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SUMMARY

This paper presents empirical stress-intensity factor equations for
embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical
corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical
corner cracks at a hole in finite plates. The plates were subjected to remote
tensile loading. These equations give stress-intensity factors as a function
of parametric angle, crack depth, crack length, plate thickness, and, where
applicable, hole radius. The stress-intensity factors used to develop the
equations were obtained from current and previous three-dimensional finite-
element analyses of these crack configurations. A wide range of configuration
parameters was included in the equations. The ratio of crack depth to plate
thickness ranged from O to 1, the ratio of crack depth to crack length ranged
from 0.2 to 2, and the ratio of hole radius to plate thickness ranged from
0.5 to 2. The effects of plate width on stress-intensity variations along the
crack front were also included, but were generally based on engineering

estimates. For all combinations of parameters investigated, the empirical
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equations were generally within 5 percent of the finite-element results,
except within a thin "boundary layer" where the crack front intersects a free
surface. However, the proposed equations are expected to give a good estimate
in this region because of a study made on the boundary-layer effect.

These equations should be useful for correlating and predicting fatigue-
crack-growth rates as well as in computing fracture toughness and fracture

loads for these types of crack configurations.



INTRODUCTION

In aircraft structures, fatigue failures usually occur from the initiation
and propagation of cracks from notches or defects in the material that are
either embedded, on the surface, or at a corner. These cracks propagate with
elliptic or near-elliptic crack fronts. To predict crack-propagation 1ife and
fracture strength, accurate stress-intensity factor solutions are needed for
these crack configurations. But, because of the complexities of such problems,
exact solutions are not available. Instead, investigators have used approxi-
mate analytical methods, experimental methods, or engineering estimates to
obtain the stress-intensity factors.

Very few exact solutions for three-dimensional cracked bodies are available
in the literature. One of these, an elliptical crack in an infinite solid sub-
jected to uniform tension, was derived by Irwin [1] using an exact stress analy-
sis by Green and Sneddon [2]. For finite bodies, all solutions have required
approximate analytical methods. For a semi-circular surface crack in a semi-
infinite solid and a semi-elliptical surface crack in a plate of finite thick-
ness, Smith, Emery, and Kobayashi [3], and Kobayashi [4], respectively, used
the alternating method to obtain stress-intensity factors along the crack
front. Raju and Newman [5,6] used the finite-element method, and Heliot,
Labbens, and Pellissier-Tanon [7] used the boundary-integral equation method
to obtain the same iriformation. For a quarter-elliptic corner crack in a
plate, Tracey [8] and Pickard [9] used the finite-element method; Kobayashi and
Enetanya [10] used the alternating method. Shah [11] estimated the stress-
intensity factors for a surface crack emanating from a circular hole. For a
single corner crack emanating from a circular hole in a plate, Smith and

Kullgren [12] used a finite-element-alternating method to obtain the stress-
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intensity factors. Hechmer and Bloom [13] and Raju and Newman [14] used the
finite-element method for two-symmetric corner cracks emanating from a hole in
a plate. All of these approximate results, except that for the surface crack
[6,9] and the corner crack [9], were presented in the form of curves or tables.
However, for ease of computation, results expressed in the form of equations
are preferable.

The present paper presents empirical equations for the stress-intensity
factors for a wide variety of three-dimensional crack configurations subjected
to uniform tension as a function of parametric angle, crack depth, crack
length, plate thickness, and hole radius (where applicable), for example see
Figure 1. These crack configurations, shown in Figure 2, include: an embedded
elliptical crack, a semi-elliptical surface crack, a quarter-elliptical corner
crack, a semi-elliptical surface crack at a hole, and a quarter-elliptical
corner crack at a hole in finite plates subjected to remote tensile loading.
The equations were based on the stress-intensity factors obtained from three-
dimensional finite-element analyses conducted herein and from the literature
[5,14], and cover a wide range of configuration parameters. The ratio of crack
depth to plate thickness (a/t) ranged from 0 to 1, the ratio of crack depth to
crack Tength (a/c) ranged from 0.2 to 2, and the ratio of hole radius to plate
thickness (R/t) ranged from 0.5 to 2. The effects of plate width (b) on
stress-intensity variations along the crack front were also included, but were

generally based on engineering estimates.



