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SUMMARY 

A supersonic triplet singularity has been developed which eliminates 
internal waves generated by panels having supersonic edges. Thetriplet is a 
linearcombinationof source and vortex distributions which gives directional 
properties to theperturbation flow field surrounding the panel. The theore- 
tical development ofthetriplet singularity is described together with its 
application to the calculation of surface pressures on wings and bodies. 
Examples are presented comparing the results of the new method with other 
supersonic methods and with experimental data. 

INTRODUCTION 

Significant advances have been made in the application of surface 
singularity techniques to the analysis and design of complex aircraft 
configurations in both subsonic and supersonic flows, (Refs. 1 and 2). The 
success of these methods is primarily due to the use of high-order source, 
vortex,or doublet singularities on surface panels, and by improvements in 
the formulation of the boundary conditions. 

The use of surface panel singularities in supersonic flow introduces 
jumps in the perturbation velocity flow field across the Mach waves originat- 
ing along the panel leading and trailing edges. If these waves propagate 
into the interior of the wing or body, they can induce spurious perturbations 
on the opposite side of the configuration and seriously affect the strength 
of the surface singularity distribution. 

The supersonic triplet singularity is designed to eliminate the spurious 
internal waves generated by panels having supersonic leading edges. In par- 
ticular, the perturbation velocities in the "two-dimensional" region associ- 
ated with supersonic panel edges are exactly cancelled in the interior flow. 
This results in a well conditioned system of boundary condition equations and 
a corresponding improvement in the pressure distribution calculated on the 
exterior of the configuration. 

The application of the supersonic triplet concept to the aerodynamic 
analysis of bodies having arbitrary cross-section is reported in Ref. 3. 
This report describes the extension of the method to the analysis of swept, 
tapered wings, and includes details on the derivation of the wing and body 
triplet singularities. In addition, examples are presented comparing the 
results of this method with other supersonic methods and experimental data. 



LIST OF SYMBOLS 

a 

b 

C 
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d 

D 

F,G,H 

Panel inclination = tan 6 
Panel taper ratio 

Panel span 

Pane7 chord 

Constant 

Hyperbolic distance to panel corner 

Hyperbolic distance to panel apex 

Velocity distribution functions 

R Distance from panel apex to origin 

m Panel edge slope = tan 8 

M Mach number 

r,B Angular coordinates 

u,v,w Perturbation velocities 

X,Y,Z Cartesian coordinates 

Angle of attack 

Prandtl-Glauert factor =dM2 - 1 

Geometric parameter 

Panel inclination angle 

Leading-edge sweep = tan A 

Leading-edge sweep angle 

qF-7 

Integration variables 



Subscripts 

Axial 

Circumferential, constant 

Edge 

Line 

Radial 

Source 

Triplet 

Vortex 



AERODYNAMIC THEORY 

The triplet singularity is a linear combination of source and vortex 
singularity distributions. Since the vortex (or doublet) sheet may be con- 
sidered the result of combining, in a special limiting process, two source 
sheets of equal and opposite strength, the combination of a vortex sheet 

of unit strength with a source sheet of strength T = jric-2 , has been 
termed a triplet. The procedure is only applicable to panels having super- 
sonic leading edges , corresponding to real values for T. A simple illustra- 
tion of the basic concept for two-dimensional flow is given in Figure 1. In 
this example, the axial and normal velocity component vectors add in the flow 
field above the panel, but cancel exactly below the panel, resulting in the 
desired unidirectional perturbation velocity field. 

The extension of this concept to the analysis of three-dimensonal 
bodies and wings is described in the following sections. 

Body Triplet Singularities 

Three types of triplet singularities are required to apply this method 
to bodies having arbitrary cross-section. They are designated circumferential, 
edge, or radial, depending onthe orientation of the elementary line singu- 
larities used in the derivation. An axial triplet singularity can also be 
obtained by combining the circumferential and edge triplets. 

Circumferential Triplet. The circumferential triplet is obtained by 
combininq a circumferential source and vortex distribution. The elementary 
source and vortex filaments making up these singularities lie in the plane of 
the panel, parallel to the y-axis, as indicated on the following sketch. 
Note that the side edges of the panel intersect the x-axis a distance, J?, 
ahead of the origin. 
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Figure 1. - Supersonic Triplet Concept. 



The three components of velocity induced at a point, x,y,z, in the field 
by one corner of the panel are derived in Appendix A. The influence of the 
vortex distribution is given by Eqns. (A12) through (A14), and the source dis- 
tribution by Eqns. (A15) through (A17). The circumferential triplet is ob- 
tained by combining these singularities as follows. 

U'TC = u"C + B&-C 

=F+H- @nG (1) 

where 

V'TC = v"C + 6vsC 

= BG 

"TC = W"C + B wsc 

= B(BmG - F - H) 

= - B I+ 

F = tan -1 zdx2 - p'(y - mR)2 - B2z2 -' 
x(m(x + !L) - y) - B2mz2 

(2) 

(3) 

(4) 

G = q&T cash-’ Bd(y -xm;x”;;;)i :“1, (5) 
- B2m2)z2 

H = sin -1 B(y - mR) 

l&F-Fz 2 
(6) 
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Within the two-dimensional flow region (ahead of the Mach cones from the 
inboard and outboard corners of the panel, and behind the Mach wave from the 
unswept leading edge), F = IT above the plane of the panel, and -IT below, 
while H =. 7~ within this region on both sides of the panel. Thus the sum 
F + H appearing in Eqn. (1) and (3) has a value of 2~ above the panel, and 
zero below. This special relationship provides the desired wave cancellation 
property of the triplet singularTty. 

The three components of velocity induced ‘by a panel inclined at an angle, 
6, to the x-y plane are obtained by applying a Lorentz transformation about the 
y-axis. The geometry is illustrated on the following sketch. 

