-
brought to you by .. CORE
provided by NASA Technical Reports Server

View metadata, citation and similar papers at core.ac.uk

L

. NASA Technical Memorandum 81307

NASA-TM-81307 19810020554

(NASA-TN-61307) A VALIVDATIOn OF LTRAMZ W1TH Nol-29U9¢

Hlsli FHEWEBCY ciATENSIUNS BY CONPARLSOMS

WITH EXPELiMENTAL MEASUKEMENTS OF UNSTEADY

THRANSONIC FLUWS (wASA) 24 p HC AJ2/HF AUl Uncias
CsCL O1A Gaz0< 21100

A Validation of LTRAN2 With High
Freguency Extensions by
Comparisons With E Experimental
WMieasurements of Unsteady
Transonic Flows

Kristin A. Hessenius and Peter M. Goorjian

ERARY COPY|

JUH 101324

July 1981

t;'f::zmv RESEARCH CENTER
LIT2IRY HASA
{27700, VIRGINIA

Natnna! Aer sutics and


https://core.ac.uk/display/42859781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

nical Libra

Il((lﬂl!lllﬁlleﬂlmﬂhﬂﬂl(!llﬂﬂl(mﬂlllll(ill(l(l

NASA Technical Memorandum 81307 . . 3

A Validation of LTRANZ2 With High
Freguency Extensions by
Comparisons With Experimental
Measurements of Unsteady
‘Transonic Flows

Kristin A. Hessenius
Peter M. Goorjian, Ames Research Center, Moffett Field, California

Ames Research Center
L R N R IR NN 4

76 01407 1006 -

: o v-t7ea




A VALIDATION OF LTRAN? WITH HIGH FREQUENCY EXTENSIONS
BY COMPARISONS WITH EXPERIMENTAL. MEASUREMENTS
OF UNSTEADY TRANSONIC FLOWS

Kristin A, Hessenius and Peter M. Goorjian
Ames Research Center

SUMMARY

A high frequency extension of the NASA-Ames unsteady, transonic code
LTRAN2 has been created and is evaluated by comparisons with experimental
results., The experimental test case is a NACA 64A010 airfoil in pitching
motion at a Mach number of 0.8 over a -range of reduced frequencies. Com-
parisons indicate that the modified code is an improvement of the original
LTRAN? and provides closer aqreement with experimental lift and moment
coefticients, A discussion of the code modifications, which involve the
addition of high frequency terms to the boundary conditions of the numerical
algorithm, is also included.

I. INTRODUCTION

Computation of unsteady transonic flow about oscillating airfoils is
possible through the uyse of LTRAN?, a computer code developed at NASA-Ames
Research Center by Rallhaus and Goorjian in 1976 (ref. 1). LTRAN2 solves
the two-dimensionnal, nonlinear, small-disturbance equation under the low
reduced frequency assumption (kz w c/Un <0,2, where k is the reduced
frequency based on full chord, c). For the purpose of flutter analysis,
however, industrial users have indicated .the necd to perform accurate
calculations in a frequency ranqge up to-k = 1,0, With this in mind, an
objective of the present study is to extend the range of reduced frequency
for improved LTRAN? applicability. The modifications made to the code in
this study involve the addition of high frequency-time dependent terms in
the calculation of the pressure coefficient as well as the wdke and down-
stream boundary conditions. The Jlow freguency qoverning equation is re-
tained,

Several other researchers (refs, ?-4) have performed similar modifica-
tions to LTRAN2, adding high frequency terms to the houndary conditions of
the -~ nerical algorithm., Their results indicate that uynder subsonic flow
conaaitions, improved aqreement with linear theory in amplitudes and phase
anqles of 1ift and moment coefficients is obtained at higher frequencies
with the modified code (ref, 2). However, to truly demonstrate the merit of
the modified code, calculations done under transonic conditions should be
compared with experimental results, Hence, this study was undertaken to
modity the existing code LTRAN? and to evaluate the effects of these chanaes
. by comparison with experimental data.




~ The test case for comparison (ref. 5) was a NACA A4ANI0 airfoil, pitch-
ing about quarter chord, at a Mach number of 0.R over a range of reduced
frequencies up to 0,6. This case was chosen based on the following cri-
teria:

1) the availability of good test data
2) the presence of a moderate strenqth shock wave
3) the absence of strong separation effects in the experiments.

