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ALLEVIATION OF HELICOPTER FUSELAGE-INDUCED ROTOR UNSTEADY
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THE INDIVIDUAL BLADE PITCH

by

MOHAMMAD A. RAHNEMA

ABSTRACT

The effect of fuselage-induced upwash on the flapwise motion of a
hinged rotor blade is considered. The typical upwash field is simulated
through the flow produced by a moving point source. The resulting blade
response is then approximated by its rigid flapping and first bending mode.
The perturbation blade pitch variation required to alleviate its response
to the upwash in the sense of either reducing the increased hub shear or
minimization of the blade overall time averaged deflection, is determined.
Calculations are carried out for a model rotor and for the case with
increased Lock number. The results are presented in graphical form and
are discussed in Chapter 5. It is found that the minimum blade deflection
criteria suppress the rigid flapping by a large amount and reduce the
peak-to-peak value of the blade hub shear by at least 50% without causing an
additional increase in blade stresses.
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PARTIAL LIST OF SYMBOLS

Blade section lift coefficient, per radian

Blade chord length

Blade aspect ratio (c/R)

Nondimensional rotating blade natural frequency of kth bending mode

Rotor angular velocity (radian/sec)

vk

a'

a

c

cR

d

e

g 

h

z

m(r)

r

R

T(r)

X

X 

z

BM

y

n(r)

nk(r)

u

Largest diameter of simulated fuselage

Blade hinge offset

Displacement of blade first elastic bending mode

Height of rotor plane above the fuselage axis

Distance of rotor axis from the fuselage nose

Blade spanwise mass distribution

Spanwise distance along blade from its axis of rotation

Blade rpm (rotor radius)

Blade section aerodynamic list, per unit span

Blade nondimensional blade spanwise coordinate (r/R)

Chordwise distance of section aerodynamic center from elastic axis

Blade flapwise deflection

Displacement of blade rigid flapping mode

Blade mass constant, Loch number

Modal shape of blade first elastic bending mode

Modal shape of blade kth bending mode

Rotor advance ratio (V.,A2R)

E
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v

Rotor blade azimuth angle, zero when blade is downstream

p	 Air density

8	 Blade pitch angle (positive, leading edge up)

Nondimensional blade hinge offset (e/R)

a	 Fuselage upwash flow (V/V.)

s



. 1

CHAPTER 1

INTRODUCTION

Earlier investigations have shown that the flow disturbances due to

the fuselage of a helicopter result in an increase of the unsteady loads

and motion experienced by the rotor. In an experiment conducted by Scheiman

[1] it was found that the predicted blade loadings for an S58 helicopter

were appreciably different from the measured values over a narrow band of

azimuth angles centered on 180 0 . The discrepancy was found to be resolved

through a modification of the blade incidence in a manner that was consistent

with the upwash flow provided by the fuselage. Since then further studies

have led to the conclusion that the influence of the fuselage can be

significant on the rotor blade loading [2]. Such an interference effect is

likely to be enhanced in the case of the more compact design of modern

helicopters in which the clearance between the fuselage and rotor is

reduced.

The unsteady aerodynamic perturbation forces arising from the passage

of the blade through the fuselage upwash flow leads to significant blade

and hub vibratory response in a manner depending on the aeroelastic

properties of the blades. The occurrence of stall phenomena is also a

possibility caused by the increased blade incidence. This produces a

considerable variation in blade drag leading to an increase in the blade

bending and in-plane hub forces. The increase in the blade torsional

moment is then reflected in an oscillation imposed on the control loads.

Such considerations from both the aerodynamic and the structural

point of view would justify any attempt toward the development of a method
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for the alleviation of the undesirable effects of the fuselage induced

upwash on the rotor. A simple technique to offset the upwash flow (in

cases where raising of the rotor height is not desirable) would be an

automatic variation of the blade pitch as it enters the region of fuselage

disturbance. In this way the effective blade incidence is decreased and

is thus a useful means in situations where stall might be predominant.

However, observation of the flow field of a typical helicopter fuselage

shows that the effect of the upwash flow on the blade incidence can not

be totally offset through a spanwise uniform reduction in the blade pitch.

As may be seen from Fig. (2.3a) the fuselage upwash does not vary linearly

over the blade span but varies in a rather parabolic fashion from the

hub to the tip with its maximum somewhere near the middle of the blade

span. Therefore, even with a pitch reduction, the spanwise non-uniformity

left in the blade loading due to the fuselage will excite the flapwise

bending modes of the blade generating inertia forces which couple with

the aerodynamic forces and makes the vibration alleviation aspect of the

problem more subtle through simple blade pitch control.

