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SUMMARY

The test program developed for the basic prepreg materials used in process

development work and fabrication of the National Transonic Facility fan blade

is presented. The basic prepreg materials and the design laminate are

characterized at 89 K (-300 ° F), RT (room temperature), and 366 K (200° F).

A discussion of the characterization tests, test equipment, and test data

is presented. Material test results in the warp direction are given for

tensile, compressive, fatigue (tension-tension), interlaminar shear and

thermal expansion.

INTRODUCTION

The National Transonic Facility (NTF) is a closed loop, cryogenic wind

tunnel being constructed at the NASALangley Research Center in Hampton,

Virginia. This wind tunnel will operate at test section Mach numbers from

0.I to 1.2; pressures from 8.3 to 130 psia; flow stream temperatures from

352.6 K to 88.7 K and Reynolds numbers up to 120 million. The gaseous medium

in the tunnel will be dry air or nitrogen. The fan blades to be constructed

are a part of the single stage compressor which provides the aerodynamic power

for the NTF. Twenty-five blades are attached to the fan disk near its outer

rim. The fan blades rotate at speeds up to 600 rpm and are exposed to the

temperature environment of the tunnel stream.

Physical properties of available composite materials were screened for

their suitability for this application. A preimpregnated (prepreg) epoxy

resin, E glass, was selected as the most promising material for the fan blades



because of its damage tolerances, repairability and high damping. Also fiber-

glass is known to have high strength and fatigue resistance at cryogenic

temperatures. However, the physical and mechanical properties at elevated

and cryogenic temperatures had to be determined before this material could be

used. This report gives in detail the material specifications, the processing

parameters used to prepare the test specimens and the tests that were used to

characterize the basic materials and the design laminate. The temperature

range for the tests were 88.7 K (-300 ° F), room temperature (RT) and 366.5 K

(200° F).

SYMBOLSLIST

T subscriptionfor tension.

C subscriptionfor compression

RT room temperature

oI tensilestrengthfor the 0 radiansply orientation,MPa (psi)

02 tensile strength for the 7/2 radians ply orientation, MPa (psi)

o12 inplane shear strength for the ± _/4 radians ply orientation, MPa (psi)
I

o12 interlaminar shear strengths, 0 radians ply orientation MPa (psi)

v12 Poisson's ratio for the 0 radians ply orientation

v21 Poisson's ratio for the _/2 radians ply orientation

El Young's moduli for the 0 radians ply orientation, GPa (psi)

E2 Young's moduli for the _/2 radians ply orientation, GPa (psi)

shear modulus, GPa (psi)GI2

_I coefficient of linear thermal expansion for the 0 radians ply

orientation, m/m/°K xlO -3, (in./in.°F)



m2 coefficient of linear thermal expansion for the 7/2 radians ply

orientation, m/m/°K x 10-3 , (in./in.°F)

sL II fatigue tensile limit load for the 0 radians ply orientation,

MPa (psi)

SL 22 fatigue tensile limit load for the 7/2 radians ply orientation,

MPa (psi)

MATERIALDESCRIPTION

The 7781 E glass has a volan finish with 60 fibers in the warp direction

and 54 in the fill direction (figs. 1 and 2). The fibers are 0.23 mm (0.009 in.)

thick. The 7576 E glass has a UM665 finish with 120 fibers in the warp

direction and 24 in the fill direction. The fibers are 0.28 mm (0.011 in.)

thick. A combination of both materials were made in laminates and tested as

design laminate test specimens representing the ply orientation and stacking

sequence of the material layup used in the fan blade design.

Preimpregnated Fiberglass

A preimpregnated (prepreg) epoxy resin, E glass, was selected as the

material for the fan blades. Fiberglass was the most promising material

for the fan blades because of its damage tolerances, repairability, high

damping, high strength and fatigue resistance at cryogenic temperatures.

Resin Description

The epoxy resin system selected has exhibited excellent physical

properties in missile body construction. The epoxy resin system combines

good fabricating qualities with moderate cure temperatures. The EF-2 resin

is 50 parts by weight (PBW) diglycidyl ether of bisphenol A, 50 PBW



tetraglycidoxytetraphenylethane,90 PBW nadic methyl anhydrideand 0.5 PBW

benzyldimethylamine.

Resin Content

A sample of each roll of materialwas tested for resin contentand

volatiles. The resin contenton material used for the test specimensranged

from 29 percentto 36 percentwith volatilesrangingfrom 1.5 to 6 percent.

Preparationand Cure Process

In preparationfor the cure process,the laminatewas installedin a

vacuum bag and placed in the autoclaveat ambienttemperatureswith a

0 absolute pressure.

A pressureof 0.586 MPa (85 psi) was appliedand the temperatureincreased

at a rate of 5° per minute until 347 K (165° F) was reachedand held for

30 minutes. The temperaturewas raised at a rate of 5° per minute until 394 K

(250° F) was reachedand held for 3 hours. The temperaturewas raised at

5° per minute and held for 2 hours at 436 K (325° F). The laminatewas

allowedto cool under 0.586 MPa (85 psi) pressure until the temperaturereached

338 K (150° F). The pressurewas reducedto atmosphericand the laminate

temperaturereturnedto ambient. At room temperaturean ultrasonictest

(C-scan)displayingany discontinuityin a plan view of the laminatewas

performedto detect any voids. A sample of each laminatewas used to conduct

a burnout test to determinethe percentof resin content. The resin content

on laminatesused for test specimensranged from 29 to 34 percentwith

volatilesrangingfrom 1.5 to 6.00 percent. The cure process (temperatures

and pressureprofiles)may vary for the fabricationof variousfan blade parts

requiringthick cross sections.
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TEST PROGRAM

The interaction between testing the basic material, the analysis and

the design laminate is shown in figure 3. The basic materials data were

used for the design (analysis) to assist in establishing a design laminate

that represents the material and ply orientation of the fan blade. The

various tests of the prepreg materials are listed in tables 1 and 2. Laminates

were made for the 7781 and the 7576 E-glass (basic materials) and the design

ply laminate. Test specimens were machined from the various laminates with a

minimum of five test specimens, used for most tests. In the warp direction,

the individual material tests included tensile, compressive, fatigue (tension,

tension), interlaminar shear (regular and co-cured) and thermal expansion.

