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1. INTRODUCTION

A Bayesian technique for stratified proportion estimation and a sequential
sampling procedure based on minimizing the mean squared error (MSE) of the
posterior Bayesian estimator was developed by Pore (ref. 1) and tested by
Lennington and Johnson (ref. 2) for the two-category case. The most favorable
results were obtained when the prior distribution was modeled as a beta dens-
ity function. These favorable results stemmed from a combination of the math-
ematical ease in developing the est ":.or and theoretical MSE, the ability to
fairly closely model the empirical prior distribution with the beta, and the
high accuracy in the data analysis. Virtually no bias and an MSE less than
the proportional allocation case were reported. These results were obtained
from analyses using Land Satellite (Landsat) multispectral scanner (MSS) data
in which stratification was achieved by clustering picture elements (pixels)
in a 9- by 1l-kilometer area referred to as a segment. The two categories
used were predominantly small-grains agricultural crops and nonsmall grains.

In section 2, the Bayesian development is presented for the three-category
case, and in section 3, it is generalized to the k-category case. The three-
category case might be used where, for example, barley is to be estimated
within the small-grains category. A procedure of directly estimating barley,
other small grains, and nonsmall grains might be tested if labeling practices
allowed the direct labeling of barley and other small grains.

The k-category case in section 3 is presented for completeness and to document
the results for future crop estimation possibilities.

The environment of these developments is as follows:

a. The segment (population) has been clustered (stratified) into several
subgroups,

b. Pixels (samples) can be selected randomly within each cluster, and

c. The clustering of segments (with a given algorithm) has been performed in
the past and compared to the actual labels of the pixels. Furthermore,



the clustering algorithm performs somewhat uniformly across segments; that
is, the rates at which different purities of clusters are generated is
approximately the same from segment to segment.

Sections 2 and 3 present the development of estimators for the proportion
estimation of categories within a cluster. The estimator is then applied
separately to each cluster to obtain segment-level proportion estimates. The
MSE is obtained in the same manner. Remarks in section 4 give additional
information about obtaining segment-level estimates.

Within a cluster, the true proportion of category i is denoted 91’ the
estimated proportion, Bis and x; denotes the number of pixels labeled as
category i.
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2. THE THREE-CATEGORY CASE

In the three-category case, 61 + e2 + 93 = 1, and the conditional distribution
of X1s X2, and x3 is
(xl + xz + X3) Xl X

X
3
fx)oxp:%3181,85,83) = X T, 1] Moe (1 - 8 - 9)

where eie(O, 1) and xie(O, 1, *«¢). This is a multinomial model: a
generalization of the binomial model used in the two-category case.

We assume that, frcm previous experience with the clustering algorithm, the
distribution of the array (61,62,63) of cluster proportions can be modeled as

_ 1 a2 a3
9(8),85,83) = K8, 78,785
d, a a
3
Kg®y 8,71 = 8 - 8,)
where a)135,33 > -1 8¢ fo,11, B¢ (o,1 - 91]

r(a1 ta, + a3+ 3)
I‘(a1 + 1)F(a2 + I)F(a3 + 1)

and KO =

The proofs that f and g are indeed probability density functions (pdf's) are
given in section 3.

Now using the notation @ = (8 1290 3) and X = (xl,xz,x3)

1 l-e2
where p(X) =f f g(O)f(XIa)d81d62
070
o I‘(x1 tay ¢ I)I‘(x2 ta, + l)r(x3 +ay v 1)
070 ‘TTXI VIR TN 3, +ag ¢t 3)
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. 1 l-e2
Now 1 E(eIIX) -ff elh(e>|x)delde>2
0“0

x1 + a1 +1

x1+x2+x3+a1+a2+a3+3

n 1 (-9,
8, = E(ezlx) -[ f ezh(o|x)deld92
0 0

x2+a2+l

Xy F Xyt Xgta ta,tagt 3

1 1-e2
E(1 - 8 - ez|x) =[f (1 - 8 - ez)h(ow)delde2
0“0

X3 + a3 + 1
X] * Xp * Xq+ a; + 2, + Ay + 3

Assuming Ng = x; + xp + x3 is fixed, expressions are easily derived for the
bias, variance, and mean square error (MSE):

Ao = a1 + a2 + a3
= Xg +a; + 1
E’1'-.‘ + -
0 0
(3,) - 0% "% "]
i N0+AO*3
(.) (. ) a+1-d1.(AO+3)
bias (8,) = E(8, - 8.) = T -
i i i “0 AO 3
~ . . x-N; 2
Var (8) = E(e, - Eai)2 - £ g — - O¢’
0 0
_ Noel(l - 62)
(N, + A, + 3)°



MSE (8,) = Var 8. + [bias (éi)]z

- - 2
gy (1 - 8y) ¢ [;1 b1 -0, (Ag + 3ﬂL_
7
(N0 + A0+ 3)
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3. THE K-CATEGORY CASE
The K-category case is merely an extension of the three-category case. Proofs
have been omitted from section 2 since they are special cases of those

presented in this section.