It is speculated that the second flap mode may be the dominant

excited bending mode as it is most similar in shape to the form of the

spanwise non-uniformity of the forcing load (i.e. upwash flow). This

expectation turns out to be consistent with the result of certain experi-

mental observations [2]. Since, the frequency of the 2nd flap mode in a

full scale helicopter is about 3 per rotor revolution, any blade pitch

control for alleviation of the vibratory forces and motion of the rotor

would have to be effected through approximately the same frequency. Control

111 r
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of rotor blades at these vibratory frequencies has become a possibi

through the introduction of the multicyclic or Higher Harmonic Coni

(HHC). The individual-blade-control (IBC) concept is a version of tine

HHC approach in which signals from sensors mounted on the blades are used

to supply appropriate control commands to the broad-band electrohydraulic

actuators attached to the individual blade. The (IBC) concept has been

investigated by serveral researchers in its applicability to gust and

vibration alleviation systems. The iaterested reader is encouraged to

consult the listed references [3-5].

However, since the means for higher harmonic control of blade pitch

have already been devised and are currently under further investigation,

the question to be asked in this thesis is what time variation of the

individual blade pitch would best-suppress the vibratory forces and motions

of the rotor caused by the aerodynamic interference of the fuselage. It

is, of cource, being assumed that the deterministic approach (open loop)

to the pitch control would be the best choice in this case as both the

form and the location of any disturbance due to fuselage is fixed. Besides,

in a feed back control loop, any sensor mounted on the blade would sense

any random disturbance that might occur and thus the control of a well

specified regular disturbance is made more complicated. In Chapter Two,

the upwash flow of a simple hull-shaped body is calculated which will be

used as the approximately simulated upwash of a practical fuselage. A

simplified version of the flutter equation as derived in [6] are used in

Chapter Three tc calculate the hinged blade flapwise response equations

for the perturbation forces caused by the fuselage disturbance and the

me
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control pitch input. The blade flapwise motion is approximated by the

rigid-flpping and the first bending modes. The criteria used in later

chapters for the calculation of the control blade pitch input are either

the reduction of the perturbation axial hub shear or the minimization of

the overall time-averaged deflection of the blade caused by the fuselage

effect. The rigid and first bending modes with the thus-obtained control

pitch input are individually calculated and are shown in each case. The

numerical calculations are carried out for both a model and a full scale

rotor and the effect of the increase of rotor advance ratio is studied.

It is hoped that the trends in the control pitch data obtained here

will be helpful in any future (IBC) design for alleviation of the fuselage-

induced rotor stresses and vibration.

^l^
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CHAPTER 2

SIMULATION OF FUSELAGE UPWASH FIELD

In practical helicopters, the shape of the fuselage varies from one

type to another and each produces a different disturbance to the upcoming

flow. The upwash component of the disturbance at the plane of the rotor,

which contributes most to a change of blade incidence angle, has been

calculated for a number of different fuselages and is reported in [2]. The

common characteristics evident from the results of those calculations are

a variation of the upwash at 180 0 azimuth angle from a peak value between

.1 and .15 of free stream velocity at 40% of rotor radius to a negligibly

small value at the rotor tip. The results also show a rather rapid decrease

of the peak value of upwash with azimuth angle such that the value at 40%

rotor radius drops to half its maximum value (at 180° azimuth) over 25

degrees to 30 degrees of azimuth.

These features will here be approximately simulated through combina-

tion of the flow field of a single source with that of a parallel flow. In

this way, we will be able to derive rather simple analytical expressions

for the upwash flow.

Consider one three-dimensional source with a volume flow intensity of

I o so that the induced velocity is I oAirr2 , where r o denotes the distance

from the source. By superposing a flow of constant a4 parallel velocity V

(the forward flight velocity) to this source, a flow field like that shown

in Fig. (2.1) is resulted. The flow field, as illustrated in the figure,

is divided into two parts by one streamline (which splits into branches to

1 , t"Al- . iR ..::.... ,



6

j	 all sides in three-dimensional space) and divides the flow supplied by the

source from the parallel flow. This streamline goes through the stagnation

point A whose distance from the source point may be calculated by consider-

that the source velocity there is neutralized by the parallel flow, that is

V — — i=O
4nn,

and thus

t

^°A = 4nV

The source intensity may be expressed in terms of the maximum diameter of

the stream surface of revolution through the stagnation point. This 1s

done by considering that at infinite distance from the source, the fluid

supply I o provided by the source should equal the amount of parallel flow
2

that would have passed through the cross section w I- , that is

1'° = n 
Z 

V

To compute the shape of the stream surface with the maximum diameter

d, let the point source be the origin of a system of polar coordinates

po ,* . Then on any point on the streamline through point A (see Fig. 2.1),

we can write

dP ! V^
^d^9

V + o/

— v s11I LF
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FIG. 2.1a Superposition of Point Source with Parallel Flow

04- 1

FIG. 2.1b RepresenWion of Coordinates Referring to
Fuselage jape
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J1 Z= -,P	 _ t. I
and has to satisfy the condition

A.	 ^ g °A.
	 D

the solution is found to be

4.	 (2.1)

after incorporating the expressions for 
1  

and r  in the equation.