The interlaminar shear regular specimens were cured in one curing cycle. How-

ever, the co-cured specimens are made by partially curing the first part and

then co-curing the two parts together. This allows the resin matrix to be

tested in different manners. In the fill direction, tensile and thermal

expansion tests were conducted. The in-plane shear tests were conducted with

a fiber orientation of ± 7/4 radians. Several tensile and shear specimens

were thermal cycled before they were tested for their residual strength.

In the warp direction, the design laminate tests included tensile,

compressive, fatigue (tension, tension) interlaminar shear (co-cured),

thermal expansion and creep. The design laminate tests in the fill direction

were limited to tensile tests.

A summary of properties obtained from tests on the basic material and

the design laminate are shown in tables 3, 4 and 5.
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Tensile Tests

The American Society for Testing and Materials (ASTM) D3039-76 (ref. I)

test method for the determination of the tensile properties of resin-matrix

reinforced continuous or discontinuous fibers was used to test the fan blade

material.

The equipment used for the tensile test (fig. 4) was a 89.0 kn (20,000 Ib)

tensile test machine. The tensile specimens (fig. 5) are 0.0254 m (I in.)

wide by 0.279 m (II in.) long with a varying thickness range depending on the

laminate construction (basic material or the design laminate). The tensile

specimens were mounted in the test equipment grips as shown in figure 6.

The lower grips were fixed to the base of the test frame with a load cell

mounted at the top frame of the testing machine above the upper grips. The

test specimen and grips, etc., are enclosed by an environmental chamber used

to obtain the elevated and cryogenic temperature. LN2 was piped in the back

of the chamber controlled by a solenoid valve to cool the chamber to 88.7 K

(-300 ° F). The temperature of the chamber was monitored and each specimen was

allowed to "soak" prior to testing.

A tensile load is applied through the test machine drive. This load

was measured by the load cell, then recorded on recorder number 1 along with

the head speed of the test machine.

Strain gages were used to measure the material strain at 366.5 K (200° F),

RT and -300 ° F and also strain in the lateral and parallel fiber directions

within the proportional limit to obtain Poisson's ratio. The yield strength

was determined by the 0.2 percent offset method. Recorder number 2 was

used to record the strain as measured by the gages. Thetensile load from

recorder number 2 was transferred to recorder number 1 every I000 Ibs to

6



calibrate the recorders together. Five test specimens were tested at each

temperature 366.5 K (200 ° F), RT and 88.7 K (-300 ° F). The tensile tests

0 radians (0°), and _/2 radians (90 °) results are shown in tables 6 and 7.

The tensile strength curves (stress/modulus vs. temperature) for the 0 and

_/2 radian fiber directions are shown in figures 7, 8, 9"_nd I0. For the

_/2 radian ply orientation the yield strength data were used due to the

elasticity of the laminate matrix after yield. The design laminate test data

stress curve indicates the material becomes increasingly stronger at colder

temperature. The tensile strength of the design laminate as shown on the

stress curve falls between the 7781 EF-2 material and the 7576 EF-2 material.

The tensile tests at 88.7 K (-300 ° F) were hampered with a "grip" slippage

problem; however, the test data reported for the design laminate is considered

conservative. The ultimate tensile strength of the material was used to

establish material fatigue limits. The lower stress levels at the 366.5 K

(200 ° F) temperature are well above the design limits of the fan blades. The

average tensile ultimate material stress at 366.5 K in 0 radian direction is

394.0 MPa(57,086 psi) and the yield strength in the _/2 radian direction

is 235.0 MPa (34,128 psi). All tensile test data indicate the selected

design laminate meets the tensile strength requirements for the fan blade design.

Compression Tests

The American Society for Testing and Materials (ASTM) D3410-75 (ref. 2):

test method for the determination of the compressive properties of resin-

matrix composites reinforced by oriented continuous or discontinuous high

modulus fibers was used as a guideline for compressive testing of the fan blade



material. However, because of the complexity of the compressive fixture,

a face supported compression fixture was used.

In order to accomplish the compression testing of specimens after

environmental conditioning, a fixture (figs. II and 12) was utilized which

provided constraint for the specimen and also allowed for heating and cooling

using cartridge heaters or liquid nitrogen manifolding. Axial strain was

monitored using mechanical extensometers. The inner platens were split to

allow for axial extension while the outer platen provided primary constraint.

The outer platens were also channeled to allow for insertion of cartridge

heaters or attachment of liquid nitrogen manifolding for heating and cooling.

Cutouts were made through both platens on each side to allow for attachment of

mechanical extensometers on both sides of the specimen. Hydraulic grips were

utilized to transfer the load to the specimen by frictional forces between

grips and tabs and between the tabs and the specimen. In figure 13, the test

fixture is shown equipped with manifolding for liquid nitrogen circulation

through the platen in place.

Five test specimens were tested at each of the following temperatures,

366.5 K (200 ° F), RT and 88.7 K (-300 ° F). Compression loads are transmitted

to the specimen through the specimen tabs. Great care was taken installing

the fixture and specimen in the testing machine to insure alignment of

the specimen and testing machine axes. Load-strain data were obtained for

each specimen throughout the test by monitoring the output of a load-cell

mounted in the load train of the testing machine. Extensometers were used to

measure the strain.

Ultimate compressive stress-strain, strength and modulus data were

obtained from these tests, the stress curves (0 radian fiber direction)
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indicates the compressive strength was higher at colder temperatures

(figs. 14 and 15 and table 8).

Fatigue Tests

The American Society for Testing and Materials (ASTM) D3479-76 (ref. 3)

test method was used for the determination of the constant-amplitude tension-

tension fatigue properties of resin-matrix composites reinforced by oriented

continuous or discontinuous high modulus fibers.

The servo hydraulic fatigue machine (figs. 16 and 17) was equipped with

a load cell mounted at the top of the main structure of the test equipment.

The fatigue specimens were mounted between two grips, the top grip being

fixed and the bottom grip of the test equipment being driven with a hydraulic

driver to the specified Hz. The specimen was cycled between two tensile

loads at 15 Hz testing in axial fatigue. The fatigue test specimen was 38.1 mm

(1.5 in.) wide and 279.4 mm(II in.) long with a varying thickness depending

on the laminate ply orientation (fig. 18).

A special fixture was used to allow temperature control during the

fatigue tests. Electric heaters were mounted in the fixture to heat the

fixture and test specimen to 366.5 K (200 ° F). LN2 was piped through the test

fixture cooling the fixture and test specimen to 88.7 K (-300 ° F). Thermo-

couples were mounted on the test fixture and a probe was used to monitor the

temperature of the test specimen with a digital readout. The fatigue limits

for 1 x 106 cycles were established for the basic materials and the design

laminate.

