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SECTION 1 - INTRODUCTION

The turbulent bursting phenomenon is recognized as a
dominant feature of time-dependent turbulent boundary-layer
flow. The nature of the boundary layer formed on a flat plate
located beneath a convecting rectilinear vortex embedded in a
uniform flow was investigated by Doligalski and Walker (1).

They obtained numerical solutions for the temporal development
of the boundary layer induced by the motion of a rectilinear
vortex. The boundary layer was expected to erupt from the wall
into the inviscid flow.

In the present study the flat plate is replaced by a porous
wall where the velocity at the wall obeys Darcy's law. The
point of inflexion of the boundary layer velocity profile is
controlled by varying the strength and/or the location of the
vortex. Our interest is focused on how the inflected velocity
profile responds to wall mass transfer induced by the motion
of the vortex.

The governing equations for a two-dimensional incompressible
viscous flow are the vorticity transport equation and the stream
function equation. These equations can be solved simultaneously
at each time step by means of a finite difference scheme. We
propose to use the weighted-mean scheme of Fiadeiro and Veronis
(2) for the vorticity transport equation. This scheme is first
applied to a series of test problems to determine its accuracy,
stability and efficiency. For the stream function eqguation, we

use the usual central difference scheme.



SECTION 2 - THE WEIGHTED-MEAN SCHEME

The advection-diffusion equation is written in conservative

form:

qw 3 (uw) 9 (vw) _ 2
o e~ i T R L

where Vv 1s the diffusivity constant
u and v are the velocity components in the
x and y directions, respectively and
w 1is the vorticity
For cases when the vorticity field is subject to strong advection,
centered-finite difference procedures are inefficient; consegquently,
the weighted-mean scheme is adopted for the present investigation.
An explicit (leap-frog) centered-time difference in equation
(1) is used except for the central term (w?j) that results from
n+1l

the spatial differencing evaluated as (wij

where the superscript denotes the time step. When the weighted-
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mean scheme is applied to the spatial derivatives the eguation
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where At is the time increment

h 1is the spatial increment
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is antisymmetric in relation to the velocity field.

all a's evaluated at time step n, we have:
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The error of approximation is O(Atz, h2).

The formulation

only a five point operator for two-dimensional flow and

When the

component change sign, the coefficients upstream and downstream

of the point are

automatically reversed, a feature particularly

useful in computer programming because the sign of the velocity

components is not generally known a priori.



SECTION .3 - TEST PROBLEM 1

The one-dimensional advection-diffusion problem presented
by Roache (3) to illustrate the weakness of the standard central

difference relation is as follows:

2
@ émg = 0 (3)
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with boundary conditions

=N A= 0 0
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Regardless of the initial condition, the steady state
solution for incompressible flow is
TR ux/v

I - e

u/v

The time derivative is written as first-order forward-dif-
ference approximation and the weighted-mean scheme is applied
to the spatial derivatives.

Steady state results appear in Table 1 for weighted-mean
scheme, upwind differencing scheme and central difference
scheme for various values of cell Reynolds number

Rc:%
Vv

The steady state form of equation (3) 1is

Sw 4
-u3—£+\)——— = 0 (4)
X
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=
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It can be shown that the solution of the finite difference
analog of this equation agrees identically at the points Xy

with the solution of the differential eguation (4). We may



observe this remarkable result in Table 1. Table 1 also reveals
that the central difference scheme produces wiggles for values

of Rc greater than 2.0. The upwind differencing scheme, although

stable, is considerably in error at all values of Rc.



SECTION 4 - TEST PROBLEM 2

The problem is to determine the temperature field in a
two-dimensional square, Bénard convection cell for a fluid
heated uniformly from below and cooled from above. The length
scale L and the maximum amplitude U of velocity are used in

the non-dimensionalization.