SYMBOLS
depth of crack
width or half-width of cracked plate (see Fig. 2)
length or half-length of crack (see Fig. 2)
boundary-correction factor on stress intensity
boundary-correction factor for corner crack in a plate
boundary-correction factor for embedded crack in a plate
boundary-correction factor for surface crack in a plate
boundary-correction factor for surface crack at a hole in a plate
boundary-correction factor for corner crack at a hole in a plate
finite-width correction factor
angular function derived from embedded elliptical crack solution
curve fitting functions defined in text
half-length of cracked plate
stress-intensity factor (Mode I)
curve fitting functions defined in text
shape factor for an elliptical crack
radius of hole
remote uniform tensile stress
thickness or half-thickness of plate (see Fig. 2)
Poisson's ratio

parametric angle of the ellipse



THREE-DIMENSIONAL FINITE-ELEMENT ANALYSES

Three-dimensional finite-element analyses [5,14] using linear-strain and
singularity elements were used herein to calculate the mode I stress-intensity
factor variation along the crack front for an embedded elliptical crack, a
quarter-elliptical corner crack, and a semi-elliptical surface crack at a hole
in a finite plate subjected to remote tensile loading (see Fig. 2). The
finite-element models used for these configurations were the same as those used
in references 5 and 14 for surface cracks and corner cracks at holes. The only
differences were the boundary conditions that were imposed on certain faces of
the models. For embedded cracks and surface cracks at holes, the normal dis-
placements on three planes of symmetry were fixed (set equal to zero), except
for the crack surface. For a corner crack'in a plate, the normal displacements
on the two faces that intersect the crack were free.

The stress-intensity factors were obtained from the finite-element anal-
yses by using a nodal-force method, the details of which are given in refer-
ences 5 and 15. In this method, the nodal forces normal to the crack plane and
ahead of the crack front were used to evaluate the stress-intensity factors.

The stress-intensity factor, KI’ at any point along the crack front in a

finite-thickness plate was taken to be

- apfa a R
KI =S TTQ F(ta C, ts ¢) (])

where Q is the shape factor for an ellipse and is given by the square of the
complete elliptic integral of the second kind [2]. In the finite-element

models, the width (b) and length (h) of the plate were taken to be large emough



so that they would have a negligible effect on stress intensity. The boundary
correction, F, accounts for the influence of various boundaries and is a func-
tion of crack depth, crack length, hole radius (where applicable), plate thick-
ness, and the parametric angle of the ellipse. Figure 3 shows the coordinate
system used to define the parametric angle.

Very usefu] empirical expressions for Q have been developed by Rawe (see

ref. 6). The expressions are

(2a)
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The maximum error in the stress-intensity factor by using these equations for
Q was about 0.13 percent for all values of a/c. (Rawe's original equation
was written in terms of a/2c).

The boundary-correction factors, F, obtained from the present finite-
element results for the embedded elliptical crack and the quarter-elliptic
corner crack in a finite plate subjected to uniform tension are given in Tables
1 and 2, respectively, for various parametric angles and several a/c and
a/t ratios. Tables 3a and 3b give the boundary-correction factors for two-
symmetric semi-elliptical surface cracks emanating from a circular hole in a

finite plate subjected to uniform tension for R/t equal 1 and 2, respectively.
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STRESS-INTENSITY FACTOR EQUATIONS

In the following sections, the empirical stress-intensity factor equations
for embedded elliptical Cracks, semi-elliptical surface cracks, quarter-
elliptical corner cracks, semi-elliptical surface cracks at a hole, and
quarter-elliptical corner cracks at a hole in finite plates (see Figure 2)
subjected to remote tension are presented. The particular functions chosen
were obtained from systematic curve-fitting procedure by using double-series
polynomials in terms of a/c, a/t, and angular functions of ¢. For cracks
emanating from holes, polynomial equations in terms of c¢/R and ¢ were also

used.

Embedded E1liptical Crack
The empirical stress-intensity factor equation for an embedded elliptical
crack in a finite plate, Figure 2a, subjected to tension was obtained by fit-
ting to the finite-element results presented herein (Table 1). To account for
limiting behavior as a/c approaches zero or infinity, the results of Irwin

[1] were also used. The equation is
F (-2-, 2 €, ¢) (3)

for 0 <a/c <=, c/b <0.5, and -m < ¢ <7 provided that a/t satisfies:

i—<1.25 <§—+ 0.6) for 0 < 2<0.2

(4)
a LI
<] for 0.2 <=



The function Fe accounts for the influence of crack shape (a/c), crack size

(a/t), finite width (c/b), and angular location (¢),‘and was chosen as

a\ a\!
Fe = (M * M (f) * M, (f) g f¢ fu ()

The term in brackets gives the boundary-correction factors at ¢ = #/2 (where
g = f¢ = 1). The function f¢ was taken from the exact solution for an em-
bedded elliptical crack in an infinite solid [1] and fﬁ is a finite-width
correction factor. The function g 1is a fihe-tuning curve-fitting function.