The material (0 radians ply orientation) fatigu_ limits were found by

testing specimens for 1 x 106 cycles at various loads. The fatigue limits

9
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were established by testing to be 20 percent of the ultimate tensile load for

the 7576 EF-2 prepreg and 25 and 30 percent of the ultimate tensile load for

the 7781 EF-2 prepreg (table 9). However, when both materials were used in the

design laminate the fatigue limit was 30 percent of the ultimate tensile load.

The design laminate residual strength after 1 × 106 fatigue cycles was approxi-

mately 75 percent of the ultimate strength of the material. Several laminate

design specimens were tested to 5 × 106 cycles without failure. Five specimens

were tested at each of the following temperatures 366.5 K and 88.7 K. When

testing at 88.7 K some difficulty was experienced with specimen failure outside

the cooling fixture. Therefore, RT ultimate tensile loads were applied to all

tests at 88.7 K to eliminate fracture of the test specimen outside the cooled

fixture.

The fatigue tension-tension tests results are shown in table 9. All ef

the design laminate specimens tested with 30 percent of the ultimate tension-

tension load reached 1 × 106 cycles with no failures. One specimen was tested

at RT to 5 x 106 cycles. The average residual strength after 1 × 106 fatigue

cycles, showed a slight reduction in strength.

The 7781 EF-2 prepreg with a 7/2 radians ply orientation was tested in

fatigue compression-compression at 366.5 K and 88.7 K. All test specimens were

cycled 1 × 106 without failure with a 30 percent ultimate compression load

(table I0).

Shear Tests

Inplane shear tests.- The American Society for Testing and Materials (ASTM)

D3518-76 test method was used for the determination of the inplane shear stress-

strain response of unidirectional resin-matrix composites reinforced by continu-

ous or discontinuous high-modulus fibers (ref. 4). The method is based on the
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uniaxial tensile stress-strain response of a -+ _/4 radians laminate which is

symmetrically laminated about the midplane. The inplane shear test is essen-

tially a tension test of a -+ _/4 radians symmetric laminate in accordance with

the tensile test procedure described in ASTMtest method D3039.

The test setup for these inplane shear tests is the same as shown in

figure 4 of the tensile test section. The inplane shear test beam specimen

shown in figure 19 is mounted in the testing machine grips as shown in

figure 6 of the tensile test section. Five specimens were tested at each of

the following temperatures; 366.5 K (200 ° F) RT and 88.7 K (-300 ° F). The

chamber is used to control the temperature at 366.5 K and at 88.7 K. The yield

_, strength of the inplane shear test is designed to produce shear property

data for the design analysis of the fan blade. The yield strength was

determined by the 0.2 percent offset from the proportional limit.

Inplane shear tests were completed for both the 7781 EF-2 and 7576 EF-2

materials. The inplane shear tests were not considered a viable test for

the design laminate because the design laminate does not make up a + 7/4 radians

symmetric laminate. The data from these tests are shown in figures 20 and 21,

and .table II in the form of temperature (°K) versus stress (MPa) for each

material at ultimate and yield strength. These data show that for the balanced

weave (7781 EF-2), the ultimate strength is greater than twice the yield

strength. For the unbalanced weave (7576 EF-2), the ultimate strength at RT

and 352.6 K is approximately three times the yield strength and at 88.7 K about

1.6 times the yield strength.

Punch type shear tests.- The American Society for Testing and Materials

(ASTM) D732-78 was used to determine the across ply shear strength of test
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specimens in the form of sheets or laminates (ref. 5). Five design laminate

shear specimens were tested at room temperature.

The tensile testing machine is equipped with the necessary drive

mechanism for imparting to the crosshead a uniform, controlled velocity with

respect to the base (fig. 22). The load was applied to the special punch

type shear fixture shown in figure 23 causing a shear failure across the fibers.

A load cell mounted at the base structure of the test equipment measured the

shear load. The load and head speed of the test equipment were recorded.

The test specimens are 50.8 mm (2 in.) square by 4.4 mm (0.175 in.) thick

(fig. 24).

The results from these tests are shown in table 12. These results show

an average shear strength of 184 MPa (26,713 psi) for the specimens tested.

Interlaminar shear tests.- The American Society for Testing and Materials

(ASTM) D2733-70 is one of the methods used to determine the interlaminar

shear strength of structural reinforced plastic (ref. 6). The other interlaminar

shear test procedure was recommended by Dr. M. B. Kasen (National Bureau of

Standards) after a telecon discussion about the "low" shear values obtained

from the ASTMtest procedures. Using the "guillotine" method as shown in

figure 25 with a special adapter, the shear values substantially increased as

shown in table 13.

The interlaminar shear test primarily is a strength test on the resin

matrix. Two methods of fabricating test specimens were used for the interlaminar

shear tests, the regular and co-cured test specimens. The "regular" test

specimens were cured and machined with a saw cut through the center ply on

opposite sides of the test specimen 12.7 mm (0.5 in.) apart. The "co-cured"

test specimen begins with a partially cured part, co-cured to a second part

12



allowing a gap on opposite sides of the test specimen approximately 12.7 mm

(0.5 in.)apart (fig. 26).

The testing machine and test procedures for the interlaminar (guillotine)

shear tests are the same as those used for the tensile tests (figs. 4 and 6).

The use of side supporting steel plates, tightened evenly and firmly to the

extent necessary to prevent peeling of the specimen during the test. With

the steel plates in place, the specimen is inserted in the grips of the testing

machine and stressed until rupture occurs.

"Co-cured" and "regular" shear tests (ASTMmethod) were completed on

the 7781 EF-2 and the 7576 EF-2 prepreg with only the co-cured shear tests

on the design laminate. All tests were completed at temperatures: 366.5 K,

RT and 88.7 K (200° F, RT and -300 ° F). The test data shown in table 13

indicate the matrix of the regular shear specimens are stronger than the

co-cured specimens.

The average shear strength values of the co-cured design specimens at

366.- K (200 ° F) are 17 MPa (2517 psi) and 23 MPa (3406 psi) at 88.7 K

(-300 ° F) as table 13 shows.

