(NASA-TH-82429) AN IL THIS IN ALLOB UF NEITING (NASA) 28 P ASSEMBLY AND PERFORMANCE OF A RESISTOFLEX DYNATUBE 1/4 INCH FITTING (NASA) 28 P HC A03/MF A01 CSCL 13K UDCLAS G3/31 27434

## NASA TECHNICAL MEMORANDUM

NASA TM-82429

### ASSEMBLY AND TESTING OF 1/4 INCH MR54040 TF04 RESISTOFLEX DYNATUBE FITTINGS

By J. H. Enl Materials and Processes Laboratory





NASA

# George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

|     |                                                                                                                                                  |                                                                       | TECHNICA                                                                             | L REPORT STAND                                                            | JARD TITLE PAGE                                        |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| 1.  | REPORT NO.<br>NASA TM-82429                                                                                                                      | 2. GOVERNMENT A                                                       | CESSION NO.                                                                          | 3. RECIPIENT'S C                                                          | ATALOG NO.                                             |  |  |
| 4.  | TITLE AND SUBTITLE<br>An Investigation of Assembl                                                                                                | y and Perform                                                         | ance of A                                                                            | S. REPORT DATE<br>June 1981                                               |                                                        |  |  |
|     | Resistoflex Dynatube 🛔 inch                                                                                                                      | Fitting                                                               |                                                                                      | 6. PERFORMING OR<br>EH 44                                                 | PERFORMING ORGANIZATION CODE                           |  |  |
| 7.  | AUTHOR(S)                                                                                                                                        |                                                                       | 8. PERFORMING ORG                                                                    | ANIZATION REPORT #                                                        |                                                        |  |  |
|     |                                                                                                                                                  |                                                                       |                                                                                      |                                                                           |                                                        |  |  |
| 9.  | PERFORMING ORGANIZATION NAME AND AS<br>George C. Marshall Space F                                                                                | DORESS<br>light Center                                                |                                                                                      | 10. WORK UNIT NO.                                                         |                                                        |  |  |
|     | Marshall Space Flight Center                                                                                                                     | r, Alabama 3                                                          | 5812                                                                                 | 11. CONTRACT OR G                                                         | RANT NO.                                               |  |  |
|     |                                                                                                                                                  |                                                                       |                                                                                      | 13, TYPE OF REPOR                                                         | T & PERIOD COVERED                                     |  |  |
| 12. | SPONSORING AGENCY NAME AND ADDRESS                                                                                                               | <u>.</u>                                                              |                                                                                      | Technical M                                                               | lemorandum                                             |  |  |
|     | National Aeronautics and Sp<br>Washington D C 30546                                                                                              | ace Administra                                                        | ition                                                                                |                                                                           |                                                        |  |  |
|     |                                                                                                                                                  |                                                                       |                                                                                      | 14. SPONSORING AC                                                         | ENCY CODE                                              |  |  |
| 15. | SUPPLEMENTARY NOTES                                                                                                                              | - 1 D                                                                 |                                                                                      | ·····                                                                     |                                                        |  |  |
|     | Directorate                                                                                                                                      | nd Processes                                                          | Laboratory, Scien                                                                    | ce and Engine                                                             | ering                                                  |  |  |
| 16. | ABSTRACT                                                                                                                                         | • <u>•</u>                                                            | <u> </u>                                                                             |                                                                           |                                                        |  |  |
|     | workmanship and to the sta<br>very slight out-of-specificat<br>fittings. This investigation<br>X-rays to determine the dep<br>joint performance. | te of repair of<br>ion imperfectio<br>included fabr<br>oth of swage a | the installation to<br>ons will produce l<br>ication of a signi-<br>nd static and dy | fooling. Tooling<br>less than optim<br>ficant quantity<br>namic testing f | ng with<br>num swaged<br>r of samples,<br>to determine |  |  |
| 17. | KEY WORDS                                                                                                                                        |                                                                       | 18 DISTRIBUTION STAT                                                                 | EMENT                                                                     |                                                        |  |  |
|     | <pre>å in. Resistoflex Dynatube Fitting</pre>                                                                                                    |                                                                       | Unclassified-U                                                                       | nlimited                                                                  |                                                        |  |  |
| 19. | SECURITY CLASSIF, (of this report)                                                                                                               | 20. SECURITY CLAS                                                     | SIF. (of this pege)                                                                  | 21. NO. OF PAGES                                                          | 22. PRICE                                              |  |  |
|     | Unclassified                                                                                                                                     | Unclassified                                                          | 1                                                                                    | 28                                                                        | NTIS                                                   |  |  |

.

• •

### TABLE OF CONTENTS

۰.

.

• •

### Page

| INTRODUCTION AND BACKGROUND | 1  |
|-----------------------------|----|
| FINDINGS                    | 2  |
| APPENDIX                    | 10 |

### LIST OF ILLUSTRATIONS

•

÷

•

.

| Figure | Title                                                                                 | Page |
|--------|---------------------------------------------------------------------------------------|------|
| 1.     | l inch 304L stainless steel tube with MR 54040 TF04 fitting each end                  | 4    |
| 2.     | MR 54040 TF04 dynatube fitting                                                        | 5    |
| 3.     | Swage tool (fully assembled)                                                          | 6    |
| 4.     | Swage tool (disassembled)                                                             | 7    |
| 5.     | Enlarged x-ray of fitting and tube showing minimal swage of tube into fitting grooves | 8    |
| 6.     | Example of possible rotation                                                          | 9    |
| 7.     | Set-up for vibration testing                                                          | 12   |

### LIST OF TABLES

| Table | ſitle                                                      | Page |
|-------|------------------------------------------------------------|------|
| 1.    | Vibration Input to SRB TVC Tube (0.25" Dia.)<br>Assemblies | 13   |
| 2.    | Resistoflex Dynatube MSFC Testing                          | 15   |

### ACKNOWLEDGEMENTS

.

