caller By: User
riles Required: SPARLA, SPDIN, STDIN
Files reated: SPARLN
Parameters: None
Ex: CALL(ISSYS(XQ=FINL)

Description:

- $\operatorname{ISSYS}(X Q=L L O O P)$ - Task procedure to update maneuver loads.
- SPAR - Compute maneuver deflections and performs stress analysis.
- LBEDT(GSPIN) - Setup input data for program GSPAR using data block \$\$STNML from LBASE. Also executes TRANP.
- GSPAR - Reformats stresses and add other necessary element information.

3.3.6 FLTSK - TASK PROCEDURE

Function: Computes generalized unsteady aerodynamic forces (GAF) for flutter using Subsonic Kernel Function.

Procedures Called: SETSK
Called By: FLTWT
Files Required: LBASE
Files Created: ADDOUT
Parameters: $A=$ No. of modes
$\begin{aligned} B= & \text { PLOT OniOff switch }=\text { NOPLOT turns plots off. Default } \\ & \text { is plots on. }\end{aligned}$
EX: CALL (ISSYS (XQ $=F L T S K, A=16, B=$ NOPLOT $)$
Description:

- ISSYS(XQ=SETSK) - Mode shape processing.
- SUBKRN - Compute GAF for wing.

Compute GAF for tail (if present).

- ADDSK - Adds tail GAF to wing GAF.

NOTE: All tail computations are triggered by the existence of \$\$MP2IN in LBASE.

3.3.7 FLTWT - TASK PROCEDURE

Function: Wing plus tail flutter analysis.
Procedures Called: FLTSK, LDO
called By: User
Files Required: FLTIN (trys to get it from user's account if not available)
Files Created: SPLI, SPL2, VGPLOT (if these exist, they are not recalculated)

Parameters: $A=$ unsteady aerodynamics program
$B=$ number of modes to be used
Ex: CALL (ISSYS $(X Q=F L T W T, A=S U B K R N, B=12)$
Description:

- Separate FLTIN into FREQS and IISPOUT
- ISSYS $(X Q=L D O)$ - Generate FLTDET and SUBKRN absolute binary files.
- ISSYS (XQ=FLTSK) - Task Procedure to generate generalized unsteady aerodynamics forces for flutter, if file SUBKRN is assigned.
- FLTDET - Perform flutter analysis.
- Copy SAVPLT, from FLTDET, onto VGPLOT.
- Copy TTPE16, from FLTDET, onto VGTEK.

TASK PROCEDURE DESCRIPTIONS

3.3.8 INIT - TASK PROCEDURE

Function: Perform initial SPAR execution.
Procedures Called: SPARI
Called By: User
Files Required: LBASE, (see SPARI, MMINRT, LLOOP)
Files Created: (see SPARI, MIINRT, LLOOP, SPARPLT)
Parameters: None

$$
\text { Ex: CALL }(I S S Y S(X Q=I N I T)
$$

Description:

- ISSYS(XQ=SPARI) - Perform initial SPAR execution for a static analysis and resizing. Secondary procedures perform fuel distribution and rigid loads computation.
- If SPAR plots have been requested via the ! MODIFY OPL, or SPAR plot directives are supplied on a users LBASE (See section titled ISSYS NOTES AND REGULATIONS), a plot vector file SPLT is created.

3.3.9 INITC - TASK PROCEDURE

Function: Perform initial SPAR execution and create restart tape.
Procedures Called: SPARI
Called By: User
Files Required: LBASE
Files Created: (see SPARI, MMINRT, LLOOP, SPARPLT)
Parameters: $A=$ Volume Serial Number (VSN) of restart tape. The SPARLA file is written to this tape.

EX: CALL(ISSYS (XQ $=\operatorname{INITC,A=AN1150)~}$
Descr:ption:

- ISSYS(XQ=SPARI) - Perform initial SPAR execution for a static analysis and resizing. Secondary procedures perform fuel distribution and rigid loads somputation.
- If SPAR plots have been requested via the NDDIFY OPL, or SPAR plot directives are supplied on a users LBASE (see section titled ISSYS NOTES AND REGULATIONS), a plot vector file SPLT is created.

3.3.10 INITR - TASK PROCEDURE

Function: Reads magnetic restart tape containing initial SPAR execution data.

Procedures Called: SPARR

Called By: User
Files Requested: LBASE, (see SPARR, MMIHRT, LLOOP)
Files Created: (see SPARR, IMINRT, LLOOP)
Parameters: $A=$ VSN - Magnetic restart tape number containing SPAR library SPARLA from initial SPAR analysis (see INITC)

Ex: CALL(ISSYS (XQ $=$ INITR, $A=V S N)$

Description:

- ISSYS(XQ=SPARR) - Reads restart tape to create SPAR library SPARLA. Secondary procedures perform fuel distribution and rigid loads computation.

If SPAR piots are desired, after call to INITR, execute one of the ISSYS Plotting Procedures with $A=$ SPLT, or SPLT may be saved for use with ISSYS plotting procedure TVPLOT. See the database being used for a menu of ${ }^{2}$ DEFINE directives for desired plots. SPAR piot module specifications may also be input via a file called TBASE.

- If SPAR plots have been requested via the MODIFY OPL, or SPAR plot directives are supplied on a users LBASE (see section titled ISSY; NOTES AND REGULATIONS), a plot vector file SPLT is created.

TASK PROCEDURE CESCRIPTIONS

3.3.11 LLOOP - TASK PROCEDURE

Function: Compute new maneuver loads.
Procedures Called: CHGTRIM
Called By: SPARI, SPARR, LOOP
Files Required: LBASE, SPARLG*, SPARLH, ALOAD, OZD, MAS*, SPARLF*, CGDIN
Files Created: OZD, SPDIN, STDIN*, LDF ${ }^{2} 0$
?arameters: None
Ex: CALL(ISSYS (XQ=LLOOP)

Description:

- LBEDT(CHGTRIM) - Extracts data blocks \$\$DESGN; \$\$CGRID from LBASE.
- TRIM - Compute new maneuver loads based on deflections from SPARLH file.
- A plot vector file LDPLOT is generated if file SAVPLT exists after execution of program TRIII.

NOTE: Files marked by a "*" are not always required.
MAS is used only when delta-alpha gust analysis is performed.

SPARLG are used only in procedures INIT, INITC, INITR.
SPARLF
STDIN is created only in INIT, INITC, INITR.
OZD is updated with each call to LLOOP.

3.3.12 LOOP - TASK PROCEDURE

Function: Perform maneuver loads update and compute static deflections due to these loads.

Procedures Called: LLOOP
Called By: User
Files Required: SPARLA (see LLOOP), LBASE
Files Created: SPARLH
Parameters: None
Ex: CALL(ISSYS $(X Q=L O O P)$
Description:

- $\operatorname{ISSYS}(X Q=L L O O P)$ - Perform maneuver load update.
- SPAR - Compute static deflections due to these loads. Deflections written on file SPARLH.

TASK PROCEDURE DESCRIPTIONS

3.3.13 MDBASE - TASK PROCEDURE

Function: Generates a Local Database from a specified MODIFY data library.
Procedures Called: Mode
Called By: User
Files Required: "I" and "A" (see below)
Files Created: LBASE
Parameters: $1=$ file containing MODIFY instructions
L = file for printed output
$A=$ name of MODIFY 01d Program Library (OPL)
$B=$ user number for location of "A"
Ex: CALL,ISSYS (XQ=MDR^SE, I=INPUT,L=OUTPUT, $A=O P L, B=985950 C)$
Description:

- ISSYS(XQ=MODE) - Task Procedure to perform PDDIFY execution.
- Adds Random Access Directory to LBASE, Catalogs LBASE onto "L" file.

TASK PROCEDURE DESCRIPTIONS

3.3.14 MMINRT - TASK PROCEDURE
Function: To compute fuel mass distribution.
Procedures Called: CHGIMI
Called By: SPARI, SPARR
Files Required: SPARLF
Files Created: SYSFUEL
MAS
CGDIN
FUELI:
Parameters: $L=$ file for printed output
EX: CALL (ISSYS (XQ=MMINRT,L=ISERR)
Description:

- LBEDT(CHGMMI) - Extracts data blocks \$\$CGRID; \$\$INLST; \$\$DESGN;\$\$TANK from LBASE.
- CGMASS - Distributes fuel for each load case.
NOTE: Edits data block \$\$DESGN on LBASE.

3.3.15 RESE23 - TASK PROCEDURE

Function: Resizes E23 rod elements by fully stressed design.
Procedures Called: None
Called By: User
Files Required: SPARLA data sets BC BTAB, STRS E23, HATC BTAB; DEF E23, E23 EFILE; optional (MINI GAGE)

Files Created: SPARLQ which contains the new BC BTAB data set produced by RSRD.
Parameters: $L L=$ file for printed output.
$R R=$ field length requirement
EX: CALL (ISSYS (XQ=RESE23,LL=OUTPUT,RR=RFL)
Description:

- Executes SPAR to calculate and optionally print E23 stresses using the GSPAR processor RSRD.
- LBEDT (XX=PRERR) - Extracts data block \$\$PRERR from LBASE. SPAR - Calculate and optionally print E23 rod stresses.
- LBEDT (XX=RRDEF) - Extracts data block \$\$RRDEF from LBASE. GSPAR - E23 rods are resized using processor RSRD. A new SPAR type library, SPARLQ, is produced which contains only the $B C B T A B$ data set. This may be saved for a restart run and is automatically merged with SPARLA by procedure INIT.

3.3.16 RSZG - TASK PROCEDURE

Function: Prepares stress files and resizes shear webs or shear webs and cover narels.

Procedures Called: Hone
Called By: TRSC, TRSG, TRSM
Files Required: LBASE; SPARLH (containing stress data); TAPE80 (TRSC and TRSH; TAPE60 (TRSG)

Files Created: RMSTR; GAGE34; GAUGE44
Parameters: $L=$ file for printed output
$A=$ TAPE80 (*OPCOM input file from TRSC and TRSM) TAPE60 (*OPCOM input file from TRSG)

EX: \quad CALL ($1 S S Y S(X Q=R S Z G, A=T A P E 80, L=I S E R R)$
Description:

- LBEDT(OPIN) - Extracts data blocks \$\$OPIN and \$\$GSTiL from LBASE.
- GUSTB - Combines gust stresses with steady-state stresses for use in resizing structure.
= BRESIZE - Resizes shear webs (and cover panels if called from TRSG) using weight-strength method.

TASK PROCEDURE DESCRIPTIONS

3.3.17 SETPR - TASK PROCEDURE

Function: Sets up Prugrams and files for a static deflection analysis when rigid load data is avallable.

Procedures Called: LDSTZ
Called By: User
Files Required: $\angle B A S E, C L O A D, D L O A D, ~ O C S, ~ A E R O$ (tries to get them from user's account if not local).

Files Created: DPROPT, DPROPS, DHASST, DMASSS
Parameters: Hone EX: CALL (ISSYS (XQ=SETPR)

Description:

- Acquires other required Programs (SPAR, DCU, BGSPAR)
- LBEDT(CHGSETP) - Extracts Design Data Files from LBASE
- ISSYS(XQ=LDSTZ) - Set up Executable Program Files from ISSYS.

TASK PROCEDURE DESCRIPTIONS

3.3.18 SETSK - TASK PROCEDURE

Function: Controls the mode shape processing.
Procedures Called: LDO, LDR
Called By: FLTSK
Files Required: LBASE, MSPOUT (gets from user's account it if not local)
Files Created: MPIOUT, IIP20UT, MDPLOT, MDTEK
Parameters: None
EX: CALL (ISSYS(XO=SETSK)

Description:

- ISSYS(XQ=LDO) - Creates PPROC executable file if it is not already assigned.

ISSYS(XQ=LDR) - Creates CMACH executable file if it is not already assigned.

- ISSYS $X O=L D R$) - Creates $A D D S K$ executable file if it is not assigned.
- Splits file RSPOUT into files MSHING and MSTAIL.
- LBEDT(SKYMACH) - Extracts CMACH data from LBASE. CHACH - Change liach number and prepare input files.
- IF (FILE(IIPI,AS)) IAPROC(MPI, . . .) - Process wing mode shapes.
- If (FILE(MP2,AS)) IIPROr.(HP2, . . .) - Process tail mode shapes.
- Modal plots are created on file MDPLOT and MDTEK.

TASK PROCEDURE DESCRIPTIONS

3.3.19 SETUP - TASK PROCEDURE

Function: Generates steady aerodynamic load random access file (ALOAD) and assembles all relocatable binary program files needed for a static analysis.

Procedures Called: hUR, CHGSETP, LDSTZ, CHGPGI, PG2IN
Called By: User
Files Required: LBASE (tries to get it from user's account if not local)
Files Created: ALOAD
AERPLT*
WASP*
Parameters: $A=$ ONE yields output from program ONE
$B=$ MPR yields output from program MDPROC
$C=$ TWO yields output from program TWO
$D=$ AERPLT yields plot vector file of camber and delta c_{p} 's due to camber and angle of attack.
$E=$ WASP yields aerodynamic input data for the ROT steady aerodynamics program, which generates Program WASP input data.

Ex: CALi(ISSYS(XQ=SETUP, $\left.A=O N A^{*}, B=F Y P R^{*}, C=T W O *, D=A E R P L T *, E=W A S P *\right)$
NOTE: Output from programs CNE and TWO are put on file ISERR when B parameters are not specified.

* Optional

Description:

- LBEDT(CHGSETP) - Extracts data biocks SSDSWDM; SSDCVDPA; \$SDCVPR; \$\$DSWPR from LBASE.
- ISSYS(XQ=LDSTZ) - Set up absolute binary program files from ISSYS.
- LBEDT(CHGPGI) - Extracts \$\$GEOM; \$\$CGRID; \$\$AEROS from LBASE. PROG1 - Generate Wocdward-Carmichael input data. MPROC - Processes the lifting surface mode shapes.
(continued)

TASK PROCEDURE DESCRIPTIONS

3.3.19 SETUP - TASK PROCEDURE (continued)

"A plot vecto: file AERPLT is generated (option).

- LBEDT(PG2IN) - Extracts data blocks \$\$PG2IN; \$\$DESGN from LBASE. PROG2 - Execute Woodward-Carmichael Program.
- More plotting data may be generated on file AERPLT (option).
- MPROC - Mcesses the lifting surface mode shapes.
- Plore plotting data may be generated on file AERPLT (option).
- MATRIX - Generates ALOAD file.

TASK PROCEDURE DESCRIPTIONS

3.3.20 SPARI - TASK PROCEDURE
Function: Perform initia! SPAR execution, compute rigid loads and rigid displacements.
Procedurer Called: CHG59, MMINRT, LLOOP, SPARPLT
Called By: INITC
Files Required: LBASE (see :1PIIIRT, LLOOP)
Files Created: SPARLA, SPARLF (see MMINRT, LLOOP), SPARLG, SPARLH, (see SPARPLT)
Parameters: $B=$ Switch to mount restart tape, i.e. $B=1$ (mount tape 1).
$C=$ Volume Serial ilumber (VSN) of restart tape.
EX: CALL(ISSYS(XQ=SPARI, B=11.C=NN1150)
Description:

- LABEL,SPARLT - Mount restart tape.
- LBEDT(CHG59,AA=NU:I) - Set up data for initial SPAR execution. If$A A=$ a number, include SPAR data to create restart tape. Extractsdata blocks \$\$CGPID; \$\$RODPR.
c SPAR - Perform initial SPAR execution.
- ISSYS(XQ=MMINRT) - Perform fuel distribution.
- ISSYS(XQ=LLOOP) - Perform rigid loads calculations.
- SPAR - Compute rigid static deflections.
- ISSㅇS(XQ=SPARPLT) - Generates plot vector file SPLT if plotdirectives are available for SPAR.

TASK PROCEDURE DESCRIPTIONS

3.3.21 SPARPLT - TASK PROCEDURE
Function: Execuies SPAR plotting processors
Procedures Called: SPLOT
Called By: DY:AM, SPARR, SPARI
Files Required: SPARLA
Files Created: SPLT (Plot vector file)
Parameters: L = ISSYS error file for abnormal termination
Ex: CALL(ISSYS (XQ $=$ SPARPLT,L=ISERR)
Description:

- LBEDT(SPLOT,LL=ISERR) - Extracts data block \$\$SPLT from LEASE. SPAR - Generates plot vector file.
NOTE: The plot vector file SPLT may be saved by the user for later use with ISSYS Task Procedure TVPLOT.
Ex: CALL(ISSYS(XQ=TVPLOT,A=SPLT,L=OUTPUT)
or one of the ISSYS off-line paper flot procedures, i.e., CALII; VARIAN.
3.3.22 SPARR - TASK PROCEDURE

Function: Read restart tape from initial SPAR execution, compute rigid loads and rigid displacements.

