ΝΟΤΙCΕ

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

160070

SEMI-ANNUAL REPORT

to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

for

CHARACTERIZATION OF THE PLYSICO-CHEMICAL PROPERTIES OF POLYMERIC MATERIALS FOR AEROSPACE FLIGHT

NSG-5009

Bowie State College Bowie, Maryland 20715

N81-31362

(NASA-CR-160070) CHARACTERIZATION OF THE PHYSICO-CHENICAL PROPERTIES OF POLYBERIC NATBRIALS FOR APROSPACE FLIGHT Semiannual Report (Bowie State Coll., Md.) 68 p HC AU4/MF A01 CSCL 11G G3/27

Unclas 32768

Michael Rock Michael Rock <u>Jac Dansan</u> Marc. Sher Z. Khan

September 2, 1980

ABSTRACT

~4

Sector Sector

The differential thermal analyzer is a very suitable instrument for the rapid analytical study of the thermal behavior of battery electrodes. Solid samples can be studied in the range of 0° C - 500°C using the standard cell assembly. Thermal behavior of battery electrodes is automatically recorded by the analyzer and it can be used for qualitative analysis. A study is also being made of the behavior of battery electrodes which have been charged at different levels.

INTRODUCTION

Differential thermal analyses are conducted with a DuPont Model 900 DTA unit. DTA is a technique for studying the thermal behavior of materials as they undergo physical and chemical changes during heating and cooling. Two 4am-diameter tubes, one containing sample and the other containing a reference material, such as glass beads, are heated at a uniform rate in a heating block. The temperature differential between the two tubes will remain zero as they are heated unless the sample undergoes an endothermic or exothermic reaction. A thermocouple is inserted in the tube containing the sample and another thermocouple is inserted in the tube containing the glass beads. The glass beads do not undergo any chemical change in the temperature range under study. As long as the temperature of the sample equals the temperature of reference material, the two thermocouples produce identical voltage and the net voltage differential is zero. When an exothermic or an endothermic change takes place in the sample, the sample temperature no longer equals the reference temperature and the resultant voltage differential reflects the difference in temperature and either a positive or negative AT peak on the graph results. The DTA unit plots the temperature of the heating block on the X-axis; on the Y-axis it plots the difference in temperature between the sample and the reference, 1T. An exotherm is plotted as a rise from the base line; an endotherm as a decrease from the base line.

DISCUSSION OF THE RESULTS

-

Several positive and negative battery electrodes were analyzed. The negative plates show a first endotherm between $245^{\circ}C - 250^{\circ}C$. This is a very large peak. The second endotherm occurs at 300°C which is indicative of the decomposition of Cd(OH)₂ (see graphs 1 to 6). In the analysis of positive plates, a first weak endotherm occurs at 100°C, which indicates lows of H₂O from N1(OH)₂(H₂O)_n molecules. A second, large, endotherm occurs in the range of 290°C -300°C, which is indicative of the decomposition of N1(OH₂) to N1O and H₂O (see graphs 7 to 17).

ABSTRACT

Atomic Absorption Spectroscopy is used to determine nickel, cobalt, cadmium, and potassium content in battery electrolytes and electrodes. We are also determining the interference effects of one element in the presence of others. Atomic Absorption is a quick and accurate method for the determination of traces of the above mentioned metals.

4

Introduction

Although it is not completely known what leads to such failures, it has been found experimently that some of the factors which contribute to the final failure of the batteries are :

- 1. Extent and nature of cycle regime
- 2. Operating temperature
- 3. Carbonate contamination
- 4. Cd migration
- 5. Nature and condition of seperator

The analysis of negative electrodes, positive electrodes, and of the electrolyte is also important.

A.A spectroscopy is being used to analyze the elements of interest (Ni, Cd, Co, and K) in the electrodes and electrolytes of the Ni-Cd cells.

These results have been compared with those obtained by standard chemical analysis method and are in agreement. A.A spectroscopy is much quicker and embraces virtually all alloying components contained in Ni-Cd cells.

This method is being used to analyze for concentration of trace metals in negative and positive electrodes of batteries. This should prove useful in determining the amount and effects of these trace metals in functioning and durability of Ni - Cd cells.

•

Statement of the statem

Instrumentation

A Perkin-Elmer Model 403 Atomic Absorption Spectrophotometer was used. This unit has a digital read-out panel. High intensity cathode tubes for Ni,Cd; and Co. were used depending on which element was "sing measured. Operating conditions were generally those recommended in the Analytical Methods Book.

The steps listed below were followed in adjusting the Model 403 Spectrophotometer in preparation for performing the analysis.

