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1. INTRODUCTION

A Bayesian technique for stratified proportion estimation and a sequential

sampling procedure based on minimizing the mean squared error (MSE) of the

posterior Bayesian estimator was developed by Pore (ref. 1) and tested by

Lennington and Johnson (ref. 2) for the two-category case. The most favorable

results were obtained when the prior d i stribution was modeled as a beta dens-

ity function. These favorable results stemmed from a combination of the math-

ematical ease in developing the est ,:..or and theoretical MSE, the ability to

fairly closely model the empirical prior distribution with the beta, and the

high accuracy in the data analysis. Virtually no bias and an MSE less than

the proportional allocation case were reported. These results were obtained

from analyses using Land Satellite (Landsat) multispectral scanner (MSS) data

in which stratification was achieved by clustering picture elements (pixels)

in a 9- by 11-kilometer area referred to as a segment. The two categories

used were predominantly small-grains agricultural crops and nonsmall grains.

In section 2, the Bayesian development is presented for the three-category

case, and in section 3, it is generalized to the k-category case. The three-

category case might be used where, for example, barley is to be estimated

within the small-grains category. A procedure of directly estimating barley,

other small grains, and nonsmall grains might be tested if labeling practices

allowed the direc, labeling of barley and other small grains.

The k-category case in section 3 is presented for completeness and to document

the results for future crop estimation possibilities.

The environment of these developments is as follows:

a. The segment (population) has been clustered (stratified) into several

subgroups,

b. Pixels (samples) can be selected randomly within each cluster, and

c. The clustering of segments (with a given algorithm) has been performed in

the past and compared to the actual labels of the pixels. Furthermore,
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the clustering algorithm performs somewhat uniformly across segments; that

is, the rates at which different purities of clusters are generated is

approximately the same from segment to segment.

Sections 2 and 3 present the development of estimators for the proportion

estimation of categories within a cluster. The estimator is then applied

separately to each cluster to obtain segment-level proportion estimates. The

MSE is obtained in the same manner. Remarks in section 4 give additional

information about obtaining segment-level estimates.

Within a cluster, the true proportion of category i is denoted e i , the

estimated proportion, d i , and x i denotes the number of pixels labeled as

category i.

r
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2. THE THREE-CATEGORY CASE

In the three-category case, e 1 + e 2 + 6 3 = 1, and the conditional distribution

of x 1 , x 2 , and x 3 is

(xl } x
2 + x 3 )	 x1 x2 x 3	 x1 x 2	 x3

f (x i ,x 2 ,x 3 1a 1 ,e 2 ,6 3 ) =	 xl x2!x3!	 a1 a2 e3	
= MOe1 e

2 (1 - a1 - e2)

where 6 i E(0, 1) and x i E(O, 1, ---).	 This is a multinomial model:	 a

generalization of the binomial model used in the two-category case.

We assume that, from previous experience with the clustering algorithm, the

distribution of the array ( a 1 , 6 20 6 3 ) of cluster proportions can be modeled as

a1 a2 6 
a3

9( a 1 , e 2 , a 3 ) = K O a 1 a2 3

KO6 
a l e a2 (1 - a 1 - 

a2)a3

where	 a1,a29a3 > -1	 61e [0,1], a 
2 

E [0,1

r(a 1 +a2+a3+3)
and	 KO	 r a 1 + 1 r a 2 + 1, r a 3 + 1

The proofs that f and g are indeed probability density functions (pdf's) are

given in section 3.

"low using the notation 0 = (9 19 6 29 a 3 ) and X = (x1,x20x3)

h(0^X) =	
a f X10
D

I	 1 -a
where	 p(X) =	

2

f

	 g(0)f(Xl0)d61d62

0 0

r ( x 1 + a 1	 1) r (x,	 a, + 1) r (X 3 - 3, + 1)

' k 0	 x 
1

+ X -) ' X, I  a 1	 a, 	 3

3



f
Now	 al = E(91 IX)= 1 1-e2 e1h(OIX)dalde2

0

x 1 + a 1 + 1

= x 1+ 
x 2 + x 3 + a l

+ a 2 + a 3+

	

^2 - E(a2IX) 