Procedures Called: MMINRT, LLNOP
Called By: INITR
Files Required: LBASE (see :MINRT, LLOOP)
Files Created: SPARLA, SPARLF (see IMINRT, LLOOP), SPARLG, SPARLH, SPARLT (see SPARPLT)

Parameters: $B=$ Volume Serial Number (VSN) ist mestart tape.
Ex: CALLL (ISSYS (XQ=SPARR,B=NN1150)
Description:

- MODIFY - Setup input data for SPAR to read restart tape.
- SPAR - Read restart tape (SPARLT).
- ISSYS (XQ=MIINRT) - Perform fuel distribution.
- $\operatorname{ISSYS}(X Q=L L D O P)$ - Compute rigid loads.
- SPAR - Compute rigid static deflections.
- ISSYS(XQ=SPARPLT) - fenerates plot vector file SPLT if plot directives are available for SPAR.

3.3.23 TOTL - TASK PROCEDURE

Function: Combines functions of INIT and FINL. Rigid loads only are computed. Procedures Called: SPARI, GSPIN

Called By: User
Files Required: LBASE, (see SPARI)
Files Created: SPAPL!!
Parameters: None
Ex: CALL(ISSYS (XQ $=$ TOTI.)
Description:

- ISSYS(XQ=SPARI) - Perform initial SPAR execution for a static analysis and resizing. Secc:ndary procedures perform fuel distribution and rigid loads computation.
- SPAR - Performs stress analysis
- LBEDT(GSPIN) - Setup input data for program GSPAR from data block $\$ \$$ STMML ON LBASE.
- GSPAR - Peformats stresses and adds other necessary element information.
3.3.24 TOTLC - TASK PROCEDURE

Function: Conbines functions of INITC and FINL. Rigid loads only are computed.
Procedures Called: SPP.RI, GSPIN
Called By: User
Files Required: LBASE, (see SPARI)
Files Created: SPARLN
Parameters: $A=$ Volume Serial Number (VSN) of restart tape.
Ex: CALL (ISSYS (XQ=TOTLC, $A=$ RNN1150)
Description:

- ISSYS(XO=SPARI) - Perform initial SPAR execution for a static analysis and resizinj. Secondary procedures perform fuel distribution and rigid loads computation. Creates restart tape.
- SPAR - Performs stress analysis.
- LBEDT(GSPIN) - Setup input data for program GSPAP. from data block \$\$STNML on LBASE.
- GSPAR - Reformats stresses adds other necessary element information.

3.3.25 TOTLR - TASK PROCEDUPE

Function: Combines functions of INITR and FINL. Rigid loads only are computed.
Procedures Called: SPARR, fiSPIN
Called By: User
Files Required: LBASE, (see SPARR)
Files Created: SPARLN
Parameters: $A=$ Volume Serial Number (VSN) of restart tape.

$$
\text { Ex: } \quad \text { CALL (ISSYS (XQ }=\text { TOTLR, } A=N H 11150)
$$

Description:

- ISSYS(XQ=SPARR) - Reads restart tape containing SPARLA file from initial SPAR execution.
- SPAR - Performs stress analysis.
- LBEDT(GSPIN) - Setup input data for program GSPAR from data block \$\$STN:IL on LBASE.

TASK PROCEDURE DESCRIPTIONS

3.3.26 TRSC - TASK PROCEDURE

Function: Controls resizing of composite wing using nonlinear programming techniques for the cover panels.

Procedures Called: RSZG
Called By: User
Files Required: LBASE, SPARLN (containing stress data).
riles Created: DPROPT, DMASST, DPROPS, DHASSS, TAPE40, RZOUT
Parameters: None
Ex: CALL(ISSYS (XQ=TRSC)
Description:

- Sets up design properties and mass files from files created by RSZG and OPCOII (edits the cover properties file).
- ISSVS(XQ=RSZG) - Task Procedure to resize shear webs only using the weight-strength method.
- OPCOM - Resizes cover panels using nonlinear programming techniques.
- File nZOUT contains printable resize information from BRESIZE and OPCOM.

TASK PROCEDURE DESCRIPTIONS

3.3.27 TRSS - TASK PROCEUL'RE
Function: Controls resizing of metal wing using weight-strength method.
Procedures Called: RSZG
Called By: User
Files Required: LBASE, SPARLN (containing stress data)
Files Created: DPP.OPT, DMASST, DPROPS, DMASSS, RZOUT
Parameters: None
Ex: CALL(ISSYS(XQ=TRSG)
Description:- Sets up design properties and mass files from files created by P.SZG.- ISSYS (XQ=RSZG) - Task Procedure to resize shear webs and cover panelsusing weight-strength method.

- File RZOUT contairs printable resize information from BRESIZE.

TASK PROCEDURE DESCRIPTIONS

3.3.28 TRSM - TASK PROCEDURE

Function: Controls resizing of metal wing using nonl inear programing techniques for the cover panels.

Frocedures Called: RSZG
Lalled By: User
Files Required: LBASE, SPARLN (containing stress data).
Files Created: DPROPT, DHASST, DPROPS, DMASSS, TAPE40, RZOUT
Parameters: None
EX: CALL (ISSYS (XO=TRSM)
Description:

- Sets up design properties and mass files from files created by RSZG and OPCOM.
- ISSYS (XQ $=$ QSZC $)$ - Task Procedure to resize shear webs only using the weight-sirength method.
- OPCO14 - Resizes cover panels using nonlinear programming techniques.
- File RZOUT contain printable resize information from BRESIZE and OPCCA.

4.2 FILE DESCRIPTIONS

\underline{L} - Contains output from various utilities executed for each ISSYS command.
LBASE - Local data base containing all input data required for a given run. Can be generated from a permanent file in MODIFY format using MDBASE, input on cards, or by any other method deemed expedient.

ISERR - Optional output file to be used in debugging. Returned at the end of each user-called Task Procedure that is successfully executed. To print, REWIND and COPYSBF it after the EXIT card.

NOPRINT - Auxiliary ISSYS output file. Returned at the end of each ISSYS Command.

ISLST - Contains a listing of each of the ISSYS procedures used. To print this file: REWIND,ISLST. COPYSBF, ISLST,OUTPUT.

LOCAL FILES

4.2.1 DESIGN DATA FILES

The following four files contain design data for the elements to be resized. If they are not already present, they are extracted from IBASE by CHGSETP called from SETUP, SETPR, or DYNAM. They are generated by calls to TRSC, TRSM, and TRSG.

DPROPT - Cover element properties (\$SDCYPR)
DMASST - Cover distributed masses (\$\$DCVOM)
DPROPS - Shear web element properties (\$\$DSWPR)
DMASSS - Shear web distributed masses (\$\$DSWDM)
TAPE40 - Contains design data for composite transfer elements. Used in plotting and in transfer of data to and from the Simplified Model flutter optimization system reference. Generated by a call to TRSC.

LOCAL FILES

4.2.2 LOADS DATA FILES

AERO - Aerodynamic Influence Coefficient (AIC) matrix for maneuver condition. Generated in SETUP; used in LLOOP.

OCS - Old camber slopes used with relaxation factor in recomputing maneuver loads. Generated in SETUP or LLOOP; used in LLOOP.

CLOAD - Cruise load vector. Generated in SETUP; used in SPARI or SPARR.

DLOAD - Maneuver load vector. Generated in SETUP or LLOOP; used in SPARI, SPARR, LOOP, and FINL.

JGRID - Jig shape coordinates. Generated in SPARI or SPARR; used in LLOOP.

LOCAL FILES

4.2.3 DYNAMICS AND FLUTTER DATA FILES

FLTIN - Natural frequencies in NAMELIST format. Generated in DYNAM; used in FLTWT. Plus mode shapes processed into deflections for each lifting surface. Generated in DYNAM; used in SETSK.

GSTIN - Frequencies, full mode shapes, nodal coordinates, and gust stress coefficients (if they exist). Generated in DYNAM; used in DYNAR.

SPLI - Wing spline coefficients which depend only on geometry. Generated and used in SETSK and MPRSK. May be saved in one run and used in the next to save time.

5. LOCAL DATA BASE

5.1 INTRODUCTION

Primary external input to ISSis is the Local Data Base (LBASE). LBASE is composed of data blocks of text records (refer to Figure A-3 Appendix A). Each record contains information to build a data model for a computer program. The records are accessed by ISSYS, using a key-name of the form (\$\$XXXXXX) in Columns 1 through 7, where ($X X X X X$) is an identifier for a data block. The remaining 73 Columns may contain comments. Data input files to target programs are assembled by ISSYS Data Processors. Records are assembled by key-name, then packed and placed on the input file of the target computer program. Individual data blocks, described in this section, are utilized by the ISSYS team for the investigation of analysis methodologies.

LOCAL DATA BASE

5.2 ALPHABETICAL INDEX OF DATA BLOCKS

Section Number	Data Block
5.3.1	\$\$AEROS
5.3.2	\$\$CCVPR
5.3.3	\$\$CGRID
5.3.4	\$\$CLMSS
5.3.5	\$\$CONDM
5.3.6	\$SDCVDM
5.3.7	\$\$DCVPR
5.3.8	\$\$DESGN
5.3.9	\$SDGMFL
5.3.10	\$\$DLNFL
5.3.11	\$\$0LTFL
5.3.12	\$\$DSWDM
5.3.13	\$\$DSWPR
5.3.14	\$\$DYNAL
5.3.15	\$\$DYNAR
5.3.16	\$SELDSW
5.3.17	\$\$ENGDM
5.3.18	\$\$FDIN
5.3.19	\$\$FUELM
5.3.20	\$SGEOM
5.3.21	\$SGSPIN
5.3.22	\$SGSTML
5.3.23	\$SINLST
5.3.24	\$\$MACH
5.3.25	\$SMDIN
5.3.26	\$\$MINGB
5.3.27	\$SMPIIN
5.3.28	SSMP2IN
5.3.29	\$SMSIN
5.3.30	\$ $\$ 0$ PIN (metal)
5.3.31	\$\$OPIN (composite)
5.3.32	\$\$PRERR
5.3.33	\$\$RODPR
5.3.34	\$\$RRDEF
5.3.35	\$\$SKIIN
5.3.36	\$\$SPLT
5.3.37	\$SSTANL
5.3.38	\$\$STCON
5.3.39	\$\$STDEF
5.3.40	\$\$SWCON
5.3 .41	\$\$TANK
5.3.42	\$\$UPROD
5.3.43	\$ X X TAB

5.3 DATA BLOCK DESCRIPTIONS

The Data Blocks which build the Local Data Base are individually described in this section. All data blocks are prefixed by a $\$ \$ X X X X X X$ key brd, where XXXXX is a user specified name, followed by data to form a Data Block. The keyword is required by ISSYS to identify Data Block locations when building the Local Database (LBASE). The description includes the computer program the Data Block is prepared for, type of analysis (static or dynamic), and the Data Block contents along with a description of the data, i.e., FORMAT, type, etc.

5.3.1 \$\$AEROS - DATA BLOCK

Input for Program(s): *ONE
Type of Analysis: STATIC
Contents: The number of nodes, along with a list of node numbers where deflections are applied, are defined. The panel numbers are also disfined, along with the node numbers defining the panel corner points.
Data Description:

| Card No. | Format | | Type |
| :---: | :--- | :--- | :--- | | Description |
| :--- |
| 1 |

NOTE: Repeat Card 3 for each panel
4
1-6
ALPHA
"END RUN"

DATA BLOCK DESCRIPTIONS

5.3.2 \$\$CCVPR - DATA BLOCK
 Input for Program(s): SPAR

Type of Analysis: Static and Dynamic
Contents: Constant Shell Properties - (data only)
Data Description: Input to SPAR Processor TAB, Subprocessor SHELL SECTION
PROPERTIES (SA) for all E31, E32, E33, E4i, E42, E43
elements that are not to be resized.
Does not contain Subprocessor call statement (the SA card).

DATA BLOCK DESCRIPTIONS

5.3.2 \$SCCVPR - DATA BLOCK

Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Constant Shell Properties - (data only)
Data Description: Input to SPAR Processor TAB, Subprocessor SHELL SECTION PROPERTIES (SA) for all E31, E32, E33, E41, E42, E43 elements that are not to be resized. Does not contain Subprocessor call statement (the SA card).

DATA BLOCK DESCRIPTIONS

5.3.3 \$SCGRID - DATA BLOCK

Input for Program(s): SPAR, ONE, THREE, SEVEN, CGMASS
Type of Analysis: Static and Dynamic
Contents: Cruise Grid - Nodal Data for the Cruise Shape (data only)
Data Description: One card per node point
Format: Free Field
Name Description
K Entry number
$X \quad X$-coordinate
$Y \quad Y$-coordinate

2
Z-coordinate
Cards do not have to be sequential. For nodes used in the aerodynamic simulation, the lower surface node must follow the corresponding upper surface node specified in $\$ \$ A E R O S$.

DATA BLOCK DESCRIPTIONS

5.3.4 \$ SCLMSS - DATA BLOCK

Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Constant Lumped Masses (or Weights)
Data Description: Contains the following cards
RIGID MASSES or (RMASS)

- (Input to SPAR Processor TAB, Subprocessor
- RMASS for all constant lumped masses -
- does not include fuel mass)

DATA BLOCK DESCRIPTIONS

5.3.5 \$\$CONDM - DATA BLOCK
Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Constant Distributed Weights - (data only)
Data Description: Nonstructural Weight/Length (2 node elements) orWeight/Area (3 or 4 node elements) for elements thatare not resized.Input to Processor TAB, Subprocessor NSW, but does notcontain the NSW card.

DATA BLOCK DESCRIPTIONS

5.3.6 \$\$DCVDM - DATA BLOCK

Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Design Cover Distributed Weights - (data only)
Data Description: Nonstructural Weight/Area for cover elements to be resized.

Free Field - Typical Format (I10, F10.5)
Col. 1-10 Entry Number - Referenced by Processor ELD
Col. 11-20 Weight/Area - Units must be consistent with Material Densities Input to SPAR Processor TAB, Subprocessor MATC.

DATA BLOCK DESCRIPTIONS

5.3.7 \$SOCVPR - DATA BLOCK
Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Design Cover Properties - (data only)
Data Description: Input to SPAR Processor TAB, Subprocessor SHELL SECTIONPROPERTIES (SA) for cover elements to be resized.
Does not contain Subprocessor call statement (the SA card).

DATA BLOCK DESCRIPTIONS

5.3.8 \$SDESGN - DATA BLOCK

Input for Program(s): *TWO, *CGMASS, *TRIM
Type of Analysis: Static or Dynamic
Contents: Namelist SDCON

Data Description:

Variable	Type	Description
MACH (14)	REAL	Array of Mach Nos., one for each load case.
ALT(14)	REAL	Array of altitudes, one for each load case.
JNT (2)	INT	Array; $\mathrm{JNT}(1)$ is first joint to be printed, JNT(2) is last joint te be printed for displacements.
JRT(2)	INT	Array; JRT(1) is first joint to have static reactions printed. JRT(2) is last $:=$ nt to have reactions printed.
$\operatorname{FLAP}(200,5)$	REAL	Array of Flap Deflections. Flap (panel no., flap case number) $=$ DEFL.(deg.) + down - up
NFCASE (14)	INT	Array; NFCASE (Load Case NO.) = Flap Case No.
VGUST(14)	REAL	Array; Vgust (Load Case No.) = Vertical Gust ($\mathrm{ft} / \mathrm{sec}$).
MFLAG(14)	REAL	Array of Mach Nos. to be re-calculated (if a Mach no. already exists, it will not be re-calculated).
LPLOT(14)	INT	Array; LPLOT (Load Case No.) = 1 for spanwise loading plots from program trim (default is no plotting).
RELAX	REAL	Fraction of new computed loads to be used (default =1).

Variable	Type	Description
LFLAG	INT	Flag for turning off symmetric pull-up leading option \{LFLAG $=0$, off default $=1$, on).
NDOF	INT	No. of degrees of freedom for SPAR (default =6).
NDTAIL	INT	Node No. where tail force is applied for trim.
SPAN	REAL	Semi-span of wing. if not specified, semi-span $=$ max y-value from grid deck.
SREF	REAL	Reference wing area for lift coefficient.
CBAR	REAL	Reference wing mean aerodynamic chord (defaults are $1 . E+6$ and $1 . E+3$, respectively).

DATA BLOCK DESCRIPTIONS

5.3.9 \$\$DGMFL - DATA BLOCK

Input for Program(s): DGM

Type of Analysis: Dynamic
Contents: Number of mode shapes desired and damping coefficients, where the number of mode shapes must be less than or equal to the "A" parameter set by the user in Task Procedure DYNAM.