Z 

For a panel lying in the x',y' plane, and defining a = tan 6, 

I I 

“=;* 

V =V I 

1 I 

w=W?-pg 

(7) 

03) 

(9) 

Expressions for the velocity components in the primed system of coordi- 
nates are given by Eqns. (1) through (3). Substituting 



x’ = X- i32az 

d 1 - fi2a2 

Y’ =Y 

z’ =q* 

(10) 

(11) 

(12) 

The transformed velocity components in the reference coordinate system 
become: 

F+H - BmG 
'TC = 1 - Ba (14) 

vTC = G (15) 

WTC = -BuTC (16) 

with F = tan -1 x2 - f3'(y - mR)2 - E2z2 

x[m(x + 2) + y] + B2z[ay - m(z + a!?,)] 
(17) 
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G= 1 

41 - B2(a2 + m2) 

cash -1 - x - 82[~b - mll) +- arl 
&jTin(x + fij]' - B2[ay - m(z + aR)12 + (z - ax)2 

(18) 

and H is given by Eqn. (6). 

Edge Triplet. The edge triplet is obtained by combining edge source 
and vortex distributions. The elementary source and vortex filaments making 
up these singularities lie in the plane of the panel parallel to one edge, 
as indicated on the following sketch. 

Y = m, (x + a,) 

The three components of velocity induced at a point, x,y,z, in the field 
by one corner of the panel are derived in Appendix A. The influence of the 
vortex distribution is given by Eqns. (A24) 
tion by (A27) - (A29). 

- (A26), and the source distribu- 
In addition, the influence of a linearly varying line 

vortex along the leading edge (Eqns. (A57) - (A59)) is added to the vortex 
distribution, and a linearly varying line source along the leading edge 
(Eqns. (A63) - (A65)) is added to the source distribution. Combining these 
four contributions, the three components of velocity for the edge triplet 
singularity may be written: 

9 



dTE = U”E + UVL + BhcJ + USL 1 

- Bm(F + H - BmG) 1 

"'TE = "VE + "VL + B&E + "St) 

= F + H - BmG 

"TE = 'VE + w,,L + BtWSE + wSL) 

= G + @n(F + H - &nG) - D x - Bz 

= G - Bu+E 

(19) 

(20) 

(21) 

where F, G, and H are given by Eqns. (4) - (6), and 

D = dX2 - B2(y - mfi)2 - B2z2 (22) 

Applying a Lorentz transformation by substituting Eqns. (19) - (21) in 
Eqns. (7) - (9), the three components of velocity induced at a point, x,y,z, 
in the reference coordinate system by an inclined panel can be written: 

Bm 
Bz - 1 - Ba "TE - BaG ] (23) 

10 



"TE =F+H- @nG (24) 

wTE = G - 6U-j-E (25) 

where F and G are given by Eqns. (17) and (18), H by Eqn. (6), and D by Eqn. 
(22) l 

Axial Triplet. The influence of an axial triplet distribution on an 
inclined panel can be obtained by adding the influence of an edge triplet 
to the influence of a circumferential triplet multiplied by the factor, gm. 
CombiningEqns. (23) - (25) with Eqns. (14) - (16), the three components of 
velocity can be written: 

1 

“TA = VTE + Bm vTC 

=F+H 

WTA = WTE + f3m W-,-C 

= G - rDx 

(26) 

(27) 

(28) 

This corresponds to a triplet distribution having the elementary source 
and vortex filaments parallel to the x-axis. 
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Radial Triplet. The elementary source and vortex filaments making up the 
radial triplet distribution lie inthe plane of the panel along radial lines 
from the intersection of the two side edges extended. This point lies on 
the x-axis a distance, R, ahead of the origin, as indicated on the following 
sketch. 

x = -R 

Q> 

X 

Q) 

The three components of velocity induced at a point, x,y,z, by one corner 
of the panel are derived in Appendix A. The influence of the vortex distri- 
bution is given by Eqns. (A39) - (A41), 
(A57) - (A59). 

and the source distribution by Eqns. 

In addition, the influence of a linearly varying line vortex along the 
leading edge (Eqns. (A57) - (A59)) is added to the vortex distribution, and a 
linearly varying line source along the leading edge (Eqns. (A63) - (A65)) is 
added to the source distribution. Combining these four contributions, the 
three components of velocity for the radial triplet singularity may be 
written: 

U’TR = UVR + u,,L + B(USR + @ 

-R 
= B(x + R - Bz) [ 

By 
x + R - f3z (F + H - BYGR > - x 0 Bz + BZG~] 

(29) 
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V’TR = VVR + VVL ’ B(VSR ’ “g-1 

9, 
= x + R - Bz (F + H - BYGR) (30) 

WITR = 

= 

'VR + wVL + BtWSR + wSL) 

R D 
x+R- x + iy- ~~ (F + H - BYGR) - x _ Bz + (X + Q)GR 1 

(31) 

where F is given by Eqn. (4), 

H is given by Eqn. (6), 

D is given by Eqn. (22), 

GR = $ cash -1 x(x + R) - B2y(y - mR) - B2z2 

R a (Y - m(x + R))2 +-(1 - B2m2)z2 
(32) 

and DR = d(X + R)2 - B2y2 - B2Z2 
(33) (33) 

Applying a Lorentz transformation, by substituting Eqns. (29) - (31) in Applying a Lorentz transformation, by substituting Eqns. (29) - (31) in 
Eqns. (7) - (9), the three components of velocity at a point, x,y,z, in the Eqns. (7) - (9), the three components of velocity at a point, x,y,z, in the 
reference coordinate system by an inclined panel become: reference coordinate system by an inclined panel become: 

‘TR = 2 x + Q 'TR = 2 x + Q 
1 1 

BY BY l l 
- B(z + a&) - B(z + a&) (F + H - BYG~) - x D 13z + B(z + afi)GR ( (F + H - ByGR) - x D 13z + B(Z + aQ)GR ( 

(34) (34) 
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where 

"TR = c(F + H - BSlGR) (35) 

BY 
x + 2 _ Btz + agj (F + H - BY(+)- x _D Bz + (X + Q>GR 

I 

(36) 

c=* 

and F is given by Eqn. (17) 