This investigation was performed with the assistance of:

| Walter W. Jackson    | BE 11           |
|----------------------|-----------------|
| <b>Blbert Minter</b> | BH44            |
| Leo Hein             | BP 33           |
| Wendel DeWeese       | BH22            |
| Edward Ball          | ET44            |
| Alex D'Agostino      | BP42            |
| Philip Taylor        | USBI Huntsville |
| Toney Bridges        | SK-QAL          |
| Joe Kinstev          | USBI M-BAC      |
| James Calloun        | SK-SRB-E        |
| Bobby Erwin          | ED-23           |
| Clifton Kirby        | ET-19           |
|                      |                 |

,e

• '

• '

### TECHNICAL MEMORANDUM

### ASSEMBLY AND PERFORMANCE OF 1/4 INCH MR54040 TF04 RESISTOFLEX DYNATUBE FITTINGS

### 1. INTRODUCTION AND BACKGROUND

Dynatube is a trede name for a titanium (6AI-4V) threaded fitting used to join metal tubing (Figs. 1 and 2). These fitting are manufactured by the Resistoflex Corporation of Rcseland, N.J. The outside surface of the metal tube is mechanically swaged into grooves in the inside surface of the fitting. Swaging is performed either by manual or power rotation of an expanding mandrel type tool (Figs. 3 and 4). These fittings have a long history of successful use in commercial and military aircraft and aerospace systems with minimum weight and critical leak rate requirements.

During build-up of hardware for the Space Shuttle Thrust Vector Control (TVC) system, some tube assemblies using Dynatube fittings  $_{5}$ were fabricated that did not pass the prescribed leak test of  $1 \times 10^{-5}$ standard cubic centimeters per second of helium at 400 psig. Leakage was detected between the fitting and the outside diameter of the tube. These tests were conducted using a helium sniffer and also by using "Leak Tek" solution and noting bubbles of escaping helium gas. It was determined that these same tube assemblies had previously passed the leak test requirements. Fittings are tested repeatedly as build-up of the assembly progresses to the next higher level. Sectioning of the leaking joint revealed a very light swage of less than 0.002 in. radial deformation of the tube into the fitting grooves which are 0.007 in. deep. Further investigation revealed that some lightly swaged fittings had passed all hydrostatic leak testing but could be made to leak if they were rotated on the tube during installation (Figs. 5 and 6).

Further investigation determined that Dynatube fitting assemblies had been made using swage tooling that was worn and/or misassembled. The worn tooling swaged light, as little as 0.002 in. deep in the four 0.007 in. deep fitting joints. The misassembled swage tool swaged short, i.e. good swages in the first three grooves but little or no swage in the farthest groove (4th groove) from the point of entry of the mandrel into the tube to be swaged. Refurbishment of the tooling by replacing the worn rollers on the expanding mandrel and by correcting the out of place spacer washers in the misassembled tool corrected the problem of swaging good joints. Correctly assembled and refurbished tooling can consistently swage grooves 0.005 in. deep or more when used by a trained operator. However, x-ray of inplace tubing assemblies revealed that some joints had been manufactured and installed that were lightly swaged and that had successfully passed the helium leak tests. A program was developed to determine the performance of lightly swaged joints and to duplicate and test joints equal to or worse than those known to be installed on the flight TVC hardware. This program was comprised of the following:

1) To be statistically meaningful, 100 each  $\frac{1}{4}$  in. fittings were procured and fabricated into 50 each tube assemblies with one fitting at each end (Fig. 1).

2) All swage tooling was refurbished by the Resistoflex Corporation to the correct company specifications.

3) A tolerance study was made on the tubing, the tooling, and the fitting to determine the worst case swage that could be made (Appendix). Swages were made at minimum possible, medium range, and full depth. Additionally, samples were prepared that were fully swaged, but swaged short. Swage tool settings to accomplish these conditions were 0.219. 0.221, 0.223, 0.225, and 0.228 in. The 0.228 in. setting is the normal setting recommended by Resistoflex Corporation for these fittings. A11 samples were measured (I.D.) x-rayed to determine amount of swage, proof pressure tested at 7000 psi, mass spectrometer leak tested (sniffer method) at 400 psi with helium, rotated  $15^{\circ}$  in the fitting to simulate a careless fit-up, re-leak checked, and pressure tested. After rotation, approximately 25 percent of the samples did not pass the helium leak. These were assembled into a closed loop arrangement and pressurized at 400 psi with water. The pressure was maintained for two weeks. None of the swaged fittings that leaked helium, leaked water during the two weeks under pressure.

After static testing, the tubes were vibration tested to Shuttle flight level in the radial, tangential, and longitudinal axis (Table 1). While being vibrated, all tubes were pressurized at 400 psi with water containing red dye to enhance visibility in case of a leak. Sixty each fittings, including all the shallow swages and all the short swages, were tested. None leaked water at 400 psi during the vibration tests which simulated flight conditions.

### 2. FINDINGS

1) Resistoflex Dynatube swage tooling in the proper state of repair and used properly will consistently yield adequate swages. (0.005 or more in the first three grooves.)

2) The light and short swage conditions found were caused by worn and improperly assembled tooling respectively.

