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° SUMMARY

This paper presents empirical stress-intensity factor equations for

embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical

corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical

corner cracks at a hole in finite plates. The plates were subjected to remote

tensile loading. These equations give stress-intensity factors as a function

of parametric angle, crack depth, crack length, plate thickness, and, where

applicable, hole radius. The stress-intensity factors used to develop the

equations were obtained from current and previous three-dimensional finite-

element analyses of these crack configurations. A wide range of configuration

parameters was included in the equations. The ratio of crack depth to plate

thickness ranged from O to l, the ratio of crack depth to crack length ranged

from 0.2 to 2, and the ratio of hole radius to plate thickness ranged from

0.5 to 2. The effects of plate width on stress-intensity variations along the

crack front were also included, but were generally based on engineering

estimates. For all combinations of parameters investigated, the empirical
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equations were generally within 5 percent of the finite-element results,

except within a thin "boundary layer" where the crack front intersects a free

surface. However, the proposed equations are expected to give a good estimate

in this region because of a study made on the boundary-layer effect.

These equations should be useful for correlating and predicting fatigue-

crack-growth rates as well as in computing fracture toughness and fracture

loads for these types of crack configurations.



INTRODUCTION

In aircraft structures, fatigue failures usually occur from the initiation

and propagation of cracks from notches or defects in the material that are

either embedded,on the surface, or at a corner. Thesecracks propagate with

elliptic or near-elliptic crack fronts. To predict crack-propagation life and

fracture strength, accurate stress-intensity factor solutions are needed for

these crack configurations. But, becauseof the complexities of such problems,

exact solutions are not available. Instead, investigators have used approxi-

mate analytical methods, experimental methods, or engineering estimates to

obtain the stress-intensity factors.

Very few exact solutions for three-dimensional cracked bodies are available

in the literature. Oneof these, an elliptical crack in an infinite solid sub-

jected to uniform tension, was derived by Irwin [l] using an exact stress analy-

sis by Greenand Sneddon[2]. For finite bodies, all solutions have required

approximate analytical methods. For a semi-circular surface crack in a semi-

infinite solid and a semi-elliptical surface crack in a plate of finite thick-

ness, Smith, Emery, and Kobayashi [3], and Kobayashi [4], respectively, used

the alternating method to obtain stress-intensity factors along the crack

front. Raju and Newman[5,6] used the finite-element method, and Heliot,

Labbens, and Pellissier-Tanon [7] used the boundary-integral equation method

to obtain the sameinformation. For a quarter-elliptic corner crack in a

plate, Tracey [8] and Pickard [9] used the finite-element method; Kobayashi and

Enetanya [lO] used the alternating method. Shah [ll] estimated the stress-

intensity factors for a surface crack emanating from a circular hole. For a

single corner crack emanating from a circular hole in a plate, Smith and

Kullgren [12] used a finite-element-alternating method to obtain the stress-

3



intensity factors. Hechmerand Bloom[13] and Raju and Newman [14] used the

finite-element method for two-symmetric corner cracks emanating from a hole in

a plate. All of these approximate results, except that for the surface crack

[6,9] and the corner crack I_9],were presented in the form of curves or tables.

However, for ease of computation, results expressed in the form of equations

are preferable.

The present paper presents empirical equations for the stress-intensity

factors for a wide variety of three-dimensional crack configurations subjected

to uniform tension as a function of parametric angle, crack depth, crack

length, plate thickness, and hole radius (where applicable), for example see

Figure I. These crack configurations, shown in Figure 2, include: an embedded

elliptical crack, a semi-elliptical surface crack, a quarter-elliptical corner

crack, a semi-elliptical surface crack at a hole, and a quarter-elliptical

corner crack at a hole in finite plates subjected to remote tensile loading.