The non-dimensional temperature equation has the form:

3 (uT) Ty, o 327 3%
BBl ST el ol tiw
Y X oy

where P = Péclet number = %%

K = thermal conductivity

The dimensionless velocity field is given by
u = - sin x cos y v = €os x 8in y 0<x<m
O<y<m

Boundary conditions on T are

]

™ =18 at ¥ 0

=0 at vy i

|l 13
13

=0 at x = 0,7

A relatively coarse grid system of 25 X 25 mesh points was
used for different values of P. Although the scheme assures
convergence to all iterative methods, we would like to compare
the rates of convergences in Table 2. Line SOR combined with
multigrid technigues are approximately four times faster than
ADI method. Figures 1 and 2 show isotherms of the fluid for

Péclet numbers 10 and 80. The intertwining tongue for the



case P = 80 indicates the effect of strong convection. A final
point that we would like to bring out for the strongly con-
vective case (P = 80) is that distortions of isotherms were not

introduced with relatively coarse grid (25 x 25).



SECTION 5 - TEST PROBLEM 3

We consider the flow in a driven square cavity. This problem
is a standard test case for evaluating the accuracy, stability
and efficiency of numerical schemes. For simplicity we choose
a square with sides of length L = 1. The upper surface (fig.
3) moves to the right with a constant transverse velocity U = 1.
The flow of a viscous incompressible fluid in a square

cavity is governed by the following coupled eguations:

dw _ _ Auw) _ dlve) , 1 3%, 3% I
ot ax 3y Bl g2

2 2

ox oy

where | = stream function

w = vorticity
UL o . , .
R = Reynolds number = o AN R kinematic viscosity
L oyl
et i v L X
Boundary conditions:
v, =1
upper surface Y
h‘xzwzo
bottom, left, right
] =¢‘ =w=0
X Y

surfaces

The steady state solution of the system also may be reached

by replacing equation (5) by its steady state form (the unsteady

term is omitted) ,
duw) _ e , 1 2%, 2%w _
3% 3y e ey

5~



The vorticity transport equation (5) becomes equation (2) in
finite difference approximations. The stream function equation
(6) can be discretized using central difference formula. For
concreteness, we will describe the computation cycle for the
time-dependent approach.

The calculation starts at t = 0 where ¥ and w are known
everywhere. From equation (5) we obtain the vorticity w for
all interiors points at t = At. The numerical solution of (6)
gives y at t = At and hence u and v. The last step of the
computational cycle is to update the boundary values of w
using the most current values of ¢ and w at the interior points.
This computational cycle is repeated until the steady state
is reached to a specified convergence level. If we use the
steady state form of equation (5), instead of "marching" the
vorticity transport forward in time, new values of w are obtained
by an iterative process. The way iﬁ which the boundary values
of the vorticity are approximated affects both the rate of
convergence and the accuracy of the solutions. This fact has
been noted by many authors. In the present case we use a second

order form for evaluating wall vorticity given by

Y
on | w (7)

Ol w

Ww = T (B W/ = Uy = T V) -

Studies indicated that instead of using formula (7) at time step

n P n-1
wall |wall

for the time-dependent and steady state approaches. Contour

n, the average (w )/2 yielded a more stable process

plots of stream function are shown in figure 4 and 5 for various




grid sizes and Reynolds number.

in Table 3 for comparison.

Numerical values also are

listed
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SECTION 6 - COMMENTS ON THE VORTEX PROBLEM

The problem is shown schematically in figure 6. An isolated
vortex embedded inside a boundary layer convects to the right
over a porous wall. The velocity at the wall is given by

Darcy's law:
Vw(x,t) = c(Pr-~ Pw(xlt))

where ¢ 1s a constant

Pr is a reference pressure

The wall mass transfer mechanism is driven by the wall
pressure gradient induced by the motion of the vortex. Consequently,
it is of interest to examine the effect of wall pressure
fluctuations on velocity profile with an inflexion point inside
the boundary layer. The point of inflexion initially may be
created by varying the position and/or the strength of the
vortex.

It is worthwhile to first consider a non-porous wall.