Data Description:

	Description	Format	Type
DATA1	No. of mode shapes	Free Field	INT
	Damping coefficient for each mode (one value will be applied to all)	Free Field	REAL

DATA BLOCK DESCRIPTIONS

5.3.10 \$\$DLNFL - DATA BLOCK

Input for Program(s): DLIN
Type of Analysis: Dynamic
Contents: ISAC TAPE3 data set, ref. NASA TM-80040

Data Description:

Card No.	Description	Format	Starting Column
1	Header	8 AlO	1
2	HVIB	Free Field	1
3	\$OLINPT	NAMELIST	
4	\$MODEPLT	NAMEL!ST (Repeat for each set of mode shapes)	
5	DCM, 1/0 parameters	Free Field	1
6	$\begin{aligned} & I=1, \text { HSECTNS } \\ & \text { ISS(1,I), ISS }(2, I) \\ & \text { IPLATE(I),RO(I), } \\ & X O(I), Y O(I) \end{aligned}$	Free Field	1
7	$\begin{aligned} & I=1, N S E C T N A \\ & \operatorname{IAS}(1, I), I A S(2, I), \\ & \operatorname{NSS}(I), I D(I) \end{aligned}$	Frpo Field	1
8	$\begin{aligned} & I=1, \operatorname{NNODES} \\ & \operatorname{TAB}(I, 1), \operatorname{TAB}(I, 2), \\ & \operatorname{NODE}(I), \operatorname{IDF}(1, I), \\ & \operatorname{IDF}(2, I) \end{aligned}$	Free Field	1

DATA BLOCK DESCRIPT!ONS

5.3.11 \$ \$ 1 DLTFL - DATA BLOCK

Input for Program(s): DLIN; DLAT
Type of Analysis: Dynamic
Contents: ISAC TAPE5 data set, ref. NASA TM-80040.
Data Description:

5.3.12 \$\$DSHDM - DATA BLOCK
Input for Program(s): SPAR
Type of Pnalysis: Static and Dynamic
Contents: Design Shear Web Distributed Weights - (data only)
Data Description: Nonstructural Weight/Area for shear web elementsto be resized.
Free Field - Typical Format (I10, F10.5)
Col. 1-10 Entry Number
Col. 11-21 Weight/Area
Input to SPAR Processor TAB, Subprocessor NSW but does not contain the NSWcard.

DATA BLOCK DESCRIPTIONS

5.3.13 \$SDSWPR - DATA BLOCK
Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Design Shear Web Properties - (data only)
Data Description: Input to SPAR Processor TAB, Subprocessor PANEL SECTIONPROPERTIES (SB) for shear web elements to be resized.Does not contain Subprocessor call statement (the SB card).

DATA BLOCK DESCRIPTIONS

5.3.14 \$SOYNAL - DATA BLOCK

Input for Program(s): SPAR

Type of Analysis: Dynamic

Contents: Unique Input for Dynamic Analysis
Data Description: Contains the following cards
[XQT AUS
DEFINE DM $=1$ RMAS BTAB
DEFINE CM $=1$ DEM DIAG
$P M=\operatorname{SUM}(F U E L, D M)$
$M+R M=\operatorname{SUM}(\mathrm{c} C M, d P M)$
$K+L M=\operatorname{SUM}(K$, -e $M+R M)$
[XQT INV
RESET $K=K+L M$
[XQT EIG
RESET $K=K+L M, M=M+R M$, INIT $=f$, NDYN $=9$, NREQ $=h$, SHIFT $=e$
[XQT DCU
XCOPY 1,10 VIBR EVAL
XCOPY 1,11 VIBR MODE
where:

Symbol	Description
c	factor to convert the weight to distributed mass.
d	factor to convert the weight to rigid lumped mass.
e	eigenvalue shift if rigid body modes are present ($e=39.5$ corresponds to 1 Hertz).
f	number of initial modes (default $=15$) .
g	max number of iterations (default $=7$) .
n	number of converged modes required (default $=12$) .

NOTE: If the structure is statically stable, the 5th and 7th cards and the $K=K+L M$ and SHIFT=e RESET cards in EIG are omitted.

5.3.15 S\$DYNAR - DATA BLOCK

Input for Program(s): DYNAR
Type of Analysis: Dynamic
Contents: ISAC TAPE2 data set.
Data Description:

	Description	Format
Data 1	NOCASES	Free Field
Data 2	HEADER	8A10
Data 3	\$ INPUT . . . \$	NAMELIST
Data 4 (if IDCM=1)	DCM parameters	Free field
Data 5 (if ISENSE=1)	\$ SENLOC . - \$	NAMELIST
Data 6 (if ICSPREAD $\neq 0$)	(CS (J, I), J=1,NM-Nc), $\mathrm{I}=\mathrm{NS}$)	Free Field
Data 7 (if ICONSYS=1) and if KASE*>1, ICHANGI=1)	\$ CONSYM . . . \$	NAMELIST
Data 8 (if ICONSYS=?	$\mathrm{I}=1, \mathrm{NC}$	
and if KCASE> 1 ,	$J=1$, NS	
ICHANG2=1)	\$ FILTIN . . . \$	NAMELIST
Data 9 (if ICONSYS=1 and if KASE>1,	\$ ACTINP . . . \$	NAMELIST
Data 10 (if ISELECT $=1$)	\$ SELECT . . . \$	NAMELIST
Data 11 (if any PLOT options are on)	\$ PLTSEL . . . \$	NAMELIST

DATA BLOCK DESCRIPTIONS

5.3.16 \$\$ELDSW - DATA BLOCK
Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Element definition data (continuation of \$\$STDEF Data Block).
Data Description:
E44 \$ Main wing shear panels to be resized.
NS「CT=1; NMAT=45; NNSW=1; 275300302277
NSECT=2; NMAT=45; NNSW=2; 300 322324302

GROUP2 \$ Contains e?ements not to be resized.
\$ SHEAR PANELS AT ROOT BC AND WHEEL WELL COUTOUT, NOT RESIZED.-
\$ LE AND TE SHEAR PANELS
\$ Fuselage shear panels-
\$ WIng to fuselage tie shear panels
\$ HT TO FUSELAGE TIE SHEAR PANELS.

DATA BLOCK DESCRIPTIONS

5.3.17 \$\$ENGDM - DATA BLOCK
Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Engine Distributed Masses - (Data Only)
Data Description: Nonstructural Weight/Length for engine elements.
Input to SPAR Processor TAB, Subprocessor NSW but doesnot contain NSW card.

DATA BLOCK DESCRIPTIONS

5.3.18 \$SFDIN - DATA BLOCK		
Input for Program(s): FLTDET, CMACH		
Type of Analysis: Flutter		
Contents: Flutter analysis and plot parameters		
Data Description: Namelist \$NAMEI		
Name	Default	Description
IGAIN	40	Number of in reduced frequ
NMP	0	Number oi mo set to "B"
REFMASS	12.	Reference mas
REFFREQ	10.	Refererice fr
GMASS(1)	12.	Generalized
G(I)	02.	Damping coef
ITER	2	Number of it
NA	3	Number of al
MPS	T	If "T". take point
$\operatorname{CONV}(1)$	1.	Gen. aero. for
$\operatorname{CONV}(2)$	1.	Altitude con
CONV (3)	1.	Density conver
CONV (4)	1.	Speed of sound
Plot scale Parameters for V-g, V-w plots		
GMIN	-. 12	Minimum damp

DATA BLOCK DESCRIPTIONS

Name	Default	Description
GMAX	. 12	Maximum damping
YSPAN	8.	Length of damping axis in inches
GTK	. 1	Damping tick mark increment .
FMIN	0.	Minimum Flutter Parameter
FMAX	40.	Maximum Flutter Parameter
XSPAN	10.	Length of flutter parameter axis in inches
FTK	1.	Flutter parameter tick mark increment
FREQMIN	0.	Hinimum frequency (ω)
FREQMAX	40.	Maximum frequency
ALT(1)	-8200.	Altitude (meters)
ALT(2)	0.	Altitude (meters)
ALT(3)	14200.	Altitude (meters)

5.3.19 SSFUELM* - DATA BLOCK

Input for Program(s): SPAR

Type of Analysis: Dymamic (optional for static)
Contents: Fuel Masses (or Weights) - (data only)

$$
\begin{aligned}
& \text { Data Description: } \begin{array}{l}
\text { Input to SPAR Processor TAB, Subprocessor RMASS for fuel } \\
\text { masses - Units must be consistent with } \$ \$ \text { SLMSS. } \\
\\
\\
\text { Does not contain Subprocessor call statement (RMASS card). } \\
\\
\\
\\
\\
\text { Used to compute maneuver design gross weight and center } \\
\text { of gravity in CMMASS if present in a static run. }
\end{array} .
\end{aligned}
$$

* This data block is generated by CGMASS in Task Procedure MMINRT. Only the data block name is necessary on the local data base.

DATA BLOCK DESCRIPTIONS

5.3.20 \$\$GEOM - DATA BLOCK

Input for Program(s): ONE
Type of Analysis: STATIC
Contents: Description of aerodynamic paneling
Data Description:

Card No.	Field	Type	Description
1	1-5	INT	No. of major wing panels
	6-10	INT	No. of chordwise strips
	11-20	REAL	Fraction of chord for
			aerodynamic control point on each panel.
	21-50	BLANK FIELD	
	51-60	ALPHA	Type of panel distribution
		OPTIONS ARE:	EVEN -- Even Panel
			spacing chordwise and spanwise.
			FREE -- User Supplied
			spacing.

NOTE: If type of panel distribution=FREE use card la also.
la Free Field REAL

2

Free Field	REAL
Free Field	REAL
Free	INIT

Fraction of chord for panel spacing (no. of chordwise strips + 1)
X - leading edge root
X - leading edge root
Y - root
X - leading edge tip
X - trailing edge tip
Y - tip
2 - root
Z-tip
No. of spanwise strips in this major panel.

DATA BLOCK DESCRIPTIONS

5.3.20 \$\$GEOM - DATA BLOCK (continued)

NOTE: If type of panel distribution=FREE use card 2a also.
2a Free Field REAL $\quad \begin{aligned} & \text { Fraction of span for pane) } \\ & \text { spacing (no. of spanwise }\end{aligned}$ strips +1)

NOTE: If not the last major panel and type OF PANEL DISTRIBUTION=FREE, also use card 2 b .

Card No.
Field
Type
Description
2b Free Field INT

Free Field REAL
No. of chordwise strips for next major panel

Fraction of chord for panel spacing (no. of chordwise strips + 1)

NOTE: Repeat card(s) 2. (2a and 2b) for each major pane?.
3 Free Field INT
No. of modes to be plotted. ($\leq 2 \times$ No. of unique Mach Numbers).

5.3.21 S\$GSPIN - DATA BLOCK

Input for Program(s): GSPARS

Type of Analysis: Static Resize

Contents: Instructions fon SPAR and GSPAR Processors to form a set of data for each E31, E41, or E44 element to be resized. This data set contains geometry and stresses for each load case.

Data Description: This data block is generated by program *TRANP.

DATA BLOCK DESCRIPTIONS

5.3.22 \$\$GSTM - DATA BLOCK

Input for Program(s): GUST
Type of Analysis: Dynamic
Contents: Multiple loads parameter.
Data Description:

DATAI	$\frac{\text { Descrip:ion }}{\text { \$GSTMML }}$	$\underline{\text { Format }}$
NAMELIST		

DATA BLOCK DESCRIPTIONS

5.3.23 \$\$INLST - DATA BLOCK

Input for Program(s): CGMASS
Type of Analysis: Static or Dynamic
Contents: NAMELIST \$INPCG (input for *CGMASS)
Data Description:

5.3.23 \$\$INLST - DAIIA BLOCK (continued)

DATA BLOCK DESCRIPTIONS

5.3.24 \$\$MACH - DATA BLOCK

Input for Program(s): CMACH

Type of Analysis: Flutter
Contents: Mach number data
Data Description: One card, free field
MIN, MAX, DELT
Name Description

MIN Minimum Mach number
MAX Maximum Mach number
DELT Incremental Mach number
Successive flutter analyses are performed starting at MIN, incrementing by DELT, until MAX is reached.

DATA BLOCK DESCRIPTIONS

5.3.25 \$SMDIN - DATA BLOCK

Input for Program(s): MDPROC

Type of Analysis: Dynamic
Contents: Mode shape data reformatting instructions.
Data Description: Three cards, free field format
Card 1: N, M
Card 2: NDOF, ($\operatorname{IDOF}(\mathrm{I}), \mathrm{I}=1, \mathrm{NDOF})$
Card 3: MDOF, $(\operatorname{KDOF}(K)=1, M D O F)$

Name	Description
N	Largest node number in SPAR analysis
M	Number of mode shapes
NDOF	Number of degrees of freedom per noda present in SPAR generated file
100F(1)	Ith degree of freedom (see SPAR START Card in Processor TAB)
MDOF	Number of degrees of freedom to be output
KDOF (I)	Ith degree of freedom to be output

DATA BLOCK DESCRIPTIONS

5.3.26 \$\$M INGB - DATA BLOCK

Inplit for Program (s): SPAR

Type of Analysis: Static with rod resizing.

Contents: SPAR commands to define the minimum gage values for the rod elements.

Data Description:
[XQT AUS
TABLE ($\mathrm{NI}=6, \mathrm{NJ}=\mathrm{a}$)
MINI GAGE
$\operatorname{TRAN}(S O U R C E=B C)$
where: $a=$ Number of rod properties defined in TAB subprogram $B C$.

DATA BLOCK DESCRIPTIONS

5.3.27 \$\$MPIIN - DATA BLOCK

Input for Program(s): MPROC, CMACH
Type of Analysis: Flutter
Contents: Planform and mode processing data for the wing.
Data Description: Formatted cards as follows:

Contents	Format	Conditions
XLR, XTR, XLT, XTT	(4E20.12)	Required
YROOT, YTIP, NL, NT	(2E20.12,2I4)	Required
YL(I), XL(I)	(2E20.12)	NL Cards
YT(I), XT(I)	(2E20.12)	NT Cards
MS, NC, LP, LSYM	(414)	Required
NI, ISYM	(214)	Required
IPLOT	(14)	Required
CMIN,CINT, NCON,GRID,	(2F10.2, I10.	$\neq 0$
PAPER,HN,SPACE MODES	$\begin{aligned} & 4 \mathrm{~F} 10,2) \\ & (14) \end{aligned}$	Required
Name	Description	
XLR	X-coordinate	edge root
XTR	X-coordinate	ing edge root
XLT	x -coordinate	gedge tip
XTT	x-coordinate	ing edge tip
YROOT	Y-coordinate	
YTIP	Y-coordinate	
NL	Number of lea	breaks
NT	Number of tra	breaks
YL	Y-cooroinate	edge breaks
XL	X-coordinate	edge breaks
YT	Y-coordinate	ing edge breaks
XT	X-ccordinate	ing edge breaks

5.3.27 \$\$MPIIN - DATA BLOCK (continued)

Name
MS
NC
LP
LSYM
NI
ISYM

IPLOT

Plot Parameters

CMIN

CINT
NCON
GRID
PAPER
HN
SPACE
MODES

Description
Number of spanwise pressure functions Number of chordwise pressure functions Number of downwash collocation points If $=0$, MS*NC Gaussian points are used. If $=1$, force quadrature coefficients are computed for antisymmetric loading Number of input points
$=1$, antisymmetric spline
$=2$, symmetric spline
$=3$, nonsymmetric spline
= 1, modes will be plotted
$=0$, no mode will be plotted.

Minimum contour in normalized z units Contour interval in normalized z units Number of contours Grid size in plotter inches Semispan length in plotter inches Number height in plotter inches Frame Advance in plotter inches Number of modes, if set to "NMOD" will be replaced by "B" parameter from FLTWT call.

DATA BLOCK DESCRIPTIONS

```
5.3.28 $$MP2IN - DATA BLOCK
Input for Program(s): MPROC, CMACH
Type of Analysis: Flutter
Contents: Planform and mode processing data for the tail
Data Description: Same as $$MPIIN.
```

This block should be present in LBASE only if the tail aerodynamics are to be included in the flutter analysis.

5.3.29 \$SMSIN - DATA BLOCK

Input for Program(s): MODSEP

Type of Analysis: Flutter

Contents: Node selection data for spline interpolation
Data Description:

Card(s)	Contents	Format
	NDEFL,NMOD	Free Field
2	NW,ICODE	(I5,RI)
3	$J G P(I), I=1, N W$	Free Field (as many cards
4	MOJOID	as required)
		(8A10)

Cards 2-4 are repeated for each component (wing, horizontal tail, wing fin, etc.)

Name
NDEFL
NMOD
NW
ICODE
JGP(I)
MOJOID

Description
Number of nodes in SPAR output
Number of modes, if set to "NMOD", it will be set to the "A" parameter in the DYNAM call
Number of points to be output for that component Deflection component desired - x, y, or z
Ith joint number to be output
Component Identification (title)

DATA BLOCK DESCRIPTIONS

5.3.3C \$\$OPIN - DATA BLOCK (metal)

Input for Program(s): RESIZE, OPCOM (METAL)
Type of Analysis: Metal strength sizing
Contents: Program control parameters and mechanical properties
Data Description: Namelist \$CONIN

Name Description

ITYOCO
NCV
NCON
NCASE
NSTRES
SF

Type of construction ($=1$ for metal sandwich skin) No, of design variables $(=1+2$ for face sheet thickness
(t) and core depth (h))
No. of constraints
No. of load cases
No. of stresses input per load case ($=3$ for ox, oy, and oxy)
Safety factor applied to stresses

Data Description: Namelist \$OPIN
Namie
Description
XRHO
RHOS
RHOC
CR
XE
XMCI
SALLOW
SIGULT
SIGYLD
TAUYLD

Shear web element density
Skin face sheet density
Sandwich core density
Geometry constraini factor $(C R=h / t)$ ratio $(0+1)$
Young's modulus
Poisson's ratio
Fatigue limit stress allowable
Ultimate stress allowable
Yield stress allowable
Shear stress allowable

5.3.31 \$SOPIN - DATA BLOCK (composite)

Input for Program(s): OPCOM (COMPOSITE)
Type of Analysis: Composite strength sizing
Contents: Program control parameters and mechanical properties

DATA BLOCK DESCRIPTIONS

$c-2$

5.3.32 \$\$PRERR - DATA BLOCK

Input for Program(s): SPAR
Type of Analysis: Static
Contents: SPAR commands for calculation and optional printing of rod (E23) stresses.