- 1. The instrument and exhaust hood are turned on and allowed warm-up at the specified current given in the Analytical Method Book for two hours or until stability is achieved. Stability is achieved when no zero shift is apparent over a five minute interval.
- The air supply is turned on and the air pressure is set at 62 lbs/sq. in.
- 3. The acetylene supply is turned on and acetylene pressure is set at 27 lbs./sq. in.
- 4. The burner is ignited.
- 5. The flame should be blue and transparent with an oxidizing region about 4 mm.
- 6. The slit control is set at the value given in the Analytical Methods Book for the respective elements.
- 7. The adjustment of the atomizer is made by turning the capillary outward until "blow-back" occurs, then, turning inward until absorption is maximized. Standard solutions are aspirated through a tube into the flame for not less that 15 seconds.

ORIGINAL PAGE IS

£

¢

•

• •

Known Solutions Preparation

C.

0

The solutions used were prepared from standard solutions of 1000 (Parts per Million (PPM). The dilutions were made as follows:

> 10 ml of 1000 PPM standard solutions were diluted to a final volume of 500 ml with deionized water to give a solution of 20 PPM concentration. This 20 PPM solution was used as a stock solution. Further dilutions were made as follows:

- 1. 5 ml of 20 PPM solution was diluted with deionized water to give a final volume of 100 ml and a solution of 1 PPM.
- 2. 10 ml of 20 PPM solution was diluted to a final volume of 100 ml and a solution of 2 PPM.
- 3. Repeat the above procedure with 15 ml of stock solution to get 3 PPM solution.
- 4. Repeat above procedure with 20 ml stock solution to yield a solution of 4 PPM.
- 5. Repeat above procedure with 25 ml of stock solution to get a solution of 5 PPM.
- 6. Repeat above procedure with 30 ml of stock solution to get a solution of 6 PFM.
- 7. Repeat above procedure with 35 ml of stock solution to get a solution of 7 PPM.
- 8. Repeat above procedure with 40 ml of stock solution to get a solution of 8 PPM.
- 9. Repeat above procedure with 45 ml of stock solution to get a solution of 9 PPM.
- 10. 50 ml of stock solution are diluted with 50 ml deionized water to get a final solution of 10 PPM.

Drawing of Caliberation Curve

The Atomic Absorption Spectrophotometer readings are displayed in absorption but they can be readily converted by means of a table to percent absorption which varies almost linearly with concentration. The conversion table is provided in the Analytical Methods Book for Perkins-Elmer Model 403 A.A. spectrophotometer.

The instrument parameters are recorded with each set of data so they can be duplicated when corresponding sample runs are made. Each curve standars is run in ascending order of element concentration. Curves can be conveniently plotted on expanded logrithmic paper

OR POOR QUALITY

Analysis of Samples

• . . :

The agreement of the results obtained by A.A Spectroscopic analysis with those obtained by standard analysis have previously been confirmed (Please see annual report 1979).

- 100

For analysis of each sample a caliberation curve is derived from standard solutions. The given samples are diluted and the contration of the metal in the aliquot is calculated from the caliberation curve. This is multiplied by the dilution factor to give the concentration of the metal in the griginal sample.

The results obtained are given in table Ia through table XXb. Tables "a" contain the data for standard caliberation curve and tables "b" contain the data for analyzed samples.

The points corresponding to each analyzed sample have been marked on the caliberation curve.

500 006 • OPERATOR S. KLAIN 450 DATE 6.24.60 RUN NO. #3 400 10 4 p ΔT 350 50 4 300 F SCALE ATM. 250 RATE 15 . START RS C PROGRAM MODE Lest SIZE and in depth REF. glass Brads 200 150 SAMPLE: EP SN 202 100 Neg #5 ORIGIN: THE WARNA Frenk 3 50 0 ıΔ ENDO οхэ đ

*				006
#4 4 5. 25.80				
RUN NO DATE6 OPERATOR				
ΔT 1.0 ¥	 ~			
NG SO 4				
C SCAL				
· · · · · · · · · · · · · · · · · · ·				
SIZE ZWY		ORI OF	GNAL PAGE R POOR QUALITY	5
र्षद्ध 5 इ.स हेक्ट्रेंट्स् ल				
MPLE: Veg P Lot No - 5 Part No- 1 Part No- 1			gradit.4	
S S				