Equation (2.1) gives the shape of the axisymmetric body that when

placed in the parallel flow would produce the same flow field that the

source would do in the space outside the body. The upwash oroduced when

moved parallel to its axis is simply the vertical component of the source

velocity. With the rotor placed at a height h above the body axis (Fig. 2.2),

simple considerations of the geometry and the source velocity (given by

A V/16ro) will show that the upwash flow in the plane of the rotor is

given by:

16 1 h + v

where R is the distance of the body nose from the rotor hub axis.

The values of the various parameters in (2.2) that were used to

generate the upwash are given below:

I
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FIG. 2.2	 Rotor-Fuselage Orientation
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h - 4.15"

L - 13.94"

d = 6"

and R = 24.38" ( same as the radius of the MIT (IBC) model rotor).

fWith the above values, Equation (2.2) becomes

i

16 [4.91+165s(-16.86(^(n-^}1 312 	 (2.2a)

J
The function is displayed graphically in Figs. (2.3). In Fig. (2.3a) the

radial variation of the simulated upwash at 180° azimuth is shown and

Fig. (2.3b) gives its peak value (at about 50% rotor radius) against

azimuth angle.
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(a) Radial Variation of the Upwash at 180° Azimuth

0	 90	 180	 270
w	 (Degrees)

(b) Azimuth Variation of the Peak Value (at about
50% Radius)

FIG. 2 . 3 Fuselage Upwash Generated from Eq. ( 2.2a)
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CHAPTER 3

BLADE DYNAMIC RESPONSE

This chapter presents the aeroelastic equations governing blade

flapwise motion. The flapping motion is expected to be the one most

influenced by the upwash effect of the fuselage which causes an increase

in the blade section lift. It will be assumed that the elastic axis of

the blade passes through the center of gravity at any section along the

span so that the bending motion is decoupled from any torsional or pitch

motion of blade due to control loads. The more general case combining

blade torsion and bending is treated in [6]. The bending equation is

derived for a hinged blade with generally a hinge offset (e) and the rigid

flap and first bending modes are used to approximate blade deflection. The

modal equation thus obtained are seen to have periodic time varying coeffi-

cients caused through the chaning flow direction " seen" by the blade in

forward flight. The equations are then simplified by using the periodic

coefficients in a time averaged sense. This may be ,justified through the

assumption that the time varying part of the coefficients are small relative

to their mean values, which happen to be the case for low values of advance

ratio. The solutions obtained using the time averaged equations can then

be assumed to be slightly different from those obtained from the exact

equations through a small oscillatory perturbation.

The procedure followed here is basically the same as detailed in [6].

The bending moment at r due to forces at S for the rotating blade deflected

^^	 out of the plane of rotation (Fig. 3.1) is
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FIG. 3.1	 Blade Bending Geometry
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R ^? s	 R ^

A09	 -i(s)^ (g)^(s-^^dg — 5 9 SZ^*(s)^z15)— Z(A)^d sSI
From simple beam theory, the bending moment is related to the beam

elasticity through

M (A)	 (A) Z
d^

which upon substituting in the expression for the bending moment and

differentiating twice with respect to r gives

Z	 i	 s	 t R	 i	 =	 ..

s E ro) d a - d s _ d Z  (s)9 SZ ds ^aA qh(A	 + (a) Z = d `r

(3.1)

The solution to Equation (3.1) may be expressed as the sum of the normal

bending modes weighted by some time dependent functions g k (t) to be found,

00

	 JX

KVI

Substituting in Eq. (3.1) leads to

*o il I jV	 S R

QCI	 4 9A,
f.4 S	

+

S

For free vibration of the rotating beam without aerodynamic forcing

(L - 0) the g k (t) may be assumed to be simple harmonic function of the form
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t

where vk is the kth rotating undamped natural frequency of the blade.
With this, Eq. (3.1a) becomes

s L
n K VK fZ OK	 O

K^^ L

Since this equation should hold for all feasible values of r at any time t,

the logical consequence is

I L
]— nx VX0 A — G	 (3.2)

Equation (3.2) is then the condition that the normal bending modes have to

satisfy.