Regular shear specimens were tested using the guillotine test method

with a special fixture torqued 8 in./Ibs to the test beam. The test data

(table 13) indicates the interlaminar shear data from these tests to be more

realistic than results from tests shown in table 13. The strength at RT are

43 MPa (6,415 psi), 36 MPa (5,386 psi) at 366.5 K (200° F) and 49 MPa (7,206 psi)

at 88.7 K (-300 ° F). Data were also taken on specimens where the length

between the grooves and the thickness of the test beam (L/T ratio) was varied.

Plotting these data and projecting the curve to L/T = 0 indicates a shear

strength of 61MPa (9,000 psi) (fig. 27). The test data indicates the _

13



projected interlaminar shear strength at 366.5 K (200° F) are 53 MPA

(7,900 psi) and 66 MPa (9,800 psi) at 88.7 K (-300 ° F) as shown in table 13.

In figure 28 the stress curve indicates the matrix strength increases

as the temperature decreases to 88.7 K (-300 K).

Thermal Expansion Tests

Coefficient of thermal expansion tests were performed for the 7781 EF-2,

7576 EF-2 materials and the design laminate. Each of the materials and the

design laminate were tested with the plys orientated at 0 and _/2 radians.

A total of 30 specimens were tested, 5 for each ply orientation of each

material and the design laminate. A sketch of the typical test specimen is

shown in figure 29.

The test setup consisted of a test stand, specimen holder, two quartz rods

with Copper caps on their top ends, two metric micrometers, two thermal

canisters, a portable electrode type thermostatic controlled water heater, and

test specimen (ASTMstandard D696-70, ref. 7).

To insure the micrometer's contact sensitivity, a flashlight bulb and

battery were used. This produced a closed circuit when the pointer made

contact with the copper cap, thus lighting the bulb. This enabled one to

obtain very fine micrometer reading.

The tests were performed by first installing the specimen in the specimen

holder as shown in figure 30. Roomtemperature zero reference readings from

each micrometer were tabulated and the specimen and holder were placed in a

thermal canister. The canister was then filled with liquid nitrogen, and

the specimen was allowed to soak. During this soaking time, periodic

micrometer readings were taken until there was no change in the readings. At

14



this time the readings were tabulated and the specimen and holder removed

from the liquid nitrogen. The specimen was allowed to set in room temperature

for approximately 15 minutes, then the specimen in the specimen holder was

placed in a canister of room temperature water to soak. The water temperature

was monitored by a therometer. Micrometer readings were taken from each

micrometer to check the expansion of the specimen until the readings coincided

with the first ones taken. At this point, the water temperature and micrometer

readings were tabulated. Then the specimen and holder were removed from this

canister and placed in a thermal canister of water at a temperature of 373 K

(212 ° F) to soak. The temperature of this water was controlled by the water

heater and monitored by a thermocouple and digital readout. During this soaking

time, periodic micrometer readings were taken until no change occurred in the

readings. These readings were then tabulated and the specimen and holder were

removed from the canister and dried. This test procedure wasrepeated three

times per specimen.

The results of these tests are shown in table 14, in the form of material

and ply orientation versus coefficient of linear thermal expansion for 77.6 K

(-320 ° F) to 293 K (68 ° F) and 293 K (68 ° F) to 373 K (212° F).

The accuracy of the test setup and procedure was verified by performing

a test using a copper specimen whose coefficient of linear thermal expansion

was known. The coefficient of linear thermal expansion obtained from these

test data was 1 percent less than the known value for copper. Therefore,

based on the data from this test, we feel confident in the data obtained from

the NTF fan blade material specimens.
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Thermal Cycle Tests

The 7781 EF-2 and 7576 EF-2 fan blade materials were thermally cycled

from 88.7 K (-300 ° F) to 352.6 K (175° F) to determine what effects thermal

cycling would have on these materials. The specimens used for these tests

included 14 tensile test beams described in figure 5 of the tensile test

section, 5 interlaminar shear test beams described in figure 24 of the interlaminar

shear test section and 4 thermal expansion specimens described in figure 29

of the thermal expansion test section. The tensile test beams consisted of

eight specimens of the 7781 EF-2 material and six of the 7576 EF-2 material.

These specimens were at 0 radians ply orientation. The interlaminar

shear specimens were all 7781 EF-2 co-cured material of 0 radians ply

orientation. The thermal expansion specimens consisted of two each of the

7781 EF-2 and 7576 EF-2 materials. For each material there was one specimen of

0 and _/2 radians ply orientation.

The thermal cycling setup consisted of an insulated cryo container, an

insulated oven, a reversible drive motor, control box with a timer, a 63.5 mm

(2.5 in.) blower, two electronic recorders, two thermocouple reference

junction boxes, three thermocouples, a digital counter, a liquid nitrogen

supply, a perforated tray and the test specimens. Figure 31 is a photograph

of the test setup.

The specimens to be thermally cycled were placed in the tray while liquid

nitrogen was allow to flow into the cryo container to a depth of 152 mm(6 in.).

The depth of the nitrogen was controlled by two thermocouples and an automatic

shut-off valve in the nitrogen supply line. One thermocouple was installed

146 mm (5.75 in.) from the bottom of the cryo container with the other one

approximately 6.4 mm(0.25 in.) above the first one. The signals from the

16



thermocouples were each fed through the reference junction boxes to the automatic

shut-off valve. The lower thermocouple sensing temperatures greater than

77.6 K (-320 ° F) would open the automatic valve to replace the nitrogen that

boiled off. The upper thermocouple sensing a temperature of 77.6 K (-320 ° F)

would close the automatic valve. The signals from the reference junction

boxes were monitored on a model 194 electronic recorder. The reversible motor

was then engaged allowing the tray with the specimens to be lowered to 6.4 mm

(0.25 in.) above the liquid nitrogen level in the cryo container. The tray

was then elevated to ambient temperature and to the oven where the temperature

was maintained at 352.6 K (200° F). Four 305 mm(12 in.) long thermostatic

controlled quartz lamps were used to maintain this temperature. The specimens

were in each environment approximately 20 minutes. To complete the thermal

cycle, the specimens were returned to the ambient environment before returning

to the cryo environment. These temperatures were monitored by a thermocouple

taped to one of the specimens in the tray and the temperature recorded on a

model 153 electronic recorder. The digital counter recordedthe number of

cycles, with the recorded temperature peaks as a cross reference, The control

box and the timer were used to operate the drive motor automatically.