	Hay	-										006
14	6.30 th	t							+++++++++++++++++++++++++++++++++++++++			-
RUN NO.	DATE				2	}						
	7 2 2		1									
-	*		L	5								
W		2										
K A	et St au										5	
m indep	Lads NODE La											
SIZE Sm	REF. 51655 PROGRAM N RATE 7.0	-				2 2 2		1.53				
late	H o											
E: Neg F	NO. SSS No. SSS			ł	- 14 - 14 (11) - - - - - - - - - - - - - - - - - -	:라 산년		raph 5		
SAMPL	Let Part ORIGIN		-	1								

U LINI

		i la transitione de la constante de la constan				906
6 Saft			1.11			•
RUN NO. # DATE 7.21 OPERATOR						
Δ τ 10 *						
E SO ¥				V		
ATM.				 		
MODE N					 	
REF.						
P206					16 13	
MPLE: As Lor us ssid Para No s NGIN:				 	 gra	
SAMI C C						

Data for Graph I

Caliberation curve for N1

Table Ia

PPM	A.A. Reading	&Abs
2	.0234	5,3
4	.044	9,7
6	.0644	13,8
8	.0842	17,0
10	.1011	22,4

Unknown sample analysis

Table Ib

Sample	Dilution	A. A	*Abs	РРМ	PPM Orig solution
No.	factor	reading	16.7	7.5	75.0
GE 12AM S/NOI	#3 X 10	.0734	15.6	6.9	69.0
GE 12AM S/NOT	13 X 10	.0802	16,9	7,5	70,0

ABSORPTION, percent

÷.

13

1

5

0 0 3,

.

11

ORIGINAL PAGE IS OF POOR QUALITY

0.

0

Ni analysis of cell GE 02 plates #2, #8, #12

Caliberation curve for Ni

1 2000

Table IIa . PPM A.A. Reading Abs 8.0 .030 2 .056 12.2 4 17.3 .082 6 .109 22.2 8 .128 25.5 10

Unknown sample analysis

Table IIb

S.mple No.	Dilution factor	A.A reading	*Abs	РРМ	PPM Orig solution
GE 02 #2	250	.076	16.1	5.51	1380
" #8	•	.081	17.0	5.80	1480
" #12		.084	17.6	6.00	1500

0.

Data for Graph III

Ni analysis of cell GE 02 Positive plate #12

Caliberation curve for Ni

• 1

Table IIIa

PPM	A.A. Reading	VAbs
2	.0326	7.2
4	.576	12.4
6	.0834	17.5
8	.1088	22.3
10	.130	25.9

Unknown sample analysis

Table IIIb

Sample No.	Dilution factor	A.A reading	%Abs	PPM	PPM Orig solution
GE 02 Pos. #12	.250	.0745	15.8	5.30	1320.

Data for Graph IV

Ni analysis of cell GE 02 plates #3, #9, #13

Caliberation curve for N1

Table IVa

PPM	A.A. Reading	Abs
2	.021	4.7
4	.0398	7.8
6	.0622	13.3
8	0802	15.9
10	.0920	19.2
i so se s		

Unknown sample analysis

Table IVb

								ł
Samp No.	le		Dilution factor	A.A reading	*Abs	PPM	PPM Orig solution	
GEO	AMP	#3	250	.060	12.9	6,23	1557,0	
GE0	AMP	19	250	.060	12.9	6,23	1557.0	
GEO	AMP	#13	250	.060	12.9	6.23	1557.0	

Data for Graph IV

Ni analysis of cell GE 02 plates #3, #9, #13

Caliberation curve for N1

Table IVa

PPM	A.A. Reading	Abs
. 2	.021	4.7
4	.0398	7.8
6	.0622	13.3
8	.0802	15.9
10	.0920	19.2

Unknown sample analysis

Table IVb

Sample No.	Dilution factor	A.A reading	\$Abs	PPM	PPM Orig solution
GEO AMP #3	250	.060	12.9	6,23	1557.G
GEO AMP #9	250	.060	12.9	6,23	1557.0
GEO AMP #13	250	.060	12.9	6,23	1557.0

mine his lite

Ni analysis of cell 12 AM SNO plates #3, #9, #13

Caliberation curve for Ni

Table Va

÷

	PPM	A.A. Reading	Abs	
	2	.022	5.0	
	4	.040	9.1	
	6	.060	13.0	
	8	.079	16.7	
	10	.095	19.3	
ł				

Unknown sample analysis

Table Vb

Sample No.	Dilution factor	A.A reading	*Abs	РРМ	PPM Orig solution
12AM SNO2 #3	10	.077	16.3	7.9	79.0
" #9	10	.080	16.5	7.9	79.0
	10	.078	16.4	7.9	79.0

·

.

.

0.