Data Description:
[XQT GSF
RESET SET $=1$
E23
[XQT GSF
RESET SET $=2$
E23
OPTIONAL
[XQT PSF
RESET SET $=1$
E23
\cdot
$:$

リATA BLOCK DESCRIPTIONS

5.3.33 \$\$RODPR - DATA BLOCK
Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Reference frame and 2 node element property TAB subprocessorinput data as required for the following subprocessors.
ALTERNATE REFERENCE FRAMES (ALTREF)
JOINT REFERENCE FRAMES (JREF)
BEAM ORIENTATION (MREF)
BEAM RIGID LINKS (BRL)
E21 SECTION PROPERTIES (BA)
BEAM S6x6 (BB)
E23 SECTION PROPERTIES (BC)
E24 SECTION PROPERTIES (BD)

5.3.34 \$\$RRDEF - DATA BLOCK

Input for Program(s): GSPAR
Type of Analysis: Static with rod resizing
Contents: Commands for selection and resizing of rods; also SPAR Commands for writing BC BTAB to library SPARLQ.

Data Description:

```
    [XQT RSRD
    -
    -
    (See TASK PROCESSOR RSRD)
```

[XQT DCU
TOC 1
COPY 1,17 BC BTAB
TOC 17

DATA BLOCK DESCRIPTIONS

5.3.35 \$\$SKIIN - DATA BLOCK
Input for Program(s): SUBKRN, CMACH
Type of Analysis: Flutter
Contents: Reduced frequency data for Subsonic Kernel Function unsteadyaerodynamics analysis
Data Description: Cards 1 and 2: Header information
Namelist \$NAMI
Name Description
MACH Mach number
NK Number of reduced frequenciesKMAXKMED
KMIN
NMMaximum reduced frequencyMedian reduced frequencyMinimum reduced frequency
NMNumber of modes, if set to "NMOD" it will be setto the " B " parameter in the FLTWT call

DATA BLOCK DESCRIPTIONS

5.2.36 \$\$SPLT - DATA BLOCK

Input for Program(s): SPAR
Type of Analysis: Static or Dynamic
Contents: Plot specifications and control statements
Data Description: Input for SPAR processors PLTA and PLTB, to generate finite element model plots. Specifications and control statements are generated.

-

DATA BLOCK DESCRIPTIONS

5.3.37 \$ \$STANL - DATA BLOCK

Input for Program(s): SPAR
Type of Analysis: Static
Contents: Information Unique to the Initial Static Analysis
Data Description: Contains the following cards
RIGD = RIGID
$M+R M=S U M(a C M, b D M)$
[XQT DCU
XCOPY 1,6 M+RM
[XQT INY
a and b are factors to convert the distributed mass and the rigid lumped mass respectively to weights. If either set of mass data was input as weight, the corresponding factor may be omitted.

DATA BLOCK DESCRIPTIONS

5.3.38 \$\$STCON - DATA BLOCK
Input for Program(s): SPAR
Type of Analysis: Static
Contents: Constraint Data Unique to Static Analysis
Data Description: Input data for Processor TAB, SubprocessorCONSTRAINT DEFINITION for static constraintsrequired to stabilize free body analysis.
Does not contain Subprocessor call statement (CON).
5.3.39 \$ \$ STDEF - DATA BLOCK
Input for Program(s): SPAR
Type of Analysis: Static and DynamicStatic and Dynamic Analyses
Data Description:
[XQT ELD

- (Input to Processor ELD*)
-

[XQT TOPO

[XQT E
RESET MNARF $=1.0$ (if necessary)
[XQT EKS
XQT K
EXQT AUS
DEFINE DM $=1$ RMAS BTAB
DEFINF. CM $=1$ DEM DIAG
Contents: Element Definition Data and Processor Calls Common to

* For E31, E41, and E44 elements, the elements to be resized should be in GROUP 1 and defined first within each type. The elements in each type not to be resized should be in GROUP 2 or above.

DATA BLOCK DESCRIPTIONS

5.3.40 \$\$SWCON - DATA BLOCK

Input for Program(s): SPAR
Type of Analysis: Static and Dynamic
Contents: Constant shear web properties and joint elimination and constraint data

Data Description: Contains the following cards

```
    - (Input to SPAR Processor TAB, Subprocessor PANEL SECTION PROPERTIES (SB)
    - for shear webs not to be resized)
    -
JOINT ELIM:NATION SEQUENCE (JSEQ)*
    - (JSEQ Data - If desired)
    -
CONSTRAINT DEFINITION 1 (CON=1)
    -
    - (Constraint data common to both static and dynamic analysis)
    -
```

 -
 * Optional

5.3.41 \$STANK - DATA BLOCK

Input for Program(s): CGMASS

Type of Analysis: Static or Dymamic
Contents: Fuel tank definitions, volumes, and maximum fuel masses per tank

Data Description: Fuel tank definitions

```
FORMAT (A8, 16X, 418)
```

Col	Name	Description
1-8	WORD	= CTRMEM, triangular element - CQDMEM, quadrilateral element = ENDTANK, terminates tank = ENDRUN, terminates data
25-32	$N 1$	Grid point numbers (see \$SCGRID)
33-40	N2	for element corners, numbered
41-48	N3	clockwise
49-56	N4	Not needed for triangles

NOTE: Each lower surface element must follow its upper surface element.
For ENDTANK cards: FORMAT (20X, 3A10, 2F10.2)

Col	Name	
21-50	Description	
$51-60$	TITLE	
Title defining the preceding tank definitions		
$61-70$	INPVTOT	(i.e., INBOARD MAIN TANK). fuel tank volume in IN
	FUELTOT	maximum fuel mass for this tank in ib mass.

For ENDRUN cards: Columns 73-80 are blank.

DATA BLOCK DESCRIPTIONS

5.3.42 \$SUPROD - DATA BLOCK

Input for Program(s): SPAR
Type of Analysis: Static
Contents: SPAR Cormands which update the rod element properties (BC BTAB) by reading a new BC BTAB from SPARLQ to library 1. SPARLA.

Data Description:
[XQT DCU data set is cepied COPY 17. 1 BC BTAB from SPARLQ to SPARLA TOC 1 lists all data sets on SPARLA including the new, updated $B C$ BTAB.

DATA BLOCK DESCKIPTIONS

5.3.43 \$ $\$ \times$ XOTAB - DATA BLOCK
Input for Program(s): SPAR
Type of Andysis: Static and Dynamic
Contents: First Block of Data for TAB Processor with MaterialConstants
Data Descriftion: Contains the following cards
[XQT TAB
ONLINE = 0 (if desired)
START . . .
MATERIAL CONSTANTS (or MATC)

- (Materíal Data)

6. DATA PROCESSORS

6.1 DESCRIPTION OF THE DATA PROCESSORS

The Data Processors are NOS Control Card Procedure Files used primarily to generate input data decks for the individual Programs. These files are called by an ISSYS Utility Procedure (LBEDT) which, in turn, is called by Task Procedures.

The Data Processors use the GTR and PACK NOS Control Statements and the XEDIT Text Editor to manipulate input Data Blocks (those starting with $\$ \$$) and Local Data Files, adding actual card images where required, to fo.m data decks. The make-up of the resulting data decks, the Program which uses each of them, and the calling Task Procedure are indicated in the following pages for each Data Processor.

The Input Data Blocks, Local Data Files, Utility Procedures Programs, and Task Procerures are discussed in separate sections.

6.2 ALPHABETICAL INDEX OF DATA PROCESSORS

Section Number	Data Processor
6.3 .1	CHGDYNI
6.3.2	CHGDYN2
6.3.3	CHGMMI
6.3.4	CHGPG1
6.3 .5	CHGSETP
6.3 .6	CHGTRIM
6.3.7	CHG59
6.3.8	DGMDAT
6.3 .9	DLNDAT
6.3.10	DLTDAT
6.3.11	DYNDAT
6.3.12	FDIN
6.3.13	GSPIN
6.3.14	MDIN
6.3.15	MPI IN
6.3.16	MP2 IN
6.3.17	MSIN
6.3.18	OPIN
6.3.19	PG2IN
6.3.20	PRERR
6.3.21	RRDEF
6.3.22	SKMACH
6.3.23	SKI IN
6.3.24	SPLOT

DATA PROCESSORS
6.3 DATA PROCESSOR DESCRIPTION

ISSYS Data Processor functions are described. The computer prcgram(s), for which data are prepared, along with the Task Procedure which calls the Data Processor are given for cross reference. The type of analysis (static or dynamic) followed by the makeup of the resulting data deck are also presented.

Data Processors are typically called from Task Procedures to build Data Blocks to perform an engineering analysis.
6.3.1 CHGDYNI - DATA PROCESSOR
Prepares Input for Program: SPAR
Called from Procedure File(s): DYNAM
Type of Analysis: Dynamic
Makeup of Resulting Data Deck:
\$ XQTAB* NSWDMASSSDMASST\$\$ENGDM
\$\$CONDM

* JLOC
\$\$CGRID
\$\$RODPR* SA(1)DPROPT
\$\$CCVPR
 * SB
DPROPS
\$\$SWCON
\$\$CLMSS
\$SSTDEF
 * GMAS = SUM(CM,DM)
 * [XQT DCU
 * XCOPY 1,6 GMAS

6.3.2 CHGDYN2 - DATA PROCESSOR

Prepares Input for Program: SPAR
Called from Procedure File(s): DYNAM
Type of Analysis: Dynamic
Makeup of Resulting Data Deck:
\$\$DYANL
\# SYSFUEL
\#File SYSFUEL read in middle of \$\$DYANL file.

6.3.3 CMGMMI - DATA PROCESSOR

Prepares Input for Program: CGMASS
Called from Procedure File(s): MMINRT
Type of Analysis: Static or dynamic
Makeup of Resulting Data Deck:
File DIN File DINT
\$\$CGRID
\$\$TANK

* 0, 0, 0, 0 \$ $\$$ INLST \$\$DESGN
* Actual Card Image Added.
6.3.4 CHGPGI - DATA PRCCESSOR

Prepares Input for Program: PROG1
Called from Procedure File(s): SETUP
Type of Analysis: Static and Dynamic
Makeup of Resulting Data Deck: \$\$GEOM \$SCGRID
\$\$AEROS

DATA PROCESSOR DESCRIPTIONS

6.3.5 CHGSETP - DATA PROCESSOR
Prepares Input for Program: SPAR
Called from Procedure File(s): SETUP, SETPR
Type of Analysis: Static and Dynamic
Makeup of Resulting Data Deck: \$\$DSWDM
SOCVDM\$SDCVPR\$\$DWSPR

6.3.6 CHGTRIM - DATA PROCESSOR

Prepares Input for Program: TRIM
Called from Procedure File(s): LLOOP
Type of Analysis: Static
Makeup of Resulting Data Deck:
$\frac{\text { File DIN }}{\text { \$\$DESGN }} \quad \frac{\text { File DINT }}{\text { \$\$CGRID }}$

6.3.7 CHG59 - DATA PROCESSOR

Prepares Input for Program: SPAR
Called from Procedure File(s): SPARI (from INIT, INITC, TOTL, TOTLC)
Type of Analysis: Static
Makeup of Resulting Data Deck:
\$ XQTAB

* NSW

DMASSS
\$SENGDM
SSCONDM

- JLOC
\$\$CGRID
\$\$RODPR
- SA(1)

DPROPT
\$\$CCVPR

* SB

DPROPS
\$SSWCON
\$SSTCON
\$SCLMSS
\$\$STDEF
\$\$STANL

* Actual Card Image Added.
6.3.8 DGMDAT - DATA PROCESSOR

Prepares Input for Program: DGM
Called from Procedure File(s): DYNAR
Type of Analysis: Dyramic
Makeup of Resulting Data Deck: \$\$DGMFL

DATA PROCESSOR DESCRIPTIONS

6.3.9 DLNDAT - DATA PROCESSOR
Prepares Input for Program: DLIN
Called from Procedure File(s): DLIN
Type of Analysis: Dynamic
Makeup of Resulting Data Deck: \$\$DLNFL
\$SDLTFL

6.3.10 DLTDAT - DATA PROCESSOR

Prepares Input for Program: DLAT
Called from Procedure File(s): DLAT
Type of Analysis: Dynamic
Makeup of Resulting Data Deck: \$SOLTFL

DATA PROCESSOR DESCRIFTIONS

6.3.11 DYNDAT - DATA PROCESSOR
Prepares Input for Program: DYKARES
Called from Procedure File(s): DYNAR
Type of Analysis: Dynamic
Makeup of Resulting Data Deck: SJDYMAR

DATA PROCESSOR DESCRIPTIONS

6.3.12 FOIN - DATA PROCESSOR

Prepares Input for Program: FLTDET, CMACH
Lalled from Procedure File(s): None (see Data Processor SKMACH)
Type of Analysis: Flutter
Makeup of Resulting Data Deck:
\$\$FDIN

* FREQS (inserted into \$\$FDIN)

All "MMOD" strings are XEDITed into the "A" parameter, where " A " is the number of modes to be used in the analysis.

XEDIT is used to change all "NMOD" strings to the value of the A parameter:

C/NMOD/A/

* Actual Card Image Added.

DATA PROCESSOR DESCRIPTIONS

6.3.13 GSPIN - DATA PROCESSOR

Prepares Input for Program: GSPAR
Called from Procedure File(s): FINL
Type of Analysis: Static
Makeup of Resulting Data Deck:
\$SGSPIN (generated by Program *TRANP)

DATA PROCESSOR DESCRIPTIONS

6.3.14 MDIN - DATA PROCESSOR
Prepares Input for Program: MDPROC
Called from Procedure file(s): DYNAM
Type of Analysis: Dynamic (flutter or gust)
Makeup of Resulting Data Deck:
\$\$MDIN
All "NMOD" strings are XEDITed into the "A" parameter from the DYNAM call,where "A" is the number of modes to be read from the SPAR file. "A"must be .LE. the number of rigid plus flexible SPAR modes.

DATA PROCESSOR DESCRIPTIONS

6.3.15 MPIIN - DATA PROCESSOR
Prepares Input for Program: MPROC
Called from Procedure File(s): None (see Data Processor SKWACH)
Type of Analysis: Flutter
Makeup of Resulting Data Deck:

\$\$MPIIN
All "MMOD" strings are XEDITed into the "A" parameter from the SETSK call (in FLTKT), where "A" is the number of modes to be interpolated and plotted.

DATA PROCESSOR DESCRIPTIONS

6.3.16 MP2IN - DATA PROCESSOR

Prepares Input for Program: MPROC
Called from Procedure File(s): None (see Data Processor SKMACH)
Type of Analysis: Flutter
Makeup of Resulting Data Deck: \$\$MP2IN
(See MPIIN)

DATA PROCESSOR DESCRIPTIONS

6.3.17 MSIN - DATA PROCESSOR
Prepares Input for Program: MODSEP
Called from Procedure File(s): DYNAM
Type of Analysis: Dynamic (flutter)
Makeup of Resulting Data Deck:

 \$\$MSIN

 \$\$CGRID

 * 0,0,0,0
 (inserted after 2nd \$\$MSIN Card)"All "NMOD" strings are XEDITed into the "A" parameter from the DYNAMcall, where "A" is the number of modes to be used.

* Actual Card Image Added.

DATA PROCESSOR DESCRIPTIONS

6.3.18 OPIN - DATA PROCESSOR
Prepares Input for Program: GUSTB, OPCOM, RESIZE
Called from Procedure File(s): RSZG
Type of Analysis: Static
Makeup of Resultinq Data Deck: \$\$OPIN\$\$GSTML
6.3.19 PG2IN - DATA PROCESSOR
Prepares Input for Program: TWO
Called from Procedure File(s): SETUP
Type of Analysis: Static
Makeup of Resulting Data Deck: \$\$PG2IN
-EOF-\$\$DESGN
6.3.20 PRERR - DATA PROCESSOR
Prepares Input for Program: SPAR
Called from Procedure File(s): RESE23
Type of Analysis: Static with rod resizing.
Makeup of Resulting Data Deck: \$\$PRERR

J ATA PROCESSOR DESCRIPTIONS

6.3.21 RRDEF - DATA PROCESSOR
Prepares Input for Program: GSPAR
Called from Procedure File(s): RESE23
Type of Analysis: Static with rod resizing
Makeup of Resulting Data Deck: \$\$RRDEF

DATA PROCESSOR DESCRIPTIONS

6.3.22 SKMACH - DATA PROCESSOR
Prepares Input for Program: CMACH
Called from Procedure File(s): FLTSK
Type of Analysis: Flutter
Makeup of Resulting Data Deck:
\$ $\$ \mathrm{MACH}$
\$\$SKIINSSMPIINSSFDIN* FREQS (inserted into \$SFDIN)\$\$MP2IN

All "NMOD" strings are XEDITed into the "A" parameter from the FLTSK call. where " A " is the number of modes to be used.