For a/c < 1:

M] =] (6)
- 0.05
M, 372 (7)
0.1 + <1>
c
_ 0.29
M3 372 (8)
(8)°
g=1 - t Iy Cos ¢ (9)
1+4(2
and
2 1/4
_1l{a 2 . 2
f¢ =z cos” ¢ + sin® ¢ (10)



The finite-width correction, fﬁ’ from Reference 6 was

172
fw= sec (%J%) (11)

for c/b < 0.5. (Note that for the embedded crack, t 1is defined as one-half
of the full plate thickness.) For a/c > 1:

My = g— (12)
and
» 1/4
f¢ = (§> sin? o + cos? ¢ (13)

The functions MZ’ M3, g, and fw are given by equations (7), (8), (9), and
(11), respectively.
As a/c approaches zero and ¢ equals n/2, the stress-intensity factor

equation reduces to

62 34
KI =3 "na 1 + 0.455 (f) + 1.261 (f) (14)

for c¢/b = 0.
Equation (14) is within 1 percent of the accepted solution [16] for

a/t < 0.55 and within 3 percent for a/t < 0.8.
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As a/c approaches infinity and ¢ equals zero, the equation reduces to

wC a ]/2
KI=S nc |sec TJ; (15)

Equation (15) is the accepted solution [16] for this configuration as a/t
approaches unity.

A typical comparison between the proposed equation and the finite-element
results for an embedded elliptical crack is shown in Figure 4 for a/c = 0.4
and various a/t ratios. The boundary-correction factor, Fe’ is plotted
against the parametric angle. At ¢ = 0 and n/2, the equation (solid curves)
is within 2 percent of the finite-element resu}ts (symbols). (Herein "percent
error" is defined as the difference between the equation and the finite-element
results normalized by the maximum value for that particular case. This defi-
nition is necessary because the stress-intensity factors in some cases vary
from small to large values along the crack front.) The dashed curve shows the
exact solution for an elliptic crack in an infinite solid [1]. These results
indicate that the finite-element solution for a/t = 0.2 1is probably about
1.5 percent below the exact solution. Because the proposed equation is
s1ightly higher than the finite-element results, the equation should be very

accurate.

Semi-elliptical Surface Crack
An empirical equation for the stress-intensity factors for a semi-
elliptical surface crack in a finite plate, Figure 2b, subjected to tension was
obtained from Reference 6. This equation was previously fitted to the finite-

element results from Raju and Newman [5] for a/c values from 0.2 to 1. An
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equation for a/c greater than unity was developed herein. To account for the
limiting behavior as a/c approaches zero, the results of Gross and Srawley

[17] for a single-edge crack were also used. The equation is

Kp =S ‘/n% F (% -:— g— ¢> (16)

for 0 <a/c<2, ¢/b<0.5 and 0 < ¢ <m, again, provided that a/t

satisfies equations (4). The function F, was chosen to be

a 2 a 4
FS = M] + M2 (t_) + M3 (f) g f¢ fw (17)
For a/c < 1:
- a
My = 1.13 - 0.09 (c) (18)
‘ 0.89
M, = -0.54 + 2 19
2 0.2 {2 1)
. 4\ 24
My =0.5 - ——+ 14(1 - —) (20)
0.65 + & ¢
c .
. 2 )
g=1+/0.1+0.35 (;) (1 - sin ¢) (21)

and f¢ is given by equation (10). The finite-width correction, fQ

given by equation (11). Equations (17) through (21) were taken from Reference

» is again,

6.
12



For a/c > 1:

M, = Jgj(l +0.04 g-) (22)

4
M, = 0.2 (‘ai) (23)
4
My = -0.11 (g) (24)
c\/a 2 2
g=1+]0.1+0.35 (3)(?) (1 - sin ¢) (25)

and f¢ and f_ are given by equations (13) and (11), respectively.

Figure 5 shows the distribution of boundary-correction factors,'Fs, along
the crack front for a semi-elliptical surface crack with a/c = 2 for two-

a/t ratios. The proposed equation (solid curves) is within 3 percent of the
finite-element results (symbols).