On

Ni analysis of cell GE 056 plates #3, #9, #13

Caliberation curve for Ni

Table VIa

PPM	A.A. Reading	tAbs
2	. 053	11.5
4	.100	20.6
6	.144	28.2
8	.190	35.4
10	.220	39.7

Unknown sample analysis

Tal	bl	e	v	I	b
		_			

Sam No.	ple		Dilution factor	A.A reading	VADS	PPM	PPM Orig solution
GE	056	#3	10	.195	36.2	8.30	83.0
	•	#9	•	.198	36.6	8.42	84.2
	•	#13	•	. 205	37.6	8.72	87.2

OF POOR QUALITY

Ni analysis of cell GE 056 plates #3, #9, #13, AM Extract

Caliberation curve for Ni

Table VIIa

PPM	A.A. Reading	%Abs
2	.0498	10.9
4	.0956	19.8
6	.141	27.8
8	.182	34.3
10	.215	39.1

Unknown sample analysis

Table VIIb

Samp1	e	Dilution	A.A	*Abs	PPM	PPM Orig
No.		factor	reading			solution
GE 056	5 #3	250	.142	27.9	6.13	1532.0
	#9	250	.141	27.8	6.13	1532.0
	#13	250	.136	26.9	5.8	1450.0

CALL NO WE A

and the second second

2

Ni analysis of cell SN Ol plates #2, #3, #12

Caliberation curve for Ni

TableVIIIa

PPM	A.A. Reading	Abs
· 2	.031	6.8
4	.058	12.5
6	.085	17.7
8	.112	22.8
10	.136	26.9

Unknown sample analysis

		Table VIII	D		*
			a		
Sample No.	Dilution factor	A.A reading	*Abs	PPM	PPM Orig solution
SN 01 #2	250	.077	16.2	5.43	1357.0
SN 01 #3	250	.073	15.5	5.2	1300.0
SN 01 #12	250	.075	15.8	5.3	1325.0

Caliberation curve for Ni

	TYO
Table	TVa

PPM	A.A. Reading	\$Abs
2	.023	5.3
4	• 0 45	9.8
6	~ 064	13.
8	.083	17.
10	•099	20.

Unknown sample analysis

Table IXb

Sampl No.	le		Dilution factor	A.A reading	*Abs	РРМ	PPM Orig solution
GE 02	s/n	01 #3	250	•066	14.0	6.3	1575.0
		#9	u	.0664	14.2	6.52	1630.0
		# 1 3	"	.067	14.4	6.49	1622.5

THE ALL PLACE

in them Within .

C

Cd analysis of cell GE 12 AM SN 01 Negative plates #3,#9, #13 Positive plates #2,#8, #12

Caliberation curve for Cd

Table Xa

PPM	A.A. Reading	1Abs
1	.065	11.5
2	.123	24.6
3	.174	33.0
4	. 224	40.3
5	. 267	46.0

Unknown sample analysis

Sample Dilution A.A **Abs** PPM PPM Orig No. factor reading solution GE 12AM SN 01 250 .189 35.3 3.35 837 . . .199 36.8 3.51 877 . .202 37.2 3.60 900 50 .146 28.6 2.49 248 .. 28.2 2.41 .144 241 . 28.4 2.42 242 .. .145

Table Xb

12

đ

0

Data for Graph XIII

0.

A run of known Cd solutions was made to make sure for the reproducibility of standard caliberation.

Table XIII, graph 13

РРМ	A.A. Digital Readout	NAbs	
1	.0658	14.1	
2	.1242	24.9	
3	.1766	33.4	
4	.225	40.5	
5	. 2672	46.0	
2			

The caliberation curve is reproducible.

ABSORPTION, percent

Caliberation curve for Cd

PPM	A.A. Reading	*Abs
1	.069	14.
2	.1276	25.
3	.2278	33.
4	.2714	40.
5		46.

Table XILd

Unknown sample analysis

A MANAGER

Table XIIb

Sai No	mple		Dilution factor	A.A reading	% Λbs	РРМ	PPM Orig solution
12AM "	GE 02	#3 #9 #13	250 250 250	.1676 .1744 .1756	32.0 33.1 33.3	2.8 2.9 2.93	700 725 732.5

ORIGINAL PAGE IS OF POOR QUALITY

Sec.

C an

C.

Data for Graph X III

."

0.

2

Cd analysis of cell GE 02 plates #3, #9, #13

Caliberation curve for Cd

1

Table X IIIa

PPM	A.A. Reading	*Abs
1	.0646	13.8
2	.1256	25.2
3	.1764	33.4
4	.2244	40.4
5	. 2738	45.4

Unknown sample analysis

Table XIIIb

Sample No.	,	Dilution factor	A.A reading	¥Abs	PPM	PPM Orig solution
GE 02	#3	0	.1356	26.8	2.20	2.20
	#9	0	.123	24.7	2.10	
	#13	0	.0322	7.1	0.5	0.50

2

Cd analysis of cell 12 AH SNO2 GEO2 plates #3, #9, #13.