We begin by assuming that the prior distribution, the distribution of the
array 0 = (el, 92, see, ek), can be modeled as a generalized beta pdf.

Theorem 1: The function
k ai
g(e) = g(el’ooo.ek) = K o [;leqi

k-1 a, k-1 a.
= K ~(1 -2 e).)k s’
T J !

1

where i;ei = 1, ei >0 for i € {1, s+, k}

(g

+ 1)
k
I1 I‘(aj +1)
1

and K =

is a probability density function for each set of {a,} such that

a; > -1, 1 e {1, *°, k}.

Proof: The function is obviously nonnegative and continuous for 0 < 5, <1
for each i. Hence, it remains only to show that it integrates to l. MNotice
that if k = 2, g reduces to the well-known beta pdf; i.e., the theorem is true
for k = 2 siace

1 a; a, ) r(ai - 1)I‘(a2 + 1)
t (1 -t) “dt =
r(a, + a, + 2)
0 1 2
for any choices cf aj, and a; > -1l.
[ a8 Prm

e |



From here, we proceed by induction on k. We assume that the theorem is true
for k = n; i.e.,

n=2
IIL-I-GI ---f1'§1°’ nﬁl e:i(l ) nz-;})an "f[l "
: 0 j=1 =1/ p=1 P
n-1
(EHXT% +1»Phn+ 1)
n-1
r[igl (aj +1) +a + 1]

for all choices of a1, 3y,000, A > -1.

9

We then use the substitution t = n:‘ to evaluate the integral in

1 - 9.
j=1 7

question for the values A Soy ttty A in the case k = n + 1. This
integral is given in equation (3-1) on page 8.

By the substitution of the values a,, a1, in the known case k = 2, and the
values a1 Ay, "0ty AL, and (ap + a4y + 1) in the assumed induction
hypothesis, this intecral reduces to

n-1 n
n fla, + 1)]I'(a +a + 2) ﬂ r(a, + 1)
[1..1 i n n+l r(aml)r(anﬂ*l) N i

n- "T(a. + a +
r[f_%(a,.*l)*an*aml+2] = n+l r

jei

=
[ pumme—| L
ing b
o
C
+
—
(SN

and hence, a(0) is a pdf. QED.

The parameters {ai} are to be determined by an empirical fitting procedure
using previnus experience with the clustering algorithm.
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The conditional distribution of the observed frequencies X = (xl. X9y *0% xk).
given the true proportions O = (81. cee, ek). is the well-known multinomial
distribution:

k X -1 x, k=1 x,
f(XIe) =M. n Sii = M 0(1 - kz SJ) k n 9i1
i 1 1

where 0 < ei <1, i; 91 I [ X; € J, 1, 2, «+¢} and

(-40) (£ )

M o= 1

-k k
+ |
[;lr(xj 1) l;] X

Now the posterior distribution of © is

K
f
E] Fix; + a5 + 1)

k
I:; (xJ. 4><1J.* 1{|

Theorem 2: The marginal distribution of X is p, given above, when the prior
distribution of 0 is the generalized beta pdf given by g, and the conditicnal
distribution of X is the multinomial f.

where p(X) =K « M.

Proof: The joint distribution of X and © can be expressed in terms of g and f

as t(0,X) = g(e) - f(Xl0)
and p(X) = ft(e.x)oo -Ig(e)f(X'O)do
k-1



k-1 Xy *ay k-1 X;*a;
where g(e)f(X]e) = K « M« (1 - ) ej) 8,
1 1

From the induction hypothesis proven in Theorem 1, it is seen that g{0)f(X|e)
integrates to

Now, using the same integration techniques, we derive the estimators.

k k
Theorem 3: For f and g, as defined above, and using N = ) x; and A = b ;5
i=1 i=1

>

@D
1}

0 E(ep|X) =feph(0|X)dO

i xp + ap + 1 _ xp + ap + 1

K N+ A+ Kk
}:(X,- T ag ¥ 1)
i

for each p e {1, =+, k}.

Proof: It can be seen that

11



k
k [T r(x; +a; + 1)[r(x, +a, +2)
r[Z (xy + a; + 1):| =1 ' PP
Thus 6 = —=t | Lo d
p k k
JJI P(x; +a;+1) T ig% (x; +a; +1) + X+ ap + 2
oo
r (x. + a, +1
. ;éxp + ég,+ f; P i - xp + ap +1
X_+a_+
¥ r & (x; +a; +1) +1 séi (x; +a; +1)

QED
The MSE of the Bayes posterior estimator is easily derived:

A Nei +a; ¢t 1

E8y) = v rv v

a; + 1 - ei(A + k)
N+A-+ Kk

bias (51) .