The numerical procedure including the code modifications used in the
creation of LTRAN2-HI, a high frequency extension of the oriqinal code, is
discussed in section II. Linear theory comparisons are made in section III
which indeed confirm the results of other researchers (refs, ?7-4) that, in
general, accuracy is improved at higher reduced frequencies./ Section II1I]
also presents the results of the nonlinear, experimental comparisons where
LTRAN?2-HI is shown to be superior. Finally, brief concludinqg remarks are
made in section 1V, o :

The authors wish to thank S. S. Davis for supplying the linear theory
results, as well as W. J. McCroskey and G. N, Malcolm for their comments and
suggestions while reviewing the manuscript.

I1. GOVERNING EQUATION AND BOUNDARY CONDITIONS

Governing Equation

An unsteady, transonic small-disturbance equation in Cartesian coordin-
ates may be written as

Aﬁ + =
Ctt 28¢xt C¢xx + ¢yy (1)

where A= kM ?/87/3
B=kM72/6%/3

C=(1- Mm?)/dz/a _ (Y+1)Mmm¢
X

and where ¢ is the disturbance velocity potential, M, is the freestream Mach
number, Y is the ratio of specific heats, and & is the airfoil thickness-
to-chord ratio (ref. 6). The choice of the exponent m is somewhat arbit-
rary. In the calculations presented here, Spreiter scaling was used (m = 2).
The parameter k is the reduced frequency. For an airfoil of chord lenqth c,
traveling with speed U, , and executing some unsteady oscillatory motion of
frequency w, k Zwt/Us . Thus the reduced freguency is given in terms of
radians of oscillatory motion per chord length of airfoil travel. The quan-
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tities x,y,t,¢ in equation (1) have been scaled by c,c/8'/? vV, cs2/ u, »
respectively. The right-hand side of equation (1) i< the familiar two-
dimensional, transonic, small-disturbance equation for steady flows.

An approximation to equation (1), valid for low reduced frequencies, is
the equation ' '

28¢xt N C(bxx,+ ¢Yy (2)

where B and C are defined in equation (1). This equation can also be de-
rived from the unsteady Euler equations under.the assumptions

A 1-Mp? << 1 (3)

Boundary Conditions and Code Modifications

Code modifications in the conversion of LTRAN2 to LTRAN?-H] introduce
time dependent terms in the calculation of the pressure coefficient and the
wake and downstream boundary conditions. These changes, which are under-
lined in the following equaticns, and the numerical boundary conditions are
discussed bhelow in qreater detail,

Pressure Coefficient: An expression for the unsteady, small-disturbance
pressure coefficient may be written

Cp = -2 (&, + kdy) (4)

Under the low frequency assumption (origina} LTRAN2) the k¢t term was omit-
ted by an order of magnitude arqument. LTRANZ2-HI now incorporates high
frequency effects in the calculation of Cp by employing equation (4). The
differencing scheme used in this calculation is of the Crank- Nicolson type
(second order accurate at ¢;N*'/2 » where j is the grid index in the x dir-
ection) and may he expressed: : '

b b b 6. n
C = .2 1(_J+1- AR J1>

P M ARG TP ,
o: L b 6.\
<@j+1 AT J-l) +
My, g M50



» y
Wake Condition: To ensure a continuity of pressure across the vortex

sheet
. =
[ DJ 0

[orze] 0

where [ ] denote a jump across the wake. The addition of the k¢y term in
this wake condition constituted the most significant coding change to
LTRAN2. Formerly, vorticity in the wake was assumed to propagate infinitely
fast downstream (for a characteristic analysis, see reference 1), Circu-
lation, a function of time alone, was then assumed to be uniform in the x
spatial direction from the airfoil trailing edge to the downstream boundary.
With the inclusion of a time dependent term in the pressure coefficient
calculation, enforcement of the jump conditions for the wake produces a
circulation quantity now a function of hoth time and space. Consequently,
vorticity travels downstream at a finite velocity (in unscaled units, the
freestream velocity) as shown by the following brief characteristic anal-
ysis,

which now implies

Since the circulation T = A4 » the jump condition from equation
(5) yields

oo+ k', =0 (6)

Equation (6) has characteristics

t = kx + constant

and I remains constant along these lines. Thus, ' propagates downstream at
a velocity _
dx =
dat -k . in scaled units
Recognizing that x = x/c, t = uf, k = yc/U. where X, t are unscaled
quantities } '
&y,
dt /

Therefore the introduction of the kb term in equation (5) provides a more
accurate description of vorticity propaqgation in the wake at the frrestream
velocity.

