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NOTE ON REFLECTION AND TRANSMISSION COEFFICIENTS FOR

CONVERGING-DIVERGING DUCTS

Paul A. Durbin

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Simple formulas for calculating reflection and transmission coeffi-
cients for converging-diverging ducts are derived; they extend the method of
Cho and Ingard to arbitrary, slowly varying ducts. These formulas involve
two parameters: The first is a function of duct shape and the second is the
ratio of the duct radius downstream of the throat to that upstream of the
throat. An extension of the method to include mean flow is made for sym-
metric ducts.

INTRODUCTION

w	 There are three possible behaviors of acoustic waves propagating in
converging-diverging ducts:

(1) They may propagate freely through the duct.
(2) They may propagate in the section upstream of the contraction and

be cut off downstream, hence suffering total reflection at the contraction.
(3) They may propagate upstream and downstream of the contraction, but

be cut off within the contraction, hence suffering partial reflection while
oeing partially transmitted. It is the third case that is of concern in
this report.

This case has been treated by Cho and Ingard (ref. 1) for waves in a
circular-cosh duct. The present report extends their evaluations of reflec-
tion and transmission coefficients to nonuniform ducts that are not of
circular-cosh shape. Our approach is to use the propagation equation of the
circular-cosh duct as a comparison equation with one free parameter. An
"eigenvalue" relation is derived for that parameter, and it, in turn, deter-
mines the reflection and transmission coefficients.

Our ultimate objective is to provide formulas for computing reflection
and transmission coefficients for an arbitrary (slowly varying) duct. Such
formulas are provided by equations (6) and (8). These equations require the
duct shape as input, and after simple approximate or numerical integrations
they yield the required coefficients. In an appendix the present method is
extended to include a mean flow through the duct, although this can be done
only if the duct is symmetric. The mean flow increases transmission.

Discussions with Dr. Y.-C. Cho of Lewis have been of great help in
writing this report.

SYMBOLS

A	 amplitude function, defined by eq. (3)
b	 duct radius
B	 defined by eq. (2a)
c	 sound speed
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k wave number
Z defined below eq.	 (13)
M Mach number
R reflection coefficient
S axial	 coordinate of circular-cosh comparison duct

T transmission coefficient

U mean flow

x axial	 coordinate of duct
a duct-mode eigenvalue

B free parameter determining throat radius of circular-cosh duct
Y defined	 by eq.	 (13)
a phase shift,	 defined by eq. (10)
e maximum wall	 slope
K,a reduced wave numbers,	 defined by eq.	 (5a)
e defined below eq. 	 (11)
T downstream radius of duct
p acoustic wave function for duct
X acoustic wave function for circular-cosh comparison duct

Subscripts:

-	 upstream variable, x i
0	 variables at throat, x = 0
+	 downstream variables, x

The propagation equation for the n th-radial, mth-circumferential
mode in a circular duct with walls of small maximum slope is

d e b/dx2 + [k2 - a2 1b2 (ex)]b = 0
	

(1)

(eq. (18) of ref. 1), where k is the wave number, b is the duct radius,
a is the n th zero of 4(a), x is the direction of propagation
(axial direction), and c << 1 is proportional to the maximum wall slope
(fig. 1). Equation (1) applies in the absence of mean flow. In the
appendix this analysis (for symmetric ducts) is extended to include a one-
dimensional gas dynamics flow^irougFi the duct.

For the circular-cosh duct, equation (1) becomes

d2 X /ds2 + [k2 - a2 /B2 (es)]x = 0	 (2)

where

B 2 (es) = I(1 + z 2 )(1 + a2sech2(es))+ i 
(T 2 - 1)tanh(cs)	 (2 a)

For clarity, dependent and independent variables are denoted by X (s) and
S in equation (2), although equation (2) is just a special case of equation
(1). Here the duct radius is unity upstream (s - - -) and T down-
stream (s + m). The parameter B determines the shape of the circular-
cosh comparison duct within its contraction section. (B is the free
parameter alluded to in the Introduction.)

Equation (2) can be solved exactly by putting it into the form of a
hypergeometric equation [ref. 1 and ref. 2, section 12.3]. However, for pre-
sent purposes that solution is not required explicitly. It suffices to de-
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note it by X (s). Equation (2) is used as a comparison equation (ref. 3)
for equation (1), and an approximate solution to the latter is sought in the
form

N = A(Ex)X(S(Ex)/E)
	

(3)

Substituting equation (3) into equation (1), using equation (2) to elimi-
nate X", and equating to zero the coefficients of like powers of e gives

(S-) 2 [k 2 - a2 / B2 ( s ;a) j = [k 2 - a 2 lb2 (,x)]
	

(4)

at O(E O ). Here primes indicate differentiation with respect to argu-
ment. The equation at 0(e) determines A(ex), but it suffices here to note
that A( ±-) = 1. Thus the x-dependence of A does not affect reflection
and transmission coefficients and so need not be evaluated.