I 
1	 1 -e2 

e 2 h(oIX)del de 2 f0

	

0	 Q

x 2 + a 2 + 1

= x 1 + x2 + x3 + a 1 + a 2 + a 3 +

^ 3 = E(1 - a^ _ e2^X) =fifi-e2 (1 - a1 - a2)h(OIX)delde2

x 3 + a3 + 1

- x1 + 
x 2 + x 3 + a l + 39 + a 3 77

Assuming NO = x 1 + x? + x3 is fixed, expressions are easily derived for the

bias, variance, and mean square error (MSE):

A 0 = a 1 + a 2 + a3

x i + a i + 1

3 i a 90 + A 0 }

N0ai +ai +1

	

E(e i ) =	 ,r	+ A
'0	 0 +

a i + 1 - a i (A 0 + 3)
bias ( a i ) = E(e i - a i ) =	 NO	 0 + 3

x - N2
'Jar (a i ) = E(e i - Ee i ) 2 = E N i

+ A 0 iy

0	 0T

N0 6 1 (1 - 62)

('N0•A0+3)

4



MSE (e i ) = Var 9 ; + [bias (ei)]2

N e.(1 - e.) + a. + 1 - ei^+3)

0 i	 t	 t

(N0 + A
0 + 3)



3. THE K-CATEGORY CASE

The K-category case is merely an extension of the three-category case. Proofs

have been omitted from section 2 since they are special cases of those

presented in this section.

We begin by assuming that the prior distribution, the distribution of the

array o = (e l , A 2 , •••, 9 k ), can be modeled as a generalized beta pdf.

Theorem 1: The function

k	 a.

g ( o ) = g(91	 9k) = K	 II ai'

1

k-1	 ak 

F,
k-1 a

)	

i

K • ( 1 -	 aj	 ^i1 

where	 9i = 1, 8  ;, 0 for i e (1,	 k}

k

=
r ` 4 (al +

and K 
	 1)/

II r(a^ + 1)
1

is a probability density function for each set of (a i l such that

a i > -1, i : (1,	 k).

Proof: The function is obviously nonnegative and continuous for 0 < 9i < 1

for each i.	 Hence, it remains only to show that it integrates to 1. 'notice

that if k = 2, g reduces to the well-known be ta pdf; i.e., *he theorem is true

for k = 2 si.ice

	

1	 a.	 a	 r(a. - 1)r(a	 + 1)

t I (1 - t) 2 dt =

	

r	 r'al + a2 ?

	

f
	 L

0

for any choices of a l , and a, > -1.
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From here, we p roceed by induction on k. We assume that the theorem is true

for k = n; i.e.,

n-2

f1fl- a l  ••. 0,f 1-E 9r n-1	 a i	 n-1 a n n-1

r=1	 r,9. I1 -	 11 d o i=1	 1	 j=1	 p=1

n-1

11 r ( a i + 1))r(an + 1)
_	 i=1

n-

	

r	 (aj + 1) + a n + 1
i=1

for all choices of a l , a t , • • • , a n > -1.

9

We then use the substitution t = ^ n	to evaluate the integral in

j =1

question for the values a l , z2,	 an+1 in the case k = n + I.	 This

integral is given in equation (3-1) on page 8.

By the substitution of the values a n , a n+1 , in the known case k = 2, and the

values a l , a 2 , •••, a n+1 , and (a n + a n+1 + 1) in the assured induction

hy pothesis, this inte g ral reduces to

14

-I-1	 n

	

F1 r(a i	1) r(a n ' a n+1 ` 2)	 r(a	 )r y a	 +1)	
n r(a i	 11

=' 	 n+l	 n+'.
n - 1 r 

an	 a n+1	 n

	

(a	 1)	
2]

+' 
a	 7[

=1 	 .=1
J

and nence, a(0) is a pdf. QED.

The parameters (a i } are to be determined by an er p irical fitting nrocedure

using previous experience with the clustering algorithr.