The equations were based on the stress-intensity factors obtained from three-

dimensional finite-element analyses conducted herein and from the literature

[5,14], and cover a wide range of configuration parameters. The ratio of crack

depth to plate thickness (a/t) ranged from 0 to l, the ratio of crack depth to

crack length (a/c) ranged from 0.2 to 2, and the ratio of hole radius to plate

thickness (R/t) ranged from 0.5 to 2. The effects of plate width (b) on

stress-intensity variations along the crack front were also included, but were

generally based on engineering estimates.
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SYMBOLS

depth of crack

width or half-width of cracked plate (see Fig. 2)

length or half-length of crack (see Fig. 2)

boundary-correction factor on stress intensity

boundary-correction factor for corner crack in a plate

boundary-correction factor for embedded crack in a plate

boundary-correction factor for surface crack in a plate

boundary-correction factor for surface crack at a hole in a plate

boundary-correction factor for corner crack at a hole in a plate

finite-width correction factor

angular function derived from embedded elliptical crack solution

curve fitting functions defined in text

half-length of cracked plate

stress-intensity factor (Mode I)

curve fitting functions defined in text

shape factor for an elliptical crack

radius of hole

remote uniform tensile stress

thickness or half-thickness of plate (see Fig. 2)

Poisson's ratio

parametric angle of the ellipse



THREE-DIMENSIONAL FINITE-ELEMENT ANALYSES

Three-dimensional finite-element analyses E5,14] using linear-strain and

singularity elements were used herein to calculate the mode I stress-intensity

factor variation along the crack front for an embedded elliptical crack, a

quarter-elliptical corner crack, and a semi-elliptical surface crack at a hole

in a finite plate subjected to remote tensile loading (see Fig. 2). The

finite-element models used for these confi'gurations were the same as those used

in references 5 and 14 for surface cracks and corner cracks at holes. The only

differences were the boundary conditions that were imposed on certain faces of

the models. For embedded cracks and surface cracks at holes, the normal dis-

placements on three planes of symmetry were fixed (set equal to zero), except

for the crack surface. For a corner crack in a plate, the normal displacements

on the two faces that intersect the crack were free.

The stress-intensity factors were obtained from the finite-element anal-

yses by using a nodal-force method, the details of which are given in refer-

ences 5 and 15. In this method, the nodal forces normal to the crack plane and

ahead of the crack front were used to evaluate the stress-intensity factors.

The stress-intensity factor, KI, at any point along the crack front in a

finite-thickness plate was taken to be

KI = S F _, c' t' ¢ (1)

where Q is the shape factor for an ellipse and is given by the square of the

complete elliptic integral of the second kind [2]. In the finite-element

models, the w_dth (b) and length (h) of the plate were taken to be large emough



so that they would have a negligible effect on stress intensity. The boundary

correction, F, accounts for the influence of various boundaries and is a func-

tion of crack depth, crack length, hole radius (where applicable), plate thick-

ness, and the parametric angle of the ellipse. Figure 3 shows the coordinate

system used to define the parametric angle.

Very useful empirical expressions for Q have been developed by Rawe (see

ref. 6). The expressions are

Q = 1 + 1.464 for _-<__I (2a)

Q = l + 1.464 for_-• l (2b)

The maximum error in the stress-intensity factor by using these equations for

Q was about 0.13 percent for all values of a/c. (Rawe's original equation

was written in terms of a/2c).

The boundary-correction factors, F, obtained from the present finite-

element results for the embedded elliptical crack and the quarter-elliptic

corner crack in a finite plate subjected to uniform tension are given in Tables

l and 2, respectively, for various parametric angles and several a/c and

a/t ratios. Tables 3a and 3b give the boundary-correction factors for two-

symmetric semi-elliptical surface cracks emanating from a circular hole in a

finite plate subjected to uniform tension for R/t equal I and 2, respectively.
s



STRESS-INTENSITY FACTOR EQUATIONS

In the following sections, the empirical stress-intensity factor equations

for embedded elliptical cracks, semi-elllptical surface cracks, quarter-

elliptical corner cracks, semi-elliptical surface cracks at a hole, and

quarter-elliptical corner cracks at a hole in finite plates (see Figure 2)

subjected to remote tension are presented. The particular functions chosen

were obtained from systematic curve-fitting procedure by using double-series

polynomials in terms of a/c, a/t, and angular functions of ¢. For cracks

emanating from holes, polynomial equations in terms of c/R and ¢ were also

used.