3) The inhouse MSFC test program demonstrated that a MR 54040 TF04 swage joint with at least 0.0015 in. radial tube deformation, while 5 not desirable, will pass the required leak rate of not more than  $1 \times 10^{-5}$  sccb helium at 400 psig. Additionally this joint will not leak water when pressurized to 400 psi and vibrated to 28.2 grms composite in the radial and tangential axis and 27.0 grms composite in the longitudinal axis.

÷,



Figure 1.  $\frac{1}{4}$  inch 304L stainless steel tube with MR54050 TF04 fitting each end.

ONIGINAL PAGE IS OF POOR QUALITY

### SWAGED TUBE

ъ. Ч

. . .

.



### 6AL -4V DYNATUBE FITTING

Figure 2. MR 54040 TF04 dynatube fitting.



Figure 3. Swage tool (fully assembled).



Figure 4. Swage tooi (disassembled).



Figure 5. Enlarged x-ray of fitting and tube showing minimal swage of tube into fitting greeves.



ROTATING THE TUBE IN THE SWAGE FITTING COULD OCCUR DURING INSTALLATION WHEN ONE END OF THE ASSEMBLY HAS BEEN SECURED THEN THE OTHER END IS DRAWN AGAINST ITS MATING FITTING CAUSING A ROTATIONAL TORQUE ON THE OPPOSITE END.

Figure 6. Example of possible rotation.

**APPEN DIX** 

and the second second

And the second se

No. of Concession

いたいとうというであるという

### **TOLERANCE ANALYSIS**

### FITTING

### TUBE

### Resistoflex MR54040

### MIL-T-6845C

| Size Range<br>Outside Diameter<br>(Inch) | Tolerance |
|------------------------------------------|-----------|
| ‡ thru ½ INCL                            | +.004000  |
| over ½ thru 1½                           | +.005000  |
| over 1½ thru 24                          | +.010000  |
| over 2 <del>]</del> thru 3               | +.010010  |
| over 3 thru 5                            | +.015015  |

| Tuba | OD.         | 950   | +.004 |
|------|-------------|-------|-------|
| TUDE | <b>UD</b> : | . 230 | 000   |

Tube Wall:  $.020 \pm .002 = .040 \pm .004$  cumulative

|      |    |   | . 250 | +.004 |
|------|----|---|-------|-------|
|      |    |   | 040   | ±.004 |
| Tubo | ID | _ | 210   | +.008 |
| Tupe | IJ | - | . 210 | 004   |

| Test Gage  |                    |
|------------|--------------------|
| Diameter   | .224 ±.002         |
| Tube Wt.   | <u>+.040</u> ±.004 |
| Range      | .264 ±.006         |
| Fitting ID | $255 \pm .002$     |
|            | <u>.009 ±.008</u>  |

This tolerance guarantees positive interference fit even if (in the unlikely event) the tube is the smallest possible, with the thinnest wall permissible, and the fitting is at the extreme upper limit. Factors such as spring back and wall thinning are handled by adding an additional .004 inch extra expansion to tool settings.



# TABLE 1. VIBRATION INPUT TO SRB TVC TUBE (0.25" Dia.)ASSEMBLIES

Lift-off and Boost Random Vibration Criteria (180 seconds in each axis)

| RADIAL AXIS                         | LONGITUDINAL AXIS                         |  |  |  |  |  |  |
|-------------------------------------|-------------------------------------------|--|--|--|--|--|--|
| 20 Hz @ 0.1 g <sup>2</sup> /Hz      | 20- 60 Hz <b>0</b> 0.1 g <sup>2</sup> /Hz |  |  |  |  |  |  |
| 20- 60 Hz @ +7 dB/oct               | 60- 200 Hz @ +5.5 dB/oct                  |  |  |  |  |  |  |
| 60- 150 Hz @ 1.2 g <sup>2</sup> /Hz | 200- 400 Hz @ 0.9 g <sup>2</sup> /Hz      |  |  |  |  |  |  |
| 150-2000 Hz @ -2 dB/oct             | 400-2000 Hz @ -4 dB/oct                   |  |  |  |  |  |  |
| 2000 Hz @ 0.2 g <sup>2</sup> /Hz    | 2000 Hz @ 0.1 g <sup>2</sup> /Hz          |  |  |  |  |  |  |
| Composite = 28.2 grms               | Composite = 27.0 grms                     |  |  |  |  |  |  |
| TANGENTIAL AXIS                     |                                           |  |  |  |  |  |  |

### IANGENTIAL AAIS

| 20-  | 60   | Hz | Q | $0.1 \text{ g}^2/\text{Hz}$    |
|------|------|----|---|--------------------------------|
| 60-  | 100  | Hz | 0 | 13.5 dB/oct                    |
| 100- | 300  | Hz | 0 | $1.0 \mathrm{g}^2/\mathrm{Hz}$ |
| 300- | 2000 | Hz | 0 | -3.5 dB/oct                    |
|      | 2000 | Ηz | 0 | $0.1 \text{ g}^2/\text{Hz}$    |

Composite = 28.6 grms

### **EXPLANATION OF TABLE 2**

The data contained in Table 2 denote the specimen number, the fitting on each end (No. 1 and No. 2) of the tube, the tube diameter in inches, and the swage tool setting in inches. The depth of swage per groove determination was made by evaluation of x-rays using an optical comparator. The No. 1 groove is the first groove from the sealing surface and the No. 4 groove is the last groove on the tube end of the fitting. The x-ray is a cross sectional view and the reading is left to right top and bottom. The determination was made by positioning the fine line of the optical comparator on the land of the groove and reading the amount of upset of the tube into the fitting groove. The tube internal diameter of swage was made using an internal micrometer with a stop to ensure that all tubes were measured at the same position. The column noting helium leakage determines if the fitting leaked in excess of 1 x 10<sup>-5</sup> scc's of helium at 400 psig. Next, the fitting was rotated 15 degrees on the tube to simulate a careless assembly (Fig. 6). After rotation the fitting was rechecked with the mass spectrometer to determine leakage. The remaining data column denotes those fittings selected for vibration testing.

