ΝΟΤΙΟΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

NASA TECHNICAL MEMORANDUM

NASA TM -82431

EVALUATION OF ANTI-FREEZE VISCOSITY MODIFIER FOR POTENTIAL EXTERNAL TANK APPLICATIONS

By Robert O. L. Lynn Materials and Processes Laboratory

April 1981

NASA

. .

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

(NASA-TM-82431) EVALUATION OF ANTI-PREEZE VISCOSITY MODIFIER FCR POTENTIAL EXTERNAL TANK APPLICATIONS (BASA) 15 p HC A02/MP A01 CS CL 22B N81-30169

Unclas G3/16 27253

MBFC - Form 3190 (Rev June 1971)

[1.	REPORT NO. NASA TM-82431	2. GOVERNMENT AC	TECHNICA CESSION NO.	L REPORT STAND	ARD TITLE PAGE
4.	TITLE AND SUBTITLE			5. REPORT DATE April 1981	
	External Tank Applications	iscosity modifie	r for Potential	6. PERFORMING OR	GANIZATION CODE
7.	AUTHOR(S) Robert O. L. Lynn			8. PERFORMING ORG	ANIZATION REPORT #
9.	PERFORMING ORGANIZATION NAME AND A	DDRESS		10. WORK UNIT NO.	
	Geoige C. Marshall Space Fi Marshall Space Flight Center	light Center r, Alabama 35	812	11. CONTRACT OR G	RANT NO.
-	SPONSORING AGENCY NAME AND ADDRESS			13. TYPE OF REPORT	& PERIOD COVERED
	National Aeronautics and Sp.	, ace Administrat	tion	Technical M	emorandum
	Washington, D.C. 20546			14. SPONSORING AG	ENCY CODE
15.	SUPPLEMENTARY NOTES				· · · · · · · · · · · · · · · · · · ·
	Prepared by Materials and P	rocesses Labor	atory, Science a	nd Engineering	
16.	ABSTRACT	•••••			
	the intended applications. (simulated, with water suppli air.	Dxygen vent sl ed as a spray,	nutters and verti dropwise, and b	cal metallic sur by condensation	rfaces were n from the
17.	KEY WORDS		18. DISTRIBUTION STAT	EMENT	
	Ice Prevention Space Shuttle External Tank Gelling Agents Dimethyl Sulfoxide Ethylene Glycol Pectin Agarose		Unclassifi	ed — Unlimited	
19.	SECURITY CLASSIF, (of this report)	20. SECURITY CLAS	SIF. (of this page)	21. NO. OF PAGES	22. PRICE
	Unclassified	Unclassi	fied	13	NTIS

MSFC - Form \$292 (Rev. December 1972)

ħ

•

-

For sale by National Technical Information Service, Springfield, V¹, sinia 22151

3

ACKNOW LED GMENTS

The assistance of Mr. J. T. Schell and the Polymers and Composites Branch in fabricating and setting up much of the experimental hardware is gratefully acknowledged. Mr. R. L. Durham of that Branch was particularly helpful.

Samples of pectin were provided by Mr. Terry Schneider of Rockwell International, Downey, California, who was also most helpful in giving background information concerning experimentation performed at his location.

TABLE OF CONTENTS

Page

\$

INTRODUCTION	1
EXPERIMENTAL	1
DISCUSSION	4
CONCLUSIONS	5
BIBLIOGRAPHY	10

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	ET GO ₂ vent/relief valve and manifold	8
2.	ET relief louver simulation	9

LIST OF TABLES

Гable	Title	Page
1.	Selected Physical Properties Comparison	6
2.	Solution Properties	7

iii

TECHNICAL MEMORANDUM

EVALUATION OF ANTI-FREEZE VISCOSITY MODIFIER FOR POTENTIAL EXTERNAL TANK APPLICATIONS

INTRODUCTION

The Space Shuttle External Tank (ET) has several areas which are subject to ice/frost formation. These consist of protrusions which are not covered by thermal protection, and louvers in the oxygen vent system (Fig. 2). While frost formation is relatively harmless, thick accumulations of ice on the Shuttle side of the ET can present hazards to the Shuttle's thermally protective tiles.