Embedded Elliptical Crack

The empirical stress-intensity factor equation for an embedded elliptical

crack in a finite plate, Figure 2a, subjected to tension was obtained by fit-

ting to the finite-element results presented herein (Table l). To account for

limiting behavior as a/c approaches zero or infinity, the results of Irwin

[l] were also used. The equation is

(3)

for 0 <_a/c <__, c/b < 0.5, and -x <_b <_ provided that a/t satisfies:

a<t,,,(a+o0),oro<a<c
a< l for 0.2 < a< _
t -c-

(4)
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The function

(a/t), finite width (c/b), and angular location (¢), and was chosen as

Fe accounts for the influence of crack shape (a/c), crack size

[ It)It) lFe : MI + H2 + M3 g f¢ fw
(5)

The term in brackets gives the boundary-correction factors at @ = _/2

g = f¢ = 1). The function f@ was taken from the exact solution for an em-

bedded elliptical crack in an infinite solid [I] and fw is a finite-width

correction factor. The function g is a fine-tuning curve-fitting function.

For a/c < l:

(where

MI --I (B)

M2 = O.05

0.II + (C/2 (7)

M3 0.29 (8)

0.23 +

g = l cos ¢ (9)

and

f@ = cos2 ¢ + si (lO)
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The finite-width correction, fw' from Reference 6 was

Is I_c _r_l1 i/2
fw: ec (11)

for c/b < 0.5. (Note that for the embedded crack, t is defined as one-half

of the full plate thickness.) For a/c > l:

Ml : _ (12)

and

sin 2 ¢ + cos2 ¢I I/4
(13)

The functions

(ll), respectively.

As a/c approaches zero and

equation reduces to

M2, M3, g, and f are given by equations (7), (8), (9), and

¢ equals _/2, the stress-intensity factor

KI = S _ + 0.455 + 1.261 (14)

for c/b = O.

Equation (14) is within l percent of the accepted solution [16] for

a/t < 0.55 and within 3 percent for a/t < 0.8.
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As _ a/c approaches infinity and ¢ equals zero, the equation reduces to

KI:s (IS>

Equation (15) is the accepted solution [16] for this configuration as a/t

approaches unity.

A typical comparison between the proposed equation and the finite-element

results for an embedded elliptical crack is shown in Figure 4 for a/c = 0.4

and various a/t ratios. The boundary-correction factor, Fe, is plotted

against the parametric angle. At ¢ : 0 and 7/2, the equation {solid curves)

is within 2 percent of the finite-element results (symbols). {Herein "percent

error" is defined as the difference between the equation and the finite-element

results normalized by the maximum value for that particular case. This defi-

nition is necessary because the stress-intensity factors in some cases vary

from small to large values along the crack front.) The dashed curve shows the

exact solution for an elliptic crack in an infinite solid [l]. These results

indicate that the finite-element solution for a/t = 0.2 is probably about

1.5 percent below the exact solution. Because the proposed equation is

slightly higher than the finite-element results, the equation should be very

accurate.

Semi-elliptical Surface Crack

An empirical equation for the stress-intensity factors for a semi-

elliptical surface crack in a finite plate, Figure 2b, subjected to tension was

obtained from Reference 6. This equation was previously fitted to the finite-

element results from Raju and Newman [5] for a/c values from 0.2 to I. An
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equation for a/c greater than unity was developed herein. To account for the

limiting behavior as a/c approacheszero, the results of Gross and Srawley

[17] for a single-edge crack were also used. The equation is

_-_ la a c ¢IKI = S a Fs c-'t-'b-' (16)

for 0 <_a/c <_2, c/b < 0.5, and 0 <_@ <7, again, provided that a/t

satisfies, equations (4). The function Fs was chosen to be

(17)

For a/c < 1:

00 (a) (18)

0.89

M2 = -0"54+ 0.2+(a) (19)

I
M3 = 0.5 - + 14 - (20)

0.65 + a
C

and f@ is given by equation (lO). The finite-width correction, fw' is again,

given by equation (ll). Equations (17) through (21) were taken from Reference

.
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For a/c> l:

(22)

(23)

g = l + [O.l + 0.35

(24)

(25)

and f¢ and fw are given by equations (13) and (ll), respectively.

Figure 5 shows the distribution of boundary-correction factors, Fs, along

the crack front for a semi-elliptical surface crack with a/c = 2 for two

a/t ratios. The proposed equation (solid curves) is within 3 percent of the

finite-element results (symbols).