* Actual Card Image Added.

DATA PROCESSOR DESCRIPTIONS

6.3.23 SKIIN - DATA PROCESSOR

Prepares Input for Program: SUBKRN
Called from Procedure File(s): None (see Data Processor SKMACH)
Type of Analysis: Unsteady aerodynamics
Makeup of Resulting Data Deck:
\$\$SKIIN
All "NMOD" strings are XEDITed ints the "A" parameter from the DYNAM call, where "A" is the number of modes to be used.
6.3.24 SPLOT - DATA PROCESSOR
Prepares Input for Program: SPAR
Called from Procedure File(s): SPARPLT
Type of Analysis: Static or dynamic
Makeup of Resulting Data Deck:
[XQT PLTA
(Specifications for plotting)
[XQT PLTB
(Plot and control statements)
[XQT EXIT

7. PROGRAMS

7.1 INTRODUCTION

Calculations are performed by Programs written primarily in FORTRAN. Some of these Programs were developed specifically for use in ISSYS. Others were written elsewhere but are maintained as part of the ISSYS system. Some Programs, SPAR for exaniple, were written and are maintained outside of the ISSYS System. The source program names prefixed by a * are records in the system and can be accessed using ISSYS Utility Procedures.

7.2 ALPHABETICAL INDEX OF PROGRAMS

Section Number
7.3 .1
7.3.2
7.3.3
7.3 .4
7.3.5
7.3.6
7.3.7

7 :. 9
7. 3
7.3.1C
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.3.18
7.3.19
7.3 .20
7.3.21
7.3.22
7.3.23
7.3.24
7.3.25
7.3.26
7.3.27
7.3.28
7.3.29
7.3.30
7.3.31
7.3.32

ISSYS Programs
*ADDSK
*CGMASS
*CMACH
*CONMIN
*COST
*DYCORE
DGM
DLAT
DLIN DYNARES
*FLTDET
GSPARS
*GETFIT
*GUST
*LDBUG
*LDSET
*LDTEK
*LOCBA
*LOOK
*MATRIX
*MDPROC
*MODSEP
*MPROC
*ONE
*GPCOM
*READU
*RESIZE
SPAR
*SUBKRN
*TRANP
*TRIM
*TWO

PROGRAMS

7.3 PROGRAM DESCRIPTIONS

ISSYS Programs (computer codes) are described in this section. The function of each program is given. The Task Procedure which executes it, and the Data Processor, or other Program which builds the input file(s) for it are also presented. A brief description of calculations performed and files created or used by the Program is included.

PROGRAM DESCRIPTIONS

7.3.1 *ADDSK - SOURCE DECK, ADDSK - BINARY

Function: Combine wing and tail generalized aerodynamic forces.

Executed By: FLTSK

Input Prepared By: Program CMACH and SUBKRN
Description: Adds the tail generalized aerodynamic forces, multiplied by the ratio of the tail reference length to the wing reference length (usually one-half the root chord), to the wing generalized aerodynamic forces. The reduced frequencies in the SUBKRN input have already been ratioed by this factor in CMACH.

Files:
ADDIN - Input data
SKIOUT - Wing generalized aerodynamic forces
SK2OUT - Tail generalized aerodynamic forces
ADDOUT - Superimposed generalized aerodynamic forces (Identical to SKIOUT if tail data is not included in the analysis)

NOTE: An ISSYS format source deck may contain the source code for any number of programs and/or subprograms.

7.3.2 *CGMASS - SOURCE DECK, CGMASS - BINARY

Function: To distribute fuel to specified nodes and generate a SPAR type input file for each load case.

Executed by: MMINRT
Input Prepared by: Processor CHGMMI
Description: Uses tank definition to compute center of gravity for each tank. Distributes fuel such that desired c.g. (or as close to desired c.g. as possible) is obtained using all fuei specified.

Files:
DIN - Inpui file prepared by Processor CHGMMI. SPARLF - SPAR mass file.

ISX - Data block \$\$DESGN updated.
ISY - Scratch file.
CGDIN - Input file created for Program TRIM.
SYSFUEL - Fuel file in SPAR format for dynamic analysis.
DINT - Fuel tank simulation.
MAS - File of total masses per node for each load case (for Program TRIM).
FUELM - File containing fuel masses for specified load case (intended for use by external programs).

PROGRAM DESCRIPTIONS

7.3.3 *CMACH - SOURCE DECK, CMACH - BINARY

Function: Change Mach number and prepare input files.
Executed by: FLTSK
Input Prepared by: SKMACH (which uses FDIN)
Description: Changes the flutter analysis Mach number and geherates input data files for SUBKRN, ADD, and FLTDET.

Files:
CMIN - Input data.
SKI - SUBKRN input data for wing.
SK2 - SUBKRN input data for tail.
ADDIN - ADD input data.
FDIN - FLTDET input data.

PROGRAM DESCRIPTIONS

7.3.4 *CONMIN - SOURCE DECK, CONMIN - BINARY

Function: A FORTRAN Program for constrained function minimization.
Executed By: Program OPCOM from Procedures TRSC, TRSM
Input Prepared By: Program OPCOM
Description: CONMIN is a FORTRAN program, in subroutine form, for the solution of linear or nonlinear constrained optimization problems.

Reference: CONMIN - A FORTRAN Program for constrained function minimization, Users Manual, NASA TM X-62,282. Ames Research Center.
7.3.5 *COST - SOURCE DECK, COST - BINARY
Function: Generates a dayfile summary of the computer resources used plus the total cost in dollars.
Executed By: User
Input Prepared By: None
Files Required: None
Files Created: None
Description: This routine is always available to ISSYS users. It dis- plays the resources used since the last CHARGE card.
This is a COMPASS routine which uses the GETJA macro from COMCMAC to obtain the job accounting information.

PROGRAM DESCRIPTIONS

7.3.6 *DYCORE - SOURCE DECK, DYCORE - BINARY

Function: Dynamic core allocation
Called By: PROG2, MPROC, MATRIX
Entry Points: LOCMM
Externals: Misc. Common Memory Manager entry points,
Usage: IADDR $=$ LOCMM (NWORDS)
IDELT $=$ LOCMM $(N W O R D S, \operatorname{ARRAY}(1))$
$L=\operatorname{LOCMM~(O)}$
Description: Uses Common Memory Manager (CMM) to allocate and de-allocate storage dynamically given the number of words (NWORDS > 0) and the starting address for the allocated storage. Optionally, if a second argument is provided LOCMM will return an indexincrement. Finally, if NWORDS >0 then all storage will be released.

Note that LOCMM with NWORDS > 0 can be called as of ten as needed:
e.g., \quad IDELTA $=$ LOCMM $\left\{\begin{array}{ll}\text { NWA, } A(1) \\ \text { IDELTB } & =10 C M M\end{array}\right\}$ $\operatorname{IDELTB}=\operatorname{LOCMM}(N W B, B(1))$

PROGRAM DESCRIPTIONS

7.3.7 DGM - SOURCE DECK, DGMBN - BINARY
Function: Prepares generalized mass matrix and damping coefficients for Program DYNARES (ISAC).
Executed by: Task Procedure DYNAR
Input Prepared By: Data Processor DGMDAT
Description: Matrices are generated based on number of degrees of freedom.
Files: DIN - Input - prepared by Processor DGMDAT TAPE7 - Output, damping coefficients TAPE8 - Output, generalized mass matrix

7.3.8 DLAT - SOURCE DECK, DLATBN - BINARY

Function: Using aerodynamic lifting surface theory known as Doublet Lattice method, computes the generalized aerodynamic forces, ref. NASA TM-80040, ISAC.

Executed By: Task Procedure DLAT
Input Prepared By: Data Processor DLTDAT
Description: Generalized aerodynamic force matrices are generated by DLAT for use in the equations of motion.

Files: DIN - Input, prepared by Processor DLTDAT if TAPE5 not assigned.
TAPE5 - Input, FORTRAN NAMELIST Data (see ref.).
TAPE9 - Input/Output, ISAC data-complex. DLATPLT - Output, plot vector file.

7.3.9 DLIN - SOURCE DECK, DLINBN - BINARY

Function: Aero/Structure interface program module of ISAC, ref. NASA TM-80040.
Executed By: Task Procedure DLIN.
Input Prepared By: Data Processor DLNDAT Task Procedure DYNAR.
Description: Finds a transformation [T], utilizing the surface spline interpolation technique between deflections at structural nodes and deflections and slopes on aerodynamic boxes.

Files: GSTIN - Input, frequency and loads data.
DIN - Input, file prepared by Processor DLNDAT.
TAPE3 - Input (see ref.)
TAPE5 - Input (see ref.)
TAPE9 - Output, ISAC data-complex.
OLINPLT - Output, plot vector file.
7.3.10 DYNARES - SOURCE DECK, DYNARBN - BINARY

Function: Performs flutter and gust analyses, ref. NSA TM-80040.
Executed By: Task Procedure DYNAR.
Input Prepared By: Data Processor DYNDAT, Program DGM, Task Procedure DYNAR.
Description: Control laws may be treated by direct input of a matrix or transfer functions or by utilizing combinations of built-in filters. Roots are determined by P-R method.

Files: DIN - Input, prepared by Processor DYNDAT.
TAPE5 - InPut; loads, damping coefficients, generalized masses, nodal identification.
TAPE9 - ISAC data-complex.
RMSTR - Output, RMS gust stress file.
DYNPLT - Output, plot vector file.

PRNGRAM DESCRIPTIONS

7.3.11 *FLTDET - SOURCE DECK, FLUTDET - BINARY
Function: Solution of flutter equations.
Executed by: FLTWT
Input Prepared by: FDIN or Program CHACH
Description: Solves the flutter eigenvalue problem for flutter speeds,frequencies, and mode shapes using the generalized aerodynamicforce file formed by ADD. Additional program capability includesa matched point search and $V-g$ and $V-\omega$ plots.
Files: DIN - Input data.ADDOUT - Generalized aerodynamic forces.

7.3.12 GSPARS - SOURCE DECK, GSPAR - BINARY

Function: SPAR stress post-processor
Executed by: RSZG
Input Prepared by: GSPIN
Description: Processes stress data from main SPAR library file SPARLA and puts the stresses on files to be read by OPCOM Or RESIZE along with other element data required by these programs.

Files: \quad DIN - Input data.
SPARLA - Main SPAR ilbrary file.
SPARLN - Stress data for triangular elements.
SPARLO - Stress data for quadrilateral elements.
SPARLP - Stress data for shear webs.
TAPE60 - SPARLN for RESIZE.
TAPE63 - SPARLO for RESIZE.
TAPE66 - SPARLP for RESIZE.
TAPE8O - SPARLN for OPCOM.
TAPE83 - SPARLO for OPCOM.

PROGRAM DESCRIPTIONS

7.3.13 *GETFIT - SOURCE DECK, GETFIT - BINARY

Function: Determines the File Information Table (FIT) address of a given file.
Called By: LOCBA
Entry Point(s): GETFIT
External Ref(s): SYSERR
ENTRY (XI) - FIT pointer word in the form
VFD 1/VAR, I/FP, 58/ADDRESS
EXIT (XI) - FIT address, if found
Description: Uses the list of file names/addresses located at RA+2 to obtain the FIT address for the desired file. The job is aborted with error number 6210 if the file name cannot be found.

This routine is the same as routine GETFIT= on the FORTRAN library.
This routine is not callable from a FORTRAN progran. The entry point and the calling sequences are not compatible.

PROGRAM DESCRIPTIONS

7.3.14 *GUST - SOURCE DECK, GUSTB - BINARY

Function: Combines gust stresses with steady-state stresses for use in resizing the structure.

Executed by: RSZG
Input Prepared by: GSPAR
Files Required: TAPE50 - steady-state etresses for triangular and quadrilateral elements plus shear webs. TAPE25 - gust RMS stress files from DYNARES (ISAC).

Files Created: TAPE60 - combined gust and steady-state stresses for triangular and quadrilateral elements.
TAPE66 - combined gust and steady-state stresses for shear webs.

Description: Combines stress file (RMSTR) created by Task Procedure DYNAR with the stress data file (SPARLN) produced by GSPAR to create the stress data file (TAPE66) for resizing.
7.3.15 *LDBUG - SOURCE DECK, LDBUG - BINARY

Function: Set loader parameters for the ISSYS debug mode.
Executed By: The ISSYS LDBUG Procedure causes this routine to be used in place of the LDSET routine.

Externals: None
Entry Points: LDBUG
Files Created:
Cescription: This routine is currently identical with *LDSET except that CMMSAFE is used instead of CMMFAST and the preset is: PRESETA = NGINF.

PROGRAM DESCRIPTIONS

7.3.16 *LDSET - SOURCE DECK, LDSET - BINARY

Function: Set loader parameters for ISSYS programs.
Executed By: Loaded with each Mainline Program.
External References: None
Entry Points: LDSET
Files Created:
Description: Uses the COMPASS LDSET instruction to generate internal, binary loader instructions similar to those produced by the NOS LDSET control card.

PROGRAM DESCRIPTIONS

7.3.17 *LDTEK - SOURCE DECK, LDTEK - BINARY

Function: Set loader parameters for ISSYS Programs for interactive graphics. The LDTEK Procedure causes this routine to be used in place of the LDSET routine.

Externals: None
Entry Points: LDTEK

Files Created:

Description: This routine is indentical with the LDSET routine except that LIBFTEK is used instead of LRCGOSF for graphics subroutines.
7.3.18 *LOCBA - SOURCE DECK, LOCBA - BINARY

Function: Returns the FIT starting address and execution time name for indicated file.

Called By: *READU, *ONE, *MDPROC
Entry Points: LOCBA, XLOCBA
External Refs: GETFIT.
Files Created: None
Description: This is a FORTRAN (FTN) callable link to the system GETFIT= routine. Given the 'logical-unit-number' or the 'left-justified-zero-filled-name', LOCBA will return the corresponding FIT address. Optionally, if LOCBA is called with two arguments, the second argument will be set to the execution time L-J-Z name on return.

$$
\begin{aligned}
\text { e.g., } L & =\text { LOCBA }(3) \\
L & =\text { LOCBA (SLTAPE3, NAMEZ) }
\end{aligned}
$$

where $L=$ FIT address and NAMEZ $=$ 'left-justified-zero-filled-name'.
7.3.19 *LOOK - SOURCE DECK, LOOK - BINARY

Function: Plot SAVPLT files on TEKTRONICS 4014 Screen
Executed By: TVPLOT, USER
Input Prepared By: *MPROC, *FLTDET, SPAR, *TRIM
Files Required: INPUT, OUTPUT, SAVPLT
Files Created: TTPE16
Description: Interactively reads and scales SAVPLT files for TEKTRONICS 4014 terminals. User inputs can be provided for baud rate, magnification, and/or X/Y origin shifts. For multi-frame plot files, a frame skipping option is available.
7.3.20 *MATRIX - SOURCE DECK, MATRIX - BINARY

Function: To generate a random access file containing aerodynamic matrices for each Mach number.

Executed by: Task Procedure SETUP
Infut Prepared by: Prograin *TWO and *MPROC
Description:
A. Multiplies spline matrix of structural nodes to aercdynamic panel control points (SPLINE1) times aerodynamic influence coefficients (AIC) times spline matrix of aerodynamic panel centroids to structural nodes (SPLINE2).
B. Multiplies AIC by SPLINE2.
(i.e.) -
A. SPLINEI x AIC x SPLINE2
B.

AIC x SPLINE2

Files:
ISV - First set of structural nodes.
ISR - Aerodjnamic influence coefficient matrices from program TWO.
ISX - First set of structural node coordinates.
ALOAD - Random access file of aerodynamic matrices.
ISS - First set of SPLINE coefficients.
ISO - Second set of SPLINE coefficients.

PROGRAM DESCRIPTIONS

7.3.21 *MDPROC - SOURCE DECK, MDPROC - BINARY

Function: Post-processor for SPAR mode shapes and frequencies.

Executed by: DYNAM

Input Prepared by: MDIN

Description: Reads natural frequencies from a SPAR generated file and writes them out on a separate file in Namelist format. Reads mode shapes from a SPA. g generated file, selects the desired degrees of freedom, and puts these degrees of freedom (for each grid point for each mode) on a file.

Files: DIN - Input data.
SPARLJ - Frequencies from SPAR.
FREQS - Frequencies in Namelist format.
SPARLK - Mode shapes from SPAR.
MODES - Mode shapes used by MODSEP.
GSTIN - Frequencies plus MODES plus ISX plus SPARLL (if it exists).

7.3.22 *MODSEP - SOURCE DECK, MODSEP - BINARY

Function: Separate mode shapes into desired groups.
Executed by: DYNAM
Input Prepared by: MSIN
Description: Separates the modal displacements of the entire structural model into displacements per lifting surface as defined in the input data. Disp?acements normal to the lifting surface and the location is che points are written on a file to be used by MPROC.

Files:
DIN - Input data.
MODES - Mode shapes from MDPROC.
MSPOUT - Modal displacements per lifting surface.
ISX - Coordinates of grid points used in MSPOUT.