\*Sealing surface to left.

| ILING SURFACE TO LEFT |                                                 | COMMENTS     |               |      |      |      |      |       |      |      |     |      |      | 1    |      |       |       |
|-----------------------|-------------------------------------------------|--------------|---------------|------|------|------|------|-------|------|------|-----|------|------|------|------|-------|-------|
| · SEA                 | 0                                               | 1315         | 11            | ×    | ×    | ×    | ×    | ×     | ×    | ×    | ×   | ×    | ×    | ×    | ×    | ×     | ×     |
|                       | ED                                              | 13           | 0.1           | ×    | ×    | ×    | ×    | ×     |      |      |     | ×    |      |      | ×    | ×     | ×     |
|                       | -14                                             | 104          | S3A<br>ON     | ×    |      | ×    | × -  | - × - | ×    | ×    | ×   | ×    | x    | ×    | ×    | ×     | ×     |
|                       | 3                                               | 14           | SIA           |      | ×    |      |      |       |      |      |     |      |      |      |      |       |       |
|                       | 3                                               | 194<br>194   | ANN IN        | 2168 | 2168 | 217  | 2168 | 2167  | 2167 | 2168 | 217 | 2168 | 2112 | 217  | 217  | 219   | 219   |
|                       |                                                 | H            | 4             | 000  | 000  | 000  | 000  | 000   | 000  | 000  | 000 | 000  | 000  | 000  | 000  | 000   | 000   |
|                       | #                                               | + RIG        | 9             | 000  | 000  | 000  | 000  | 000   | 000  | 000  | 000 | 000  | 000  | 000  | 000  | 000   | .001  |
|                       | <ul> <li>DEPTH OF SWAGE PER GROOVE</li> </ul>   | A LEFT.      | 2             | 000  | 000  | 000  | 000  | 000   | 000  | 000  | 000 | 000  | 000  | 100. | 000  | .001  | .002  |
| ESTIN                 |                                                 | BOTTON       | -             | 900  | 002  | 002  | 002  | 100   | 100  | 100  | 001 | 100  | 100  | .002 | .002 | 0025  | .0025 |
| ASFC T                |                                                 | -            | 4             | 000  | 000  | 000  | 000  | 000   | 000  | 000  | 000 | 000  | 000  | 000  | 000  | 000   | 100   |
|                       |                                                 | - RIGH       | 3             | 000  | 000  | 000  | 000  | 000   | 000  | 000  | 000 | 000  | 000  | 000  | 000  | 000   | .002  |
|                       |                                                 | EFT -        | 2             | 000  | 000  | 000  | 000  | 000   | 100  | 000  | 000 | 001  | 000  | 100  | 000  | 100   | 002   |
|                       |                                                 | TOPL         | -             | 900  | .002 | .002 | .002 | .001  | 100  | 100  | 001 | 100  | .001 | .002 | 100  | 9200. | 0025  |
|                       | 108E<br>0.D<br>100L<br>35WMGE<br>100L<br>35THNG |              | 3S<br>1<br>1S | 219  | 219  | 219  | 219  | 219   | 219  | 219  | 219 | 219  | 219  | 219  | 219  | 122   | 122.  |
|                       |                                                 |              | .250          | .250 | 250  | .250 | 250  | 250   | 250  | 250  | 250 | 250  | 250  | .250 | .250 | .250  |       |
|                       |                                                 | 380.<br>.0.1 | 1             | 205  | 204  | 203  | 204  | 204   | 204  | 204  | 204 | 204  | 203  | 207  | .207 | 206   | 206   |
|                       | 9                                               | .0.I         | .13           | 253  | 253  | 254  | 255  | 254   | 757  | 754  | 253 | 754  | 254  | 754  | 254  | 253   | 253   |
|                       | # 5                                             | 0.011        | ш             | -    | 2    | -    | 2    | -     | 2    | -    | 2   | -    | 2    | -    | 2    | -     | 2     |
|                       | = 3.JO <b>1</b>                                 |              | т             |      |      |      | •    |       | 7    |      | •   |      | n    |      | 0    |       |       |