For a/c <_ l, Reference 6 gives a more complete comparison between the

proposed equation and the finite-element results. In Reference 6, the equation

was also used to predict surface-crack-growth patterns under tension fatigue

loads. These predicted crack-growth patterns were in good agreement with

measurements made on steel, titanium alloy, and aluminum alloy materials. In

Reference 18, the equation was also used to correlate surface-crack fracture

data for a brittle epoxy material within +_lO percent over a wide range of crack

shapes (a/c) and crack sizes (a/t).
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Quarter-elliptical Corner Crack

The empirical stress-intensity factor equation for a quarter-elliptical

corner crack in a finite plate, Figure 2c, subjected to tension was obtained

by fitting to the finite-element results presented herein (Table 2). The

equation is

KI = S Fc _, _, (26)

for 0.2 <_a/c _2, a/t _ I, and 0 <_¢ <_d2 for c/b < 0.2.

F was chosen as
c

The function

(27)

(Although the effects of width are significant, fw is not included in equa-

tion (27) because results on finite-width plates were not available for com-

parison.) For a/c ( l:

.,;,o.o ) (28)

M2 = -0.44 + 1.06 (29)

gli Ioo8 o41  Icisin, 3
(30)

(31)
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g2 = ] + [0.08 + 0.15

and f¢ is given by equation (I0).

(32)

For a/c >I :

., #(,o, oo, )

[gl = l + 0.08 + 0.4 (l - sin ¢)3

(33)

(34)

(35)

(36)

(37)

and f@ is given by equation (13).

Figure 6 shows boundary-correction factors obtained by several investiga-

tors for a quarter-circular corner crack in a finite-thickness plate (a/t =

0.2) under tension loading. The present finite-element results are shown as

solid circular symbols and the proposed equation is shown as the solid curve.

Tracey [8] and Pickard [9] also used the finite-element method, but the width

(b) and half-length (h) of their models were equal to the plate thickness (see

15



dashedand dash-dot lines in the insert). Kobayashi [lO] used the alternating

method, but the a/c ratio was 0.98. Pickard's results were l to 3 percent

higher than the present finite-element results. Part of the difference is due

to a width- and length-effect in Pickard's model. And the present results are

expected to be about 1.5 percent below the exact solution. Near @= 0 and

_/2, Tracey's and Kobayashi's results are 5 to 13 percent higher than the

present results. All results are in good agreement (within 3 percent) at the

mid-point (@= _/4).

Figures 7 and 8 show the distribution of boundary-correction factors, Fc,

along the crack front for a quarter-circular (a/c = l) and semi-elliptical

(a/c = 0.2) corner crack, respectively, in a finite plate subjected to tension.

The figures show the results for several a/t ratios. The proposed equation

(solid curves) is generally within about 2 percent of the finite-element re-

sults (symbols), except near the intersection of the crack front with the free

surfaces (@ = 0 and _/2). Near these points, the equation is generally

higher than the finite-element results. The maximum difference being about 5

percent. These low values at the free surfaces are probably due to a boundary-

layer effect [19] and this behavior is discussed in the appendix.

Semi-elliptical Surface Crack at Hole

Two-symmetric surface cracks.- The e_npirical stress-intensity factor

equation for two-symmetric semi-elliptical surface cracks at the center of a

hole in a finite plate, Figure 2d, subjected to tension was obtained by fitting

to the finite-element results presented here (Tables 3a and 3b). The equation

is

16



KI = S_ _- Ia a R R c ¢IFsh _' t' t' b' b' (38)

for 0.2 <_ a/c <__2, a/t < l, 0.5 <_ R/t <_2, (R + c)/b < 0.5, and

-7/2 <_ ¢ <_7/2. (Note that here t is defined as one-half of the full plate

thickness.) The function Fsh was chosen as

Fsh- "i+"2_ +"3_ 9192f_fw (39)

For a/c < l:

Ml : l (40)

M2 O. 05

O.ll +

0.29 (42)
M3 = 3/2

0.23 + a
C

1 - O.15k + 3.46k 2 - 4.47k 3 + 3.52k 4

g2:
1 + O.08k 2

(44)

whe re
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l
= (45)

C
I + # cos (0.9 ¢_)

The function f¢ is given by equation (I0). The finite-width correction, fw'

was taken as

sec
(4 _T(2R+nc) _/_)11/2(b-c) + 2nc

(46)

where n = l is for a single crack and n = 2 is for two-symmetric cracks.

This equation was chosen to account for the effects of width on stress concen-

tration at the hole [20] and for crack eccentricity [16]. For a/c > I:

Ml : _ (47)

The functions M2' M3' gl' g2' and _ are given by equations (41) through

(45), and the functions f¢ and fw are given by equation (13) and (46),

respectively.