For a/c < 1, Reference 6 gives a more complete comparison between the
proposed equation and the finite-element results. In Reference 6, the equation
was also used to predict surface-crack-growth patterns under tension fatigue
loads. These predicted crack-growth patterns were in good agreement with
measurements made on steel, titanium alloy, and aluminum alloy materials. In
Reference 18, the equation was also used to correlate surface-crack fracture

data for a brittle epoxy material within +10 percent over a wide range of crack

shapes (a/c) and crack sizes (a/t).
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Quarter-elliptical Corner Crack
The empirical stress-intensity factor equation for a quarter-elliptical
corner crack in a finite plate, Figure 2c, subjected to tension was obtained
by fitting to the finite-element results presented herein (Table 2). The

equation 1is
Kp =S n% F. (2— % ¢) (26)

for 0.2 <a/c <2, a/t<1, and 0 <¢<n/2 for c/b <0.2. The function

FC was chosen as

a 2 a 4
Fo= M)+ m, (f) ‘M, <t—) 9 9, , (27)

(Although the effects of width are significant, fw is not included in equa-
tion (27) because results on finite-width plates were not available for com-

parison.) For a/c ¢ 1:

1A

- a

M, = 1.08 - 0.03 (c) (28)
M, = -0.44 + 106 (29)

0.3+ (2

C

. 15
My = -0.5 + 0.25 (E)* 14.8 (1 ; c—) (30)
a 2 3

gy =1+ 0.08+0.4 (;) (1 - sin ¢) (31)
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a 2 3
g, = 1 +]0.08 + 0.15 (f-) (1 - cos ¢)

and f,_ 1is given by equation (10).

¢

For a/c >1:

92

C C
"5- (].08 - 0.03-5)

2
0.08 + 0.4 (%) (1 - sin ¢)°
|

2
0.08 + 0.15 (%) (1 - cos ¢)°
L ’

and f, 1is given by equation (13).

¢

(32)

(33)

(34)

(35)

(36)

(37)

Figure 6 shows boundary-correction factors obtained by several investiga-

tors for a quarter-circular corner crack in a finite-thickness plate (a/t =

0.2) under tension loading.

The present finite-element results are shown as

solid circular symbols and the proposed equation is shown as the solid curve.

Tracey [8] and Pickard [9] also used the finite-element method, but the width

(b) and half-length (h) of their models were equal to the plate thickness (see
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dashed and dash-dot lines in the insert). Kobayashi [10] used the alternating
method, but the a/c ratio was 0.98. Pickard's results were 1 to 3 percent
higher than the present finite-element results. Part of the difference is due
to a width- and length-effect in Pickard's model. And the present results are
expected to be about 1.5 percent below the exact solution. Near ¢ = 0 and
n/2, Tracey's and Kobayashi's results are 5 to 13 percent higher than the
present results. All results are in good agreement (within 3 percent) at the
mid-point (¢ = n/4).

Figures 7 and 8 show the distribution of boundary-correction factors, Fc’
along the crack front for a quarter-circular (a/c = 1) and semi-elliptical
(a/c = 0.2) cornef crack, respectively, in a finite plate subjected to tension.
The figures show the results for several a/t ratios. The proposed equation
(solid curves) is generally within about 2 percent of the finite-element re-
sults (symbols), except near the intersection of the crack front with the free
surfaces (¢ = 0 and n/2). Near these points, the equation is generally
higher than the finite-element results. The maximum difference being about 5
percent. These low values at the free surfaces are probably due to a boundary-

layer effect [19] and this behavior is discussed in the appendix.

Semi-elliptical Surface Crack at Hole

Two-symmetric surface cracks.- The einpirical stress-intensity factor

equation for two-symmetric semi-elliptical surface cracks at the center of a
hole in a finite plate, Figure 2d, subjected to tension was obtained by fitting

to the finite-element results presented here (Tables 3a and 3b). The equation

is
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_ a a a R R ¢
KI =S TT’Q" FSh (’é‘, 't_s Tt‘a E’ B’ ¢) (38)

for 0.2 <a/c <2, a/t<1, 0.5<R/t<2, (R+c)/b<0.5, and
-n/2 < ¢ < n/2. (Note that here t is defined as one-half of the full plate

thickness.) The function FSh was chosen as

Fsh = M * (%)2 i (%>4 % 9% T T (39)
For a/c < 1:

My =1 (40)

M. = 0.05 (41)

) 0.29
0.23+ 2
9 = 1 - c COS ¢ (43)
1 - 0.15x + 3.460% - 4.4703 + 3.52,8 (42)
9; © 2
1 + 0.08x

where
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A= 1
1+ %-cos (0.9 ¢)

(45)

The function f¢ is given by equation (10). The finite-width correction, fw,

was taken as

172
= TR m(2R+nc) a (46)
fu = |sec (Zb) sec <4(_b-'c"7 ¥ 2nc t)

where n =1 1is for a single crack and n = 2 is for two-symmetric cracks.
This equation was chosen to account for the effects of width on stress concen-

tration at the hole [20] and for crack eccentricity [16]. For a/c > 1:

Mo=es (47)

The functions MZ’ M3, 99> 9, and X are given by equations (41) through
(45), and the functions f¢ and fw are given by equation (13) and (46),
respectively.