H is given by Eqn. (6) 

D is given by Eqn. (22) 

DR is given by Eqn. (33) 

and GR = $ cash -’ x(x + R) - B2y(y - ma) - B2z(z + a&) 

R y-m(x + a))'- B2(ay- m(z+ al))'+ (z- ax)2 

(37) 

Rectangular Triplet. For the special case of a rectangular panel, 
m = 0 and R + a. Taking this limit, 

1 D 
UTR = UTE = UTA = 3 x _ Bz - BaG 

( 

"TR = VTE = VT/, = F + H 

(38) 

(39) 
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D 
wTR = 'TE = 'TA = G - x _ BZ (40) 

The influenceof an edge panel of a triplet panel group is obtained by 
subtracting the contribution of the radial triplet from that of the edge 
triplet. This has the effect of distributing the vorticity from a side 
edge to a trailing edge of a panel. For a rectangular panel, a special 
limiting process is required to obtain the correct influence. 

UT = lim R(UTE - 'TR Q-to3 )I 
= y(F + H) + zG + D/B 

= lim 
VT Q-t '("TE - "TR 00 

= (x - Bd(F + H) + ByG 

wT = lim 'l(wTE 
R+=J 

- 'TR)] 

= (x - Bz)G - By(F + H) - 2D 

(41) 

(42) 

(43) 
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Wing Triplet Singularities 

In the analysis of wings, the triplet singularity is required only for 
those panels having supersonic edges. For panels having sonic.orsubsonic 
edges, a combination of constant sources and linearly varying vortices, as 
described in References 2 and 4, provides a suitable aerodynamic representa- 
tion. The influence of a constant triplet singularity, located on a panel 
having a swept supersonic leading edge is derived as follows. 

Constant Triplet. The constant triplet is obtained by combining a 
constant source and vortex distribution. The elementary source and vortex 
filaments making up these singularities lie inthe plane of the panel parallel 
to the leading edge, as indicated below. 

- Y 

Linearly Varying Line 
Vortex Along Edge 

X 

The three components of velocity induced at a point, x,y,z, in the field 
by one corner of the panel are derived in Appendix B. The influence of a 
constant vortex distribution is given by Eqns. (B7) - (B9), and a constant 
source distribution by (B13) - (B15). The constant triplet is obtained 
by combining these singularities as follows. 

'TC = 'VC + l/m USC 

=F+H -mdmG (44) 
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"TC = "vc + j/27' vsc 

= -X(F + H) + J/m G 

'TC = wvc + lJF-2 wsc 

= - d B2 - x2 (F + H) - (X - B2m) G 

(45) 

(46) 

where F and G are given by Eqns. (BlO) and (Bll), and 

H = cos -1 xx - B2Y 

d(x 
(47) 

- xy)2 + (x2 - B2Z2) 

The influence of the complete panel is obtained by combining the in- 
fluences of each of the four corners. Within the "two-dimensional" region 
associated with the supersonic leading edge, the sum of F and H is 2~ above 
the plane of the panel, and zero below. This special relationship again 
provides for cancellation of the perturbation velocities in the interior 
of the wing. 

A pair of linearly varying line vortices is added along the side edges 
of the panel to transfer the accumulated vorticity into the wake. The 
influence of these line vortices is given by Eqns. (111) - (113) of 
Reference 2. 

17 



APPLICATION 

No special procedures are required to apply the triplet singularities 
to the analysis of wings and bodies in supersonic flow. One control point 
is associated with each panel (or group of panels) used in the aerodynamic 
representation. The boundary condition of tangential flow is then imposed 
at each control point, and the resulting system of linear equations is 
solved to determine the individual singularity strengths. Surface pressures, 
forces, and moments acting on the configuration are then calculated in the 
usual way. A computer code has been developed to perform the calculations 
and is available as a modification to the USSAERO program. 

Body Panel Arrangement 

A panel arrangement suitable for the analysis of a body having arbitrary 
cross-section is shown in Figure 2. The panel leading and trailing edges are 
defined by planes perpendicular to the reference x-axis, while panel side 
edges are defined by the body meridian lines. A grouping of six panels is 
used to make up a triplet singularity which will satisfy the Helmholtz vortex 
conservation laws without requiring line vortices along panel edges or trail- 
ing vortex wakes. Within this six-panel group, the individual singularity 
strengths are prescribed to ensure that the elementary vortex filaments form 
closed loops, as indicated on the figure. The center row of panels contains 
only circumferential triplet singularities of equal and opposit@ strengths. 
I he singularities in the outer rows are composed of a special combination of 
edge and radial triplets, which result in zero vorticity along the outer two 
edges, and match the inflow (or outflow) of vorticity along the inner two 
edges. 

The strengths of the triplet singularities in each group are determined 
by satisfying Neumann boundary conditions at the control points. 

Wing Panel Arrangement 

A conventional panel subdivision is used on the wing. The panel side 
edges are defined by planes parallel to the reference x-axis, while the 
leading and trailing edges are defined by constant percent chord lines. 
Panels are located on both upper and lower surfaces of the wing. 

For wings having subsonic leading and trailing edges, a combination of 
constant sources and linearly varying vortices are used in the aerodynamic 
representation. The linearly varying vortex singularities are distributed 
over two adjacent panels, as illustrated in Figure 3, and include a pair of 
constant vortices trailing downstream along the panel edges and into the 
wake. The principle of symmetrical singularities is applied, as described 
in Reference 5, by equating the source and vortex strengths on corresponding 

18 



ELEMENTARY SOURCE/ VORTEX FILAMENT 

CONTROL POINT 

TANGENTIAL VELOCITY DISTRIBUTION 
SECTION A-A 

Figure 2. - Panel Arrangement on Arbitrary Body. 



VORTICES 

Figure 3. Vortex Panel Arrangement on Wing (Panel has Subsonic Edges). 



panels on the upper and lower surfaces of each section. The details of the 
extension of this method to the analysis of three-dimensional wings is 
given in Reference 4. 