Estimates for a single-surface crack.- The stress-intensity factors for a

single-surface crack located at the center of a hole can be estimated from the

present results for two-symmetric surface cracks by using a conversion factor

developed by Shah [Ill. The relationship between one- and two-surface cracks

was given by

18



4_.+ ac.
2tR

(KI) = 4 ac (KI)
one - + -- two
crack _ tR cracks

(48)

Shah had assumed that the conversion factor was constant for all locations

along the crack front; that is, independent of the parametric angle.

Comparison with another stress-intensitx solution.- Figure 9 shows a

comparison between the present results and those estimated by Shah Ill] for

two-symmetric semi-circular (a/c = l) and semi-elliptical (a/c = 0.2) surface

cracks emanating from a hole in a plate subjected to tension. The present

results (solid symbols) show the distribution of boundary-correction factors,

Fsh, as a function of the parametric angle. The open symbols show the results

estimated by Shah. The proposed equation (solid curves) is in good agreement

with the results estimated by Shah, but the equation is about 5 percent higher

(based on peak value) than the present results in the mid-region for the semi-

elliptic crack. Near the intersection of the crack front with the free surface

(@ = _/2), the present results show a sharp reduction. As previously mentioned,

this reduction is probably due to a boundary-layer effect (see Appendix).

However, as mentioned in the Append!x, further mesh refinement in this region

causes the stress-intensity factors to be higher very near the intersection

point, but lower at the surface. Also, the stress-intensity factors in the

interior region 0 < 2@/_ < 0.8 were unaffected by mesh refinement. Therefore,

the equation was fitted in the interior region (2¢/_ < 0.8) only. However, the

proposed equation, extrapolated to the surface, is probably a good estimate for

the limiting behavior due to mesh refinement.
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The influence of crack shape (a/c) on the distribution of boundary-

correction factors is shownin Figure lO. The open symbols showthe estimated

results from Shah [Ill. And the solid symbols show the present finite-element

results for a/c = 2. The solid curves show the results from the proposed

equation for a semi-elliptical surface crack at a hole with R/t = 0.5. The

agreementsare very good.

Effects of crack depth-to-plate thickness.- Figure II shows the distri-

bution of boundary-correction factors, Fsh, along the crack fron for two-

symmetric semi-circular surfacr cracks at a hole (R/t = l) with various a/t

ratios. The proposed equation (solid curves) is generally within a few percent

of the finite-element results (symbols), except near the intersection of the

crack front with the hole surface (¢ = _/2). Here, again, the proposed eq-

uation is expected to give a good estimate for the limiting behavior due to

mesh refinement in this region.

Quarter-elliptical Corner Crack at a Hole

Two-symmetric corner cracks.- The empirical stress-intensity factor

equation for two-symmetric quarter-elliptical corner cracks at a hole in a

finite plate, Figure 2e, subjected to tension was obtained by fitting to the

finite-element results in Reference 14. The equation is

KI = S Fch ' t' t' b-' b-' @ (49)

for 0.2 < a/c < 2, a/t < I, 0.5 < R/t < I,

0 < _ <_/2. The function Fch was chosen as

(R + c)/b < 0.5, and

2O



gl g2 g3 f¢ fw (50)

For a/c < I:

(a) (51)

M2 = -0.54 +
0.89

0.2+ a
C

(52)

M3 = 0.5
l

0.65 + a
C

a )24+14 1 -_- (53)

gl = l + [0.
1 +0.35 (54)

g2 =

0.15_ + 3.46_2 - 4.47_ 3 + 3.52_ 4

1 + 0.13_ 2
(55)

where

C
1 + _cos (0.85 ¢)

(56)

The function g3 is given by

(57)
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Functions f¢ and fw are given by equations (I0) and (46), respectively.

For a/c > l:

(58)

(_)4M2 : 0.2 (59)

Icl4M3 = -O. ll

gl = l + IO.l + 0.35

L

(60)

(l - sin @ (61)

Functions g2 and _ are given by equations (55) and (56). The function g3

is given by

_=(__ oo_c)I_+o__cos11o-8o2I  l'I+ (62)

The functions f@ and fw are, again, given by equations (13) and (46),

respecti vely. •

Estimates for a single-corner crack.- The strips-intensity factors for _' ',

single-corner crack at a hole can be estimated from the present results for

two-symmetric corner cracks by using the Shah-conversion factor (Eq. (_48]).