The tensile specimens were thermal cycled 256 cycles. Tensile tests after

thermal cycling showed an approximate decrease in strength of 12.5 percent for

the 7781 EF-2 material and 7 percent for the 7576 EF-2 material at 352.6 K.

The test data are shown in table 15. These specimens were periodically

checked visually with a magnifying glass for any thermal damage to the specimens

during the cycling tests. The specimens showed no visible signs of thermal

damage from these tests.
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The interlaminar shear specimens were thermal cycled 251 cycles without

any visual thermal damage. Tensile tests after thermal cycling showed an

approximate decrease in strength of about 18 percent at room temperature

(table 16).

Creep Tests

The American Society for Testing and Materials (ASTM) D2990-77 test

method for the determination of tensile creep under specified environmental

conditions was used to test the fan blade material (ref. 8). The creep

specimen shown in figure 32 is mounted in the grips of the testing machine

(figs. 33 and 34). The lower grip is attached to a load cell and then to the

frame of the test equipment. The upper grip is attached to a steel rod that

is off loaded by a chain and a platform of weights that apply the designated

load to the test specimen. The three thermocouples on the test specimen are

monitored by a digital temperature recorder. The strain and time are monitored

on a recorder for the duration of the test.

Three design laminate specimens were tested each for I00 hours at

366.5 K (200 ° F). The ASTMD3639-76 was used to determine the ultimate

tensile strength of the creep specimen. The creep specimen was loaded to

89.6 MPa (12,938 psi), 35 percent of the ultimate tensile strength and tested

for I00 hours at 366.5 K (200 ° F). The maximumaverage elongation for these

specimens under load was 3.59 m/m x 10-3 (0.0359 in./in.).

The temperature was reduced to room temperature and the load reduced to

zero. The specimens returned to their original length showing no signs of a

permanent set. To simulate the fan blade operation in the NTF, several short

duration (I/2 hour) tests were completed with the specimen under load

18



accumulating the elongation measurement from the beginning until the end of

the tests. These tests were completed by heating the chamber to 366.5 K,

applying a 39.6 MPa load for one-half hour, releasing the load and allowing

the specimen to return to RT. The maximumelongation under load was

approximately 3.61 m/m x 10-3 returning to zero elongation when the load was

released. Again, the test data showed no sign of a permanent set in the material.

The 89.6 MPa load at 366.5 K was then applied and monitored for 500 hours at

which time the load was released and the specimen temperature returned to

ambient. Upon releasing the load, the specimen was allowed to relax at

ambient temperature for 7 hours to check for any permanent set. The maximum

elongation after 500 hours of testing was 3.70 m/m x 10-3 . A minimal permanent

set in the material of 0.21 m/m x 10-3 at 0 load was recorded.

The data from the I00 and 500 hours tests are shown in figure 35 and

table 17. These data show the elongation immediately reaching approximately

96 percent of its total upon applying the load.

The data from the one-half hour tests are shown in tab'le 18. Figure 36

is a plot of elongation versus time of the one-half hour data and the data from

the first hour of the I00 and the 500 hour tests. Figure 36 shows the slope

of the elongation curves decreasing rapidly at approximately 0.05 hour or

3 minutes after applying the load. This indicates the material is reaching

its maximumelongation.

CONCLUDINGREMARKS

The results of the NTF fan blade characterization tests have been pre-

sented. The test data results given in this paper provides new mechanical and

physical properties information on the subject "prepreg material at cryogenic
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and elevated temperatures." The characterization test results indicate that

the material follows the general trends of metals and glass reinforced plastics

at cryogenic temperatures. That is, the material strength and fatigue properties

increase with a decrease in temperature with some degradation at elevated

temperatures. The test data were used as the basis for ascertaining that the

material physical mechanical and thermal properties over the extreme temperature

range would satisfy design requirements for the NTF fan blades.
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TABLEi.-NTFFANBLADES

PREPREGCHARACTERIZATIONTESTS(BASICMATERIAL)

(REQUIREDFOREACHMATERIAL)

5TESTS@ EACHTEMPERATURE

77,6K,RT,353K (-320o F,RT,175o F)**

TEST 0 RADIANS _/2RADIANS± 7/2RADIANS

TENSILE 20(15+ 5)* 15 N/A

COMPRESSIVE 15 - -

FATIGUET_T 15 - -

INTERLAMINAR 15
SHEAR(REGULAR)

INTERLAMINAR 20(15+ 5)* - -
SHEAR(CO-CURED)

THER,EXPANSION 5 5 N/A
77,6K TO366,5K
(-320oFTO
200o F)

INPLANESHEAR N/A N/A 15

TOTALTESTSFOR 90 20 15
EACHMATERIAL

*THERMALCYCLESPECIMENBEFORETESTINGATRT
**TEMPERATUREINCREASEDTO366,5K (200o F DURINGTESTPROGRAM)
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TABLE2,-DESIGNLAMINATETESTING

5TESTS@ EACHTEMPERATURE
TESTS

77,6K,RT,366,5K (-320o F,RT& 200o F)

ROOTAREA BLADEAREA

TENSILE(0& _/2RADIANS) 30 30

COMPRESSIVE 15 -

FATIGUET_T 15 -

INTERLAMINARSHEAR 15 -
(CO-CURED)

THERMALEXPANSION 5 -

CREEP@ 366,5K (200o ONLY) 5 -

TOTALTESTS 85 30



TABLE 3.- PROPERTIESOF 7576 EF-2 E-GLASSCLOTH

Property T = 366.5 K (200° F) RT 88.7 K (-300 ° F)

(°I) T ULT 728 (105524) 730 (105900) 1122 (162735)

(02) T ULT 68.7 (9966) 69.3 (10053) 129 (18729)

(O2)T yield 52.8 (7662) 55.8 (8087) 69,5 (10087)

(°I) CULT 528 (76651) 692 (100337) 875 (126959)

(o12) ULT 73.3 (10637) 76.3 (11062) 102 (14775)

(o12) yield 24.3 (3530) 23.7 (3442) 63.4 (9202)

41_7106) 41.5 45.1(EI)T (6.05 (6.02 x 106) (6.54 x 106)

17.2 18.2 26.3
(E2)T (2.49 x 106) (2.64 x 106) (3.82 x 106)

40.7 39.6 42.5
(EI)c (5.91 x 106) (5.75 x 106) (6,17 x 106)

5.52 6.83 10.35 _
GI2 (0.80 x 106) (0,99 x 106) (1.50 x 106)