# TABLE 2. RESISTOFLEX DYNATUBE MSFC TESTING

RESISTOFLEX DYNATUBE MSFC TESTING

| _                        | _               | _       | _    | _         | _    | -            | -    | -    |                                    |      |             |      |           |           |            |      |
|--------------------------|-----------------|---------|------|-----------|------|--------------|------|------|------------------------------------|------|-------------|------|-----------|-----------|------------|------|
| COMMENTS                 |                 |         |      |           |      |              |      |      | FAILED PRESSURE<br>TEST AT 6500PSI |      |             |      |           |           |            |      |
| NO                       | ITAR<br>ITAR    | VIBI    | ×    | ×         | ×    | ×            | ×    | ×    |                                    |      | ×           | ×    | ×         | ×         | ×          | ×    |
| 03)                      | LEAL            | ON      |      | ×         | ×    | ×            | ×    |      |                                    |      | ×           | ×    | ×         | ×         | ×          |      |
| -14                      | 101             | SEA     | ×    |           |      |              |      | ×    |                                    |      |             |      |           |           |            | ×    |
| X                        | 737             | ON      | ×    | ×         | ×    | ×            | ×    | ×    |                                    |      | ×           | ×    | ×         | ×         | ×          | ×    |
|                          | 3H              | SEA     |      |           |      |              |      |      |                                    |      |             |      |           |           |            |      |
|                          | .D.             | AS<br>V | 2188 | 2138      | 2136 | 2192         | 2192 | 2188 | 2165                               | 2155 | 2193        | 2185 | 2187      | 2135      | 2186       | 2185 |
|                          | TH              | •       | 8    | 8         | 8    | 8            | 8    | 8    | 8                                  | 8    | 80          | 8    | 8         | 8         | 8          | 8    |
| #                        | 1 H             |         | 100  | 100       | 100  | <b>10</b> 0  | 6    | 8    | 8                                  | 8    | <b>1</b> 8  | 8    | 100       | <b>10</b> | <b>1</b> 8 | 1001 |
| GROOVE                   | M LEFT          | 2       | 002  | 002       | .002 | .002         | .002 | 002  | 8                                  | 8    | 8           | .002 | .002      | 002       | .002       | 200  |
| GE PER                   | BOTTO           | -       | .003 | <b>60</b> | 600  | 003          | .003 | 003  | <b>100</b>                         | 8    | 8           | 8    | 88        | <b>60</b> | 8          | 600  |
| OF SWA                   | H               | +       | 000  | 100       | 80   | 80           | 80   | 8    | 000                                | 80   | <b>10</b> 0 | 900  | 900       | 900       | 100        | 900  |
| HT430.                   | H RIG           | 3       | 100' | 100       | 100. | <b>10</b> 0  | 100  | 100  | 900                                | 8    | .002        | 100  | <b>19</b> | 100       | 190        | 190  |
|                          | LEFT -          | 2       | 200  | .002      | .002 | .002         | .002 | .002 | 900                                | 80   | .003        | .002 | .002      | 002       | .002       | .002 |
|                          | TOP             | 1       | 603  | .003      | E00. | <b>COO</b> . | .003 | 600  | 100                                | 100  | 000         | 003  | .003      | .003      | 600        | 500  |
| SWAGE<br>TOOL<br>SNITT32 |                 | 122     | 122  | 122       | 122  | 221          | 122  | 219  | 219                                | 122  | 122         | 122  | 122       | 127       | 127        |      |
| 38UT<br>.0.0             |                 | 250     | 250  | 250       | 250  | 952          | 220  | 250  | 957                                | 250  | 220         | 720  | 952       | 982       | 220        |      |
| 38UT<br>.0.1             |                 | 202     | 202  | 202       | 201  | 204          | 204  | 201  | 502                                | 207  | 205         | 201  | 81.       | 208       | 208        |      |
| 9                        | FITTING<br>.D.I |         | 283  | 223       | Ŕ    | 12           | 121  | ×.   | 12                                 | 222  | 223         | 121  | 527       | 121       | Ā          | 527  |
| # DNILLIA                |                 | -       | ~    | -         | ~    | -            | ~    | -    | ~                                  | -    | 8           | -    | ~         | -         | ~          |      |

Ξ

2

2

12

\*Sealing surface to left.

(Continued) TABLE 2.

# DNILLIS

# 3801

.

•

2

TABLE 2. (Continued)

ġ.

| COMMENTS        |        |               |      |              |             |              |             |           |      |             |      |      |      |      |      |      |
|-----------------|--------|---------------|------|--------------|-------------|--------------|-------------|-----------|------|-------------|------|------|------|------|------|------|
| VIBRATION       |        | ×             | ×    | ×            | ×           | ×            | ×           |           |      | ×           | ×    |      |      | ×    | ×    |      |
| KED             | TEA.   | ON            | ×    | ×            | ×           | ×            |             | ×         | ×    |             |      | ×    |      |      | ×    |      |
| -14             | LOH    | SEA           | ~    | ~            | ×           |              | ×           | *         | -    | ×           | ×    | ×    | ×    | ×    | ×    | ×    |
| J N N           | H      | SEA           | -    | -            |             | -            | -           | -         |      | ~           | -    | -    | -    |      |      |      |
| 1               | DAV    | A             | 2166 | <b>61</b> 0' | 2188        | 2183         | 219         | 219       | 2193 | 2192        | 2196 | 2196 | 220  | 2204 | 2166 | 2168 |
|                 | нт     | 4             | 100' | 100'         | <b>1</b> 8  | .002         | <b>10</b> 0 | <b>10</b> | .003 | 600         | 60   | 00   | 88   | .003 | 8    | 8    |
| # 3             | + RIG  | 3             | 100  | 100          | 100         | .002         | 100         | 100.      | 1004 | .004        | 100  | 100  | 8    | 100  | 8    | 8    |
| GROOVI          | M LEFT | 2             | .002 | .002         | 200.        | <b>600</b> . | .002        | .002      | 1004 | 900         | 100  | 90   | 8    | 8    | 8    | 8    |
| SE PER          | BOTTO  | 1             | .003 | .003         | 003         | 8            | .003        | :003      | .005 | .005        | .005 | 900  | 500  | 500; | 100  | 100  |
| DF SWA          | Ŧ      |               | 100  | 100          | <b>10</b> 0 | <b>10</b>    | 100         | 100       | .003 | .003        | .003 | .003 | E001 | .003 | 990  | .000 |
| DEPTH           | + RIG  | 3             | 196  | 18           | 100         | <b>10</b>    | 100         | 100       | 100  | 100         | .003 | 100  | 100  | 1001 | 80   | 900  |
| •               | EFT -  | 2             | 003  | .002         | 2007        | 2007         | 2003        | .002      | 100  | <b>N</b> 00 | 100  | 900  | 100  | 1004 | 000  | .000 |
| 1 TOP L         |        | -             | 88   | 800          | .003        | .003         | 500         | 003       | .005 | 300;        | .005 | .005 | 3005 | 005  | 100  | 1001 |
| SWAGE<br>SWAGE  |        | 35<br>1<br>15 | 127  | 127          | 127         | 127          | 127         | 127       | 222  | 223         | 223  | 223  | 223  | 223  | 219  | 219  |
| 33UT<br>.0.0    |        | 9 <b>2</b>    | 750  | 250          | 250         | 720          | 250         | 720       | 220  | 957         | 520  | 22   | 720  | 957  | 957  |      |
| 38UT<br>.0.1    |        | Ŕ             | 201  | 200          | 203         | 202          | 202         | 708       | 700  | 207         | 702  | 205  | 708  | 206  | 206  |      |
| PITTING<br>.D.I |        | 2             | 2    | 22           | 597         | 74           | 355         | 55        | 727  | 253         | 223  | 124  | 5    | 154  | 192  |      |
| # DNITTIA       |        | -             | 2    | -            | 2           | -            | 2           | -         | 2    | -           | 2    | -    | 2    | -    | 2    |      |
| # 33UT          |        | 2             |      | 2            |             | "            |             | 2         |      | 2           |      | \$   | 8    | 5    | 5    |      |