For wings having supersonic leading and trailing edges, constant triplets 
alone are used on each panel. This aerodynamic representation minimizes inter- 
ference effects between the upper and lower surfaces of the wing. 

Wings having subsonic leading edges and supersonic trailing edges present 
a more difficult problem. In this case, all panels ahead of the sonic genera- 
tor line have subsonic edges, and those behind this line have supersonic 
edges. (A sonic generator line is defined as a wing generator line parallel 
to the Mach line.) A combination of constant sources and linearly varying 
vortex singularities are used ahead of this line, changing to constant triplet 
distributions on panels behind the line, with the linear distributions over- 
lapping the constant distributions on the panel containing the sonic genera- 
tor line itself. The strengths of the singularities are then determined by 
applying the synanetrical singularity method described above. This technique 
results in relatively smooth variations in singularity strength across the 
sonic generator line. 

Mach 
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EXAMPLES 

Several examples are presented to illustrate the application of the 
triplet singularity method to a variety of wings and bodies in supersonic 
flow. Theoretical pressure coefficients are calculated using the isentropic 
pressure coefficient formula. The examples are compared with other theoreti- 
cal methods and experimental data. 

Parabolic Body of Revolution 

Figures 4 and 5 give the axial pressure distribu_tion on a parabolic body 
of revolution having a fineness ratio of 20 at M = J2. Comparisons between 
the triplet method and the surface source method of Reference 2 are shown 
for a = 0 and 5". For this smooth slender body, the two methods give very 
similar results, although a close examination shows small irregularities in 
the pressure distribution calculated by the source method caused by internal 
wave reflections. 

Cone-Cylinder-Cone 

A more severe test case was provided by a 15" cone-cylinder-code body at 
M = 2.0. In this example, the surface source panel method of Reference 2 
fails to give a convergent solution. Figures 6 and 7 show the axial pressure 
distribution at a = 0 and 5", respectively, compared to that obtained by the 
classical Karman-Moore method. (The Karman-Moore method uses a distribution 
of line sources and doublets along the axis, together with tangency boundary 
conditionsonthe body surface, Ref. 6.) The results of these two methods 
agree closely, indicating that the triplet method was effectively eliminated 
the strong internal waves that caused the source method to diverge. Figure 
8 shows the circumferential pressure distribution on the 15" cone at M = 2.0 
and a = lo", on a section just behind the shoulder of the cone-cylinder and 
on a section of the cylinder extended 35 diameters behind the shoulder. The 
pressure distribution on this last section is seen to approach the incompres- 
sible cross-flow on a circular cylinder in two dimensons. 

Nacelle with Internal Flow 

The exterior pressure distribution on a circular nacelle with internal 
flow has been calculated at M = &? for a = 0 and 10". The results are pre- 
sented on Figure 9. This example again indicates the effectiveness of the 
triplet singularity in suppressing spurious internal waves, and can be com- 
pared with the nacelle results presented in Reference 1. 
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Ogive-Cylinder-Boattail 

Figures 10 and 11 give the axial pressure distribution on an ogive- 
cylinder-boattail body at M = 2.3. For c1 = 0", Figure 10, a comparison is 
made between the triplet method and the experimental data of Reference 7. 
The theory tends to underestimate the pressure on the nose of the body, but 
agrees well with the data elsewhere, except on the boattail where viscous 
effects dominate. The underestimation of the nose pressure is a result of 
applying the linearized potential flow equations and tangency boundary con- 
ditions. A better approximation to the pressure on the nose can be obtained 
by applying a local Mach number correction described in Reference 4. The 
improvement is indicated by the dashed line on the figure. 

For c1 = 4", Figure 11, a comparison is made among the triplet method, 
the finite-difference method, Reference 8, and experimental data. The 
finite-difference method agrees well with the experimental data except on 
the boattail, while the triplet method again underestimates the pressure on 
the nose. No local Mach number correction has been added to the triplet 
results in this case. 

Elliptic Cone 

The triplet singularity may also be applied to the analysis of non- 
circular bodies. In Figure 12, the circumferential pressure distribution 
on an elliptic cone at M = 1.89 is compared with experimental data, Reference 
9. For c1 = O", the theory overestimates the pressure slightly. For a = 6", 
a more pronounced overestimation occurs on the lower surface. 

B-l Forebody 

The pressure distributions along the upper and lower meridians of the 
B-l forebody for M - 2.2 and c1 = 3" are shown on Figure 13. Results from the 
triplet method are compared with the finite-difference method and experi- 
mental data obtained from Ref. 10. The finite-difference method agrees 
exceptionally well with the experimental data in this example. On the other 
hand, the triplet method underestimates the pressure on the nose cone, and 
fails to predict the pressure peak behind the canopy shock. This result is 
due to the shortcomings of linearized potential flow theory and can only be 
partially offset by applying a local Mach number correction. 

Uncambered Arrow Wing 

The pressure distribution calculated for an uncambered arrow wing having 
70" sweepback and a 3 percent biconvex section at M = 2.05 and cx = 4" is 
presented on Figure 14. The results are compared with experimental data from 
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Reference 11, and a previous USSAERO calculation using planar boundary condi- 
tions with linearized pressure coefficient formula. 

This wing has a subsonic leading edge and a supersonic trailing edge, 
and consequently uses a combination of linear vorticity and constant sources 
ahead of the sonic generator line , and constant triplets aft of that line. 
The results are smooth and are generally in good.agreement with experimental 
data except on the upper surface near the wing tip. The theory also fails to 
predict the development of a small vortex above the leading edge on the in- 
board sections. The nonplanar boundary condition applied in this example 
gives a noticeable improvement in the pressure distribution on the lower sur- 
face, compared with the previous planar boundary condition calculation. 
However, much of this improvement is due to the use of the full isentropic 
pressure coefficient formula rather than to the particular aerodynamic model 
employed. 