Raju and Newman [14] have evaluated the use of the conversion factor for some

corner-crack-at-a-hole configurations. The stress-intensity factor obtained

22 .



using the conversion factor were in good agreement with the results from Smith

and Kullgren [12] for a singl-corner crack at a hole.

Effects of plate thickness and crack shape.- Figures 12 and 13 show the

distribution of boundary-correction factors, Fch, along the crack front for

two-symmetric quarter-elliptical corner cracks at a hole. The effects of crack

size (a/t) on the distribution are shown in Figure 12. The finite-element

results are shown as symbols and the proposed equation is shown as the solid

curves. Again, the equation is in good agreement with the finite-element re-

sults, except near ¢ = 0 and 7/2. Here again the boundary-layer effect [19],

as mentioned previously, is causing low values of boundary-correction factors.

Further mesh refinement in this region was shown in the Appendix to give higher

boundary-correction factors near the free surface, but lower values at the

surface. Thus, the equation is expected to give a good estimate in these

regions.

The effects of crack shape (a/c) on the distribution of boundary-

correction factors are shown in Figure 13. Again, the proposed equation

(solid curves) is in good agreement with the finite-element results (symbols),

except near the intersection points (¢ = 0 and 7/2).

In summary, for all combinations of parameters investigated and a/t <__0.8,

the equations were within a few percent of the finite-element results. The

maximum error was about 5 percent, except where the crack front intersects a

free surface. For a/t > 0.8, the accuracy of the equations have not been

established because there are no solutions available for comparison. However,

their use in that range appears to be supported by estimates based on a part-

through crack approaching a through crack. The effects of plate width on

stress-intensity variations along the crack front were also included, but were

23



generally basedon engineering estimates, Table 4 gives the range of applica-

bility of ¢, a/t, a/c, R/t, and (R + c)/b for the proposed equations.

24



CONCLUDINGREMARKS

Stress-intensity factors from three-dimensional finite-element analyses

were used to develop empirical stress-intensity factor equations for a wide

variety of crack configurations subjected to remote uniform tension. The

following configurations were included: an embeddedelliptical crack, a semi-

elliptical surface crack, a quarter-elliptical corner crack, a semi-elliptical

surface crack at the center of a hole, and a quarter-elliptical corner crack at

the edge of a hole in finite plates. The empirical equations cover a wide

range of configuration parameters. The ratio of crack" depth to plate thickness

(a/t) ranged from 0 to l, the ratio of crack depth to crack length (a/c) ranged

0.2 to 2, and the ratio of hole radius to plate thickness (R/t) ranged from

0.5 to 2. The effects of plate width (b) on stress-intensity variations along

the crack front were also included, but were based on engineering estimates.

For all configurations for which ratios of crack depth to plate thickness

do not exceed 0.8, the equations are generally within 5 percent of the finite-

element results, except where the crack front intersects a free surface. Here

the proposed equations give higher stress-intensity factors than the finite-

element results, but these higher values probably represent the limiting be-

havior as the meshis refined near the free surface. For ratios greater than

0.8, no solutions are available for direct comparison; however, the equations

appear reasonable on the basis of engineering estimates.

The stress-intensity factor equations were also comparedwith other

solutions reported in the literature for someof the configurations investi-

gated. The proposed equations were in good agreementwith someof the reported

results. For limiting cases, as crack-depth-to-plate thickness (a/t) or crack-
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depth-to-crack length (a/c) approach limits, the proposed equations reduce to

exact or accepted solutions.

The stress-intensity factor equations presented herein should be useful

for correlating and predicting fatigue-crack-growth rates as well as in com-

puting fracture toughness and fracture loads for these types of crack con-

figurations.
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APPENDIX

Boundary-Layer Effect on Stress-lntensity Factors

Hartranft and Sih [19] proposed that the stress-intensity factors in a very

thin "boundary layer" near the intersection of the crack with a free surface

drop off rapidly and equal zero at the free surface. To investigate the

boundary-layer effect, a semi-circular surface crack emanating from a hole was

considered. Three different finite-element models were analyzed with 8, lO, and

14 wedges. A wedgeis a slice of the finite-element model used to define a

layer of elements [5]. The width of a wedge is measuredby a parametric angle.