Estimates for a single-surface crack.- The stress-intensity factors for a

single-surface crack located at the center of a hole can be estimated from the
present results for two-symmetric surface cracks by using a conversion factor
developed by Shah [11]. The relationship between one- and two-surface cracks

was given by
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4, ac_
(k) = | Tae (k) (48)
one - by WO
crack L cracks

Shah had assumed that the conversion factor was constant for all locations
along the crack front; that is, independent of the parametric angle.

Comparison with another stress-intensity solution.- Figure 9 shows a

comparison between the present results and those estimated by Shah [11] for
two-symmetric semi-circular (a/c = 1) and semi-elliptical (a/c = 0.2) surface -
cracks emanating from a hole in a plate subjected to tension. The present
results (solid symbols) show the distribution of boundary-correction factors,
Fsh’ as a function of the parametric angle. The open symbols show the results
estimated by Shah. The proposed equation (solid curves) is in good agreement
with the results estimated by Shah, but the equation is about 5 percent higher
(based on peak value) than the present results in the mid-region for the semi-
elliptic crack. Near the intersection of the crack front with the free surface
(6 = n/2), the present results show a sharp reduction. As previously mentioned,
this reduction is probably due to a boundary-layer effect (see Appendix).
However, as mentioned in the Appendix, further mesh refinement in this region
causes the stress-intensity factors to be higher very near the intersection
point, but lower at the surface. Also, the stress-intensity factors in the
interior region 0 < 2¢/7n < 0.8 were unaffected by mesh refinement. Therefore,
the equation was fitted in the interior region (2¢/7 < 0.8) only. However, the
proposed equation, extrapolated to the surface, is probably a good estimate for

the limiting behavior due to mesh refinement.
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The influence of crack shape (a/c) on the distribution of boundary-
correction factors is shown in Figure 10. The open symbols show the estimated
results from Shah [11]. And the solid symbols show the present finite-element
results for a/c = 2. The solid curves show the results from the proposed
equation for a semi-elliptical surface crack at a hole with R/t = 0.5. The
agreements are very good.

Effects of crack depth-to-plate thickness.- Figure 11 shows the distri-

bution of boundary-correction factors, Fsh’ along the crack fron for two-
symmetric semi-circular surfacr cracks at a hole (R/t = 1) with various a/t
ratios. The proposed equation (solid curves) is generally within a few percent
of the finite-element results (symbols), except near the intersection of the
crack front with the hole surface (¢ = n/2). Here, again, the proposed eq-
uation is expected to give a good estimate for the limiting behavior due to

mesh refinement in this region.

Quarter-elliptical Corner Crack at a Hole

Two-symmetric corner cracks.- The empirical stress-intensity factor

equation for two-symmetric quarter-elliptical corner cracks at a hole in a
finite plate, Figure 2e, subjected to tension was obtained by fitting to the

finite-element results in Reference 14. The equation is

_ l/ a a a R R ¢
KI =3 “Q‘ FCh (E’a fs E) 5‘: b ¢) (49)

for 0.2 <a/c <2, a/t<1, 0.5<R/t<1, (R+c)/b<0.5, and

0 < ¢ <n/2. The function Fch was chosen as

20



2 4
_ a a
Fen =M * M (F) t M (’t‘) 99, 93 F, f,

For a/c < 1:

- ] a
My = 1.13 - 0.09 (C)
My = -0.54 + 289
0.2+ 2
24
My = 0.5 - — +14(1 %)
0.65 + &
Cc
a 2 2
gy = 1+[0.1+0.3 (E) (1 - sin o)
o < 1015 + 3.460° - 4.47° + 3.52°
2 140,132

where

1

%-cos (0.85 ¢)

w—r
+

The function g3 is given by

95 = (1 +0.04 %) 1+0.1 (1 - cos )| |0.8+ 0.2(

21
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)1/4

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)



Functions f¢ and f_ are given by equations (10) and (46), respectively.