Cambered Arrow Wing 

Figure 15 gives the pressure distribution calculated for a cambered and 
twisted arrow wing having the same planform and airfoil section as the pre- 
vious example. The camber and twist was selected to give a design lift 
coefficient of .08 at M - 2.05 (see Ref. 11). The theory is compared with 
experimental data for cx = 4", and also with a previous USSAERO calculation 
using the planar boundary condition option. 

In this calculation, the effect of the camber and twist was obtained by 
analyzing the equivalent uncambered wing in a nonuniform onset flow consist- 
ing of the normal component of the free stream velocity, plus an incremental 
normal velocity proportional to the slope of the chordwise camber distribu- 
tion. The boundary condition of tangential flow is then applied at the 
upper and lower surface control points on the equivalent uncambered wing. 
This is consistent with the technique used to add camber effects in the planar 
boundary condition option of the USSAERO program. 

The resulting chordwise pressure distributions are in reasonable agree- 
ment with the experimental data, except on the lower surface near the wing 
tip. Again, the nonplanar boundary condition calculations agree more closely 
with the lower surface experimental data than the previous planar boundary 
conditon calculations, due primarily to the pressure coefficient formula 
employed. 
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CONCLUSIONS 

A triplet singularity has been developed and applied to the analysis 
of wings and bodies in supersonic flow. The new singularity has been found 
most effective in the analysis of bodies, and appears to eliminate any 
sensitivity of the surface pressure to the details of the panelling. 

The new singularity also makes it possible to extend the method to the 
analysis of wings defined by surface panels, using nonplanar boundary condi- 
tions in supersonic flow. However, no significant improvement in the predic- 
tion of the wing pressure distribution has resulted from this extension. It 
is concluded that a more extensive evaluation of the method is required to 
determine if the overall improvements obtained justify the additional numeri- 
cal complexity involved. 
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APPENDIX A: DERIVATION OF BODY SINGULARIT 

1. Circumferential Vortex Distribution 

The incompressible velocity components induced at a point, P, by a constant 
vortex distribution in the plane of the panel are derived by integrating the 
influences of a series of elementary line vortices extending across the panel 
parallel to the leading edge. The geometry of an elementary line vortex 
located at a distance, 5, from the leading edge and having strength, dS, is 
illustrated below. 

0 b - Y 

Line Vortex 

The panel lies in the x,y plane and the edge slope, m = tan 8, is an 
arbitrary constant. The distance from the point, P, to the left end of the 
elementary vortex is 

d =d (X - <)’ + (y - mx)* + z* 

The velocity components are obtained by applying a 90 degree coordinate 
rotation to the line vortex velocity formulas given by equations (6) through 
(8) of Reference 2, and integrating across the panel as follows. 
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uvc = - z J (Y - mE) dE 

ux - -9’ + z2h/(x - E)' + (y - m<)' + z* 
(Al) 

w = 
J 

(x - <)(y - mc) dc 
V 

C ux - El2 i Z*) 4(X - c)' + (y - mg)* + z2 

put v = x - 5. Then 

U 
vc = z (Y- 

c 
mx) J1 + mJ2 1 (A41 

(A31 

W 
vC 

= mz* J 
1 

- (y - mx) J2 - mK1 (A51 

where 

dv 

v* + z2)dav2 + 2bv + c 

J2 = J v dv 

(v2 + z*)dav* + 2bv + c 

K1 = f 

dv 
dav2 + 2bv + c 

va 

(A71 

o-w 

The integrals, J1 and J2, are given in Appendix I of Reference 2, and the 
integral Kl is in standard form. Evaluating these integrals, the three 
components of velocity induced by the inboard corner of the panel can be 
written: 
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uvC 
= tan 

-X(Y - mx) + mz* 

vvC 
=0 

(A9 

UW 

W 
vC d- sir,h-' d(y - mx;2*+m);l + m') z* 

(All 1 

The compressible velocity components can be obtained from the above 
expressions by applying the extended Gothert's rule. In supersonic flow, with 

B = die-7, 

-1 zdx* - B2 (y’ + z* ) 
U 

vC 
= F = tan 

-x(y - mx) - mB*z* 
(A721 

w =B Bm 
V 

d 

cash -1 x - B*my 
C 1 - B*m* B d(y - mx)* + (1 - B*m*) z* 

- sin-' q& 
3 

= B @m G - H) (Al4) 
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2. Circumferential Source Distribution 

The incompressible velocity components induced at a point by a constant 
source distribution in the plane of the panel are given by Eqns. (18) through 
(20) of Reference 2. In supersonic flow, these expressions become: 

U 
SC = - (Bm G - H)/@ (A151 

V 
SC 

=G ma 

w =-F SC (A171 

where F, G, and H are defined above. 

3. Edge Vortex Distribution 

The incompressible velocity components induced at a point by a constant 
vortex distribution oriented parallel to the side edge of the panel are derived 
by integrating the influence of elementary line vortices across the panel in 
the spanwise direction. The geometry is illustrated below. 
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The panel lies in the x,y plane, and the edge slope, m= tan 8, is an arbi- 
trary constant. The distance from the point, P, to the origin of the vortex 
is 

d = $x2 + (y - T-)>2 + z* 

The velocity components are obtained by rotating the line vortex 
velocity formulas given by equations (6) through (8) of Reference 2 through 
the angle, 8, and integrating across the panel as follows: 

'VE = mz J x + m(y - T-I) dn 

[(Y 
041 a 

- mx - n)*t (ltm*)z*l x*+ (y - lp + z* 

vVE = - u/m (Al91 

(Y - mx - n)(x + m(y - d) dr7 

'VE = / UY 
(A201 

- mx - n)*t (ltm*)z*J x* t (y - l-l>* + z* 

These integrals can be expressed in terms of the J and K integrals by sub- 
stituting v = y - mx - n. Performing the integrations, the three components 
of velocity induced by the inboard corner of the panel may be written: 

'VE = -m tan 
-1 zqx* t y* + z* 

-X(Y - mx) + mz* 
(A21 > 

'VE = -u/m (A221 
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wVE = 43 sinh-' -. x + my 

g(y - d2 + (1 + m*)z' 

7 m sinh -l Y f m log $?X? 
qr 

(~23) 

These formulas can also be obtained by performing a 90" coordinate rotation in 
Eqns. (43) through (45) of Reference 2. , In supersonic flow, 

'VE = -mF (A24) 

vVE = F (A25) 

w,,E = (1 - B*m*)G -I- BmH (A26) 

where F, G, and H are defined by Eqns. (A12) through (A14). 