The effect of two counter-rotating vortices of opposite and
equal strength is equivalent to having an impermeable wall
between them. In an inviscid flow, a dimensionless stream

function of the vortices may be defined by

2 2 2

rC + (x-xo) + (}—yo)
2
o,

&n

2 2
ro o+ (x—xo) + (y+yo)

where T 1is the strength of the vortex

r, is the core radius

(xo,yo) is the center of the vortex



Let the vortex be convected in an inviscid flow. The convection
speed of the vortex is composed of 2 parts consisting of the local
mean velocity énd the self induced velocity due to the vortex
image below the wall. Note that the inviscid solution predicts
that the vortex will remain at constant height Yo' However,
the inviscid solution is not valid for our realistic problem
because it fails to satisfy the no-slip boundary condition on
the wall.

We have also tested the possibility of satisfying the no-
slip condition by means of a smoothing function, s. The modified

stream function is defined as:
wmodif o worig

and s vanishes strongly near the wall, to ensure zero derivatives

of ¢ (zero velocity). Far from the wall, s is identically

modif
1. However, this new stream function produced a reverse flow
near the wall, introducing new complications in the flow pattern.

It was therefore abandoned.



SECTION 7 - CONCLUDING REMARKS

The weighted-mean scheme has several significant advantages:
- it is locally a conservative scheme neither creating nor

destroying the advected quantity artifically. : ’

- 1t is stable for all grid spacings or cell Reynolds numbers.
The scheme thus has the practical advantage of yielding
solutions for relatively large values of grid size and is,
therefore, economical with computer time. One can use this
crude solution to construct a good initial guess solution
for a finer grid.

- it becomes a central difference scheme for strongly dif-
fusive cases and an upwind difference scheme for strongly
advective cases. Furthermore, when the components of the
velocity change sign, the coefficients upstream and downstream
of the point are automatically reversed, ‘a feature particularly
useful in computer programming because the sign of the
velocity components need not be known a priori.

The only major disadvantage is the loss in speed due to
the computation of the hyperbolic tangent at each grid point
in multidimensional problems.

For the vortex problem, the initial conditions need to
correspond to some real initial situation since we are interested
in the transient solution. Therefore one needs to satisfy
initially the no-slip condition. One suggestion is that the
vortex at time t equals zero, should be far away from the wall

in the inviscid region so that the velocity induced by the

vortex vanishes at the wall.
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Table 1

Re = 1.0
Grid point
i 2 3 4 5
ES - 0.0117 0.0433 0.1295 0.3636
WMS GL 0L 7 0.0433 01295 0.3636
UDS 0F 0. 0323 0.0968 0%2258 0.4839 =10
CDS 0% 0.0083 Q0831 0.1074 0.3306 0
Rel= 2.0
Grid point
il 2 3 4 5
ES Eliy0) 0.0003 0.0024 0% 0813 0.1353
WMS 0.0 0.0003 0.0024 0.0183 0.1353
ubDS (0} 0] 0.0082 02033 0.1074 0253306
CDS 0.0 0.0000 0.0000 0.0000 0.0000
Rel = 4ir0
Grid point
i 2 3 4 B
ES 010 0.0000 0.0000 0.0003 0.0183 15500
WMS 020 0.0000 0.0000 0.0003 0.0183 820
UDS 0.0 0.0013 0.0077 0.0397 0.1997 1.0
CDS 0520 0.0164 —L01328 0 1E14'E =032 79 Bl (0]
ES = exact solution
WMS = weighted-mean scheme
UDS = upwind differencing scheme

CDS

central difference scheme




Table 2

B SOR
10 . 140
20 188
40 A
80 A

160 A

‘Bénard cell

ADI

85
110
140

205

>

(25, x 25)

MULTIGRID (8)
in work unit (wu)

SOR
38

35

44

83

101

Line SOR
20

27
38
51

96

A The results for those specific Péclet numbers were

not computed.