\*Sealing surface to left.

TABLE 2. (Continued)

| JBE |   |
|-----|---|
| Ĕ   |   |
| A   | C |
| Σ   | 2 |
| 9   | 5 |
| ŵ   | 1 |
| 1   | c |
| 2   | S |
| S   | 2 |
| S   |   |
| æ   |   |

| IG SURFACE TO LEFT |          | COMMENTS      |              |      |           |      |      |      |      |      |           |      |      |      |      |             |      |
|--------------------|----------|---------------|--------------|------|-----------|------|------|------|------|------|-----------|------|------|------|------|-------------|------|
| · SEALIN           |          | 1315          | 31           | ×    | ×         | +    | +    | -    | -    | ×    | ×         |      | -    |      |      |             |      |
|                    | 1        | 13            | 01           | ×    | ×         | ×    | ×    | ×    | ×    | ×    | ×         | ×    | ×    | ×    | ×    | ×           | ×    |
|                    | 3.       | /11           | GN           | ×    | ×         | ×    | ×    | ×    | ×    | ×    | ×         | ×    | ×    | ×    | ×    | ×           | ×    |
|                    |          | H             | SBA          |      |           |      |      | -    |      |      |           | -    |      |      |      |             |      |
|                    | 1        | .D.           | IA<br>12     | 2198 | 2196      | 2198 | 2187 | 2195 | 2197 | 2197 | 2197      | 2198 | 2196 | 220  | 2197 | 2196        | 2195 |
|                    |          | IIGHT         | 4            | .003 | .003      | 50   | 903  | 002  | 003  | 003  | 003       | 003  | 8    | .003 | 8    | 50          | 8    |
|                    | n        | + RIG         |              | 8    | 8         | 002  | 80   | 003  | 803  | .003 | 500       | 8    | 8    | 8    | 60   | 5           | 100  |
| DNIIC              | ROOVE    | M LEFT-       | 2            | 8    | 8         | 68   | 003  | 603  | 803  | 003  | 003       | 8    | 8    | 8    | 80   | 003         | 003  |
|                    | GE PER ( | BOTTOM        | -            | 80   | .003      | 8    | 8    | 8    | 8    | 8    | 8         | 8    | 500; | 8    | 80   | 80          | 80   |
|                    | DF SWAG  |               | 4            | 003  | 80        | 100  | 8    | 003  | 003  | .003 | 002       | 803  | 003  | 80   | 600  | 100         | 100  |
|                    | DEPTH    | TOP LEFT RIGH | 3            | 8    | 8         | 903  | 8    | 80   | .003 | 88   | 8         | 900  | 80   | 100  | .003 | <b>100</b>  | 50   |
|                    | •        |               | 2            | 8    | 8         | 8    | 8    | 600  | 500  | 58   | .00<br>0  | 8    | 8    | 8    | 900  | 002         | 003  |
|                    |          |               | -            | 500  | 8         | 8    | 8    | 8    | 8    | 8    | 8         | 8    | 8    | 8    | 100  | <b>30</b> 0 | 100  |
| Ì                  | D/       | 001<br>100    | 3S<br>1<br>1 | 223  | 223       | 523  | 52   | 223  | 223  | 223  | 223       | 223  | 22   | 223  | 223  | 527         | 523  |
| I                  | 1        | 0.0           |              | 220  | 720       | 952  | 8    | 952  | 8    | 220  | 250       | 250  | 952  | 952  | 957  | 250         | 952  |
| I                  |          | 1001          |              | 201  | <b>50</b> | 80   | 502  | 207  | 5    | 306  | <b>50</b> | 508  | 201  | 201  | 202  | 50          | 205  |
|                    | 91       | .a.i          |              | 2    | 322       | 283  | Ŕ    | Ā    | ×.   | A    | 2         | 52   | 223  | 552  | Ā    | 2           | 254  |
|                    | # DNIL   | nц            |              | -    | 2         | -    | 2    | -    | 2    | -    | 2         | -    | 2    | -    | 2    | -           | 2    |
|                    |          | 1 I.A.        | L            | 2    | 1         | 2    | 1    | 2    | 5    | *    | 8         | *    |      | 2    | 1    |             | 1    |

\*Sealing surface to left.