4. Edge Source Distribution ----- 

The corresponding edge source distribution can be obtained by multiplying 
the circumferential source distribution by -m. In supersonic flow, 

'SE = m(BmG - H)/B (A27) 

'SE = -mG (A281 

'SE = mF (A29) 
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5. Radial Vortex Distribution 

In the radial vortex distribution, the velocity components at a point are 
obtained by integrating the influences of a series of elementary line vor- 
tices lying along radial lines from an apex defined by the intersection of the 
two side edges. The geometry is illustrated below. 

Y 

1 

X 

The elementary line vortex lies along the line, y = mx, and originates 
at the point, o, m2, where R is the distance of the apex ahead to the panel 
leading edge. The distance from the point, P, to the origin of the vortex is 

D= X2 + (y - mR)* + z* 

In this case. the vortex inclination. m = tan 8. varies from ml to m2 
across the oanel. The velocitv comoonents are obtained bv rotating the line 
vortex velocity formulas given by Eqns. (6) through (8) of Reference 2 throuqh 
the anqle, 8, and integrating with respect to m as follows: 
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'VR = ZQ 
J c(Y - 

Lx + m(y]m dm 

m(x + R))* + (1 + m2)z2] 2+ (y - mR)* + z* 
ml 

(A3D) 

v,,R = -z% J x + m(y - mR) dm 

C(Y - m(x + fi))2 + (1 + m2)z2J 
ml 

x2 + (y - mR)2 + z2 

(A31) 

'VR = - [(x + Q)u •t YV] /z (A32) 

Substituting L, = m + Y(X + Q) 
(x + Q)* + z* ' 

the above integrals can be expanded 

into expressions containing the J integrals (with y = yzR/((x t a)' + z*), 
and other integrals of standard form. Performing the integrations, the 
three components of velocity induced by the inboard corner of the panel 
may be written: 

-1, D t R(x t Q)GR t YQ(’ + ') - '* F 1 
2 

'VR = (x + Q)* + z* (x + Q)* + z2 

+ 2yza(x + a) 

(x + Q)2 + z* 
(A33) 
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Q 
'VR = (x + Q) F t z yG 

(X+R)*+z* [ R-,Hl) (A34) 

1 
'VR = (x + Q)* + z* I 

(X + Q)(D + Q(X + Q)GR) 

+ YQ 
(x + !k)* - z* (yG 

R- 
,,) _ 2yzR(x + Q) F (A351 

(x + Q)* + z* (xtQ)*t z* 

where F = tan -1 zD 

-X(Y - m(x + 2)) .tmz* 

GR R 

-1 =$sinh - x(x t Q) + y(y - ma) t z* 

Q4Y - m(x t a))* t (1 t m*)z* 

H = sinh 

and D = dx2 t (y - mQ)* ' z2~ 

(A36) 

(A37) 

(A38) 

DR = d (X + Q)* t y* t z* 
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In supersonic flow, 

'VR = 
-1 

(x -I- a) - pz* i 
z(D t Q(x t Q)GR)t yQ(x + Q)2 + B2z2 F 

(x -I- Q)* - B2Z2 

2Byzll(x + a> -- ( YGR - HI VW 
(x + a)' - B2Z2 

Q 
'VR = I 

(x + Q)F - Bz(ByGR - H)i 
(x + a)' - f3*z* I 

(A401 

1 
WVR = (x + a)' - B2Z2 I 

(x f Q)(D t Q(x t Q)GR) 

- i3yQ( 
x t a)' t 6222 

(x + Q)' - B2z2 
(BYGR - HI + 

2B*yzQ(x + Q) 1 
FI 

(A411 
(x t Q)' - B2z2 

where F = tan-' zD 

-X(Y - m(x t Q))- B*mz* 

GR R 
= $ cash 

-1 X(X + Q) - f3*~(Y - mQ) - B2Z2 

BQh’ - m(x t a))* t (1 - B2m2)z2 

(A421 

(A43) 
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H = sin-’ - Y - mQ 
BdX2 - B2z2 

(A44) 

and D = &* - B2(y - mQ)* - @*Z* 

DR = 4 (x + Q)* - p*(y* + z2> 

6. Radial Source Distribution 

The derivation of the velocity components induced by a radial source 
distribution is similar to that used for the radial vortex distribution, 
with elementary line sources replacing the elementary line vortices along 
radial lines from the apex of the panel. The three components of velocity 
may be written in integral form as follows: 

UsR = 2 J [xy - m(x(x + Q) + z')] m*dm 

UY - m(x t Q))' t (1 + m*)z*] x2 t (y - ma)' t z* 

tQ Jd mdm 
x2 t (y - mQ)* + z* 

0745) 
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'SR = -Q 
-[xy - m(x(x + Q) + z*)] mdm J [( Y- m(x t Q))' t (1 - m2)z2]fi + (y - mQ)* + z* 

(A461 

'SR = -UVR (A47) 

Carrying out the integrations, using the substitutions indicated in the 
previous section, the three components of velocity induced by the inboard 
corner of the panel in incompressible flow are: 

'SR = 
1 

I 
(x + Q)D + z2QGR - 2yzQ(x + Q) F 

(x + Q)' + z* (x + Q)* + z* 

+ YQ 
(x -I- a)' - z* 2 

(x + Q)* + z* 
(yGR - H) 1 

Q 
'SR = 

I 
(x t Q)* f z* 1 

ZF - (x + Q)(yGR - H) 1 
I 

- H 

'SR = -UVR 

where F, GR, and H are defined by Eqns. (A36) through (A38). 