Table 3

R Reference Grid ch Iterations
100 WMS 21 x 21 ~0.094 55 (TD)
WMS 41 41 -0.103 120 (ss)
Burgaraf (4) 41 41 =ORL Ol
B + D (5) 51, 5ils ~0.103
N + KP (6) 5. 54l =002
1000 WMS 61 61 -0.092 2405 (==
B + D (5) Sl Sl — (8l
N + KP (6) =15 . -0.097
Gosman et al. (7) 81 81 -0.099
WMS = Weighted-mean scheme
TD = time dependent approach
Ss = steady state approach

vC

stream function at vortex center



0000° 1

ogoeor

01

S1 WAHIINI ENDiNDD

C

n0bHd4 YNOLNOD

)

SRS S O T W T I

1l

OiL =.id
T @2anbtyg



oooot” Sl IVANILNI HADINOD
X 0000°1 0L ‘0 WOE4 ¥NOLNDD

: 1 I X 1 | I I il

3T
(68 S e

e

08 =d
Z 92anbtg




< O
non
O O

<

O O

Uu=0,Vv=0

Figure 3



10-322C0001° ST IVAEIINT BPOLINDD .
X 8] (0]] 0GGOt"* - hWOH4 YNOLNCD
(e e e e i ) e (et @ e ) B T R S

N 060"

N

¥

)
If)

N b~
ro\ o.o =,
f 2]
' ..//1_
= B
ﬁl 4
L .
o i
[ ¥
18 .
. &
8 |
4 |
.Mr W
3 ¥ @2anbtg |
: %
A \ : v x T PIIO |
- _. H
r ? |
- + 00T.= ¥
L ; ,
g | 3 |
¢ =] 7
| : n
‘ : *
= ,
g 1
- O




X 10-300001° 1 TWAMIINI ENOLRTD
B 0l 030ai° - HOU4 ¥NOLKOD

Fed 0T vt

IRERRE R BB EE]

Ilfll!!l!l!fT]‘kM.

<
Q.Wm.dJJJ—___-_-a__d u-q_d_uua-ud.q\m\.m@ﬁﬁ-___uﬂﬂa TTI3 VTPVt iTel ]

%
1 o] T8 U ) O o5 o o ] O S O L R R R B R T ‘LllleolllLLL

LLWTY

G oanbt,

9 x T9 PTAD

000T = d



|
Vy (x,8) = C (R -R.(x,1))

Figure 6



1. Report No. 2. Government Accession No.

NASA CR-165747

3. Recipient’s Catalog No.

4. Title and Subtitle

WEIGHTED-MEAN SCHEME FOR SOLVING INCOMPRESSIBLE
VISCOUS FLOW

5. Report Date

May 1981

6. Performing Organization Code

7. Author(s)

Quyen Q. Huynh

8. Performing Organization Report No.

R-SAL-05/81-01

9. Performing Organization Name and Address

Systems and Applied Sciences Corporation
17 Research Drive
Hampton, VA 23665

10. Work Unit No.

11. Contract or Grant No.

NAS1-15604

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

13. Type of Report and Period Covered
Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: Dr. Julius E. Harris

Final Report

16. Abstract

The problem of how a boundary layer responds to the motion of a convected vortex

on a porous wall is being investigated.
given by Darcy's law.

The wall velocity is approximately
The vorticity-stream function approach was adopted for

solving Navier-Stokes equations of two-dimensional incompressible viscous flows.
The weighted-mean scheme was used for constructing finite difference approximations

of spatial derivatives.

demonstrate clearly the accuracy, stability and efficiency of the scheme.

Several test problems were solved and numerical results

The

weighted-mean scheme then can be applied to the vortical flow problem.

17. Key Words (Suqggested by Author(s))

Fluid Mechanics
Viscous Flow
Numerical Analysis

18. Distribution Statement

Unclassified - Unlimited

Subject Category 34

20. Security Classif. (of this page)
Unclassified 27

19. Security Classif. (of this report)

Inclassified

21. No. of Pages

22. Price
A03

For sale by the National Technical Information Service, Springfield. Virgimia 22161