Larger numberof wedges result in smaller wedgeangles and more degrees of

freedom. The 8-wedgemodel had eight equal wedges (A¢ = _/16). The other

models had non-uniform wedges and were obtained by refining the 8-wedge model

near the free surface (¢ = 7/2). The smallest wedge angle for the lO- and 14-

wedge models were _/48 and _/180, respectively. The stress-intensity factors

obtained from the three models are shown in Figure 14. These results show that

the stress intensities near the free surface were affected by mesh refinement.

They were higher near the free surface but lower at the surface with smaller

wedge angles. However, the stress-intensity distributions in the interior

(2@/x < 0.8) were unaffected by mesh refinements.

Further mesh refinements near the free surface should give higher stress

intensities near the free surface but lower values at the surface. Thus, the

proposed equation (solid curve) is expected to give a good estimate for the

limiting behavior due to mesh refinement.
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TABLEl--Boundary correction factors, F, for embedded
elliptical crack in a plate subjected to tension.

(c/b _ 0.2; h/b = l; _ = 0.3)

a/t

a/c 2¢/_ 0.2 0.5 0.8

0.2

0.4

l.O

2.0

0 0.450 0.473 0.514
0.125 0.531 0.556 0.605

0.25 0.643 0.678 0.745

0.375 0.750 0.794 0.884

0.5 0.838 0.893 l.Ol5

0.625 0.905 0.978 1.176
0.75 0.951 1.042 1.329

0.875 0.978 1.083 1.438

l.O 0.987 1.097 1.480

0 0.632 0.660 0.721

0.125 0.656 0.685 0.749

0.25 0.715 0.748 0.821

0.375 0.789 0.826 0.905

0.5 0.857 0.900 0.995

0.625 0.914 0.964 1.105
0.75 0.954 l.Ol4 1.211

0.875 0.978 ].046 1.285
l.O 0.987 1.056 1.312

0 0.986 1.009 1.060
0.125 0.986 ].009 1.058

0.25 0.986 1.008 1.050
0.375 0.986 1.006 1.035

0.5 0.986 1.006 1.036

0.625 0.986 1.008 1.059
0.75 0.986 l.OlO 1.093

0.875 0.986 l.Ol2 l.ll4
l.O 0.986 l.Ol3 1.121

0 0.709 0.713 0.720

0.125 0.703 0.707 0.714

0.25 0.686 0.690 0.697

0.375 0.658 0.662 0.669
0.5 0.622 0.625 0.633

0.625 0.579 0.582 0.592
0.75 0.536 0.539 0.552

0.875 0.503 0.506 0.522

l.O 0.490 0.494 O.511
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TABLE 2--Boundary correction factors, F, for

crack in a plate subjected to tension.

(c/b _ 0.2_ h/b = l; _ = 0.3)

corner

a/t

a/c 2¢/_ 0.2 0.5 0.8

0.2

0.4

l.O

2.0

0 0.555 0.761 1.288

0.125 0.633 0.840 1.340

0.25 0.753 0.988 1.522
0.375 0.871 1.141 1.705

0.5 0.973 1.277 1.850

0.625 1.055 1.397 2.008

0.75 l.ll5 1.495 2.118
0.875 1.159 1.580 2.263

l.O 1.156 1.610 2.450

0 0.791 0.990 1.397
0.125 0.774 0.952 1.297

0.25 0.824 0.997 1.310

0.375 0.893 1.067 1.346

0.5 0.964 1.140 1.384

0.625 1.026 1.210 1.458
0.75 1.075 1.273 1.528

0.875 l.ll7 1.334 1.627
l.O 1.132 1.365 1.788

0

0.125
0.25

O.375

0.5
0.625

0.75

0.875

l.O

0
0.125

0.25

0.375

0.5
0.625

0.75

0.875

l.O

l.162
l.Ill

l 079
l 064

l 059

l 063
l 078

l I09

l 159

0.800

0.787

0.756
0.722

0.683
0.640

0.600
0.579

0.586

l 275

l 207
l 160

l 134

l 121
l 123

l.140

l.176

1.233

O.826
O.811

0.776

0.738
O.697

0.653

0.612

O. 590
0.597

l.487

I.378
l.290

l.219

l.180
l.191

l.231

l.301
l.416

0.862

0.837

0.793
0.750

O.704

O.660

0.624
O.611

0.625
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TABLE 3--Boundary correction factors, F, for surface crack

at center of hole in a plate subjected to tension.