The bending equation of motion (3.1a) then is simplified to

Z
vA i L q	 °°	 d T

	

'm YAP 
Jt, )ZK 

oK 
+ Z,n nK %K =-

j A	 (3.1b)  
Ka	 k=I

Multiplying both sides of Eq. (3.1b) by nk and integrating from 0 to R
with regard to orthogonality of the n k , s give

..	 I
M k gK-1-/N K k̂ fL;K r l2K ^O^	 (3.3)

0

where

nK JA
^	 K

15
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Approximating the deflection of the hinged blade by the rigid flap

and first bending mode

+n1W
	

(3.4)

where a is generally some hinge offset and S = g l , g = g2 . Equation (3.3)

then gives the following modal equations

.ft
-J	 17-	

T J,4

 M, ,SZ 
a	

(3-5)

R d'r

M I	 (3.6)

The aerodynamic lift term (dT/dr) is from unsteady theory for thin

airfoil oscillating in incompressible flow

8 PaC 
`^- u'r	 4ij

'	 1	 (3.7)--1 Pa.C UT C(K) JUP _ UT 19 0C_-A  e 1

in which the unsteady effects due to variation of the blade transverse

velocity (UT ) is neglected, and C(K) is the equivalent of the Theodorson

i

M<.
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M.

function CM for rotors. For quasi-steady airflow C(K) - 1, which will

be used here.

The blade transverse (UT) and perpendicular velocity relative to air

mass are respectively

uT =nIt t̂ u.^ R gar ^'

(3.8)
U ^ Z-t .AR Z rD7^ —^uJZPiP

where a is the fuselage upwash given by Eq. (2.2a).

The virtual mass terms proportional to z and a in Eq. (3.3) will be

neglected here. However, their small contribution (of the order of a few

percent) could be included through appropriate adjustment of blade inertia

constants.

Then, with the expression for 
ar 

given in Eq. (3.5), the modal

Eqs. (3.5, 3.6) take the form

^

A l

 
/ 1+ an I+ B + 	 + C^)	 (3.9a )

q t'i'Bj t '"^q_ '^'	 '1r .w^' o^ '= '""g= 9 + 'M6?3' 8 + (3.9b)0

where the primes denote differentiation with respect to time and we used

(d = a^). Note that ^, = Sat. The expression for the various coefficients

ms ', mg ', ... and the upwash forcing functions F,
1 
(W), FX 

2 
W are given in

Appendix A, and B.

F

%k .- ::.,.. I



18

Using a hinge offset of e _ .0821 (the value for the MIT IBC rotor)

and an approximate function for the bending mode given by 	 = 4(	
2
) - 3(^):

(C : -eff) . The coefficients in Eqs. (3.9) in time averaged form become:

^"$ - • 118

010$x.

1

^I -=r

O

e _ .11I r0
1MC^ _ • 111 ^+•115^G j ^

A6	 y

"IA — . of6 8 ^ M'—

"Q s Os
L

4"1 	 Vs3

""X_ _•oo4^'q

(3.10)

It is to be noted that the values for me,
1	 2
and me , are valid for

xA - 0 (blade section aerodynamic center on elastic axis of blade) which

is nearly true for the MIT IBC rotor blade. Otherwise they would have to

be recalculated using the equations in Appendix A.

M
The ratio „1 is given by

2

I	 s

(3.11)

a •1* z % XPn L-
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For uniform blade mass distribution, RM = 1.666.

The coupled modal differential equations expressed in Eq. (3.9) give

the hinged blade bending response to the blade pitch angle (e) and the

fuselage upwash effect represented by the (F) functions. By setting e

equal to zero in the linear equations, the bending contribution from the

fuselage upwash is obtained. However, the solution to Eqs. (3.9) for any

given variation of the pitch angle 6 and the F functions with the approxi-

mate time averaged constant coefficients given in Sq. (3.10) may be

constructed through simply a superposition of the individual harmonic

solutions which can easily be obtained. To express the nth harmonic

component of the solution in terms of that of the forcing terms, let

6(s^) = e„ 4n n ^-1- 9,„ 	 y'
C	 5

r
C	 S

,fr

and assume a response of the form

C	 S

gv')	 S*'n )P -+- 4 91*' " f
C. g

Substituting these in Eqs. (3.9) and equating the coefficients of

/ ;	 cos n* and sin n* on both sides of each equation, leads to the following



S

fl fl
c

-^ fi t"
fs

s=* J
FA

and

c
6„

C.

4 gw
(3.13)

20

four equations expressed in matrix form for the unknown Sc. ss. gc and gs .