PROGRAM DESCRIPTIONS

7.3.23 *MPROC - SOURCE DECK, MPROC - BINARY

Function: Modal interpolation.
Executed by: MPRSK
Input Prepared by: MP1IN (wing), MP2IN (tail).
Description: Processes the lifting surface mode shapes by spline interpolation between the structural nodes and the aerodynamic collocation points for use in SUBKRN. If the spline coefficient matrix does not exist, it is generated. Mode shape plots are generated if desired.

Files: \quad DIN - Input data.
MSPOUT - Modal displacements, all lifting surfaces.
MSWING - Modal displacements for wing.
MSTAIL - Modal displacements for tail.
SPLI - Spline coefficients for wing.
SPL2 - Spline coefficients for tall.
MPOUT - Processed modes for SUBKRN.
MPIOUT - MPOUT for wing.
MP2OUT - MPOUT for tail.
7.3.24 *ONE - SOURCE DECK, PROGI - BINARY

Function: To generate input files for programs TWO and MPROC.
Executed by: Task Procedure SETUP.
Input Prepared by: CHGPGI
Description: Generates Woodward-Carmichael input data deck for aerodynamic panel geometry and input decks for both executions of MPROC in Task Procedure SETUP. Generates binary input deck for first MPROC execution in SETUP.

Files: \quad DIN - Input file.
1SZ - Second MPROC exec.stion input file.
PG2IN - Program two input file.
ISX - First set of structural node coordinates.
ISI - First MPROC execution input file.
ISV - First set of structural nodes. AERPLT - Plot vector file.

7.3.25 *OPCOM - SOURCE DECK, OPCOM - BINARY

Function: Resize of composite or metal cover panels using nonlinear programming techniques.

Executed by: TRSC, TRSM
Input Prepared by: OPIN
Description: Uses cover element stress data files from GSPAR to resize composite (executed by TRSC) or metal (executed by TRSM) elements considering stress, minimum gage, a:d stability constraints and using nonlinear programming techniques. For metal, the design variables are the cover thickness (t) and the core depth (h). For a $0 / \pm \alpha / 90$-degree composite laminate oriented at γ-degrees, the possible design variables are $t_{0}, t_{\alpha}, t_{90}, \alpha_{,}, h$.
ries: DIN - Input data. TAPE80 - Stress data for triangular elements. TAPE83 - Stress data for quadrilateral elements. TAPE71 - Property data for cover elements. TAPE72 - Mass data for cover elements. DPROPT - TAPE7I
DMASST - TAPE72 TAPE20 - iu out file. TAPE35 - r. :put file. TAPE40 - Design variable values. TAPE30 - TAPE40 internal to OPCOM.

PROGRAM DESCRIPTIONS

7.3.26 *READU - SOURCE DECK, READU - BINARY

Function: Reads unformatted SPAR sequential files.
Executed By: *TRIM, *CGMASS, \#MDPROC
Entry Points: CALL OPENLL(LFN,NAME)
CALL REWNU (LFN,NAME)
CALL READU(LFN,WSA, NWORDS) CALL CLOSEU(LFN)

External Refs: None
Files Created: None
Description: READU is a FORTRAN callable utility to read a SPAR sequential file where:

LFN = Logical unit number.
NAME = Execution tie file name from the execution control card.
WSA = Output array containing NWORDS.
NWORDS = Number of words to be read.
NOTES: The second argument (NAME) on the OPENU/REWNU call is optional. READU does not reposition the file. Hitting the End Of Information (EOI) is fatal.

PROGRAM DESCRIPTIONS

7.3.27 *RESIZE - SOURCE DECK, BRESIZE - BINARY

Function: Resize of cover panels and shear webs using simultaneous failure mode techniques.

Executed by: RSZG
Input Prepared by: OPIN
Description: Uses stress data files produced by GSPAR to resize elements considering stress allowable, minimum gage, and stability constraints using simultaneous failure mode techniques. A property file and a non-structural mass file is generated for each type of element. When RSZG is called by TRSC or TRSM, only the shear webs are resized.

Files: DIN - Input data.
TAPE60 - Stress data for triangular elements.
TAPE63 - Stress data for quadrilateral elements.
TAPE66 - Stress data for shear webs.
TAPE61 - Property data for triangular elements.
TAPE64 - Property data for quadrilateral elements.
TAPE62 - Mass data for triangular elements.
TAPE65 - Mass data for quadrilateral elements.
TAPE67 - Property data for shear webs.
TAPE68 - Mass data for shear webs.
DPROPT - TAPE61 plus TAPE64.
DMASST - TAPE62 plus TAPE65.
DPROPS - TAPE67.
DMASSS - TAPE68.

PROGRAM DESCRIPTIONS

7.3.23 SPAR - SOURCE DECK, SPAR - BINARY

Function: Finite element structural analysis.
Executed by: SPARI (twice), SPARR (twice), LOOP, FINL, DYNAM (twice).
Input Prepared by: CHG59, CHF1, CHF2, CHF3, CHF4, CHGDYN1, CHGDYN2.
Description: SPAR is a general purpose finite element structural analysis program. It is used to compute deflections, stresses, natural modes and frequencies of vibration, gust stress coefficients, and the structural mass matrix. See the Task Procedure File descriptions for its function at any point in the system.

Files: \quad SPARLA - Main litrary.
SPARLF - Mass matrix.
SPARLG - Cruise deflections.
SPRRLH - Maneuver deflections.
SPARLJ - Frequencies.
SPARLK - Mode shapes.
SPARLN - Stress data for triangular elements.
SPARLC - Stress data for quadrilateral elements.
SPARLP - Stress data for shear webs.
SPARLT - Restart tape containing SPARLA.
DIN - Input data.
SPARLL. - Gust stress coefficients. DINW - Tape write instructions for restart.

Reference: SPAR Structural Analysis System Reference Manual, NASA CR-145098-1, Engineering Information Systems, Inc., February 197\%.
7.3.29 *SUBKRN - SOURCE DECK, SUBKRN - BINARY

Function: Calculates unsteady aerodynamic forces.
Executed by: FLTSK (twice).
Input Prejared by: Program CMACH.
Description: Calculates the subsonic kernel function aerodynamic forces for a set of lifting surface modes that have been processed by MPROC. The forces are calculated at several values of reduced frequencies at a particular Mach number.

Files: \quad SKI - Input data for wing. SK2 - Input data for tail.
MPIOUT - Processed modes for wing.
MP20UT - Processed modes for tail.
SKIOUT - Generalized aerodynamic forces for wing.
SK20UT - Generalized aerodynamic forces for tail.
7.3.30 *TRANP - SOURCE DECK, TRANP - BINARY

Function: Generates input data for SPAR and GSPAR processors used in structural resizing and gust analysis.

Executed By: Data processors GSPIN (structural resizing) and CHGDYN2 (gust analysis).

Input Prepared By: GSFIN and CHGDYN2
Description: Depending on the variable ITYPE, either of the following are generated: (1) SPAR commands to calculate modal stresses for a set of vibration modes, extract the appropriate element stresses for resizing and write those to file SPARLL, or 2) GSPAR commands to assemble element geometry data and stresses for each load case used in resizing. These element information sets are written to files SPARLN, JPARLO, SPARLP for the E31, E41, and E44 elements, respectively.

Files: TAPE7 - Contains the SPAR/GSPAR input instructions produced by TRANP.

PROGRAM DESCRIPTIONS

7.3.31 *TRIM - SOURCE DECK, TRIM - BINARY

Function: Computes aerodynamic load vectors and merges data with output from *CGMASS to form a SPAR input file.

Executed by: LLOOP
Input Prepared by: Processor CHGTRIM and Program *CGMASS.
Description: TRIM uses the steady aerodynamics random access file, ALOAD, and a vector of Z-displacements to compute an aerodynamic load vector for each load case. It also trims the aircraft, can add flaps to the loads or perform a delta-alpha steady-state gust analysis for each load case. This program also creates the jig shape (JGRID) data set.

FILES: TAPEI - JGRID (jig shape)
TAPE2 - CGRID (cruise shape)
TAPE3 - SPARLG (cruise deflections)
TAPE4 - SPARLH (maneuver deflections)
TAPE5 - INPUT (NAMELIST DCON)
TAPE6 - OIJTPUT
TAPE7 - SPDIN (cutput SPAR file)
TAPE8 - ALOAD (aerodynamic pressure data)
TAPE9 - CGDIN (SPAR data from CGMASS)
TAPE10 - STDIN (SPAR stress data)
TAPE11 - OZD (old z-displacements)
TAPE12 - NOZD (newly computed OZD file)
TAPEI3 - MASS (masses from CGMASS)
TAPE14-SPARLF (SPAR mass matrix)

7.3.32 *TWO - SOURCE DECK, PROG2 - BINARY

Function: Computes steady aerodynamic data (Woodward-Carmichael program).
Executed by: Task Procedure SETUP
Input Prepared by: Processor PG2IN and Program ONE.
Description: The Woodward-Carmichael Program is a finite element, small perturbation (linear), potential flow aerodynamics Program. It is used to compute steady subsonic or supersonic aerodynamic data.

The aerodynamic influence coefficient matrix is generated for program MATRIX.

Files: DIN - Input file.
ISR - Aerodynamic influence coefficients.
IST - File containing aerodynamic panel slopes from first MPROC execution.
1SQ - Delta $C_{p} s^{\prime}$ as input for second MPROC execution (for plotting purposes).
ALOAD - Random access file for aerodynamic matrices. AERPLT - Plot vector file (contains aero. panel plots).

References: Woodward, F. A.: "An Improved Method for the Aerodynamic Analysis of Wing-Body-Tall Configurations in Subsonic and Supersonic Flow", Aerophysics Research Corporation, Bellevue, Washington, May 1973.

8. AUXILIARY PROCEDURES

8.1 DESCRIPTION OF ISSYS AUXILIARY PROCEDURES

There are several Procedures within ISSYS that most users will never use directly. These are the Auxiliary Procedures which are used within the ISSYS Task and Utility Procedures to set up required files and programs, print headers, provide alternate data modification capability, and dispose of plot files. They are documented in this section.

AUXILIARY PROCEDURES

8.2 ALPHABETICAL INDEX OF AUXILIARY PROCEDURES

Section Number		ISSYS Auxiliary Procedures
8.3 .1		GETLB
8.3 .2	HDR	
8.3 .3		LBEDT
8.3 .4	LDBUG	
8.3 .5	LDDYN	LDO
8.3 .6		LDR
8.3 .7	TITLE	

AUXILIARY PROCEDURES

3.3 AUXILIARY PROCEDURE DESCRIPTIONS

Auxiliary procedures are described in this section. Auxiliary Procedures typically performi file manipulation or special output functions. The function of each Procedure is given along with Procedures it is called by and calls made to Procedures. A brief description is also presented. Several Auxiliary Procedure Descriptions are additionally described in the ISSHLP file, Appendix B of this document.

AUXILIARY PROC.EDURE DESCRIPTIONS
8.3.1 GETLB - AUXILIARY PROCEDURE

Function: Sets up libraries, title page, and headings.
Called By: Procedure ISSYS
Calls Made: TITLE, HDR
Descriptions: CALL(ISSYS(XQ=GETLB)

AUXILIARY PROCEDURE DESCRIPTIONS

8.3.2 HDR - AUXILIARY PROCEDURE

Function: Prints a one page ISSYS header for each user called Task Procedure.
Called By: User called Task Procedures.
Calls Made: None
Description: CALL(ISSYS (XQ $=H D R, L=X L, A=X A)$ where:
$X L=$ File to receive output.
$X A=$ Header for titie pase.

AJXILIARY PROCEDIIRE DESCRPTIONS

8.3.3 LBEDT - AUXILIARY PROCEDURE

Function: Calls ISSYS Data Processors. If a local file eyists with the same name as an iSSYS Data Processor the local file will be used in place of the data file normally created by the Data Processor.

Called By: ISSYS Task Procedures
Calls Made: None
Description: CALL (LBEDT ($X X=D R R P C, L L=O U T, A A=A A A, B B=B B B, D I N=F I L E)$
where:

$$
\begin{aligned}
X X= & \text { Data Processor name } \\
L L= & \text { File for printed output. } \quad \text { (Default }=\text { ISERR) } \\
A A, B B= & \text { Parameters } / \text { file names required by the } \\
& \text { Data PRocessor. } \\
\text { DIN }= & \text { File to contain generated input data. } \\
& (\text { Default }=\text { DIN })
\end{aligned}
$$

NOTE: See also Section 2.4, the LBEDT Command.

AUXILIARY PROCEDURE DESCRIPTIONS

8.3.4 LDBUG - AUXILIARY PROCEDURE

Function: To checkout the loading of an Ri'TOLAY'd Computer Code. This code must exist in the ISSYS system in its relocatable binary form. A core image module is generated.

Called By: User

Calls Made: None
Description: CALL(ISSYS(XQ $=L D B U G, A=X A, B=X B, R=X R, L=I S E R R)$
where:
$X A=$ Overlayed output program file name.
$X B=$ Overlayed input program file name.
$X R=\operatorname{IF}(X R>70100) R F L, X R$. (Increase field length to $X R$)
$L=$ ISSYS error file.
Libraries are load set to satisfy externals and memory is preset to negative infinity using program LDBUG. The AUTOLAY'd code is loaded followed by a NOGO control card from which a core image module is generated.

NOTE: XA may have same name as $X B$.

AUXILIARY PROCEDURE DESCRIPTIONS

8.3.5 LDDYN - AUXILIARY PROC UURE

Function: Generates an AUTOLAY of programs CGMASS, MDPROC, MDSEP, STPROC TRANP and prepares libraries for loading.

Called By: DYNAM
Calls Made: None
Description: CALL(ISSYS(XQ=LDDYN,L=ISERR,R=XR)
where:
$L=$ ISSYS error file.
$R=$ Field length requirement. (Default=70100)
Libraries are load set to satisfy externals and memory is preset to zero using program *LDSET.

AUXILIARY PROCEDURE IESCRIPTIONS

8.3.6 LDO - AUXILIARY PROCEDURE

Function: Loads overlayed Programs to create an absolute binary file for execution using Program AUTO'_AY.

Called By: FLTWT, SETSK
Calls Made: None
Description: CALL (ISSYS (XQ $=L D O, L=I S E R R, A=X A, B=X B, R=X R)$
where:

$$
\begin{aligned}
X A & =\text { Overlayed OUTPUT program file name. } \\
X B & =\text { Overlayed input program file name. } \\
X R= & I F(X R>701 C 0) R F L, X R . \quad \text { (Increase field length } \\
& \text { to } X R) . \\
L & =I S S Y S \text { error file. }
\end{aligned}
$$

NOTE: XA may have same name as XB.
Libraries are load set to satisfy :xternals and memory is preset to zero using program LDSET.

AUXILIARY PROCEDURE DESCRIPTIONS

8.3.7 LDR - AUXILIARY PROCEDURE

Function: Creates a relocatable binary file for execution of non-overlayed programs.

Called By: SETSK
Calls Made: None
Description: $C A L L(I S S Y S(X Q=L D R, A=X A, B=X B, L=1 S E R R, R=X R)$
where:
$X_{A}=$ Output relocatable file name.
$X B=$ Input non-overlayed program file name.
ISERR = ISSYS error file.
$X K=I F(X R>70100) R F L, X R . \quad$ (Increase field length to XR)

NOTE: $X Q$ and $X B$ may have same file name.
Libraries are load set to satisfy externals and memory is preset to zero using program LDSET.

AUXILIARY PROCEDURE DESCRIPTIONS

8.3.8 LDSTZ - AUXILIARY PROCEDURE
Function: Generates an AUTOLAY of programs *ONE, *CGMASS, *TRANP, *TRIM,*MATRIX, *GUST, *MPROC, and prepares libraries for loading. Inaddition, a core image module is generated for MPROC.
Called By: SETPR, SETUP
Calls Made: None
Description: CALL(ISSYS (XQ $=$ LDSTZ, $L=I S E R R, R=X R$)
where:
ISERR = ISSYS error file.$X R=I F(X R>70100) R F L, X R$. (Increase field lengthto $X R$)Libraries are load set to satisfy externals and memory is presetto zero using program LDSET.

AUXILIARY PROCEDURE DESCRIPTIONS

8.3.9 LDTEK .- AUXILIARY PROCEDURE
Function: Generates an AUTOLAY of program LOOK and prepares libraries forlocding. A core image module is generated.
Called By: TVPLOT
Calls Made: None
Description: CALL(ISSYS (XQ=LDTEK, $A=L O O K, B=L O O K, L=1 S E R R)$
where:

$$
\begin{aligned}
& A=\text { Output program file name } . \\
& B=\text { Input program file name. } \\
& L=\text { ISSYS error file. }
\end{aligned}
$$

Libraries are load set to satisfy externals and memory is preset to zero using prograiii LDSET.

AUXILIARY PROCEDURE DESCRIPTIONS

8.3.10 TITLE - AUXILIARY PROCEDURE

Function: Prints a two page ISSYS title.
Called By: GETLB
Calls Made: None
Description: CALL(ISSYS ($X Q=T I T L E, L=O U T P U T)$
where:
$\mathrm{L}=$ Output file name to print TITLE.