3
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The conditional distribution of the observed frequencies X = (x l . r 2 ,	 xk),

given the true proportions D = (9 1 ,	 9k), is the well-known multinomial

distribution:

k	 x i 	k-1	
) xk k-1	 xi

	

f(XIO) = M	 1 ► 9 i	 = M 9j	 Ali ei

where 0 < 9 i < 1.	 9i = 1, x i E i), 1, 2, •••} and
i

rll , ^xi	 (^ xil^

M 	 k	 = k
F1 r(xj + 1)	

xji

i	 1

Now the posterior distribution of 0 is

h(OIX)	 9(0)f X 0
p

k

1 . 1
i	

r ( x i + a 	 + 1)
where	 p(X) = K. • M	

k

r r ( x j + a j + 1)
i

Theorem 2: The marginal distribution of X is p, given above, when the prior

distribution of 0 is the generalized beta pdf given by g, and the conditional

distribution of X is the multinomial f.

Proof: The joint distribution of X and 0 can be expressed in terms of g and f

as	 t(O,X) - s(0) • f(X!0)

and	 p(X)	 ft(O,X)dC = fg((D)f(X!O)dO

k-1

	

1 1 -9	 1 -E 9
1 ...	 1	 i g(0)f(X!O)d9k-1 ... de2d:1

0

	

fo0

;J



where	 g(0)f(XIo) = K	
k-1

M 	^1 - ^ 
ej

xk+ak k-1 
0 
xi+ai
i

1	 1

From the induction hypothesis proven in Theorem 1, it is seen that g(o)f(XIo)

integrates to

k

r ( x i + a i + 1)

P(X) = K • M . i=1
k

r 
i

( x i + a, + 1)
=i

Now, using the same integration techniques, we derive the estimators.

k	 k
Theorem 3: For f and g, as defined above, and us i ng N =	 xi and A =	 ai,

i=1	 i=1

e p = E(e p IX) = 1 eph(OIX)do

	

x p +a p +1	 xp+ap+1

k	 - N + A + k
( x i + a i + 1)

1

for each p E {1,	 k}.

Proof:	 It can be seen that

F k	 k-1	 xk+ak k	 +3 p r(x. + a. + 1)	
x .

'1 -	 3.1	 H 9.	 ai

fe h(O IX d0 =

[Y-
i=1	 ^	 ^

P	 )	 k

	

r ( x i	a i	 1)
i=1

11



k

i (x
i +ai+1)

Thus	 ep =	 i=1

fl r(x i + a i + 11

k=1

k

n r(x i + a i + 1)r(x p + a  + 2)

i=1

iso

K

r	 (xi + a i +1) + x p + a p + 2
i=1

r ( x p + a p + 2)

7x p + a p +  )

k

r ( x
i 

+ a
i + 1)

i=1	 _

K
r	 (xi + a i + 1) + 1

i=1

xp+aF+1
_ k

(x. + a. + 1)

i=1

QED

The MSE of the Bayes posterior estimator is eas4ly derived:

Ne i + a i + 1

E(e i )	 N + ,A + k

a i + 1 - e i (A + k)

bias (e i ) =	 N + A	 k

2
	

rx i - Ne i 2

Var (e i ) = E[e i - E ( e i )) = E[-^,+  A ++ k

Ne i (i - ei)

(N +A+ k)

e i ) + 
Lai 

+ 1 - d i (A + k1]`

MSE (e.)i (N-A-k)'

12



4. REMARKS

The cluster-specific results presented in sections 2 and 3 can be assimilated

into segment-level statistics by the following equations:

s	 = the number of clusters or strata

Mq	= the number of pixels (samples) in cluster (strata) q

ToT = the tctal number of pixels in the segment

s

i	
Mi

9
1

, q = the true proportion of category i in strata q

P i	= the proportion of pixels in category i in the segment

E Mo 3 i ,q
q=1

6 i , q = the estimated proportion of category i in strata q

P i	= the estimated proportion of category i in the segment

s M

E ToT ^i'q

s M
bias (P i ) _	 Tor bias (d i , )

q=1	 q

s	 2
Var (P) _

(,;o

Var (A i , )

q=1	 q

x

i

13



MSE (P i )	 Var(P i ) + [bias (Pi)]2

IM	 2	 5 M-	 2

1Toq	
Var (6

i 
,q) }	 o	 bias (6j)