[C-1 j D I _- [';] j O-R, I +0160	 0%0	 AP	 10^ (3.12)

where
^ s

.fi g fly -rte;	 -•0.109	 , v

i
N

—•e1o8 ^(RM)n, o ^ -•os68r(ftr) n, -rt 3, s

v	 ^ •^^o8r(RH^ fly — •ns+^ , • oS6B ^'^RMJ ^!

—•Ilqn ^(cR) ,	 ^ 131+•IIŜ ') ^
jq= ^-^^^-r•it5jw^^ ^ •1^9^ ^(cR)

• o0469n ^CoR^ ^ (018-•o^8^i^ ^CRM)

^oc8g- •o38i^^^'(RM) - • 00 1 ri ?l (GR)
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In the next chapter, the control pitch requirement for reduction

of fuselage-induced blade hub shear will be determined. The minimization

of the blade deflection is also considered. The equations involved are

solved through harmonic superposition using the modal equations in the

form of Eq. (3.11).

f

r

j
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CHAPTER 4

PITCH CONTROL ALLEVIATION OF THE FUSELAGE INDUCED

ROTOR STRESS AND VIBRATION

The blade flapwise motion contributed by the periodic lift effect of

the fuselage upwash flow localized around 1800 azimuth adds to rotor

vibratory motion. The lift increment coupled with the inertia reaction

of the resulting blade motion produces unsteady shear forces at the blade

root which may then cause a decrease in its fatigue life. It is thus

noticed that the control of rotor response to the aerodynamic disturbance

of fuselage, when significant, is important both from the vibration

viewpoint and structurally. The blade vibratory motion mty be controlled

to some extent through variation of its pitch angle as is seen from the

dynamic equation given in Eq. (3.9). It is then possible to determine

the control pitch input that would reduce some of the undesirable effects

of the fuselage disturbance. In the present chapter, the perturbation

pitch angle required for reduction of blade axial hub shear is determined

first and then in Section 4.2 the condition for minimization of blade

deflection is considered.

4.1	 Reduction of Increase Blade Hub Shear

The blade hub shear is obtained from integration of the lift and

inertia forces along the span,

ft 

jSh a Cd^ ` Z ^'^^'^ 	
(a.l .1)

-e	 e

M 
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{	 From Eqs. (3.5) and (3.8) neglecting the terms involving i and 9,

7j^ =[JF/,O 	Li

+ s Pa c c(N) (ju 4^u fZ R %V, ^^s9

6,(K)  ( 	 1ZR Sim ^(i+/4 jZR ^i^^c`}^R ^•

where is given in Eq. (2.2), and

Z

I

assuming quasi-steady airflow, C ' (K) = 1 , and for a zero value of XA , and

_ .082, the expression for shear (4.1.1) is integrated into

I	 ^

sti = ' i ^^` G R3 /u l A x dx — ( i5 ^^ dx
S4	 t

+ 318t•4S 91A 5; 	 1Q^ ^•oil +•1Sjju4I",)0)^i

-^-^'^41/ln ^jj^ .I.. Z^+=S^•n j^) +^ISjju^^-f- i/A sin2^^ at

N	
O

+ (X4+X" --34 (it I.),?")+13J

— ^• 3y5 (cR) -^-• 69 (c R)/^'^ Sim ^i^ 9•

(4.1.2)

- z Pac
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E

,^uhaG.	 R

X= S.

(A) d 	 (4.1 a)St
R 

ARIH 'M (A)j'jfx^_ R	 1
q" 7) A5 (Mo

For uniform blade mass distribution; X  = 1.5, X 2 - -.5.

Using the time averaged form of the coefficient involving harmonic

terms, Equation ( 4.1.2) is approximated to

1 

Sh =- s 
PaGR3 

'/^` S^ xdx+ • 31 80 —•0ll ^ -1( +I3^ ' B

(Y' + -Y"

(4.1.2a)

The function e(,) is now to be determined in such a way that the

shear is reduced to a fraction S, (0 < S < 1) of its value without control

pitch input. That is,

Sh = s•(sh)g.o

which on using Eq. (4.1.2a) gives



B	 — 3 (1 -5)
0

I+1.381? a
(4.1.5)

pr'
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_^ -5)^ Tf^)+•^, 8 (e s^^ _.iii C^=^ ^ y+ ^ 1-Y, y-
+,Xj N —5 ^	 CI +1.3^ju'^ B— • 335^Cfi^Q^.s O

1

where	 ?(t')	 5/Lxjx
I

is given in integrated form in Appendix B. While I and g are to be obtained
from the modal Equation ( 3.9) with 9 set to zero. They simply represent

the blade response to fuselage upwash, alone'(with no control pitch input).