\*Sealing surface to left.

| ALING SURFACE TO LEFT |                              | COMMENTS     |                |      |      |      |      |     | FAILED PRESSURE TEST-<br>IMPROPER SWAGE - GAP |      |      |      |      |      |     |      |      |
|-----------------------|------------------------------|--------------|----------------|------|------|------|------|-----|-----------------------------------------------|------|------|------|------|------|-----|------|------|
| · SE                  | 0                            | 1115         | 31<br>131A     |      |      | ×    | ×    |     |                                               | ×    | ×    | ×    | ×    |      |     |      |      |
|                       | 11                           | 11           | , C.i          |      | ×    | ×    | ×    | -   |                                               | -    | ×    | ×    | ×    | ×    | ×   | ×    | ×    |
| 1                     | N                            | m            | leñ            | ×    | ×    | ×    | ×    |     |                                               | ×    | ×    | ×    | ×    | ×    | ×   | ×    | ×    |
|                       | -                            | 114          | 334            |      | -    | -    | -    | +   |                                               | -    |      |      | -    |      |     | -    |      |
|                       | 1                            | .D.          | 14             | 2209 | 2206 | 2122 | 1127 | 216 | Ę,                                            | 2206 | 2213 | 3206 | 2206 | 5022 | Ŗ   | 2208 | 1027 |
|                       |                              | H            | 4              | 8    | 8    | 8    | 80   | 8   | GAP                                           | 8    | 8    | 8    | 8    | 8    | 8   | 8    | 80   |
|                       | 11                           | PII +        |                | 8    | 8    | 8    | 8    | 8   | GAP                                           | 8    | 8    | 8    | 8    | 8    | 500 | 8    | 8    |
|                       | GROOV                        | DM LEFT      | 2              | 8    | 8    | 8    | . 8  | 80  | đ                                             | 8    | 8    | 8    | 8    | 8    | 500 | 8    | 8    |
| ESTIN                 | GE PER                       | 80110        | -              | 8    | 8    | 8    | 8    | 8   | GAP                                           | 8    | 8    | 8    | 8    | 80   | 8   | 8    | 802  |
| MSFC                  | OF SWA                       | LEFT RIGHT   | 4              | 8    | 8    | 8    | 8    | 8   | 8                                             | 8    | 8    | 8    | 8    | 8    | 8   | 8    | 500  |
|                       | DEPTH                        |              | 3              | 8    | 8    | ğ    | 8    | 8   | 8                                             | 8    | 8    | 8    | 8    | 10   | 10  | 8    | 8    |
|                       |                              |              | 2              | 8    | 8    | 8    | 8    | 8   | 8                                             | 8    | 8    | 8    | 8    | 8    | 30  | 8    | 24   |
|                       |                              | 10P          | -              | 8    | 8    | ŝ    | 8    | 100 | 80                                            | 8    | 900  | 8    | 8    | 8    | 80  | 8    | 8    |
| [                     |                              |              | .35<br>1<br>15 | 222  | 82   | 522  | 8    | 219 | 510                                           | 82   | 225  | 527  | 322  | 325  | 275 | 27   | 325  |
|                       | 1                            | 33UT<br>.0.0 |                | 220  | 250  | 250  | 250  | 952 | 250                                           | 8    | 250  | 220  | 952  | 250  | 250 | 82   | 8    |
|                       | 1.D.<br>1.D.<br>33UT<br>1.D. |              |                | 306  | 802  | 50   | 500  | 203 | 201                                           | 302  | 208  | 204  | 201  | 206  | 82  | 208  | 206  |
|                       |                              |              | 14             | Ā    | 527  | 2    | 52   | 2   | Ā                                             | ž    | Ā    | 14   | 152  | 192  | 52  | Ā    | 12   |
|                       | # DNITTIA                    |              | 113            | -    | 2    | -    | 2    | -   | 2                                             | -    | 2    | -    | 2    | -    | 2   | -    | 2    |
| L                     | #                            | 390          | 1              | 2    | 1    | 1    | R    | ;   | •                                             | \$   | *    |      | 8    | ;    | 5   | ,    | R    |

# TABLE 2. (Continued)

RESISTOFLEX DYNATULE MSEC TESTING

# TABLE 2. (Continued)

### ORIGINAL PAGE IS OF POOR QUALITY

\*Sealing surface to left.

.