Various proposals have been made to prevent or eliminate such ice formations, including the use of hot gases or anti-freeze liquids. The hot gas concept requires large capital outlays and presents the potential hazards associated with the use of large volumes of uncontained oxygenpoor atmospheres. The anti-freeze liquids tend to be highly fugitive, draining away rapidly. To counter this latter drawback, Rockwell International proposed the use of a gelling agent, specifically the pectin/ dimethyl sulfoxide (DMSO) combination.

This present work has undertaken to evaluate this proposal and the overall general concept. It was decided to limit the anti-freeze liquids to DMSO, as chosen by Rockwell, and the commonly used ethylene glycol. A list of thickening/gelling agents was drawn up, but not all were evaluated, for reasons of availability, relative complexity, etc.

EXPERIMENTAL

De-Icers

- 1) Dimethyl sulfoxide
- 2) Ethylene glycol.

Viscosity Modifiers

- 1) Acrylamide
- 2) Agarose
- 3) Gelatin

6) Pectin

5)

7) Sodium alginate

Hydroxy methyl cellulose

4) Gum tragacanth 8) Starch.

Solution Preparation

Generally, solutions were prepared in 50 ml quantities, using a magnetic stirrer and heating to 102° to 104°C. The thickener was dispersed in the de-icer prior to addition of the water and application of heat. Solutions were allowed to cool without agitation. In the preparation of "micro-gels," solutions were prepared as above in 100 ml quantities, followed by cooling with vigorous stirring. Agitation was provided by a split-disc type propeller, using speeds sufficient to maintain a vortex.

Solution Properties

1) Acrylamide was not tested since gel-formers were found which were simpler than this precise three component system.

2) Gelatin appeared to have limited solubility and formed only gelatinous inhomogeneities.

3) Gum tragacanth increased the viscosity of the eutectics and could be useful at higher concentrations. Insoluble components were noted in accordance with literature notations.

4) Sodium alginate and hydroxy methyl cellulose were not evaluated for reasons of timing and availability.

5) Starch was not effective at the 2 percent level.

6) Agarose powder (Bic-Rad Laboratories, Richmond, California) was found to be an excellent gel-former. Gels may be destroyed by heating and do not re-form upon subsequent cooling. "Micro-gels" having a paste-like consistency may be formed by cooling with vigorous agitation. An endotherm was noted in the 12° to 14°C range while cooling with ice to form these microgels. These gels and microgels do not dissolve readily in water and do not tend to completely dry out upon exposure to the room atmosphere for several days. Gel firmness is dependent upon agarose concentration.

7) Citrus pectin (Atlantic Gelatin, General Foods Corporation, Hollywood, California) produced gels as reported by Rockwell International. Powder solubilities appeared to be somewhat lower than those with agarose, but the gels were more water-soluble. Gel-forming minimum concentrations were greater than with agarose, and gel formation occurred over a broad temperature band during the cooling process. Micro-gels could not be formed with the agitation employed, but rather, large gel particles were produced.

Bvaluation of Gei Anti-Freeze Properties

Evaluations were conducted on the vertical sides of a steel beaker, copper piping, and a louver simulation.

1) The louver simulation consisted of 11/16 in. wide aluminum strips embedded at 45° angles in one end of a 2 in. I.D. cork cylinder. with 1/4 in. spacing between strips. This construction was attached to a 3 in. pipe from a liquid nitrogen storage vessel. Gaseous nitrogen was periodically vented through these louvers at high flow rates. Figure 2 shows this set-up, without the gels applied.

Gels applied to these metal "louvers" adhered reasonably well to the upper surface, but were blown off the underside. Micro-gels could be applied more easily and evenly, bu. were also blown off the bottom surface. Ethylene glycol gels tended to be harder and flake off more readily than did DMSO gels. When stored inside, the gels lasted for about a week before the liquid components evaporated. Rain washed away the gels.

No frost formation was noted on gel coated surfaces under conditions of the tests.