Substituting the Fourier expansion of A, a and g in the form

+ ^-7 C

c	 S

C/) 1 D +	 `4 '"7'1/ +^A1 sl'11 ^W)
J	 7')

^	 5

(4.1.4)

with similar expressions for I and .1 into Eq. (4.1.3) and equating the

coefficients of cos nVo and sin nV and the constant term to zero leads to

the following equations.
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c	 ^

"'

where	 3 ^^tl •38^^ • 333- (0) 
nP3

- -An (C-0)71, 3 (It-1 )®,g'j
(4.1.7)

-1xns •318-r

ti
z— •318 1 - xj r	 •011-A

ar

and {D} is calculated from Eq. (3.12) with {A} set to zero,

-1

1 01 - ^^^ F	 (4.1.8)
N Z

ti

From modal Equation, 3.12, can express {D} in terms of {g}

-1	 c

^^ = l^^ 1 Rl 
09 s -^- F

N	 w/ B (4.1.9)

U/ 
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ec

Place this into Eq. (4.1.6) and solve for 	 n
s

en
C	 -1	 -1

F1 6- 5)?

a 
S 

__ ^^1_ Iw^I^^ R3 ^-S	
_^	 T`

T

(4.1.10)

which together with Eq. (4.1.5) allows the calculation of all the Fourier

coefficients in the series expansion of e, Eq. (4.1.4). The pitch angle

thus obtained is expected to reduce the fuselage caused blade hub shear by

(1-S) percent. The resulting blade response may then be calculated from

Eq. (4.1.9). The constant S o and go involved in the Fourier series of

(Eq. (4.1.4) are obtained from Eqs. (3.9)

•111+ • 115 '1 8,+F

	

o	 Y

q =: W(RM)(•0188— •0 3Bl1A"
A

 +Fs
O

	

o	 =-
Vs	 (4.1.11)

4.2 Minimum Time Averaged Blade Deflection

The blade flapping motion is an important factor in the noise

generated by rotating blades. It is also considered that a major

component of blade lagging motion (in-plane motion) is caused through the



28

coriolis effects associated with rotating blade moving out of its plane

of rotation. However, it is possible, at least in principle, to minimize

the overall time averaged blade deflection due to fuselage disturbance

through appropriate pitch input.

The goal is to minimize the integral

srt R

o C

with z given by:

Substituting in the integral and integrating from X = .0821 (hinge

offset) to 1 gives

11T

o	 (4.2.1)

with a and g governed by the dynamic equations expresses! in Eqs. (3.9).

The pitch 6 that would minimize I is to be determined. This is a variational

problem which will be solved here through harmonic expansion of the

functions involved.

Let
Q^ )̂ s Q,+ B"in" 'W+0. g;." 

r YI

0') _ fie+ ^ ^9C
 ^^^'+9

S
 g","^`^
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Substituting in Eq. (4.2.1) and considering that

S
rr11 ^)v g^^r ^, ^' d.^ ^ d

a
$/J 1	 ZR

Tr

I becomes

1 1

r (4.2.3)

in which the Sn and gnS are related to en an d 8S through the dynamic

equation expressed in harmonic form in Eq. (3.12),

C.

9	 d*

	

I C-3

(4.2.4)

Let for simplicity

—I

17-j

	

w ti	 ti
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The constants So and go are related to 90 through Eqs. (3.9),

°r

h,Ai + FA
Oo	 s

•	 ^i (4.2.5)

The minimum conditions for I are

= o
*80

TO ^aM

which, using the expression for I from Eq. (4.2 . 3) leads to the following

equation for e o and the 6's

-1-0. M +
o	 ^•

C CC
1	 Q^	 s a ^*

3	 d e„`	 be,`	 as c y

(a)

(b)
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^.. ^C - ^"— t ^
tzq

	

 a Og	 .1 4` a °^'c ^. g ate- .^ O

(C)

From Eq. (4.2.5) and (a), e o is found to be

F, ((zi-i••i^SN) _ F,. (•ot88—•o38sua^ (6)

eot	 v, 4	 Vs 4

?l ('lil+•IIS^'^ 1	 ?l (R14) 3 'o(BB •0382 s^ ^ 	 (4.2.6)

	