9. PLOTTING PROCEDURES

9.1 INTRODUCTION

Plotting Procedures give the user the capability to utilize various plotting devices avallable to the computer operating system. These procedures accept plot vector files for paper or Tektronix terminal plot display. Various Task Procedures in the ISSYS system generate plot vector files, i.e., DYNAM, SPARI, SPARR, FLTWT . . . These files are acceptable to Plotting Procedures.

PLOTTING PROCEDURES

9.2 ALPHABETICAL INDEX OF PLOTTING PROCEDURES

Section Numer		ISSYS P
9.3 .1	CAL 11	
9.3 .2		CAL12
9.3 .3	CAL30	
9.3 .4		CAL33
9.3 .5		VARLOT
9.3 .6		
9.3 .7		

PLOTTING PROCEDURES

9.3 PLOTTING PROCEDURE DESCRIPTIONS

Plotting Procedures are described in this section with procedures called by and calls made by the Procedure. Files required and created are briefly described. Plotting procedures are designed to use the current plotting devices available at LaRC.

PLOTTING PROCEDURE DESCRIPTIONS

9.3.1 CAL11 - PLOTTING PROCEDURE

Function: Plot output will be on the CALCOMP 11 inch plotter
Called By: User
Calls Made: None
Files Required: XA (Plot vector file)
Files Created: SAVPLT
Description: CALL(ISSYS (XQ=CALII, $A=X A, B=X B)$
where:

```
XA = plot vector file.
XB = plot control card label.
```

9.3-2

PLOTTING PROCEDURE DESCRIPTIONS

9.3.2 CAL12 - PLOTTING PROCEDURE

Function: Plot output will be on the CALCOMP 12 inch plotter

Called By: User

Calls Made: None
Files Required: XA (Plot vector file)
Files Created: SAVPLT
Description: CALL(ISSYS (XQ $=C A L 12, X=X A, B=X B)$
where:

$$
\begin{aligned}
& X A=\text { plot vector file. } \\
& X B=\text { plot control card label. }
\end{aligned}
$$

PLOTTING PROCEDURE DESCRIPTIONS

9.3.3 CAL3O - PLOTTING PROCEDURE

Function: Plot output will be on the CALCOMP 30 inch plotter
Called By: User
Calls Made: None
Files Required: XA (Plot vector file)
Files Created: SAVPLT
Description: CALL (ISSYS (XO $=C A L 30, A=X A, B=X B)$
where:

$$
\begin{aligned}
& X A=\text { Plot vector file. } \\
& X B=\text { Plot control card label. }
\end{aligned}
$$

PLOTTING PROCEDURE DESCRIPTIONS

9.3.4 CAL 33 - PLOTTING PROCEDURE
Function: Plot output will be on the CALCOMP 33 inch plotter
Called By: User
Calls Made: None
Files Required: XA (Plot vector file)
Files Created: SAVPLT
Description: CALL(ISSYS (XQ=CAL $33, A=X A, B=X B)$where:
$X A=$ Plot vector file.
$X B=$ Plot control card label.

9.3.5 TVPLOT - PLOTTING PROCEDURE

Function: To generate TEKTRON plots using the PLOTIO graphics package.
Called By: User
Files Required: Plot vector file. . . i.e., VGPLOT; MDPLOT
Files Created: Plot output to TEKTRON 4014 screen.
Description: CALL (ISSYS (XQ=TVPLOT, $A=X A)$
where:

$$
X A=P l o t \text { vector file. }
$$

See Auxiliary Procedire LDTEK.

PLOTTIHG PROCEDURE DESCRIPTIONS

9.3.6 VARIAN - PLOTTING PROCEDURE

Function: Plot output will be on the VARIAN plotter.
Called By: User
Calls Made: None
Files Required: XA (Pist vector file)
Files Created: SAVPLT
Description: $\operatorname{CALL}(I S S Y S(X Q=V A R I A N, A=X A, B=X B)$
where:
$X A=$ Plot vector file. $X B=$ Plot control card label.

PLOTTING PROCEDURE DESCRIPTIONS

9.3.7 VRSTEC - PLOTTING PROCEDURE

Function: Plot output on the VERSATEC 35 inch plotter
Called By: User
Calls Made: None
Files Required: XA (Plot vector file)
Files Created: SAVPLT
Description: CALL(ISSYS ($X Q=V R S T E C, A=X A, B=X B$)
where:
$X A=$ Plot vector file. $X B=$ Plot control card label.

$$
c-3
$$

10. DATA MODIFICATION PROCEDURES

10.1 INTRODUCTION

The purpose of the Data Modification Procedure is to access a user's database. The database may be structured in MODIFY or UPDATE Utility Library format, i.e., DECK(s) and COMDECK(s). (See APPENDIX A for an explanation of a MODIFY DATA LIBRARY.) From the user's external database the Local Data Base (LBASE) is generated.

10.2 ALPHABETICAL INDEX OF DATA MODIFICATION PROCEDURES

Section Number
10.3.1
10.3.2
10.3.3
10.3 .4
10.3.5
10.3 .6
10.3.7

Data Modification Procedures
MODE
MODF
MODU UDATF UDATQ UDATW UMODF

10.3 DATA MODIFICATION PROCEDURE DESCRIPTIONS

Data Modification Procedures are described in this section. Data Modification Procedures typically operate on an external database (not an integral part of the ISSYS system). The external database may be in UPDATE or MODIFY utility format. The function of each Procedure is described along with calls made to other Procedures and Procedures called. Files required and created are also described.

DATA MODIFICATION PROCEDURE DESCRIPTIONS

10.3.1 MODE - DATA MODIFICAIION PROCEDURE

Function: Performs a MODIFY on selected decks in the quick mode.
Called By: PDBASE, User
Calls Made: None
Files Required: XA (OPL)
Files Created: XC (NPL), XB (COMPILE)
Description: CALL(ISSYS $(X Q=M O D E, A=X A)$
where: XA = MODIFY Old Program Library (OPL).

NOTE: (see NOTE for MODF)
10.3.2 MODF - DATA MODIFICATION PROCEDURE

Function: Perform a full MODIFY on specified OPL.
Called By: User
Calls Made: None
Files Required: XA (OPL)
Files Created: XC (NPL), XB (COMPILE)
Description: CALL(ISSYS $(X Q=M O D F, A=X A)$
where:

```
XA = MODIFY Old Program Library (OPL)
```

NOTE: File XC contains MODIFY OPL's plus OPLC's followed by a zero length record all followed by the OPLD.

OPL

OPLC
-
-
(00)

OPLD

10.3.3 MODU - DATA MODIF ICATION PROCEDURE

Function: Peforms a MODIFY in UPDATE EDIT mode. Only decks named on DECK directives are edited and written to compile file.

Called By: User
Calls Made: None
Files Required: XA (OPL)
Files Created: XC (NPL), XB (COMPILE)
Description: CALL(ISSYS (XQ $=$ MODU, $A=X A$)
where:

$$
X A=\text { MODIFY Old Program Library (OPL) }
$$

NOTE: (See NOTE for MODF).

DATA MODIFICATION PROCEDURE DESCRIPTIONS

10.3.4 UDATF - DATA MODIFICATION PROCEDURE

Function: Performs a full UPDATE and creates a random New Program Library. Called By: User

Calls Made: None
Files Required: $X A$ (OPL)
Files Created: XB (COMPILE), XC (NEWPL)
Description: CALL (ISSYS (XQ=UDATF, $A=X A)$
where:

$$
X A=\text { Old Program Library (OPL) }
$$

10.3.5 UDATQ $=$ DATA MODIFICATION PROCEDURE

Function: Performs a quick UPDATE of only the decks specified on the COMPILE card.

Called By: User
Calls Made: None
Files Reguired: XA (OPL)
Files Created: XB (COMPILE), XC (NEWPL)
Description: CALL(ISSYS (XQ=UDATQ, $A=X A)$
where:

$$
X A=\text { UPDATE Old Program Library (OPL) }
$$

OATA MODIFICATION PROCEDURE DESCRIPTIONS

10.3.6 UDATW - DATA MODIFICATION PROCEDURE

Function: Creates an UPDATE sequential New Program Library.
Called By: User
Calls Made: None
Files Required: XA (OPL)
Files Created: XB (compile), XC (NEWPL)
Description: CALL(ISSYS (XQ $=U D A T W, A=X A)$
where:

$$
X A=\text { UPDATE Old Program Library (OPL) }
$$

10.3.7 UMODF - DATA MODIFICATION PROCEDURE

Function: Converts an UPDATE Old Program Library to a MODIFY Old Program Library.

Called By: User
Calls Made: SRTPL
Files Required: XA (UPDATE OPL)
Files Created: XA (MOL!FY OPL), XC (MODIFY NPL), XB (MODIFY compile)
Description: CALL(ISSYS $(X Q=U M O D F, A=X A)$
where:

$$
X A=\text { UPDATE Old Program Library (OPL). }
$$

11. UTILITY PROCEDURES

11.1 INTRODUCTION

The Utility Procedure provides additional capability to the ISSYS System user. Utilities allow the user to interface new computer codes. Task Procedures, or Data Processors to the system. Other Utilities allow the user to get copies of Task Procedures, Data Processors, or Computer Codes from the system. Capabilities for listing files are also available. Documentation for Utility procedures exists on the ISSHLP file under UN=497950C.

11.2 ALPHABETICAL INDEX OF UTILITY PROCEDURES

Section Number	ISSYS UTILITY PROS.EOURES
ISSHLP FILE	ISSYS
ISSHLP FILE	CMPF
ISSHLP FILE	CMPT
ISSHLP FILE	GETDA
ISSHLP FILE	GETPL
1SSHLP FILE	GETSC
ISSHLP FILE	GETX
1SSHLP FILE	GPDA
ISSHLP FILE	GPPL
ISSHLP FILE	GPSCF
ISSHLP FILE	GPSCT
ISSHLP FILE	GPX
11.3.1	HELP
ISSHLP FILE	LDO
ISSHLP FILE	LDR
ISSHLP FILE	LIST
ISSHLP FILE	LISTDA
ISSHLP FILE	LISTH
ISSILP FILE	LISTSC
ISSHLP FILE	LISTX
ISSHLP FILE	PUTDA
ISSHLP FILE	PUTPL
ISSHLP FILE	PUTSF
ISSHLP FILE	PUTST
ISSHLP FILE	PUTUL
ISSHLP FILE	PUTX
ISSHLP FILE	SORTDA
ISSMLP FILE	SORTH
ISSHLP FILE	SORTX

[^0]
11.3 UTILITY PROCEDURE DESCRIPTIONS

Utility procedures are either described in this section or on the ISSHLP file under $U N=497950 C$. A copy of the ISSHLP file is presented in APPENDIX B. User modifications/additions to the ISSYS System as described in the subsection titled SYSTEM LIBRARY are generated utilizing Utility Procedures. These procedures are also utilized for sorting, listing, and obtaining copies of various alements of the ISSYS library.

UTILITY PROCEDURE DESCRIPTIONS

11.3.1 HELP - UTILITY PROCEDURE

Function: Copies a specified Task Procedure documentation from the ISSHLP file to output.

Called By: User
Calls Made: None
Description: CALL(ISSYS $X Q=H E L P, A=X A)$
where:

$$
X A=\text { Task Procedure name }
$$

NOTE: If Task Procedure name $=$ * the complete ISSHLP file will be copied to output.

12. JOB CONTROL

12.1 JOB CONTROL DESCRIPTION

The Job Control is directed by the user and consists of a sequence of ISSYS and NOS control language commands. The NOS control commands are typically used to SAVE or REPLACE files on mass storage or for file manipulation. Most of the files of interest are described in the section on Local files. These include the key data files which may be saved to provide restart capability and the ISSYS output files.

For Task Procedures, the available output has been classified into "required", "not required", and "optional" categories. The normal, "required" output is put on the OUTPUT file, the "not required" is put on the NOPRINT file, and the "optional" is put on the ISERR file by default. The ROPRRINT file is always returned at the end of each ISSYS Command. The ISERR file is returned after the successful completion of each of the main, user-called commands. It contains additional output which may be useful in diagnosis and should be copied to OUTPUT if an abnomal termination occurs. Note that all required local file manipulation is handled by the system itself and is transparent to the user. A partial list of file names used by ISSYS is presented in the Section titled LOCAL FILES.

12.2 SAMPLE EXECUTION DECKS

The following are Job Control examples for typical ISSYS runs. They do not include the JOB, USER, or CHARGE cards. Also, it is necessary to (ATTACH,ISSYS) from account (227940C). A 7/8/9 card is indicated ty -EOR-, and a $6 / 7 / 8 / 9$ card is indicated by -EOF-. In the strength sizing examples, the number of aeroelastic maneuver load recalculations (updates) were arbitrarily selected.

12.2 SAMPLE EXECUTION DECKS (continued)

Example 1. Perform a strength resizing for a metal structure using the nonlinear programming based optimizer. (For composite wing skins substitute TRSC for TRSM.)

CALL (ISSYS (XQ=MDBASE, $I=I N P U T, L=O U T P U T, A=A S T P L, B=227940 C$) - Building LBASE from MODIFY data library ASTPL under user number 227940 C .

CALL(ISSYS $X Q=$ SETUP) - Assemble programs for static analysis.
SAVE, ALOAD.

- Save load data.

CALL(ISSYS $X Q=I N I T)$ - Perform initial SPAR execution.
CALL(ISSYS X XQ $=$ FINL) - Resizing iteration with two deroelastic load updates.
CALL (ISSYS (XQ=TRSM)
*CALL(ISSYS(XQ=RESE23,L=OUTPUT) - Resize E23 elements.
CALL (ISSYS ($\mathrm{XQ}=$ INIT)
CALL (ISSYS (XQ $=$ LOOP)
CALL (ISSYS X X $=$ LOOOP) - Resizing iteration with four load updates.
CALL (ISSYS $X \mathrm{XQ}=\mathrm{FINL}$)
CALL (ISSYS ($X Q=$ TRSM)
*CALL (ISSYS (XQ=RESE23,L=OUTPUT)
CALL (ISSYS (XQ =TOTL)
CALL(ISSYS(XQ=TRSM) - Resizing iteration with one load update.
*CALL (ISSYS (XQ=RESE23, L=OUTPUT)
SAVE,DPROPT,DPROPS,CMASST,DMASSS.
SAVE, DLOAD=DLOADF,OCS=OCSF. - Save design data and flexible loacis.

EXIT.

REWIND,ISERR. - Copy optional output to OUTPUT file for abnumai termination.
COPYSBF, ISERR,OUTPUT.
-EOR-
(Modify instructions to create LBASE)
-EOF-

* Optional for the resizing of E23 (rod) elements.

12.2 SAMPLE EXECUTION DECKS (continued)

Example 2. Perform one additiunal iteration, creating a SPAR restart tape.
CALL (ISSYS (XQ=MDBASE . . .)
GET,ALOAD/UN = . . . Get and setup current Local Files.
GET,DPROPT, DMASST, DPROPS, DMASSS .
CALL, (ISSYS (XQ=SETPR) - Setup programs and files when load data (ALOAD) is available.

CALL (ISSYS (XQ $=$ INITC, $A=$ NA1010) - Initial SPAR execution and create restart tape. CALL(ISSYS (XQ=LOOP) Resizing iteration with three load updates.
CALL (ISSYS $X Q=$ FINL) Creating restart tape number NA 1010
CALL (ISSYS (XQ=TRSM)
EXIT.
REWIND,ISERR.
COPYSBF, ISERR,OUTPUT.

12.2 SAMPLE EXECUTION DECKS (continued)

Example 3. Repeat the iteration using the weight-strength resizer with the restart tape.

CALL (ISSYS (XQ=MDBASE . . .)
GET, ALOAD/UN= . . .
GET,DRPROPT,DMASST,
CALL (ISSYS (XO=SETPR)
CALL(ISSYSXQ $=\operatorname{INITR}(B=N A 1010)$ - Resizing iteration without load update using CALL(ISSYS (XQ=TRSG) Restart tape.

EXIT.
REWIND,ISERR.
COPYSBF,ISERR,OUTPUT.

12.2 SAMPLE EXECUTION DECKS (continued)

Example 4. Perform dynamic and flutter analyses with 12 natural modes and Varian plots.

CALL(ISSYS(XQ=MDBASE . . .)
GET,DPROPT,DPRCPS, DMASST, DMASSS.
CALL(ISSYS (XQ=DYNAM, $A=12$) - Generate natural modes and frequencies. SAVE,FLTIN.

CALL (ISSYS(XQ=FLTWT, $A=$ SUBKRN, $B=12$) - Perform wing + tail flutter analysis. SAVE,SPLI. - Save spline coefficients for wing.