_12 0.245 0.257 0.290

v21 0.085 0.098 0.182

(SL II) T 146 (21105) 164 (21180) 224 (32547)
20% oI

(SL 22) 13.7 (1993) 13.9 (2010) 25.8 (3746)

20% o2

RT to 373 K RT to 78 K

_I 8.07 (4,48 x 10.6 ) 6.59 (3,66 x I0 -6)

(_2 16.32 (9.07 x 10-6 ) 15.51 (8,62 x 10-6 )
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TABLE4.- PROPERTIESOF 7.781 EF-2 GLASSCLOTH

Property T = 366.5 K (200 ° F) RT T = 88.7 K (-300 ° F)

(oi) T ULT 355 (48523) 393 (57023) 720 (104390)

(o2) T ULT 295 (42652) 301 (43582) 617 (89450)

(oi) CULT 327 (47473) 379 (54992) 619 (89758)

(o12) ULT 68.9 (9988) 82.1 (11911) 144 (20889)

(o12) yield 26.2 (3803) 32.5 (4712) 71.9 (10421)

27.4 _ 30.1 31.7
(EI)T (3.97 x IOb) (4.37 x 106) (4.60x 106)

24.2 _ 26.5 28.6 _
(E2)T (3.51 x 106) (3.84 x 106) (4.15 x 106)

24.8 26.2 _ 31.9 _
(EI)c (3.60 x lO6) (3.80 x IOb) (4.62 x IOb)

4.28 5.18 9.87
Gl2 (0.62 x lO6) (0.75 × lO6) (l 43 x lO6)

_12 0.I08 0.144 0.281

_21 O.ll9 0.129 0.231

(SL ll) 83.6 (12131) 98.3 (14256) 180 (26098)

25,%o1

(SL 22) 89.0 (12907) I01 (14600) 162 (23504)*

30%o2

RT to 373 K RT to 78 K

ml 12.70 (7.06 x 10-6 ) 10.82 (6.01 x 10-6 )

_2 14.37 (7.98 x 10-6 ) 10.87 (6.04 x 10-6 )

*25% 02
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TABLE5.- PROPERTIESOF DESIGNLAMINATE(7781 EF-2 + 7576 EF-2)

Property T = 366.5 K (200° F) RT 88.7 K (-300 ° F) -

(_I)T ULT 394 (57086) 450 (65282) 518 (75086) ,

(_2)T ULT 235 (34128) 263 (38138) 407 (59055)

(_I)C ULT 387 (56112) 401 (58222) 593 (86016)

(_2)C ULT 329 (47700) 370 (53700) -

(_12) ULT 37.1 (5386) 37.1 (5386) 50 (7206)

28.6 30.2 _ 36.7
(EI)T (4.15 × 106) (4.37 × IOb) (5.32 × 106)

20.1 22.3 31_7106)(E2)T (2.97 × 106) (3.24 × 106) (4.60

24.1 24.8 29.0
_EI)c (3.50 × 106) (3.60 × 106) (4.20 × 106)

26.6 -(E2)c (3.7_6_II06) (3.86 × I06)

v12 0.299 0.299 0.359

v21 0.199 0.208 0.224

(SL II) T 118 (17126) 135 (19585) 155 (22526)
30,%_I

(SL 22)T 70.6 (10238) 78.9 (11441) 122 (17717)
30,%_2

RT to 373 K RT to 78 K

ml 10.66 (5.92 × 10-6 ) 8.58 (4.77 × 10-6 )

m2 16.02 (8.90 × 10-6 ) 12.78 (7.10 x 10-6 )
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TABLE6.- NTF FAN BLADEMATERIALSTENSILE TEST RESULTSFORTHE

7781 EF-2 AND 7576 EF-2 MATERIALSANDTHE DESIGNLAMINATE

(7781 EF-2 + 7576 EF-2) WITH 0 RADIANPLY ORIENTATION

Ultimate stress MPa (psi) (Average of 5 tests)

Material RT 353 K (175° F) 88.7 K (-300 ° F)

7781 EF-2 393 (57023) 335 (48523) 720 (104390)

7576 EF-2 730 (105900) 728 (105524) 1122 (162735)

(7781 EF-2 + 7576 EF-2) 450 (65282) *'394 (57086) "518" (75086)

*Tab bond failure

**Tested at 366.5 K (200° F)
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TABLE7,-[ITFFANBLADEMATERIALSYIELDTENSILETESTRESULTSFORTHE

7781EF-2AND7576EF-2MATERIALSANDTilEDESIGNLAMINATE

(7781EF-2+ 7576EF-2)WITH7/2RADIANPLYORIENTATION

YIELDSTRESSMPA(PSI)(AVERAGEOF5 TESTS)

MATERIAL RT 366,5K (200oF) 88,7K (-300° F)

7781EF-2 105,7(15327) 110,8(16077) "177,6(25754)

7576EF-2 55,8(8087) 52,8(7662) 69,5(10087)

(7781EF-2+ 81,6(11842) 73,9(10716) 108,1(15672)
7576EF-2)

*SPECIMENSLIPPEDINGRIPS



TABLE8,-COMPRESSIVESTRENGTHTESTRESULTSFORTHENTFFAN

BLADEMATERIALSWITH0 RADIANPLYORIENTATION

ULTIMATECOMPRESSIVESTRENGTH,MPA(PSl)(AVERAGEOF5TESTS)

MATERIAL 77K 116K 294K 336K 366,5K

7576EF-2 875(126959) - 692(100337)609(88388)528(76651)

7781EF-2 619(89758) - 379(54992) 332(48347)327(47473)

DESIGN 593(86016) 576(83602)401(58222) - 387(56112)
LAMINATE



TABLE9,-FATIGUETENSION-TENSIONTESTRESULTSFORTHENTFFANBLADE

MATERIALSWITH0 RADIANPLYORIENTATION

TEMP, ULTTENSILE APPLIEDFATIGUE NUMBEROF AVERAGERESIDUAL
MATERIAL STRENGTH LOAD% OF SPECIMENS STRENGTHAFTER

°K MPA(PSI) ULTIMATE @ CYCLES× 106 FATIGUE,MPA(PSl)

7576EF-2 83 *730(105900) 20 3 @ 1 503(72919)

7576EF-2 RT 730(105900) 20 5 @ 1 --

7576EF-2 366,5 728(105524) 20 2 @ 1 542(78648)