q_1	 _i=1

s2 ^	 s	 M.	 2	 ..	 2

	Var (,6., ) +	 [bias e.,

q

E ^
	

]

q=1 	 °	 i q	 i=1	 ° 

s	 s	 M M.
+ Y	 E 2 —q7

J 
bias (e i , q ) bias (6i,j)

q=1 j=q+1	 ToT

= F (;o\2 MSE(6iq)
q=1	 1 J

s	 s	 M M.
+ E	 E 2 --qt' bias (5 i , q ) bias (ei ,j)

q=1 j=q+1	 ToT

One application of the theory developed in this report is to randomly select a

predesignated number of pixels from a segment, note the pixel labels and

breakdown by clusters, and implement the Bayesian approach (above) to calcu-

late 9 i9q (i = 1, •••, k), P i , and MSE (P i ). One problem with this approach is

that each cluster may not contain two samples; thus, MSE (6 i5q ) cannot be

estimated, and the MSE evaluation of the estimator, P i , will not exist in this

case. Another problem is that the samples may be inefficiently allocated to

obtain a small MSE (P i ).	 In an attempt to resolve these problems, the alter-

nate sampling strategy of sampling in proportion to cluster size can be used.

Again, however, since the MSE (6 i9q ) is a function of cluster size, number of

samples, and the proportion a i , q , the optimal sampling strategy will depend on	 i

cluster purity (as well as size). Sampling in proportion to cluster size

cannot be optimal. The following approach is a first attempt at addressing

the problem of stratified sampling within a segment.

14
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In the two-category case, two samples were selected from each cluster (to

insure an estimate of the variance). Then, additional samples were selected

sequentially so that, at each sampling, the sample was selected from the

cluster that was expected to maximally minimize the weighted cluster MSE for

the one proportion estimate. The weighting is the square of the cluster size

as a proportion of the segment. Therefore, the expected change for each

cluster q is as follows.

	

x.,	 +a. +1
a i , q = a i , q (n,x) _	 +	 + ^	 k = 2

q

	M 	 2INa-, (n,x)[1 - a., (n,x)]

MSE* [a i , ( n , x )] _	 q	
q

q	 o	 '	 (Nq ^ A + k)2

[ai + 
1 - 

a1.q(n,x)	

(A + k)]LI

VSE* = MSE*[a(n,x)] - [1 - a(n,x)] + MSE*[A(n + i,x)]

- a(n,x) - MSE*[a(n + 1, x + 1)]

Notice that NMSE* is a function of the crop being estimated, though this is

hidden since there are only two categories. In the k-category case, this

dependence can be averaged out for each cluster q by using

k

L )MSE*(6i9q)
i=1

For k _ 2, ) = AMSE*(a i ,q) for either i, and this problem does not exist.

Also, although oMSE* is the weighted cluster MSE, it does not exactly re p re-

sent the cluster contribution to the segment MSE: MSE( O i ). It would be

preferable to calculate a oMSE(P i ) for each cluster and sampling, but earlier

experiments used )MSE*(d i , q ) as a computational expedience and an

approximation to eMSE(Pi).

The exact relationship of the two is given in the last MSE(P i ) equation given

above.

15



The oMSE criterion, either oMSE*(e i , q ) or oMSE(P i ), would appear to be the

optimum approach in extending to multicategory (k > 2) proportion estimation

also. The unresolved issue is the determination of which categories to

include and by what weighting.

k

That is	 oMSE(P)q =	 ai 6MSE(Pi,q)
i=1

k

ai	
0,	 ai = 1

i=1

k

or	 oMSE*(e)q =	 ai 6MSE *(9i.q)
i=1

The weightings (a i ) will determine the relative importarce of the respective

crops, or vice versa. another possibility would be to select from the cluster

q with the largest oMSE *(d i , q ), i =	 1, 2,	 k. The particular criterion

selected should be tailored to each specific application and determined

through empirical studies.

16



5. SUMMARY

A Bayesian technique for stratified proportion estimation is presented for the

multicategory case, and detailed equations are derived for the case of a

generalized beta prior distribution. Additionally, a technique of sequen-

tially sampling from the clusters to achieve minimum mean squared error

segment proportion estimates for the categories of interest was presented, and

some computational issues were identified.
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