(A481 

VW 

(A5D) 
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In supersonic flow:, 

'SR = 
1 - (X t Q)CI - B*z*QG~ _ 

W.YZR(X + Q) 

fl* [(x t q2 - B2z2] 
(x t a)' - pz2F 

+ ByQ (x + Q)* + B*Z* i 

(X + Q)* - e*z* 
(ByGR - H) 1 

Q 

VSR = B [(x + a)' - fpz*] 
BzF - (x + Q)(8YGR - H) 

1 
f 

- z 

'SR = -UVR 

(A51) 

(A53) 

where UVR is defined by Eqn. (A39), and F, GR and H are defined by Eqns. (A42) 
through (A44). 

7. Leading-Edge Line Vortex 

In incompressible flow, the three components of velocity induced at a 
point, (x,y,z), by a linearly varying line vortex located along the panel 
leading edge are: 

uvL = zd (l+$ 
x2 t 22 

(A54) 

vvL =0 (A55) 
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WVL = - )(2 zd,2 
(1 +$I 

where d=d x2 + y2 + z2 

In supersonic flow, 

zd 
T/L = x2 _ B2Z2 

"VL =0 (A581 

xd 
wvL = - x2 _ L32z2 

(A561 

(A57) 

0-W 

where 

8. Leading-Edge Line Source 

In incompressible flow, the three components of velocity induced at a point, 
(x,y,z> by a linearly varying line source located along the panel leading edge 
are: 

USL = - xd 

x2 + z2 

"SL = sinh -1 Y 
&G7 

mm 

(A61 1 
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where 

wsL = - x2zy z2 

d=d x2 + y2 + z2 

In supersonic flow, 

%L = 
xd 

B2 (x2 - B2Z2) 

"SL B = 1 sin-l 4* 

zd 
wsL = - x2 _ B2z2 

(A62) 

(A63) 

(A641 

(A651 
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APPENDIX B: DERIVATION OF WING SINGULARITIES 

1. Constant Vortex Distribution _--__- 

The velocity components induced at a point, x,y,z, by a constant vortex 
distribution on an unswept body panel in supersonic flow are given by equa- 
tions (A12) through (A14). The velocity components corresponding to a swept, 
tapered wing panel are obtained by applying a Lorentz transformation about the 
z-axis. If the leading edge of the panel is swept back through the angle, A, 
and X = tan A, the three components.of velocity may be written: 

uvc = uy!c - v;p2 

“vc = “k - %c 
Wvc = &3--T wp 

(Bl ) 

(B2) 

where u' 
vc' 

W' 
"2 vc' 

are given by Eqns. (A12) through (A14), with the following 

coordinate transformations applied. 

6(x - XY) 
x’ = &2 _ x2 

6y’ = $L& 

Bml = B2m - X 

6 (1 - m0 

(B4) 

@5) 

(B6) 

where m = tan 8. 
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The geometry is illustrated in the following sketch: 

X’ 

I 
X 

After some simplification, the velocity component formulas for a constant 
vortex distribution on a panel having arbitrary edge sweep in supersonic flow 
may be expressed as follows: 

uvc = F 037) 

“vc = -xF uw 

wvc = (A' - fi2)H - (X - B2m)G (B9) 

where F = tan-’ (’ - n-A> z d/x2 - B2(Y2 + Z’> 

(x - XY > (mx - y) + (x2 - B2m)z2 
@lo) 

(Bll) 
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and for X > B 
- B2Z2) 

d+- 

-1 =- xx - B2y 

- x2 cos o&x - xy)2 + (A' - a2z2) 
for X < 8 

(B12) 

It should be noted that, for m = 0, Eqns. (B7) through (B9) reduce to 
Eqns. (108) through (110) of Reference 2. 

2. Constant Source Distribution -- ---- 

The velocity components induced at a point, x,y,z, by a constant source dis- 
tribution on an unswept, tapered body panel in supersonic flow are given by 
Eqns. (A15) through (A17). The corresponding formulas for a constant source 
distribution on a wing pane7 having arbitrary edge sweep in supersonic flow 
can also be obtained by applying the Lorentz transformation, as described 
above. The resulting expressions are: 

usc =H-mG (B13) 

vsc = G - XH (B14) 

wsc = -F (B15) 

where F, G, and H are defined by Eqns. (BlO) through (B12). For m = 0, the 
above velocity component formulas reduce to Eqns. (96) through (98) of 
Reference 2. 
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3. Constant Edge Vortex Distribution 

The constant edge vortex distribution is obtained by combining the influ- 
ence of a radial vortex distribution on a swept, tapered panel with the 
constant vortex distribution derived for the same panel. Expressions for 
the three components of velocity, uvc, vvc, wvc, induced by the constant vor- 

tex distribution are given by Eqns. (108) through (110) of Reference 2. Ex- 
pressions for the velocity components induced by the radial vortex distribu- 
tion are obtained by integrating the influence of an elementary line vortex 
of strength, dt, located along a radial line passing through the intersection 
of the leading and trailing edges extended. The geometry is illustrated in 
the following sketch. 

In integral form: 
C 

UVR = z 
/ 

: dS 

0 

"VR = -Au 

WVR = - c b - 5 
/ 

- Xy)K dc 

r2 
0 

(BW 

(Dl7) 

(B18) 
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where K = x(x - 't-1 + Y 

d(x - EJ' + y2 + z2 

r2 = (X - 5 - AY12 + (1 + P)z2 

and x = x1 - C/c 

Here, a = X1 - X2, b = c/a, and Xl and X2 are the slopes of the leading and 

trailing edges, respectively. Making the substitution given by Eqn. (51) of 
Reference 2, and integrating, the velocity components may be written as 
follows: 

=L r(c- 
'VR ,,2 1 

ay) F, - aZGE (Bl9) 

-1 I(,,- 
"VR = p2 [ ax> yF1 

+ az [aD/c - (c - ay)(B2G1 + 2(cx - aX)GE/P2)] 1 
I 

+ z(x + D)/cr2 

' I (CA - ax) yGE - (c - 'VR = 7 t ay> [ Wc - B’(c - ay$ 

- 2az(cX - 1 ax)Fl/p2] - y(x + D)/cr2 
1 

(B21) 

@20) 
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where Y= 
(c - ay)' - a2z2 

(c - ay)' + a2z2 

0=4(x - g)' + B2r2 

r2 = y2 + z2 

GE = (ch - ax)G1 - G2 

and the remainder of the terms are defined by Eqns. (118) through (120) of 
Reference 2. It should be noted that the influence of a linearly varying 
line vortex has been added along the side edge of the panel. 