Because we are dealing with case (3) of the first paragraph of this
report, there are points xa and xb (resp. sa and SO at which
the right side (resp left side) of equation (4) vanishes. If equation (4)
is integrated as

ZS K(s;a)ds = ^ ex a(x)dx	 (5)
s a	 Exa

where

K2 = [ k2 - OL2/B2(s ;BH
(5a)

a2 = [k2 - CE2/b2(x)]

an implicit equation for s(ex;s) is obtained with the parametric dependence
on a noted. Now, for xa < x < xb and sa < s < sb both sides
of equation (5) are imaginary because K and a2 are negative when
x is in the interval xa to xb and s is in the interval sa to
s b . For x > xb and s > sb both sides of equation (5) are complex
and can only be equal if they have the same imaginary part. Equating these
imaginary parts gives the eigenvalue relation

/ sb (B)	 ex

sa (a)	 Ex 

The free parameter must be adjusted to make the integrals in equation (6)
equal	 The functions sa(a) and sb(a) in equation (e) are the zeros
of K`. Using equation (2a) and equating equation (5a) to zero gives

tanh ( s a ^ b ) =	 1	 +2^ 	 (262 ) -1	 —^	 + 462 1 + 6 2	
2k `^

2 6 (1	 T )	 1 + T	 c, 2
 (1 + T	 )
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Equation (6) with sa(a) and s b(s) given by equation (7) provides
the required equation for a. The integral on the right side can be eval-

uated for any particular duct of known cross-sectional area. The expression
on the left side then can be inverted (numerically, in general) to find B.

REFLECTION AND TRANSMISSION COEFFICIENTS

The reflection and transmission coefficients for the circular-cosh duct
are given in references 1 and 2 as

cosn[(k+ - k_)w/e] + cosh(an/e)

R	 COSh + + — n e + cos an e

2 sinh(k+n/e)sinh(k_n/c)

T — cosh	 + + — n e + COSh an e

where

k 2 = k2 - a 2 z 2

k2 = k2 - a2

CT = 2(1 + -c 2 ) a 2 s2 - e 2 = 4(k0 + (k+ + k?)/2) - e2

In the second form of a 2 , k0 is defined by

k0 = 7(1+ i2)a252— ^(k2+k2)

Clearly,  k^ , k2 , and k6 are 11c21 evaluated at	 and 0.
The value of B from equation (6) substituted into equations (8) and (8a)
gives R and T.

The phase shifts that occur upon reflection and transmission of the
wave can also be determined. Letting x - t - in equation (5), we find

(8)

(8 a)

cx +
S 
	 — exa

S i

ex +
s 
	 — exb

+f__-— )d. \ 
a

_m+(- lldx -feX.

-- K
k--—)ds =_ cx — c6 — ;  x+fs

a

(9)

K	 \
k— — 1)ds =_ ex — e6 + ; x

fs,
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The integrals appearing in the definitions of 6+ and 6_ have been
put into forms that converge at the upper limits. The upstream and down-

stream limits of the wave function (eq. (3)) are (ref. 2)

p	 (10)

ik+{s/c+6T}
+ e	 x

The first limit corresponds to the sum of the incident and reflected waves;
the reflected waves are phase shifted with respect to the incident wave by
k_6R. Similarly, the downstream limit corresponds to a transmitted wave
with a phase shift of k +6T . Substituting equation (9) into equation
(10), we find that in a non-circular-cosh duct the reflected wave suffers
an additional phase shift of 2k_6_, and the transmitted wave suffers a
shift of k+(6+ + 6_) - both measured with respect to the incident wave.

SYMMETRIC DUCTS

For the symmetric duct T = 1. With that value equation (6) becomes

	

2	 1	 1/2

	

k0	
l _ y2 )	

dy 	 e	 (11)

	

k—	
C1 + (k0 /k- ) J

0

X
wnere e	 J b iai dx is determined by the actual duct shape and

0
hence is assumed to be known. The left side of equation (11) is obtained
by substituting equation (2a), with T = 1, into equation (6).

Now, if k_ (which equals k+ for symmetric ducts) is 0(1) and
k0 is also 0(1), then R s 1 and T - 0 for small c; that is, the
wave is totally reflected. However, if k_ = 0(1) and kp = 0,
T = 112 and R = 112 (ref. 1). 	 In general, with k_ = 0(1), both
reflection and transmission occur only when k0/k_ << 1. Present inter-
est is in this nontrivial case.

These considerations suggest that equation (11) be expanded in powers
of k 0/ k_:

k2	 k 2n	 r 2n + 1

Kk^"	 r n +

0
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As asymptotic expansion for k O(e) results from inversion of equation (lla):

k 5
 (

k0 _ n k-e + -7 e2 + p 7	 (12)
n	 k

Because of equation (12) we have written a as a function of k6
below (eq. (8)): The 6 dependence of R and T appears implicity
through k6, and it is not necessary to evaluate a itself.