Caliberation curve for Cd

Table XIVa

PPM	A.A. Reading	Abs
. 1	•069	14.7
2	.128	2 5. 5
3	•177	33.5
4	.228	40.8
5	.271	46.5

Unknown sample analysis

Table XIVb

12	Sample No.		Dilution factor	A.A reading	*Abs	РРМ	PPM Orig solution
GE	02 •	#3 #9	250 "	•168 •174	32.0	2:80 2:90	700.0 725.0
	a	#13	"	•176	33.3	2.93	732.5

1

٥.

C p

Cobalt analysis of cell GE 056 plates, #2, #8,

Caliberation curve for Co

Table XVa			
PPM	A.A. Reading	%Ab s	
1	.020	4.5	
2.5	.051	11.1	
4	.078	16.5	
5	.096	19.9	
6	.113	22.9	
8	.1465	28.6	
10	.173	32.9	

Unknown sample analysis

Table XIb

Sample So.	Dilution factor	A.A reading	*Abs	PPM	PPM Orig solution
GE 056 #2	5	.183	34.4	10.35	52.0
# #8	5	.179	33.8	10.2	51.0
# #12	5	.181	34.1	10.3	52.0

PPN Co-

ŧ

Data for Graph XVI

ۍ مړ

°.

Co analysis of cell GE 02 Positive plates #2, #8, #12

Caliberation curve for Co

. ?

۰.

Table XVId

PPM	A.A. Reading	%Abs
1	.010	2.3
2.5	.023	5.2
4	.036	8.0
5	.043	9.5
6	.051	11.1
8	.067	14.3
10	.081	17

Inknown sample analysis

	solution
).15).35	51.0 52.0
C	0.00

Table XVLL

Co analysis of cell GE 12 SN/01 plates #2, #8, #12

.

Caliberation curve for Co

Table X VII2

РРМ	A.A. Reading	\Abs
1	.007	1.6
2.5	.019	4.3
4	.030	6.7
5	.037	8.2
6	.044	9.6
8	.058	12.5
10	.070	14.9

.

Unknown sample analysis

Table XVII-b

Sa No	rople ∙			Dilution factor	A.A reading	Abs	PPM	PPM Orig solution
GE	125N	01	#2	5	.042	9.2	5.7	28.5
	11SN	01	#8	5	.040	8.8	5.45	27.25
•		•	#12	5	.039	8.6	5.25	26.25

ALC: N. C. 14

K Analysis of plates S1, S2, and S3

Caliberation curve for K

PPM	A.A. Reading	\$Abs
1	.024	5.4
2	.0488	10.6
4	.1066	21.8
6	.1734	32.9
8	.2436	42.9
10	. 3202	52.2

Table XVIIa

Unknown sample analysis

Table XVIIIb

Lample No.	Dilution factor	A.A reading	%Abs	ррм	PPM Orig solution
s ₁	0	.0492	10.7	2.0	2.0
s2	0	.107	21.8	4.0	2.0
3	2	.1458	28.5	5.15	10.30

OF POOR QUALITY

Data for Graph XIX

Ce

LACENCE THE REAL

0.0

Caliberation curve for K

2

TableXIXa

PPM	A.A. Reading	\$Abs
1	.028	6.30
2	.063	13.5
4	.108	22.1
6	•178	33•7
8	•257	44.6
10	• 333	53.6

Urknown sample analysis

Table XIXb

Sample No.	Dilution factor	A.A reading	*Abs	PPM.	PPM Orig solution
ĸı	250	.114	23.1	4.1	1025.0

1

K analysis of plates S1, S2, S3

Caliberation curve for K

Table XXa

.

PPM	A.A. Reading	Abs
	0138	3.1
1	0262	5.8
2	. 0450	9.8
3	0666	14.2
4	. 0930	19.3
5	. 199	24.0
0	. 150	29.2
/	176	33.3
8	208	38.1
9	.234	41.8

Unknown sample analysis

		Table XXb				
Samule No.	Dilution factor	A.A reading	*ALS	PPM	PPM Orig solution	
S,	10	.121	24.3	6.1	61.0	
5		.048	10.4	3.0	30.0	
5,		. 093	19.3	5.0	50.0	

ORIGINAL FAGE IS OF POOR QUALITY

a as in the birts