2) For simulation of uninsulated tank hardware, the vertical sides of a two-liter steel beaker were used. Liquid nitrogen was passed through cooling coils submerged in ethanol to cool the beaker. Temperature measurements were made with a thermocouple immersed in the circulating ethanol. Temperatures as low as -93°C were obtained. Gels were applied to the side of the beaker with a spatula. Water was supplied either as moisture condensation from the air, in the form of a fine spray from a gun, or in a stream from a squeeze bottle. Considerable difficulty was experienced in getting normal gels to cling to the beaker sides, and an even coating was impossible. Dispersion of the gels in gum tragacanth solution improved the adherence but the gel lumps still caused uneven coating. Microgel pastes could be applied smoothly and evenly and adhered well.

For the controlled thickness experiments, cardboard was taped to the beaker sides to form a well, which was filled with the microgels. In all cases, gels were applied at room temperature and then cooling was begun.

Thin Coatings (ca. 50 mils)

a) DMSO (60/40) with pectin frosted over by the time the bath was cooled to -62° C and water rivulets froze on the surface when applied at -82° C. A 50:50 mixture of this material and the DMSO 70/30 agarose microgel gave the same results. The pectin microgel does not adhere significantly better than the normal gel.

3

ł,

b) DMSO (70/30) agarose microgel frosted over very slightly but slower than the combinations above. When sprayed with a water mist at -46° C, a hard ice coating formed over the pliable gel substrate.

c) Ethylere glycol (75/25) agarose microgel results were similar to those in b), with a slightly stiffer gel substrate.

Thicker Coatings

Bthylene glycol (75/25) agarose microgel:

- a) 100 mils frosted at -51°C
- b) 200 mils frosted at -93°C
- c) 300 mils no frost at -93°C.

All coatings shrink drastically at -93°C, recover at room temperature but tend to "mud-crack" upon recovery. Some liquid loss probably occurred during the overnight warming process.

3) In an attempt to evaluate temperatures closer to -185° C, gels were applied to copper piping leading from the LN₂ dewar. Temperature was measured by means of a thermocouple at the pipe surface below the gel. Temperatures as low as -166° C were attained.

a) The ethylene glycol (75/25) agarose microgel in 400 mil thickness formed a light frost at -140°C, and a heavy frost at -166°C. A drop of water placed on this surface froze immediately but the gel was pliable underneath down to the pipe surface.

b) DMSO (60/40) pectin gel in 600 mil thickness formed heavy frost at -148°C and also froze a drop of water placed on the surface. The gel remained flexible.

Both the glycol microgel and DMSO gel formed brittle solids when plunged into liquid nitrogen. When warmed to room temperature, no differences were detected compared to the original gels.

DISCUSSION

While the Rockwell International work was done using a 50 percent (volume) solution of DMSO in water, much of this work was done at the higher end of the eutectic range. This was done based upon the premise that water contacting the surface will dilute the interface. In test configurations, no differences in effectiveness were detected.

DMSO appears to be relatively more fiammable than ethylene gived, and the gels also appear to burn more readily. Both gels extinguish when the flame is removed and, indeed, drips from the glycol tended to extinguish the spplied flame. Although the vapor pressure of DMSO is relatively low at room temperature, exposed gels give rise to somewhat noxious odors.

Caution must be used in working with DMSO due to its well known solvating power and ability to permeate human skin. Thus, while not particularly toxic itself, it could solvate some available toxins and facilitate their entry into the human body.

CONCLUSIONS

1) Microgels, having a paste-like consistency, can be more effectively applied to vertical surfaces than can conventional gels. These could be formed readily with agarose, but not with pectin.

2) Ethylene glycol is preferred to DMSO for reasons of reduced flammability, health hazard potential, lower evaporation rate, and broader eutectic range.

3) Gelled antifreeze is effective for substrate surface temperatures in the -18°C range, but ineffective for -184°C substrate temperatures when used in "reasonable" thicknesses. It is highly probable that the insulating properties of the gels contribute more to their effectiveness than does the formation of an eutectic with added water.

4) Pectin gels are readily dissolved by liquid water, unlike agarose gels. In theory, pectin should be more effective in the prevention of ice or ice/frost formation. In practice, at cryogenic substrate temperatures, the gel surface itself is cold enough to form ice before any solvation can occur.