The following Crank-Nicolson algorithm, consistent with the differencing

of the qoverning equation, was chosen to implement the wake condition in
LTRAN2-HI,

—
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Solving for the value of circulation at the new time level:

- PR | +
UL B ln . ﬁf_-k My 5-1 <?j-1n 1 Fj" \ (7)
) I” ACFIOAx T ;

Downstream Boundary Condition: The downstream boundary condition
(former1y'bx= 0 as x approaches infinity) becomes

Gt ko, 0 x e (8)

Like the circulation, the disturbance potential at the downstream boundary
is now a function of time and space.

This condition differs from the LTRAN2-NLR (ref. 2) downstream boundary
condition where zeroth order extrapolation (b = 0) was retained. However,
implementation of equatior (8) is believed to maintain consistency at the
- point of .intersection of the wake and downstream boundary conditions.

Specifically, :

PO on . ﬁt -k ijqulﬁi@ax-l n+1 _.n
Jjmax Jmax-1 At + k Ax. ¢jmax-1 ¢jmax

jmax, Jmax-1

‘where Jmax is the grid index of the x-location farthest downstream. Hence
equation (7) is also satisfied at j=jmax. ' :

Airfoil Tangency Condition: A time dependent term is included in the
body boundary condition thus eliminating the low frequency assumption in the
airfoil tangency condition. If y = f(x,t) defines the body surface, then

¢y = fx (x,t) + k ft (x,t) (9)

ensures flow tangency.

» Although -undocumented, equation (9) (including this time dependent term)

was used in all published “"low frequency" LTRAN? calculations by Ballhaus
and Goorjian, Also, in the calculations presented here, equation (9) will
be used by both LTRAN2 and LTRAN2-HI.

?
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il1T.  CALCULATED RESULTS

Linear Calcu]ations

Computed results from LTRAN? and LTRAN?-HI are first compared with exact .
linear theory results., This test is to establish the capability of the
modified code to provide accurate unsteady solutions in the linear domain,
The exact linear theory results are solutions to equation (1) with Y = -1 1in
the expressinn for C. The linear code results are solutinons to equation
(2), also with vy = -1. Differences in the comparison‘may be attributed to
two sources: 1) numerical error in the alqorithm, and ?) deficiencies in the
numerical alqorithm resulting from the neqlect of the term A ¢tt in the
qoverning equation, ’

Consistent with the findings of Houwink and van der Vooren (ref. 2),
LTRAN? with a high freauency extension provides better aqreement with linear
theory than the oriqinal LTRAN? in amplitudes and phase angles of lift and
moment . coefficients. Figures 1 and ? qgive 1lift and moment coefficients
versus reduced frequency for the case published. in reference ° (flat plate
pitching 0,25° ahout quarter chord, wo, = 0° M., - N0.7). Note that the
original 1 TRAN? provides reasonably accurate results but only for reduced
frequencies less than 0.2, ~With the exception of the real component of the
moment- coefficient, LTRAN2-H! nrovides 4 more accurate prediction of both
Tifts and moments over the entire range of reduced frequencies tested.,
Because of the single favorable comparison of the low frequency LTRAN? with
linear theory (fig. ?2a, real component of moment), the high frequency exten-
sion is not clearly an improvement of the origindl code, This fact further
motivates 4 comparison with experimental data. :

Nonlinear Experimental Comparisons

As stated previously, comparisons with experimental data for a pitching
(1° about quarter chord) NACA A4ANI0 airfoil were made at a transonic Mach
number of 0,8 (ref, &%), All unsteady calculations were initialized with a
steady solution found by adjusting the steady angle of attack to match the
computed lift value with the experimentally determined steady lift, With q
given value of (C, (steady) = -0,029 from experiment, computations were per-
formed at ao= _N, 1104 thereby matching lifts, Also, pressure coefficient
calculations were sensitive to the type of smoothing used in defining the
airfoil coordinate input. Consequently, the smoothed NACA A4AN10 experimen-
tal coordinates qiven in reference 5 were used in the computation to main-
tain some degree of consistency in modeling the experiment.

The computed results of fiqure 3 represent the initial conditions for
the unsteady calculations. Experimental steady lower surface pressures are
shown in this fiqure with the calculated pressures at the same value of
lift. This information should be used as a baseline comparison,

In the following computed unsteady results, both LTRAN? and LTRAN?-H]
were run with 360 time steps per cycle for k > 0.1. To maintain stability
of both codes at the lower reduced frequencies, it was necessary to increase
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the number of time steps per cycle to 960 and 1920 for k = 0.1 and k = 0,05,
respectively, The modifications to LTRAN2 did not adversely affect the sta-
bility of the code, In fact, LTRAN?-HI, unlike its counterpart, was capable
of producing a stable solution at k = 0.05 with 1440 time steps per cycle
indicating that the addition of high frequency terms has a stabilizing
effect on the code. Also, high frequency results may be obtained for essen-
tially the same “"price" as results from the oriqinal LTRAN2, '