\*Seeling surface to left.

| COMMENTS     |              |                |      |      |       |      |      |       |     |     |      |      |     |       |      |      |
|--------------|--------------|----------------|------|------|-------|------|------|-------|-----|-----|------|------|-----|-------|------|------|
| NO           | TAR<br>312   | 81V<br>3T      | ×    | ×    | ×     | ×    | ×    | ×     |     |     |      |      |     |       |      |      |
| KED<br>D     | LEA          | ON             | ×    | ×    | ×     | ×    | ×    | ×     | ×   | ×   | ×    | ×    | ×   | ×     | ×    | ×    |
| NA.          | 31           | 0.4            | ×    | ×    | ×     | ×    | ×    | ×     | ×   | ×   | ×    | ×    | ×   | ×     | ×    | ×    |
| 3            | Ĥ            | SBA            |      |      |       |      |      |       |     |     |      |      |     |       |      |      |
| 5            | .0.1<br>1311 | A              | 2236 | 2234 | 12231 | 2236 | 2236 | 224   | 227 | 223 | 2228 | 2232 | 224 | 2232  | 222  | 6222 |
|              | IGHT         | 4              | 000  | 000  | 000   | 000  | 000  | 000   | 900 | 500 | 900  | 900  | 900 | 500   | 900  | 8    |
|              | 1            | 3              | 001  | 001  | 001   | 001  | 001  | 001   | 900 | 905 | 900  | 900  | 900 | 900   | 800  | 88   |
| SOUVE :      | ALEFT        | 2              | 001  | 001  | 001   | 001  | 001  | 001   | 001 | 001 | 001  | 001  | 001 | 001   | 001  | 603  |
| PER G        | T B0TT0      | -              | 001  | .007 | 001   | 001  | 001  | 001   | 001 | 001 | .007 | 001  | 001 | 001   | .007 | 60,  |
| SWAGE        |              | •              | 8    | 000  | 000   | 000  | 8    | 000   | 900 | 900 | 900  | 900  | 906 | 900   | 900  | 900  |
| EPTH OI      | RIGHT        |                | 001  | 001  | 001   | 001  | 007  | .007  | 900 | 900 | 900  | 900  | 900 | 500   | 80   | 8    |
| •            | 1            | ~              | 001  | 001  | 001   | 001  | 001  | 001   | 001 | 001 | 001  | 003  | 001 | 001   | 001  | 601  |
|              | TOP LE       | -              | 001  | 001  | 200   | 001  | 007  | .007  | 001 | 001 | 001  | 001  | 001 | 001   | 001  | 60   |
| DN           |              | BS<br>D1<br>AS | 822  | 328  | 328   | 228  | 328  | 228   | 328 | 822 | 822  | 228  | 822 | 228   | 228  | 328  |
|              | 0 '0         |                | 952  | 250  | 250   | 250  | 250  | 250   | 250 | 250 | 250  | 250  | 250 | 250   | 250  | 952  |
| 38UT<br>.0.1 |              |                | R.   | 204  | 204   | 204  | 204  | 102   | 802 | 208 | 208  | 52   | 502 | \$602 | 208  | 2085 |
| PITTING      |              | 52             | 255  | 253  | 253   | 223  | 12   | 22.35 | 254 | 254 | 201  | 2535 | 2   | 255   | Ā    |      |
| # 9          | NI11         | .14            | -    | 2    | -     | 2    | -    | 2     | -   | 2   | -    | ~    | -   | 2     | -    | ~    |
| # 38UT       |              | 9              |      | 3    |       | \$   |      | \$    |     | •   |      | -    |     | \$    |      |      |

TABLE 2. (Continued)

TABLE 2. (Concluded)

| RESISTOFLEX DYNATUBE | MSFC TESTING |  |
|----------------------|--------------|--|

|      |            |              |         |      |     |   |       |       |      |      |      | 1.1                 |
|------|------------|--------------|---------|------|-----|---|-------|-------|------|------|------|---------------------|
|      |            | COMMENTS     |         |      |     |   |       |       |      |      |      |                     |
|      | G          | 313          | 11      |      |     |   | <br>- | <br>1 | <br> |      |      |                     |
|      | da a       | 13           | D.N     | ×    | ×   |   | 1     | <br>  | <br> | <br> | <br> | 111 <b>- 1</b> 1000 |
|      | N          | 10.4         | O.N     | ×    | ×   | - |       | -     | <br> | <br> |      |                     |
|      | 1          | 107<br>131   | A<br>12 | 8222 | M   |   |       |       |      |      |      |                     |
|      |            | F            | •       | 8    | 8   |   |       |       |      |      |      |                     |
|      | ŧ          | RIG          | E       | 8    | 8   |   |       |       |      |      |      |                     |
| ,    | GROOVE     | W LEFT-      | 2       | 600  | 199 |   |       |       |      |      |      |                     |
|      | GE PER (   | 80110        | -       | 600  | 108 |   |       |       |      |      |      |                     |
| MSFC | DF SWA     |              | 4       | 8    | 8   |   |       |       |      |      |      |                     |
|      | DEPTH (    | EFT RIGI     | -       | ŝ    | 8   |   |       |       |      |      |      |                     |
|      |            |              | ~       | 600  | 68  |   |       |       |      |      |      |                     |
|      |            | TOPL         | -       | 60   | 18  |   |       |       |      |      |      |                     |
|      | D          | 100          | 2E.     | 22   |     |   |       |       |      |      |      |                     |
|      |            | .0.0         |         | ×,   | 8   |   |       |       |      |      |      |                     |
|      |            | .0.1<br>380. |         | 102  | 8   |   |       |       |      |      |      |                     |
|      | DI         | .0.I         | 14      | Ā    | Ā   |   | <br>- |       |      |      |      |                     |
|      | # <b>5</b> | DUILT.       | 114     | -    | ~   |   |       |       |      |      |      |                     |
|      | ,          | 330          | 1       | 5    | 8   |   |       |       |      |      |      |                     |

### APPROVAL

### ASSEMBLY AND TESTING OF 1/4 INCH MR54040 TF04 RESISTOFLEX DYNATUBE FITTINGS

### By J. H. Ehl

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

P. H. SCHUERER

Chief, Process Engineering Division

MARE J. SCHWINGHAMER

Director, Materials and Processes Laboratory