7781EF-2 83 *393(57024) 25 7 @ 1 349(50651)

7781EF-2 RT 393(57024) 25 6 @ 1 306(44382)

7781EF-2 366,5 335(48523) 25 **5@ 1 335(48645)

DESIGN
LAMINATE 83 *448(65000) 30 4 @ 1 347(50371)

RT 448(65000) 30 4 @ 1 333(48328)

RT 448(65000) 30 1 @ 5 --

366,5 394(57086) 30 4 @ 1 --

366,5 394(57086) ***i@ 5 --

*RTULTIMATETENSILESTRENGTHUSED
**iTESTBEAMTESTEDAT79K (175o F)
***TESTEDAT25%ULTIMATETENSILESTRENGTH



" TABLEi0,-FATIGUECOMPRESSION-COMPRESSIONTESTRESULTSFORTHE7781

PREPREGMATERIALWITH7/2RADIANPLYORIENTATION

ULTCOMPRESSION FATIGUE NUMBEROF AVERAGERESIDUAL
TEMP,. STRENGTH LIMITS SPECIMENS STRENGTHAFTER

"': OK•:_ MPA(PSl) % @ CYCLES FATIGUE
× 106 MPA(PSl)

"- 83 370(53700)* 30 5 @ 1 544(79,000)

366,5 329(47700) 30 5 @ 1 314(45,580)

*RTULTIMATECOMPRESSIONSTRENGTHUSED
. I....

....,.
,L,
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TABLE11,-INPLANESHEARTESTRESULTSFORTHENTF

FANBLADEMATERIALS

MATERIAL TE[]P STRESSMPA (PSI)(AVERA.GEOF5 TESTS)
°K ULTIMATE YIELD

7576EF-2 88,7 102 (14775) 63 (9202)

RT 76 (11062) 24 (3442)

352,6 73 (10637) 24 (3530)

7781EF-2 88,7 144 (20889) 72 (10421)

RT 82 (11911) 32 (4712)

352,6 69 (9988) 26 (3803)
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TABLE12,-NTFFANBLADEMATERIALPUNCHSHEARTESTS

FORTHEDESIGNLAMINATE(7781EF-2+ 7576EF-2)

(TESTATROOMTEMPERATURE)
i

SPECIMEN STR_.SS

NUMBER MPA PSI

1 181 (26206)

2 183 (26604)

3 183 (26604)

4 185 (268OO)

5 189 (27415)

: 33
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TABLE13,-INTERLAMINARSHEARTESTRESULTSFORTHE
NTFFANBLADEMATERIALS

MATERIAL TEMP ULTIMATESHEARSTRESS,
°K MPA (PSI)

7576EF-2 88,7 23 (3401)

CO-CURED RT 23 (3404)

352,6 24 (3432)

REGULAR 88,7 39 (4409)
RT 17 (2529)

366,5 15 (2240)

7781EF-2

CO-CURED 88,7 11 (1573)

RT 11 (1573)
352,6 12 (1798)

i

REGULAR 88,7 27 (3875)

RT 15 (2208)

366,5 17 (2477)

DESIGN

LAMINATE

CO-CURED 88,7 23 (3406)

RT 19 (2809)

366,5 17 (2517)

DESIGN* 88,7 49 . (7206)

LAMINATE RT 43 (6i415)

REGULAR 366,5 36 _ (5386)

*SPECIALTESTFIXTUREUSEDWITHBOLTSTORQUED8 IN-LB,
34 _'



TABLE13,-CONCLUDED

TEMP ULTIMATESHEARSTRESS

MATERIAL OK ACTUAL PROJECTED

MPA PSI MPA PSI

DESIGN 88.7 49 7,206 66 9,800
LAMINATE

(REGULAR) RT 43 6,415 61 9,000

366.5 36 5,386 53 7,900
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TABLEi4,-NTFFANBLADEMATERIALSLINEARTHERMALEXPANSIONTESTRESULTS

PLY COEFFICIENTOFLINEARTHERMAL

ORIENTATION EXPANSION,M/Mx lO-6/OK(IN,/IN,°Fx 10-6

MATERIAL RADIANS 293K TO77,6K 293K TO 373K

7576EF-2 0 6,59(3,66) 8,07(4,48)

7/2 15,51(8,62) 16,32(9,07)

7781EF-2 0 10,82(6,01) 12,70(7,06)

7/2 10,87(6,04) 14,37(7,98)

DESIGN

LAMINATE 0 8,58(4,77) 10,66(5,92)

7/2 12,78(7,10) 16,02(8,90)



TABLE15,-NTFFANBLADEMATERIALSTHERMALCYCLEDTENSILETESTBEAM

STRENGTHTESTS

r _

• TENSILESTRESS@ 352,6K,MPA(PSI) %i i . i,

MATERIAL BEFORE AFTER DECREASE
THERMALCYCLING THERMALCYCLING INSTRENGTH

7576EF-2 728 (105524) 674 (97889) 7,4

7781EF-2 335 (48523) 293 (42518) 12,5



TABLE16,-NTFFANBLADE_IATERIALSTHERMALCYCLEDINTERLAMINARSHEAR

TESTBEAMSTRENGTHTESTS

INTERLAMINARSHEARSTRESS@ RT,MPA(PSI) %

BEFORE AFTER DECREASE
MATERIAL THERIIALCYCLIr_G THERMALCYCLING INSTRENGTH

7781EF-2

CO-CURED 11 (1573) 9 (1263) 18,2



TABLE 17.- AVERAGEELONGATIONVERSESTIME

I00 HOURANDTHE 500 HOURCREEPTESTS

DESIGNLAMINATE

Time
Hours Average Elongation

m/m x 103 in./in.