The constant edge vortex distribution is obtained by combining the above 
expressions as follows: 

'VE = ('E 'VR - uVC)/a (B22) 

"VE = ('E "VR - 'VC )/a (523) 

'VE = ('E 'VR - WV&/a (~24) 

where cE is the chord length of the edge. 

A special case is required for swept constant chord panels (a = 0). In 
this case, 

'VE = yF1 - z(XG1 - G2) (~25) 

"VE = (x - 2Xy)F1 + z(B2 + 2X2)G1 (B26) 

'VE = 2XzF1 + y((B2 + X2)G1 - AG2) - (x - Xy)(XG1 - G2) - 2D (~27) 
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4. Constant Vortex Wake 

The velocity components induced by a constant vortex wake are obtained by 
intearatinq the influence of elementary line vortices located alonq lines 
parallel to the x-axis across the panei in a spanwise direction. in incompres- 
sible flow, 

Auvw = 0 W’8) 

Avvw = z J 
drl 

(Y - VI2 + z2 
(1 + x - 5 - XV) 

Awvw = - 
/ (y 

- n)dn (l + x - 5 - AT-I 
d > 

(y - d2 + z2 

where d = 4(x - 5 - xv)2 + (y - n)' + z2 

Performing the integration, 

Avvw = F, - F2 

AWvw = - xG, + G2 - log r 

(B29) 

030) 

where F 1' F2' G, and G2 are defined by Eqns. (99) through (102) of Reference 2. 

In supersonic flow, 

Avvw = F, (B33) 

Awvw = - XG, + G2 (B34) 

where Gl and G2 are now defined by Eqns. (103) and (104) of Reference 2 . 
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5. Linearly Varying Source Distribution on a Tapered Panel 

The three components of velocity induced at a point, P(x,y,z), by a linear- 
ly varying source distribution in the plane of a swept, tapered panel are 
derived by combining the influences of elementary constant and linearly 
varying line sources located along radial lines passing through the inter- 
section of the panel leading and trailing edges extended. The geometry is 
illustrated in the folowing sketch: 

I 

X 

The velocity components are obtained by rotating the line source veloc- 
ity formulas given in Reference 1 through the angle, A, and integrating across 
the panel chord as follows. 

For a constant line source, 

= 
J 

(x - E - bd(~(x - <> -+ y) dc _ x dS 
(1 + X2) r2d I- (1 + X2)d 

(535) 
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xv;: + u; 
vc=‘3;9c;p 

= 
/ 

dg _ x(x - 5 - xy)(x(x - c) + y) dE 

(1 + X2)d J (1 + A2) r2d 

wc c 
=w’ = z x(x - <) + Y d< 

r2d 

where X = tan A = A, - aS/c 

a=X -X 12 

d=&x- <)' + y2 + z2 

r2 = (x - 5 - xy)2 + (1 + P)z2 

These formulas may be compared with Eqns. (31) through (33) of 
Reference 2. 

For a linearly varying line source, 

xu; - vi 

uL = 41 + x2 

(B36) 

(B37) 
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= 
J 

o( - <- U)d d< _ x 
(1 + X2)r2 J (1 + Ti2)3'2 

sinh-' '(' - ') + y d< 
r 

(B38) 

AVi + Ui 

vL=q- 

= - s sinh-' X(X - E> + Y d< 
r 

(B39) 

WL L=z = w’ 5 d5 

The influences of the constant and linearly varying line sources are 
multiplied by < and combined in the following manner to obtain the final 
integral forms. 

usL = uc - auL/c 

J 
(x - 

= 5 - XY) C (CA1 - ax)(x - <) + y(c - ay) - az2 J 

(1 + X2)r2cd 
SdE 

0340) 

xc 
(1 t x2)3'2 

sinhB1 X(X - <I ’ Y d< 
r 
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Noting that aA5 
(1 + P)3'2 

= 7& (','+':l - l), and simplifying, 

1 
usL = c J 

$= sinh-' Xx -rs) ' ' dS 

1 sinh -1 9(x - d + Y 

d 1 + APT Iit 
(841) 

x-c- x2y)2 + (1 + x22)z2 

The integral appearing in this expressions cannot be evaluated in closed 
form. It is integrated numerically in the computer program. 

vsL =V c - avL/c 

= 
/ 

5ds + 5 L sinh-’ X(X - 5) ’ Y d< 
(1 + X2)d ’ / (1 t x2)3'2 r 

-1 h(X - 5 - AY> [(CA, - ax)(x - <) + y(c - ay) - az2] 
- --~~. Ed< 

(1 + X2)r2cd 

41 t Xl2 sinh-' 
x,x + Y 

d( x - A,y)2 + (1 + X12)Z2 
- llG2 
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' -- 
P2 

(c - ay)(e'G, - (cl, - ax)G2 + aZ(cX 1 
- ax)F t 

' I 1 
(BQ) 

wsL = wc - awL/c 

(CA, - ax)(x - 0 + y(c - ay) - az2 
I 

dS 

= L jsF, + z 
P2 1 

e2G1 - (CA, - ax)G2 1 1 ! (B43) 

In incompressible flow, F,, G,, G2, R, s, and p are defined by Eqns. (56) 

through (58) of Reference 2. In supersonic flow, corresponding expressions 
for these functions are defined by Eqns. (118) through (120). 

For a = 0, the above velocity component expressions reduce to Eqns. (37) 
through (39) of Reference 2. 
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