4	 V_

From (b) and (c) combined with Eq. (4.2.4) get

3 ?n, 3Z s1 / •ZZ3 1 , • 2 7*1^^D^ ^ O

3 zty izis i • Zi: •1 
Z+1^ D	 O

ti

ec

replacing {p} by	 n l through (4.2.4; leads to

asn

C	 A

^ ?11) ^ Z31 ! '173) / •1	
'^ ^ZJ

- j+ le-] I F^	 0	 (bl )
6*

t

es
' 0
	 1

(•lip, 3?:s, • 1t, 1 , • ^74i I?^^

MO
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k	 Let for simplicity denote

s	 1	 ^	 s
^ Z.,+^Zst + '1 7^i +•7 Zit ^ j Tii^i:t ^ Ẑ ^ Z^+•l Z^^?^^ t• 2 I,N Z4 ^101
+4141+-341"ZOi-•1 Z3	 Z	

l a	 i	 z	 z
^Zls +.1 

^ 4s	 3I^,+#-7^:t•2 Z3z+•? Z^s

I -L71 1 ) L +411 • 171 1 , •s Zat, jcj F
ti Ar

Tr^

13- ^a'^ 3 ?̂ 3 •Z z33 ^ ^= z^' 3,1^ jFj  (4.2.7)

I
	

I
Equation (b) and (c) then take the form

6 `	 —VC0	 4 -
N 62	 W

giving

10^
(4.2.8)

The values of eo , ec and en, S obtained from Eqs. (4.2.6, 8) are then

used to calculate the required control pitch angle from its series expansions

given in Eq. (4.2.2). The resulting blade response is subsequently obtained

using Eqs. (4.2.5, 4) and the relation Z = nl 0 + n2 9 .

--
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CHAPTER 5

NUMERICAL RESULTS AND DISCUSSION

Numerical calculations were carried out on a digital-analogue

computer for the MIT (IBC) model rotor at values of advance ratio of .2 and

,4. Figures 5.1-8 display the results graphically. The non-dimensional

parameters characteristic of the rotor are summarized in Table 5.1. In

order to study the full scale effects due to more effective flexibility of

blade, numerical results were also obtained with a Lock number three times

larger than its value for the model rotor and are shown in Figs. 5.9-16.

It is seen from Figures 5.1-16 that the required blade pitch variation

for either reduced hub shear or minimum deflection of the blade barely

exceeds a maximum of one degree in all cases. However, the extent to which

the fuselage upwash as generated from Eq. (2.2a) would modify the effective

blade section incidence may be calculated from the relation

X

which turns out to give an average value of about +1 degree over the blade

span at u - .2, and +2 degrees at u - .4; when the blade is at 180 0 azimuth,

while the maximum pitch variation required for minimum overall blade deflec-

tion is seen from Figs. 5.4,8,12,16 to be about 0.3 and 0.7 degrees (for

180° azimuth position) at rotor advance ratios of .2 and .4, respectively.

These figures are about one-third of the average change in incidence over

the blade length as effected through the upwash flow. But, it is to be
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noted from consideration of Eq. (5.1) or its plot in Fig. 5.0 that a

much larger amount of the upwash induced blade incidence is concentrated

over the inboard half of the rotor blade where not only the dynamic pressure

is lower due to the small value of blade transverse velocity (nr), but also

the contribution of the upwash loading to blade deflection is less because

of the existence of a smaller moment arm over the inboard region of the

blade.

The reduction of blade hub shear is seen to lead to an increase in

the peak-to-peak variation of the bending mode (g), in general. Thus, the

hub shear is alleviated at the expense of increasing blade bending stresses.

One would then expect that in the full size rotor with more effective blade

flexibility, the blade hub shear to be less than its value in the model

rotor; which is found to be the case from comparison of Figs. 5.1,5,9,13.

However, the increase in the bending mode peak-to-peak variation is seen

from Figs. 5.1-16 to be by factors of about 1.6 and 2.4 for 80% and 100%

reduced hub shear at u - .2, respectively. While, at rotor advance ratio

of .4, the increase is seen to be by a factor of about 1.6 for both 80% and

100% (zero) reduction in blade hub shear. This indicates that it is

possible to further reduce the blade hub shear at higher values of rotor

advance ratio without causing additional increase in the blade bending

stresses.

The blade rigid flapping is seen to be suppressed by a factor of about

7 through pitch control for zero hub shear. The figures show that the

flapping (0) is generally decreased through hub shear reduction, which is

not undesirable. Anyhow, the case in which the blade rigid flapping is

•^	 :`.lair '...::,,.. t

i
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qua , radian

.2

.1

i.0

Tip

.2	 .4	 .6	 .8

Hub

FIG. 5.0 Change in Blade Section Incidence Due to the Fuselage Upwash



suppressed best is seen to be that of the minimum deflection criteria.

Figures 5.4,8,12,16 show a decrease in s by a factor of more than 70 with

pitch variation for minimum blade deflection. The effect on the blade

bending mode, in this case, is seen to be insignificant. The Justification

for this any be that the blade overall deflection, proportional to (0
2 

+ .6g2).

is dominated by the value of S through the fact that it is an order of

magnitude larger than g as seen from Figs. 5.1,5,9,13. However, the results

do show a decrease in the hub shear by a factor from 4 to 5, but with

incrc!,sed oscillation.