For afc > 1:

My = Jgj(] + 0.04 g) (58)
4
M, = 0 2(%) (59)
4
My = =0.11 (g) (60)
_ c\fa)? . 2
gy =1+ 0.1 +0.35 (;)(;) (1 - sin ) (61)

Functions 9, and 1 are given by equations (55) and (56). The function 93

is given by

o+

. 5 1/4
9y = (1,]3 - 0.09 5) 1+0.1(1-cos ¢)7] [0.8+0.2 ( ) (62)

The functions f¢ and fw are, again, given by equations (13) and (46),

respectively. o

Estimates for a single-corner crack.- The str#ss-intensity factors for &,

single-corner crack at a hole can be estimated from the present results for
two-symmetric corner cracks by using the Shah-conversion factor (Eq. (28)).
Raju and Newman [14] have evaluated the use of the conversion factor for some

comer-crack-at-a-hole configurations. The stress-intensity factor obtained
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using the conversion factor were in good agreement with the results from Smith
and Kullgren [12] for a singl-corner crack at a hole.

Effects of plate thickness and crack shape.- Figures 12 and 13 show the

distribution of boundary-correction factors, Fch’ along the crack front for
two-symmetric quarter-elliptical comer cracks at a hole. The effects of crack
size (a/t) on the distribution are shown in Figure 12. The finite-element
results are shown as symbols and the proposed equation is shown as the solid
curves. Again, the equation is in good agreement with the finite-element re-
sults, except near ¢ = 0 and /2. Here again the boundary-layer effect [19],
as mentioned previously, is causing low values of boundary-correction factors.
Further mesh refinement in this region was shown in the Appendix to give higher
boundary-correction factors near the free surface, but lower values at the
surface. Thus, the equation is expected to give a good estimate in these
regions.

The effects of crack shape (a/c) on the distribution of boundary-
correction factors are shown in Figure 13. Again, the proposed equation
(solid curves) is in good agreement with the finite-element results (symbols),
except near the intersection points (¢ = 0 and n/2).

In summary, for all combinations of parameters investigated and a/t < 0.8,
the equations were within a few percent of the finite-element results. The
maximum error was about 5 percent, except where the crack front intersects a
free surface. For a/t > 0.8, the accuracy of the equations have not been
established because there are no solutions available for comparison. However,
their use in that range appears to be supported by estimates based on a part-
through crack approaching a through crack. The effects of plate Width on

stress-intensity variations along the crack front were also included, but were
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generally based on engineering estimates, Table 4 gives the range of applica-

bility of ¢, a/t, a/c, R/t, and (R + c)/b for the proposed equations.
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CONCLUDING REMARKS

Stress-intensity factors from three-dimensional finite-element analyses
were used to develop empirical stress-intensity factor equations for a wide
variety of crack configurations subjected to remote uniform tension. The
following configurations were included: an embedded elliptical crack, a semi-
elliptical surface crack, a quarter-elliptical corner crack, a semi-elliptical
surface crack at the center of a hole, and a quarter-elliptical corner crack at
the edge of a hole in finite plates. The empirical equations cover a wide
range of configuration parameters. The ratio of crack depth to plate thickness
(a/t) ranged from 0 to 1, the ratio of crack depth to crack length (a/c) ranged
0.2 to 2, and the ratio of hole radius to plate thickness (R/t) ranged from
0.5 to 2. The effects of plate width (b) on stress-intensity variations along
the crack front were also included, but were based on engineering estimates.

For all configurations for which ratios of crack depth to plate thickness
do not exceed 0.8, the equations are generally within 5 percent of the finite-
element results, except where the crack front intersects a free surface. Here
the proposed equations give higher stress-intensity factors than the finite-
element results, but these higher values probably represent the limiting be-
havior as the mesh is refined near the free surface. For ratios greater than
0.8, no solutions are available for direct comparison; however, the equations
appear reasonable on the basis of engineering estimates.

The stress-intensity factor equations were also compared with other
solutions reported in the literature for some of the configurations investi-
gated. The proposed equations were in good agreement with some of the reported

results. For limiting cases, as crack-depth-to-plate thickness (a/t) or crack-
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depth-to-crack length (a/c) approach limits, the proposed equations reduce to
exact or accepted solutions.