0 0 0 0 0
0 3.50 3.52 .0350 .0352

0.05 3.50 3.54 .0350 .0354
0.I0 3,50 3,55 .0350 .0355
0.15 3.50 3.56 .0350 .0356
0.50 3.50 3.57 .0350 .0357
1.0 3.54 3.57 .0354 .0357

I0,0 3.57 3.59 .0357 .0359
20.0 3.58 3.61 .0358 .0361
30.0 3.58 3.63 .0358 .0363
40.0 3.58 3.63 .0358 .0363
50.0 3.59 3.63 .0359 .0363
60.0 3.59 3.63 .0359 .0363
70.0 3.59 3.63 .0359 .0363
80.0 3.59 3.64 .0359 .0364
90.0 3.59 3.64 .0359 .0364

I00.0 3.59 3.64 .0359 .0364
120.0 - 3.65 - .0365
140.0 - 3.66 - .0366
160.0 - 3.67 - .0367
180.0 - 3.67 - .0367
200.0 - 3.67 - .0367
300.0 - 3.69 - .0369
500.0 - 3.70 - .0370
500.0 - 0.33 - .0033
502.0 - 0.24 - .0024
503.0 - 0.23 - .0023
503.0 - 0.22 - .0022
505.0 - 0.21 - .0021
507.0 - 0.21 - .0021
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TABLEioio,-AVERAGEELONGATIONVERSUSTIME

(0,5HOURCYCLINGCREEPTEST)

DESIGNLAMINATE

AVERAGEELONGATION
TIME,

HRS, M/Mx 103 IN,/IN,

0,00 0,00 0,00

0,00 3,53 0,0353

0,05 3,56 0.0356

0,10 3,57 0,0357

0,15 3,58 0,0358

0,50 3,61 0,0361
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Fibers Fibers Material
Material

Warp Direction Fill Direction Plies per Laminate

Basic 7781 60 54 14

Basic 7576 120 24 II

Combination of
Design 7781E and 7576E glass 19

(Refer to design laminate.)

MATERIALAND LAMINATEDESCRIPTION

0 RadiansDirection (REF)

I ................ 19 plies of E glassl

4,6mm ....
Ref FX_"_ ._K',I_ X../ X _)_T_

thickness _zi'7_-__ _._i Z'__. /..... t__%_._,___ n_

.... ,i, |

't' t;,,//./:/__..z/:_Td/

7576E:Glass w/O Radians Ply orientation

_/'/I/I/_ 7781E Glass wlO Radians Ply Orientation

_X,RXX_ 7781E Glass w/+ _/6 Radians Ply'Orientation

I I 7781E Glass,w/- _/6 Radians Ply Orientation

DESIGNLAMINATE

Figure I.- Material and laminate identification.
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_,/2RadiansPly Direction
............--_..

(Fill Direction)

Figure 2.- Test specimen ply orientation.
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BASIC
MATERIALS

+ ANALYSIS "---"
t
I

DESIGN

LAMINATE

FANBLADES

Figure 3.- NTF fan blades material test program.
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.p=

Recorder #2

Figure 4.- NTF fan blade materials tensile test setup.



|
_2.39 mm
| (0.o94")

Gripping
Surface (typ)

63,5 r_.
(2500")

279 mm

( 000")

..r_J
/ v _ _ 3,35 _ (0.132")

/

Bonded Tab

(4 req'd)--_ 6Bo.5mm

I

25.4ram-_ --_ 2.39 ram,

(i.ooo") |

Figure5.- Typicaltensiletest specimen.
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4,

Upper
Gri

Extensometer

Test Specimen

Grip

Figure 6.- Typical test specimen mounting,
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1400 _

Material

(_) 7576EF-2

[] 7781EF-2

1200- _ _.i_n_a_ e
i000

g

800 -

E-.

4J

600 -
,-4

400

200 -

) J I ,, , I
0 ZOO 200 300 400

Temp (OK)

Figure 7.- Ultimatetensilestress versustemperaturefor the NTF fan blade
materials with 0 radians ply orientation.
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Legend Material

0 7576EF-2

50 - [_ 7781EF-2

<_ Design Laminate

40 -

g

m 30 --o
O

o3

E-_

20
4-J

l0 -

I I ! I
0 I00 200 300 400

Temp (OK)

Figure8.- Tensilemodulusof elasticityversus temperaturefor the
NTF fan blade materialswith 0 radiansply orientation.
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200 - Legend Material

' _ 0 : 7576EF-2

• -"_ 0 7781EF-2 :

15o- .s.ig

g

,1.1

i00 -,-4
.-4
{n

[...t

_ 50

0 i00 200" 300 400

Temp (OK)

Figure 9.- Yield tensile stress versus temperature for the NTF fan blade
materials with 7/2 radians ply orientation.
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50 i _ Legend Material

0 7576EF-2

[] 7781EF-2

40 _ Design Laminate

p.
¢D

30 -
o

20 -

I0 -

! , .......!

0 i00 200 300 400

Temp (OK)

Figure lO.- Tensilemodulusof elasticityversus temperaturefor the NTF
fan blade materialswith _/2 radiansply orientation.
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Specimen tabs
inner platens

er platens

' 0

? •

_Specimen _
38.1 mmx 279.4 mmx 4.6 mm

(l I/2" x ll" x O.181")

Figure II.- Compression test specimen and test fixture.
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Figure 12.- Compressive test fixture setup for low temperature.
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Figure 13.- Compression test setup.
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Figure14.- Ultimatecompressivestrengthversus temperature
for the NTF fan blade materialswith 0 radiansply
orientation.
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Figure 15.- Compressive modulus of elasticity versus
temperature for the NTF fan blade materials with
0 radians ply orientation (root section)_
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Figure 16.- Fatigue test setup for the room temperature tests.



Figure 17.- Fatigue test setup for the cold temperature tests.
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Figure 18.- Typical fatiguetest beam.
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Figure19.- Typical inplaneshear test beam.
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Figure 20.- Inplane shear stress versus temperature for
the 7576 EF-2 and 7781 EF-2 NTF fan blade materials.
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Figure 21.- Inplane yield shear moduli versus temperature for
the 7576 EF-2 and 7781 EF-2 NTF fan blade materials.
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Figure 22.- Punch shear test fixture.
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Figure 23.- Punch type shear test fixture.
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Figure 24.- Punch shear unassembled test fixture and specimens.
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Figure 25.- Interlaminar shear test fixture.
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Figure 26.- Typical interlaminarshear test specimen.
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Figure 27.- Interlaminar shear stress versus LIT for the
design laminate of a radians ply orientation.
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Figure 28.- Interlaminar ultimate shear stress versus
temperature for the NTF fan blade materials
(regular and co-cured).
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Figure 29.- Typical linear thermal expansion test specimen.
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Figure 30.- Thermal expansion test apparatus.
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Figure 31.- Thermal cycling test setup.
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Figure32.- Typicalcreep test specimen.
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Figure 33.- Creep test setup.
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Figure 34.- Creep test specimen installation.
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Figure 36.- Elongation versus time for the NTF fan blade design laminate.
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