The criteria of minimum blade deflections seem to be superior

to that of shear reduction, except for causing increased oscillation in the

blade hub shear. As, it suppresses the flapping mode by a large amount

and reduces the hub shear by 70 to 80 per cent, while causing no increase

In the bending mode, thus preventing additional blade stresses as a result

of the control pitch input. Besides, it is observed from Figs. 5.4,8,12,16

that the pitch variation required in this case is easier to implement

technically in contrast to the reduced shear condition which would require

multi cyclic variation of blade pitch 5.2.3,6,7.
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f

TABLE 5.1

The values of the MIT (IBC) model rotor parameters as studied in

the present work are listed below:

y	 = 2.294

Yi	 = 1.078

^2 =
3.55	 (at n = 12.5 Hz)

RM	 = (= Ml	.959

X 
	 = 1.642

Defined in (4.1a)
X2 = -.661

CR = .0821

E	 = .0821

t
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APPENDIX A

The general time dependent form of the various coefficients involved

in the modal dynamic Equations (3.9a,b) are:

1

\ L

f	
R
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1
m4^ _ G 

(K^ (X -j-^ Sim ^/ ns d x
1

1
s
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1
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I

Zf RM G (K f (X + f19in W)/ '̂! QP7 ' C am! t' C R d X

t	 I`

J

y .̂} ?l RM G (K ^x + `^^^ ^)^ rv7^i'• R ) X t R) d X
Ji

1

mnA1= ir( RM)(cA) IC(K)•^y—^l^ls^x+^u5jIAy'^--dx
JJ	 J E

I

01	 Y CRM
I.

< <K) (X +' IM Sign ^)	 ^ X
f

where y is the Lock number defined as

4'

RM is the ratio M l /M2 given in Eq. (3.11)

C ' (K) is representative of a mean value for C ' (K) over the blade span,

usually based on conditions at blade three-quarter radius. For quasi-

steady air flor, C ' (K) = 1.

The time (^) averaged coefficients expressed in Eq. (3.10) were

calculated from the above relations using a value of (.0821) for the hinge

offset (^), 0 for X  and quasi-steady air flow was assumed (C ' (K) = 1).
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APPENDIX 6

Fuselage Aerodynamic Forcing Functions

The expressions for the forcing functions F 
Al 
M and F (^) represent-

^2
ing the upwash flow effect of the fuselage in Eqs. (3.9a,b) are:

1

(YO)	 )V)

	

2	 f

where a(x,^) is the fuselage upwash given in Eq. (2.2), which is of the form

	

(X , 5p) == — 	 /z
161CX' Bx Qr7 	A3

Now, the terms involving sin 'p in Eq. (b.l) are averaged to zero in

time because of the symmetric property of X(y,n) about ^ - n. Besides,

they are also expected to be small compared to the remaining terms,

considering that a(n,v)) is concentrated around 180 0 azimuth (where sin

is small) as is noticed from Figure (2.3).

The forcing functions are then approximated in time averaged form to:
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1

jy)

(Xj )

	
(B.3)

The functions n l and n2 are the rigid flap and lst bending mode.

__ E

+( x= 1 j+=
R

with these and the expression for a(n,O) given in Eq. (8.2), Eqs. (B.3)

in integrated form become

oe)

in which F(x.0 and G(x,o) denote the following expressions:

16(1-1)" 
ho	

2-C	 Y)) +
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+ 1 ch Z cx- B	 -	 - - x

4 ' -f^ c cx= 8X fn(n

SAC-36rel(R- +

rC
c x= OX Qj (n- Ij +A	 c ja	

s

)cx_ g 9161-	 3 FAX/
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2 t

5y i
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U (XI
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8 s cx- 6 cm n-	 (r _y)
4 Ac—

The integral denoted by T(y) in the expression for blade hub shear

of Chapter 4. is integrated to
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f
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The parameters H, A, B and C involved in a (Eq. B.2) are related to

the orientation of rotor with respect to the fuselage. The values used

in the numerical calculations are from Eq. (2.2a):

H - .79

C - 16.52

B = 16.86

A - 4.92

The harmonic components of the functions F, G and T were calculated

using the numerical procedure for the Fourier analysis outlined in (a].

The Fourier expansions thus obtained were plotted together with correspond-

ing exact functions, in Figs. (B •1^3 ), using 9 harmonics. In the

numerical calculations, nine harmonics were used to approximate each

function.

i

J

i
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