	Ethylene Glycol	Dimethyl Sulfoxide
Molecular Weight	62.07	78.13
Boiling Point (760 mm Hg; °C)	197.6	189.0
Vapor Pressure (20°C, mm Hg)	0.06	0.417
Freezing Point (°C)	-13	18
Density (20°C, g/cc)	1.11	1.10
Viscosity (20°C, cp)	20.9	2.47
Surface Tension (20°C, dynes/cm)	48. <	46. 2
Coefficient of Expansion (20°C, cm ³ /°C)	6.2 x 10^{-4}	8.8 x 10^{-4}
Flash Point		95°C
Spontaneous Ignition Temperature in Air	480°C	301°C
Heat of Combustion	-283.3 kcal/mol 020°C	-472.9 kcal/mol @25°C
Range of Eutectic (wt.%)	58-80	55-70

TABLE 1. SELECTED PHYSICAL PROPERTIES COMPARISON

rA.
K 1
5
H
~
×.
0
2
2
• •
Z
$\overline{\mathbf{O}}$
Ĭ.
64
5
-
Ξ.
0
S
0
ш
L,
8
2

De - Icer	V /V De·lcer/H ₂ O	Thickener Grams/100 ml Solution	Solution Properties
		Quies	cent Cooling
OSWO	60/40	Starch: 2	Little viscosity increase down to 15°C, clear soln.
Glycol	60/40	Starch:2	Slight viscosity increase down to -15°C, white ppt.
DMSO	60/40	Gelatin:2	Little visc. inc. r.t., incipient gel at -15°C, white ppt.
Glycol	60/40	Gelatin:2	Little visc. inc. r.t., incipient gel at -15°C.
OSWQ	60/40	Gum Trag:2	Some visc. inc. r.t., viscous cold, some particulates
Giycol	60/40	Gum Trag:2	Some visc. inc. r.t., viscous cold. some particulates
OSMCI	60/40	Agarose: 2	Gel at rocm temperature. slightly cloudy
Glycol	60/40	Agarose : 2	Gel at room temperature. slightly cloudy
DMSO	60/40	Agarose: 1	Gel at room temperature. slightly less cloudy
OSIKCI	70/30	Pectin:2	Heat to 85°C, gell with undissolved particles
DMSO	50/50	Pectin:1.4	licat to 85°C, good gel at r.t.
OSING	50/50	Pectin:2	lieat to 85°C. good gel at r.t.
Glycol	50/50	Pectin : 2	Heat to 85°C. good gel at r.t.
		Gel Formati	on Under Agitation
OSMG	20/20	<i>і</i> . қагозе : 2	Smooth paste, maximum gellation ca. 14°C.
Glycel	75/25	Agarose: 2	Smooth paste, maximum gellation ca. 12°C.
OSWQ	60/40	Pectin:2	Large gel particles formed from 49°C to 25°C.
OSMG	70/30	Pectin:1	104°C before solution, only dispersed gel particles.
Ciycol	75/25	Pectin:1	Good gel 13.1°C, solubility better than with DMSO.
(:lycol	75/25	Agarose: 0. 5	Only dispersed gel particles.

١,

*Reproduced from "System Definition Handbook, Space Shuttle External Tank," MMC-ET-SE25-0, DR SE25 WBS 1.6.2.2. NASA-30300

Figure 1. ET GO₂ vent/relief valve and manifold.

ORIGINAL PAGE IS OF POOR QUALITY

,

×

BIBLIOGRAPHY

Martin, Dieter and Hauthal, Herman G.: Dimethyl Sulphoxide. John Wiley and Sons, New York, 1975.

Curme, George O., Jr. and Johnston, Franklin, Editors: Glycols. Reinhold Publishing Corporation, New York, 1952.

Rasmussen, D. H. and MacKenzie, A. P.: Phase Diagram for the System Water-Dimethyl Sulphoxide. Nature. Vol. 220, pp. 1315-17, 1968.

APPROVAL

EVALUATION OF ANTI-FREEZE VISCOSITY MODIFIERS FOR POTENTIAL EXTERNAL TANK APPLICATIONS

BY ROBERT O. L. LYNN

The information in this report has been reviewed for technical content Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classi fication Offices. This report, in its entirety, has been determined to be unclassified.

John R. NUNNELLEY

Chief, Analytical and Physical Chemistry Branch

AMES E. CURRY Chief, Non-Metallic Materials Division

ROBERT J. SCHWINGHAMER Director Materials and Processes Laboratory