The stress-intensity factor equations presented herein should be useful
for correlating and predicting fatigue-crack-growth rates as well as in com-
puting fracture toughness and fracture loads for these types of crack con-

figurations.
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APPENDIX

Boundary-Layer Effect on Stress-Intensity Factors

Hartranft and Sih [19] proposed that the stress-intensity factors in a very
thin "boundary layer" near the intersection of the crack with a-free surface
drop off rapidly and equal zero at the free surface. To investigate the
boundary-layer effect, a semi-circular surface crack emanating from a hole was
considered. Three different finite-element models were analyzed with 8, 10, and
14 wedges. A wedge is a slice of the finite-element model used to define a
layer of elements [5]. The width of a wedge is measured by a parametric angle.
Larger number of wedges result in smaller wedge angles and more degrees of
freedom. The 8-wedge model had eiéht equal wedges (A¢ = n/16). The other
models had non-uniform wedges and were obtained by refining the 8-wedge model
near the free surface (¢ = n/2). The smallest wedge angle for the 10- and 14-
wedge models were /48 and n/180, respectively. The stress-intensity factors
obtained from the three models are shown in Figure 14. These results show that
the stress intensities near the free surface were affected by mesh refinement.
They were higher near the free surface but lower at the surface with smaller
wedge angles. However, the stress-intensity distributions in the interior
(2¢/m < 0.8) were unaffected by mesh refinements.

Further mesh refinements near the free surface should give higher stress
intensities near the free surface but lower values at the surface. Thus, the
proposed equation (solid curve) is expected to give a good estimate for the

1imiting behavior due to mesh refinement.
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TABLE 1--Boundary correction factors, F, for embedded
elliptical crack in a plate subjected to tension.

(c/b < 0.2; h/b=1; v=0.3)

a/t
ajc 2¢/m 0.2 0.5 0.8
0 0.450 0.473 0.514
0.125 0.531 0.556 0.605
0.25 0.643 0.678 0.745
0.375 0.750 0.794 0.884
0.2 0.5 0.838 0.893 1.015
0.625 0.905 0.978 1.176
0.75 0.95] 1.042 1.329
0.875 0.978 1.083 1.438
1.0 0.987 1.097 1.480
0 0.632 0.660 0.721
0.125 0.656 0.685 0.749
0.25 0.715 0.748 0.821
0.375 0.789 0.826 0.905
0.4 0.5 0.857 0.900 0.995
0.625 0.914 0.964 1.105
0.75 0.954 1.014 1.211
0.875 0.978 1.046 1.285
1.0 0.987 1.056 1.312
0 0.986 1.009 1.060
0.125 0.986 1.009 1.058
0.25 0.986 1.008 1.050
0.375 0.986 1.006 1.035
1.0 0.5 0.986 1.006 1.036
0.625 0.986 1.008 1.059
0.75 0.986 1.010 1.093
0.875 0.986 1.012 1.114
1.0 0.986 1.013 1.121
0 0.709 0.713 0.720
0.125 0.703 0.707 0.714
0.25 0.686 0.690 0.697
0.375 0.658 0.662 0.669
2.0 0.5 0.622 0.625 0.633
0.625 0.579 0.582 0.592
0.75 0.536 0.539 0.552
0.875 0.503 0.506 0.522
1.0 0.490 0.494 0.511
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TABLE 2--Boundary correction factors, F, for corner
crack in a plate subjected to tension.

{c/b<0.2; h/b=1; v=0.3)

a/t
a/c 20/ 7 0.2 0.5 0.8
0 0.555 0.761 1.288
0.125 0.633 0.840 1.340
0.25 0.753 0.988 1.522
0.375 0.871 1.141 1.705
0.2 0.5 0.973 1.277 1.850
0.625 1.055 1.397 2.008
0.75 1.115 1.495 2.118
0.875 1.159 1.580 2.263
1.0 1.156 1.610 2.450
0 0.791 0.990 1.397
0.125 0.774 0.952 1.297
0.25 0.824 0.997 1.310
0.375 0.893 1.067 1.346
0.4 0.5 0.964 1.140 1.384
0.625 1.026 1.210 1.458
0.75 1.075 1.273 1.528
0.875 1.117 1.334 1.627
1.0 1.132 1.365 1.788
0 1.162 1.275 1.487
0.125 1.1 1.207 1.378
0.25 1.079 1.160 1.290
0.375 1.064 1.134 1.219
1.0 0.5 1.059 1.121 1.180
0.625 1.063 1.123 1.191
0.75 1.078 1.140 1.231
0.875 1.109 1.176 1.301
1.0 1.159 1.233 1.416
0 0.800 0.826 0.862
0.125 0.787 0.811 0.837
0.25 0.756 0.776 0.793
0.375 0.722 0.738 0.750
2.0 0.5 0.683 0.697 0.704
0.625 0.640 0.653 0.660
0.75 0.600 0.612 0.624
0.875 0.579 0.590 0.611
1.0 0.586 0.597 0.625
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TABLE 3--Boundary correction factors, F, for surface crack
at center of hole in a plate subjected to tension.