. " - 2 rxi - Nai 2
var (5,) = E[6, - €(8)T = Et———-

N+ A+k
i Nei(l - 61)
B PR,
(N + A+ k)
A N6, (1 - 8.) + [a, + 1 -8+ K12
MSE (8.) = 5
(N+ A+ k)
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4. REMARKS

The cluster-specific results presented in sections 2 and 3 can be assimilated
into segment-level statistics by the following equations:

S = the number of clusters or strata

M

q the number of pixels (samples) in cluster (strata) q

ToT = the total number of pixels in the segment

ei,q = the true proportion of category i in strata q

P; = the proportion of pixeis in category i in the segment
s M
=Z_".{_¢e_
ToT i’q
= the estimated proportion of category i in strata q

P. = the estimated proportion of category i in the segment

o
e
<%
w
—_
0
e
~—
"
e
)
o
pr s
[+V]
w
—
@D >
.'
~
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MSE (Pi) ~ Var(Pi) + [bias (P

2 M 2 A S MJ . 2
q=1( 0) Var (ei’q) B L;l o7 * bias (ej)]
2 . s (M. \2 )

( : ) Var (ei’q) v 2 (T%T) [bias ei'q]Z

S S M M. . R
¢ 3 2 234 bias (8;,,) bias (8;,;)
q=1 j=q+1 ToT 159 i’J

S S
D DD M J bias (55,4) bias (e.,.)

One application of the theory developed in this report is to randomly select a
predesignated number of pixels from a segment, note the pixel labels and
breakdown by clusters, and implement the Bayesian approach (above) to calcu-
late 51, (i =1, veo, k), 5., and MSE (51). One problem with this approach is

q i
that each cluster may not contain two samples; thus, MSE (e.,q) cannot be

estimated, and the MSE evaluation of the estimator, Pi, wil; not exist in this
case. Arnother problem is that the samples may be inefficiently allocated to
obtain a small MSE (Ei)' In an attempt to resolve these problems, the alter-
nate sampling strategy of sampling in proportion to cluster size can be used.
Again, however, since the MSE (6i’q) is a function of cluster size, number of
samples, and the proportion ei’q’ the optimal sampling strateqy will depend on
cluster purity (as well as size). Sampling in proportion to cluster size
cannot be optimal. The following approach is a first attempt at addressing
the problem of stratified sampling within a segment.

14



In the two-category case, two samples were selected from each cluster (to
insure an estimate of the variance). Then, additional samples were selected
sequentially so that, at each sampling, the sample was selected from the
cluster that was expected to maximally minimize the weighted cluster MSE for
the one proportion estimate. The weighting is the square of the cluster size
as a proportion of the segment. Therefore, the expected change for each
cluster q is as follows.

-~ ~ X, 2 .t
i’q % 1

Biaq = 52q(Mex) = Ny * A+ & 5

(M )Z‘Néi g (X)L = 8, ()]
0

MSE* [8., (n,x)]
1an) ' (Nq‘A k)2

+

-~

+ [a; +1 -8, (n,x) « (A+ k)]2)

i 1’q ‘

AMSE* = MSE*[8(n,x)] - [1 - 8(n,x)] + MSE*[3(n + 1,x)]

- 8(n,x) + MSE*[8(n + 1, x + 1)]

Notice that AMSE* is a function of the crop being estimated, though this is
hidden since there are only two categories. In the k-category case, this
dependence can be averaged out for each cluster q by using

k
}: AMSE* (8 i*q)

For k = 2, &4 = AMSE*(ei,q) for either i, and this problem does not exist.

Also, although AMSE* is the weighted cluster MSE, it does not exactly repre-
sent the cluster contribution t? the segment MSE: MSE(Si). t would be
preferable to calculate a AMSE(Pi) for each cluster and sampling, but earlier
experiments used AMSE*( 1,q) as a computational expedience and an
approximation to AMSE(P1)

The exact relationship of the two is given in the last MSE(ﬁi) equation given
above.

15



The AMSE criterion, either AMSE*(éi,q) or AMSE(ﬁi), would appear to be the
optimum approach in extending to multicategory (k > 2) proportion estimation
also. The unresolved issue is the determination of which categories to
include and by what weighting.

’ k :
That is AMSE(P)g = 3, oy OMSE(Py, )
i=1

k
ai>0,2ai=1
i=1

or AMST*(8)q = 1_2'(:1 ay BMSE*(8;.)

The weightings {ai} will determine the relative importance of the respective
crops, or vice versa. Another possibility would be to select from the cluster
q with the largest AMSE*(éi,q), i=1, 2, *++, k. The particular criterion
selected should be tailored to each specific application and determined
through empirical studies.

16



5. SUMMARY

A Bayesian technique for stratified proportion estimation is presented for the
multicategory case, and detailed equations are derived for the case of a
generalized beta prior distribution. Additionally, a technique of sequen-
tially sampling from the clusters to achieve minimum mean squared error
segment proportion estimates for the categories of interest was presented, and
some computational issues were identified.
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