((R + c)/b _ 0.2; h/b > 1.6; v = 0.3)

(a) R/t = l

a/t

a/c 2@/_ 0.2 0.5 0.8

0.2

0.4

l.O

2.0

0 0.641 0.607 0.593

0.125 0.692 0.662 0.643

0.25 0.836 0.775 0.771

0.375 l.Oll 0.905 0.919

0.5 1.196 1.032 1.094
0.625 1.405 1.178 1.293

0.75 1.651 1.362 1.528

0.833 1.905 1.583 1.765
0.917 2.179 1.885 2.050

0.958 2.288 2.121 2.336

l.O 1.834 1.958 2.329

0 1.030 0.872 0.840
0.125 1.076 0.912 0.872

0.25 1.202 1.007 0.959
0.375 1.376 1.131 1.074

0.5 1.578 1.275 1.234

0.625 1.804 1.452 1.426

0.75 2.040 1.667 1.668

0.833 2.238 1.891 1.914
0.917 2.396 2.141 2.201

0.958 2.376 2.255 2.411

l.O 1.844 1.923 2.224

0 2.267 1.806 1.615

0.125 2.276 1.818 1.619

0.25 2.301 1.851 1.630
0.375 2.343 1.905 1.646

0.5 2.404 1.980 1.730

0.625 2.481 2.079 1.852

0.75 2.566 2.206 2.049

0.833 2.620 2.321 2.250
0.917 2.622 2.415 2.452

0.958 2.468 2.370 2.512
l.O 1.950 1.957 2.203

0 1.944 1.606 1.394

0.125 1.931 1.600 1.389

0.25 1.897 1.582 1.377

0.375 1.840 1.553 1.357
0.5 1.763 1.514 1.333

0.625 1.669 1.468 1.313

0.75 1.580 1.434 1.310
0.833 1.498 1.404 . l .313

0.917 1.426 1.387 1.332

0.958 1.313 1.321 1.294
l.O 1.042 1.082 1.077
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TABLE3--Boundary correction factors, F, for surface crack
at center of hole in a plate subjected to tension.

((R + c)/b _ 0.2; h/b > 1.6; = 0.3)

(b) R/t = 2

a/t

a/c 2¢/_ 0.2 0.5 0.8

0.2

0.4

l.O

2.0

0 0.800 0.680 0.634

0.125 0.864 0.743 0.690

0.25 1.046 0.877 0.832

0.375 1.272 1.037 1.002
0.5 1.508 1.206 1.213
0.625 1.766 1.410 1.469

0.75 2.041 1.662 1.787

0.833 2.279 1.932 2.109
0.917 2.474 2.238 2.463

0.958 2.439 2.375 2.699

l.O 1.791 1.947 2.380

0 1,290 1.058 0.972

0.125 1.346 1.107 l.OlO

0.25 1.498 1.227 l.ll8

0.375 1.704 1.384 1.263
0.5 1.932 1.568 1.470

0.625 2.165 1.785 1.722

0.75 2.378 2.026 2.031

0.833 2.516 2.237 2.319
0.917 2.564 2.418 2.595

0.958 2.417 2.416 2.705

l.O 1.776 1.894 2.258

0 2.620 2.188 1.990

0.125 2.626 2.199 1.996
0.25 2.642 2.232 2.009

0.375 2.667 2.280 2.026
0.5 2.700 2.341 2.121

0.625 2.732 2.410 2.246

0.75 2.753 2.483 2.437

0.833 2.733 2.527 2.599

0.917 2.643 2.521 2.716
0.958 2.409 2.381 2.662

l.O 1.862 1.888 2.192

0 2.136 1.922 1.712
0.125 2.121 1.911 1.704

0.25 2.075 1.879 1.681

0.375 2.000 1.826 1.643

0.5 1.899 1.756 1.594

0.625 1.777 1.671 1.541

0.75 1.659 1.593 1.499
0.833 1.552 1.522 1.461

0.917 1.456 1.463 1.434

0.958 1.325 1.360 1.351

l.O 1.041 1.088 1.089
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FIG. l-Corner cracks at the edge of a hole in a finite plate
subjected to remote tension.
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