Fiqures 4 and 5 display first narmonic comparisons of l1ift and leading
edge moment. coefficients versus reduced frequency (reference 5 reports first
narmonic data; computed results were Fourier-analyzed to determine first
harmonics). Here LTRAN?-HI shows improved agreement with experiment at
higher frequencies. Note in particular the successful prediction by
LTRAN2-HI of the critical transition in the leading edae moment from a phase
lead to a phase lag (fiq. 5b), As shown in fiqures 4a and 5a, the high
frequency modification, in general, produces an improvement in the calcu-
lation of real and imaqginary components of both lift and moment coefficients
over the entire reduced frequency ranae. The qreatest improvement is seen
in the determination of the imaginary components where LTRAN2-HI, unlike the
original code, captures the experimentally observed trends. For this
reason, LTRAM?-H] 1is the recommnended version of the cbéde for use in
transonic calculations,

First harmonic unsteady lower surface pressure comparisons are made in
fiqures 6 through 12, spanninqg the reduced frequency ranqe. Real and
imaginary components of the pressure coefficient are presented. However,
anplitude and phase information is included for k = 0.1 (fiq, 7) to display
the somewhat misleading behavior of the calculated phase anqle after the
shock (x/c>0.h). In this reqion the real component of pressure is rel-
atively small, and therefore a slight error in 1its computation will
produce a large change in phase anqgle ( ¢ = tan™! (!M/Re)). Hence the
comparison of real and imaginary components with their corresponding
experimental values is the preferred method of presentation.

The surface pressure comparisons are found to be inconclusive, however,
It is difficult to justify the use of LLTRAN?-H! over the use ot the original
code based on this information alone, for there are instances where the two
codes seem equally suitable. But as noted previously in fiqures 4 and 5,
LTRAN?-H] provides improvement in 1ift and moment calculations, especially
in the prediction of the imaginary components of these loads. Consequently,
the importance of examining inteqrated pressures must not be underestimated.

[V. CONCLUSTONS

LTRAN2-HI, a high frequency extension of the NASA-Ames unsteady, small-
disturbance code LTRAN2, provides more accurate unsteady results as evi-
denced by experimental comparisons., The modified code is a versatile tool
capable of performing reasonably accurate inviscid calculations in both
linear and nonlinear flow regimes., Results from tne improved code may be
obtained at no extra expense to the user. LTRAN2-HI has now become the
default option of the NASA-Ames code LTRANZ,
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Figure 3.- Steady lower-surface pressure coefficients for a NACA 64A010
airfoil, M, = 0.8, CQ = -0.029,.
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Cp = aq [Re sin wt - Im cos wt]
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Figure 6.- Unsteady lower-surface pressure coefficients (real and imaginary

components) for a pitching NACA 64A010 airfoil, M_ = 0.8,
k = we/U, = 0.05.
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Figuré 7.- Unsteady lower-surface pressdrc coefficients for a pltching
NACA 64A010 afrfoil, M, = 0.6, k = wc/U, = 0.1.
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Cp = aq [Re sin wt-Im cos wt]
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Figure 8.- Unsteady lower-surface pressure coefficients (real and imaginary
components) for a pitching NACA 64A010 airfoil, M_ =0.8, k = wc/U, = 0.2.
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Cp = aq [Re sin wt ~ Im cos wt]

14 O  EXPERIMENT .
13+ ——— LTRAN2
12 —~ —— LTRAN2-HI
1 |

10

9

8

Re 6

5

4 /
3

2 -

1 -

of m
-1 1 1 1 /]

®
D

3
N w a oo o |

o o
T  f

Figure 9.- Unsteady lower-surface bressure coefficients (rea] and Imaginary
components) for a pitching NACA 64A010 airfoil, M, = 0.8, k - we/Uy = 0.3,
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Figure 10.- Unstéady lower-surface pressure coefficients (real and imaginary
components) for a pitching NACA 64A010 airfoil, M, = 0.8, k = wc/U, = 0.4.
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Figure 11.- Unsteady lower-surface pressure coefficients (real and imaginary
components) for a pitching NACA 64A010 airfoil, My = 0.8, k = wc/U_, = 0.5.
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Cp = aq [Re sin wt- Im cos wt)
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Figure 12.- Unsteady lower-surface pressure coefficients (real and imaginary
components) for a pitching NACA 64A010 airfoil, M_ = 0.8, k = wc/U, = 0.6.
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