((R+c)/b<0.2; h/b>1.6; v =20.3)

(a) R/t =1
a/t

a/c 2¢/m 0.2 0.5 0.8
0 0.641 0.607 0.593

0.125 0.692 0.662 0.643

0.25 0.836 0.775 0.771

0.375 1.011 0.905 0.919

0.5 1.196 1.032 1.094

0.2 0.625 1.405 1.178 1.293
0.75 1.651 1.362 1.528

0.833 1.905 1.583 1.765

0.917 2.179 1.885 2.050

0.958 2.288 2.121 2.336

1.0 1.834 1.958 2.329

0 1.030 0.872 0.840

0.125 1.076 0.912 0.872

0.25 1.202 1.007 0.959

0.375 1.376 1.131 1.074

. 0.5 1.578 1.275 1.234
0.4 0.625 1.804 1.452 1.426
0.75 2.040 1.667 1.668

0.833 2.238 1.891 1.914

0.917 2.396 2.141 2.201

0.958 2.376 2.255 2.411

1.0 1.844 1.923 2.224

0 2.267 1.806 1.615

0.125 2.276 1.818 1.619

0.25 2.301 1.851 1.630

0.375 2.343 1.905 1.646

0.5 2.404 1.980 1.730

1.0 0.625 2.481 2.079 1.852
0.75 2.566 2.206 2.049

0.833 2.620 2.321 2.250

0.917 2.622 2.415 2.452

0.958 2.468 2.370 2.512

1.0 1.950 1.957 2.203

0 1.944 1.606 1.394

0.125 1.931 1.600 1.389

0.25 1.897 1.582 1.377

0.375 1.840 1.553 1.357

0.5 1.763 1.514 1.333

2.0 0.625 1.669 1.468 1.313
0.75 1.580 1.434 1.310
0.833 1.498 1.404 1.313
0.917 1.426 1.387 1.332
0.958 1.313 1.321 1.294
1.0 1.042 1.082 1.077
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TABLE 3--Boundary correction factors, F, for surface crack
at center of hole in a plate subjected to tension.

((R+¢)/b<0.2; h/b>1.6; =0.3)
(b) R/t =2
a/t
a/c 20/ 0.2 0.5 0.8
0 0.800 0.680 0.634
0.125 0.864 0.743 0.690
0.25 1.046 0.877 0.832
0.375 1.272 1.037 1.002
0.5 1.508 1.206 1.213
0.2 0.625 1.766 1.410 1.469
0.75 2.041 1.662 1.787
0.833 2.279 1.932 2.109
0.917 2.474 2.238 2.463
0.958 2.439 2.375 2.699
1.0 1.791 1.947 2.380
0 1.290 1.058 0.972
0.125 1.346 1.107 1.010
0.25 1.498 1.227 1.118
0.375 1.704 1.384 1.263
0.5 1.932 1.568 1.470
0.4 0.625 2.165 1.785 1.722
0.75 2.378 2.026 2.031
0.833 2.516 2.237 2.319
0.917 2.564 2.418 2.595
0.958 2.417 2.416 2.705
1.0 1.776 1.894 2.258
0 2.620 2.188 1.990
0.125 2.626 2.199 1.996
0.25 2.642 2.232 2.009
0.375 2.667 2.280 2.026
0.5 2.700 2.341 2.121
1.0 0.625 2.732 2.410 2.246
0.75 2.753 2.483 2.437
0.833 2.733 2.527 2.599
0.917 2.643 2.521 2.716
0.958 2.409 2.381 2.662
1.0 1.862 1.888 2.192
0 2.136 1.922 1.712
0.125 2.121 1.911 1.704
0.25 2.075 1.879 1.681
0.375 2.000 1.826 1.643
0.5 1.899 1.756 1.594
2.0 0.625 1.777 1.671 1.541
0.75 1.659 1.593 1.499
0.833 1.552 1.522 1.461
0.917 1.456 1.463 1.434
0.958 1.325 1.360 1.351
1.0 1.041 1.088 1.089
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FIG. 1-Corner cracks at the edge of a hole in a finite plate
subjected to remote tension.
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