EXIT.
REWIND,ISERR.
COPYSBF,ISERR,OUTPUT.
-EOR-
(Modify instructions)
-EOF-

```
12.2 SAMPLE EXECUTION DECKS (continued)
Example 5. Perform a flutter analysis with required Data Blocks in card
form.
COPYBF,INPUT,LBASE.
GET,FLTIN,SPLI.
CALL(ISSYS(XQ=FLTWT,A=SUBKRN,B=12)
EXIT.
REWIND,ISERR.
COPYSBF,ISERR,OUTPUT.
-EOR-
$$ . . .
.
-EOR-
                                    (Data blocks separated by -EOR on one file)
$$ . . .
•
•
-EOR-
$$ . . .
-
•
-EOR-
-EOF-
```


12.2 SAMPLE EXECUTION DECKS (continued)

Example 6. Perform a dynamic analysis with a temporary change to Program *CGMASS, a supplied input data deck (normally generated by Data Processor CHGMMI), and a change in execution sequence in Task Procedure MMINRT (called fram DYNAM).

CALL(ISSYS (XQ=GPSCF,I=INPUT,L=ISERR,A=*CGMASS) - Retrieve, edit and replace *CGMASS. COPYBR, INPUT, CHSMMI.
CALL (ISSYS $(X Q=G P X, I=I N P U T, L=I S E R R, A=$ iMINRT $)$ - Retrieve, edit and replace MMINRT.
CALL (ISSYS (XQ=MDBASE . . .)
CALL (ISSYS (XQ $=$ DYNAM, $A=12$)
-
-
-EOR-
(XEDIT instructions to change CGMASS, used by Utility Procedure GPSCF.
-EOR-
-EOR-
(Input data for CGMASS)
-EOR-
(XEDIT instructions to change MMINRT)
-EOR-
*
-EOR-
(Modify instructions)
-EOF-

* NOTE: The null record is a LIBEDIT instruction indicating simple replacement of the affected elements of ISSYS. Note that only the local file ISSYS is modified.

12.2 SAMPLE EXECUTION DECKS (continued)

Example 7. Generation of RMS stresses using gust loading with the ISAC system.

CALL(ISSYS $X Q=M D B A S E, I=I N P U T, L=O U T P U T, A=D S T P L, B=227940 C)$ - Build LBASE from MODIFY data library DSTPL under User Number 227940C.

CALL(ISSYS (XQ $=$ DYNAM $, A=12, B=1$) - Generate natural modes and frequencies.
CALL(ISSYS $(X Q=D L I N)$ - Generate transformation matrix utilizing surface spline interpolation.

CALL(ISSYS $(X Q=D L A T)$ - Generate generalized aerodynamic force matrices.
CALL(ISSYS(XQ=DYNAR) - Dynamic response flutter and gust analysis.
SAVE,RMSTR. - Save RMS stresses for strength sizing.
EXIT.
REWIND, ISERR.
COPYSBF,ISERR,OUTPUT. - Copy optional output to OUTPUT file for abnomal termination.
-EOR-
-EOF-
NOTE: File GSTIN is utilized by ISAC modules OLIN and DYNARES. This file is generated by Task Procedure DYNAM and may be saved by the user.

TAPE9 contains the ISAC database complex, and may be saved by the user for restarts between ISAC modules.

Carmichael, Rziph L. and Woodward, Frank A.: An integrated Approach to the Analysis and Design of Wings and Wing-Body Combinations in Supersonic Flow. NASA TN D-3685, 1966.

Control Data Corpnration: NOS VERSION 1, MODIFY Reference Manual (60450100). March 1978.

Control Data Corporation: NOS VERSION 1 Reference Manual (60445300) NOS 1.2. Vo1. 1 and 2. March 1978.

Desmarais, Robert N. and Bennett, Robert M.: An Automated Procedure for Comput ing Flutter Eigenvalues. J. Aircraft, Vol. II, No. 2, February 1974, pp. 75-80.

Donato, Vincent W. and Huhn, Charles R., R.: Supersonic Unsteady Aerodynamics for Wings with Trai ing Edge Control Surfaces and Folded Tips. AFFDL TR 68-30, 1978.

Giesing, J. P.; Kaman, T. P.; and Rodden, W. P.: Subsonic Unsteady Aerodynamics for General Configurations. Part I: Direct Application of the Nonplanar Doublet-Lattice Method. AFFDL TR 71-5, 1971.

Giles, G. L.; Blackburn, C. L.; and Dixon, S. C.: Automated Procedures for Sizing Aerospace Vehicle Structures (SAVES). Journal of Aircraft, Vol. 9. No. 12, December 1972, pp. 812-879.

Giles, Gary L.: Computer-Aided Methods for Analysis and Sunthesis of Supersonic Cruise Aircraft Structures. NASA CP-OOT, Proceedings of the SCAR Conference (Part 2), Held at Langley Research Center, Hampton, Virginia, November 9-12, 1976.

Gross, David W.: A Multi-Disciplinary Approach to Structural Design for Stochastic Loads. Presented at the AIAA 17 th Aerospace Sciences Meeting, New Orleans, Louisiana, January 15-17, 1979. AIAA Paper No. 79-0238.

Harder, Robert $T_{.}$; and Desmarias, Robert N.: Interpolation Using Surface Splines. J. Aircraft, Vol. 9, No. 2, February 1972, pp. 189-191.

LTV Aerospace Corporation, Hampton Technical Center: Computer Aided Structural Methods with Applications to a Supersonic Arrow-Wing Configuration. NASA CR-132551, 1974.

NASA Langley Research Center: NOS User's Guide for LaRC Computer Complex NOS 1.2. March 1978.

NASA Langley Research Center: XEDIT User's Guide. Level-A, Version 2.1.7, July 1978.

13. BIBLIOGRAPHY (continued)

Peele, L. P. and Adams, W. M., Jr.: A Digital Program for Calculating the Interaction Between Flexible Structures, Unsteady Aerodynamics, and Active Controls [ISAC). NASA M-80040, January 1979.

Sobieszczanski, Jaroslaw: Building a Computer-Aided Design Capability Using a Standard Time Share Operating System. Presented at the Winter Annual Meeting of the ASME, Houston, Texas, November 30-December 5, 1975; the meeting proceedings "Integrated Design and Analysis of Aerospace Structures", ASME 1975, pp. 93-112.

Vanderrlaats, G. N.: CONMIN-A FORTRAN Program for Constrained Function Minimization User's Manual. NASA TM X-62282, August 1973.

Watkins, Cnarles E.; Woolston, Donald S.; and Cunningham, Herbert J.: A Systematic Kernel Function Procedure for Determining Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds. NASA TR R-48, 959.

Whetstone, W. D.: "Computer Analysis of Large Linear Frames", Journal of the Structural Division ASCE, November 1969, pp. 2401-2417.

Whetstone, W. D.: SPAR Structural Analysis Svstem Reference Manual. NASA CR-158970-1, December 1978.

Woodward, Frank A.: Analys is and Design of Wing-Body Combinations at Subsonic and Supersonic Speeds. J. Aircraft, Vol. 5, No. 6, NovemberDecember 1968, pp. 5258-534.

Wrenn, G. A.; McCullers, L. A.; and Newsom, J. R. Structural and Aeroelastic Studies of a Supersonic Arrow-Wing Configuration. NASA CR-145325, July 1978.

APPENDIX A
 modify data library required
 bY ISSYS TO BUILD LBASE

A. 1-1

A. 1 SCHEMA FOR GENERATING A MODIFY LIBRARY

ISSYS uses a MODIFY Data Library to build a Local Data Base (LBASE). LBASE contains data model information to be accessed by ISSYS and supplied to the various computer codes required for analysis. The following is a schema for the MODIFY Data Library required by ISSYS to build LBASE; refer to Figure $A-1$.

1. Each deck containing fields of data model :nformation is designated a MODIFY COMMON DECK (OPLC).
2. The parent of each OPLC or group of OPLC's is a MODIFY DECK (OPL). This OPL contains *CALL (Ca!l OPLC) and *IFCALL (conditionally Call OPLC) directives to appropriate OPLC's to build data blocks.
3. The appropriate *WEOR (write end of record) and *CWEOR (conditionally write end of record) must be placed after each set of data OPLC's, which may be generated by several *CALL or *IFCALL directives.
4. Data should appear in 80 column widths, therefore, a *WIDTH, 80 (defines number of columns preceding sequence information on Compile File) and *NOSEQ (no sequence information on Compile File) directives should be used at the beginning of each parent. OPL.
5. A data OPLC, or set of data OPLC's, called from the parent OPL and terminated with a *WEOR or *CINEOR, define an ISSYS data block as described in the section titled, LOCAL DATA BASE, of this document.

A. 2 LBASE GENERATION BY ISSYS

A MODIFY DATA LIBRARY showing the use of directives in an OPL to generate the ISSYS Local Data Base (LBASE) is presented in Figure A-1. Data Blocks are structured by MODIFY *CALL and *IFCALL directives to OPIC's. The first
 of the first field, see OPLC-DESGN1O in Figure A-1 for example.

Before ISSYS generates an LBASE, the user must declare which OPL should be written to LBASE, for the example of Figure A-1, *EDIT ASTIC will write this Deck to LBASE. The user also has the responsitility to define which conditionally called Common Decks to place on LBASE by using the DEFINE directive. Data Blocks may be serially written to one record, as shown in Figure A-3, where OPLC-STDEF; OPLC-QD102; OPLC-ELDSW are written to the fourth record. ISSYS processors must be designed to strip off $\$ \$ k e y$-words on all but the first OPLC written to a record. Thus each record begins with a $\$ \$ k e y-w o r d$ followed by the data model and terminated with an end of record (--EOR--) marker.

The \$\$DEFINE fields of Figure A-1 are comments describing which DEFINE name to use for the type of structure to analyze. Data Blocks will be generated via *CALL and *IFCALL directives terminated with appropriately placed *CWEOR and *WEOR directives. Several COMDECK's follow, each beginning with a $\$ \$ k e y-n a m e$, followed by data required for a particular computer code to be executed by ISSYS. A typical Batch Job Control sequence is shown in Figure A-2 to create a LBASE. The required JOB, USER, and CHARGE control cards required by the local operating system are shown. ISSYS is then ATTACH'ed to the job. ISSYS is called to execute task procedure MDBASE. This call generates an LBASE for subsequent use by other ISSYS procedures during execution. The *DEFINE BPLATE directive builds the LBASE structure of Figure A-3. *EDIT AST10 directive will write this DECK to LBASE. Utilizing a MODIFY DATA library format to construct LBASE, allows the user to take advantage of MODIFY maintenance capabilities, and compatability with other NOS Control Statements.

asulitios. OPLC

 pjat y 3142 yjlat Iglat

 2018 Eかな

Figure A-1 Concluded.

- . - EOR
*DEFINE BPLATE
*EDIT ASTIO
* $n n$ Indicates the level number.

FIGURE A-2 - Batch Job Control Sequence to Create LBASE

\$\$DESGN

OPLC-DESGNIO OPLC-RELAXM

- - EOR
\$\$AEROS
OPLC-AEROS
... EOR . . -
\$ $\$$ XQTAB
OPLC-XQTAB
- - E EOR - . -
\$\$STDEF
OPLC-STDEF OPLC-QD102 OPLC-ELDSW
- - EOR - - -
\$\$STCON
OPLC-STCON
- . - EOR - . -
- . - EOF . . .
(\$\$Key-name)
(DATA) TEXT RECORDS
(End of record)

FIGURE A-3 - LBASE Structure for *DEFINE BPLATE; *EDIT ASTIO MODIFY DIRECTIVES

APPENDIX B

ISSHLP FILE
i

-4
0
0
0

46

B.1-3

B. 1-4
RULES
ISSYS RULES G REGULATIONS

CAPF
CALLISSSYSIXOCMPFALOCUTAAESCOECNABOPTERERFLI
*-$-\rightarrow$ PERFDPMS AN FTNO COMPILATIDN ON TME GIVENGUREE

CRPT
CALLIISSYSIXOECMPT LOOUTEAESCDECK,BEDPTORERFLI

GETOA
CALLIISSYSIXOEGETOAOLE UT, AEDPL, BENAMES

GETSC
CALL(ISSYS (XOEGETSCOL OUT,AE*NAME)

－
ــ ـ
若岂岸

$$
\begin{aligned}
& 3141 \\
& \exists 30
\end{aligned}
$$

m

$$
\begin{gathered}
1 \nabla H 1 \\
\text { got }
\end{gathered}
$$

$$
\stackrel{\sim}{\infty} \underset{\sim}{\infty}
$$

$$
\begin{gathered}
\text { NI } \\
\text { dy }
\end{gathered}
$$

ש日

$$
\begin{aligned}
& 17 Y 1 \\
& 681 \\
& N 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { EMATO } \\
& \hline \text { CAT. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TH1 } \\
& \text { ED } \\
& 10 N 1 \\
& \text { IS } \\
& 10 S \\
& \text { AST }
\end{aligned}
$$

OTHER CALLS
CALLED BY
AUX．FILES INOT
ME
TERIS

$$
\begin{aligned}
& \text { OB } \\
& 5 \text { IRE }
\end{aligned}
$$

$$
C F
$$

$$
\begin{aligned}
& \text { IMAND OR DATA } \\
& \text { CF ISRCE FI }
\end{aligned}
$$

ONE
FTEEI
[LES

$$
\begin{aligned}
& \text { IN CODED } \\
& \text { E RECORD. }
\end{aligned}
$$

$$
0^{2}
$$

$$
\sum_{5}^{\circ}
$$

CALLIISSYSIXOEGPDA,I INN,L DUT, A-OPL,BaNAME
 THIS COMMAND IS THE SUM OF THE GETDA' AND 'PUTDA: SNOILJNaISNI alIG3XA 10 a\&OJ3d $3 N$ (SEE NOTE B) DOA) QUTPUT FILE. NOTE OES TO FILE OUTPUT: YFILE THE UPDATED
FILE UPON COMPLETIOM.
BLDCK DESIRED. SEE OTHER CALLSS SEE OTHER CALLS $-\infty$
USES
 TA USES AN WITH \qquad
\square
\qquad

THIS COMMAND IS THE SUM OF THE ©GETPL: AND •PUTPL'
COMMANOS, WITH AN EXEDIT' EXECUTION IN THE MIDDLE.
AND A SECOND OF 'LIBEDIT' DIQECTIVES. (SEE NOTE B)
ISEE NOTE AI

$$
\begin{aligned}
& \text { DUTPUT FILE NOTE } \\
& \text { TO FILE DUTPUT: }
\end{aligned}
$$

FILE NOTE
TO FILE DUTPUT:
BLCCK DESIRED.
OTHER CALLS:
CSEE

$$
\begin{aligned}
& 180 \\
& -1580
\end{aligned}
$$

GPP
SEE
GPSCF

GPX
CALL(ISSYS(XO-GPX,I=INN,I = OUT,A=NAME)

$L D R$
CALLIISSYSIXOELOR,LEOUT, $A=R E L C C, B E I S P Q O G, R O R F L I$

LISTH
CALLISSYS(X00L1STHDLOUT,RoRFL)
-
listh --- this cormand sorts ano itsts the contents of the
aux. files (not available for other usfs -- see other calls)
'ISSHLPI FILEO
FILE FDR PRINTED nUTPUT. HOPL,SORTH
NONE --.-
IS 401005.
THE
LISTSC
CALLISSYSIXO-LISISCOI OUTGRORFL)
 - SOURCE OTHER USES -- SEE OTHER CALLSS ISXPISCRO, ISERR ORTS ANO LIST.
ECKS.
${ }_{4}^{4}$

$$
01008
$$

PUTSF

PUTUL

PUTX

SORTH
CALLIISSYSIXOESORTH, LOUUT, RERFLI

SRTPL
CALLI

- 0 ש日
is

$$
\begin{gathered}
30 \\
3 H \\
1 N 0 \\
1 I y \\
031 \\
33 y
\end{gathered}
$$

$$
\underbrace{2}_{-\alpha}
$$

$$
\begin{gathered}
0351 \\
39 \\
311 \\
\text { IndN } \\
\text { Idd }
\end{gathered}
$$

SRTXT
CALLILSSYSIXOESPTXTELEOUT AEDTXTEBENTXTERERFLJ
(TTI - - - OTHER CALL EOB
FOP
HE FL

$$
\begin{aligned}
& \text { NONE } \\
& \text { SORTH }
\end{aligned}
$$

ING
IN

$$
\begin{aligned}
& \text { COR } \\
& 001
\end{aligned}
$$

$$
\begin{aligned}
& \text { ED } \\
& \text { ILE } \\
& \text { INTAD }
\end{aligned}
$$ HE GIVEN 'TEXT' FORMAT FILE

$$
\begin{aligned}
& \text { IRD MAK } \\
& \text { OUTPUT } \\
& \text { NAME } \\
& \text { INING } \\
& \text { AME AS } \\
& \text { ORTING }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SORTH, SORTSC, SORTX } \\
& \text { AVAILABLE FOR OTHER USES } \\
& \text { ISCRO,ISCRI, ISI,ISX, ISY }
\end{aligned}
$$ EN ITEXT FORAAT FILE

DISPLAY CODES.

$$
\begin{aligned}
& \text { PUTE } \\
& \text { ME. } \\
& \text { NG TH }
\end{aligned}
$$

$$
\begin{aligned}
& E A B \\
& 401000 \text {. }
\end{aligned}
$$FOR OTHER USES -- SEE OTHER CALLS

-- SEE OTHE CALLSS
20
呺"

[^0]: * The ISSHLP File is presented in Appendix 8.