As an example, illustrating the present method, we might consider the
symmetric duct

	

b-2(x) = 1 + Y2 - Y2x2/(1 + 1x)2	 (13)

for which

t 2	 2 1/2

	a = k0
	

(1 - y )	 dy 

17^

0 C1+yo'0 /k- (1+ t/ k2 )

	

2	 n	 2 -n/ 2	 ( n+ 11

	

^0	 ^0 + ^0	 n r 
^^

	

k_	 kn 1 7	 (-) r \—^)

where L6 = a2 Y2 - k2. For to/ k- << 1, we find

3	 2 
-1/2	

4	
2 -1

k2 
w ^2 - 

4 R0	 1 + ^0	 + ^0	 1 + 1 + ^0
- 70	 0	 4	

(14)

(To O(t^) this gives a = Y .) Equation (14) may be substituted into
equations (8) and (8a) to obtain R and T for the duct (eq. ((13)). This
example is considered further in the appendix.

DISCUSSION

It is noted above that, for symmetric ducts, when k 0 = 0, T = 1/2.
The zeros of k occur at xa and x	 thus k0 = 0 corresponds to
xa = -x b - 0. In this case equation ^6) is equivalent to b(0) = B(0).
Now, when T < 112, xa is real and nonzero and equation (6) determines
s. However, when T > 112, no real value of xa exists and equation (6)

6



is no longer valid. Of course, in this case there is no region in which the
wave is cutoff; so we are considering case (1) rather than case (3) of the
first paragraph. However, partial reflection still occurs. To continue to
use the circular-cosh comparison equation when there is no cutoff, a crite-
rion for determining a is required. The observation that the turning
points, x a and xb , coalesce at a particular value of T (T = 112 for
symmetric ducts), for which b and B become equal at the throat of the
duct, suggests the appropriate criterion for determining B after the turn-
ing points have become imaginary is that B equal b at the duct throat.
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APPENDIX — SYMMETRIC DUCTS WITH MEAN FLOW

When the duct is symmetric, the analysis of the text can be readily

extended to include a one—dimensional  gas dynamics flow through the duct.

The density p(ex), sound speed c(ex), velocity U(cx), and Mach number
M(cx) = U(ex)/c(ex) of that flow are expressed in terms of the duct cross—
sectional area by well—known isentropic flow relations (sections 80 and 90
of ref. 4).

The propagation equation (cf. eq. (1)) is now

1d I
p
 dp — u d	 u db _ ikc u d	 b	 { 1 do + r c2 k

2 — 2	
a= 0a

P dx aX	 ^^-TaX)	 — ^x 	 dx

(A1)

where c_ is the upstream sound speed (so c —k is the frequency of the
acoustic wave). In analogy to equation (3) we seek an approximate solution
to equation (Al) of the form

x c

= A(ex)exp ik	 c 
1 
M2 dx 	XM[S(cx)/e]

x	 \	 (1	 M )
a

and, analogously to equation (2), XM = — ^XM/( 1 — M?) with

KM = Ck2
/(1 — M2 ) - a2/B2(s;B)]

Substituting equation (A2) into equation (Al) gives

K 2 ( s )( s ') 2 M — M2 ) = X 2(ex) /[1 — M2(ex)]

to O(e0 ). Here

	

c2_k2	 2

M	

t 
C (ex)[1 — M (ex)] 	 b (ex)

Integrating equation (A3) gives

sb(s)	

KM(s) 
ds =

	
exb	

XM(x)	

dx
	

(A4 )

Sa(a)	
1— M—	

exa
	 1 — M2(x)

(A2)

(A3)
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in place of equation (6). Note that k 2 must be replaced by k 2 /1 — M2
in expression (I) for sa and so, and xa and x b are now the roots of

x^(cx) = 0. To present order of approximation, equations (8) for R and T
remain valid (only for 	 mmetric ducts) if k2 = k = K^ 1 - ML)
and k6 = 1K^(0)1/(1	 sy).

Equation (A4) shows that the effect of mean flow on reflection and
transmission is to cause a Lorentz contraction of streamwise wavelengths.
A Doppler shift also occurs because of the exponential in equation (A2),
but this does not affect power transmission. Aside from the Doppler shift,
mere is no difference between upstream and downstream propagation.

In the cases of present interest, k 2 — a2 /b2 is small, so the
effect of Mach number enters primarily through the factor k 2 /(1 — M2)
in KM and xM . Because M increases toward unity within the con-
traction, x M (which is a function of M(x)) is more affected by flow than
is KM (which is a function of M_). In brief, the Mach number effect
will be to decrease a in equation (12) and hence increase transmission
through the duct. Physically, this occurs because short waves are more
easily transmitted than are long waves; thus the Lorentz contraction of
wavelength enables acoustic waves to pass through the duct throat.

This phenomenon is illustrated in figure 2, where the transmission
coefficient for the duct (eq. (13)) has been plotted as a function of Mach
number M—. For this calculation k =.0, a = 1.84118 (corresponding to
the (1,1) mode), and e = 0.3. When y = 0.15, there is no cutoff
region, so T is greater than 112 at all Mach numbers: T increases with
Mach number from its value of 0.85 in the absence of flow. At the other
values of -y2 shown in figure 1, T is zero in the absence of flow. Mean
flow through the duct causes it to become acoustically transparent as M—
tends toward unity.

The analyses of this appendix is restricted to symmetric ducts because
in KA a constant Mach number of M—, has been used. Extension of this
method to asymmetric ducts is not trivial, for a constant Mach number then
cannot be used in the comparison equation.
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