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DEVELOPMENT OF AN ORTHOTROPIC HOLE ELEMENT
by

*
C.V. Smith
J. W. Markham
J. W. Kelley
K. Kathiresan

SUMMARY

The objective of this contract was to develop and implement a finite element which
adequately represents the state of stress in the region around a circular hole in
orthotropic material experiencing reasonably general loading. This has been achieved
through a complementary virtual work formulation of the stiffness and stress matrices
for a square element with center circular hole, with implementation in the NASTRAN
computer program. This report discusses the theoretical foundations of the develop- |
ment, describes the use of NASTRAN to obtain solutions, and presents sample

prob lem results to demonstrate the performance of the hole element.

*
Consultant, Associate Professor, School of Aerospace Engineering,
Georgia Institute of Technology. This report carries no endorsement
by Georgia Institute of Technology.






INTRODUCTION

In present flight vehicle structures, and for some time into the future, mechanical
fastening is expected to be the most used joining methed, so that connection details
contain many circular holes. These connections are subjected to very general external
loadings, with the additional complications of load transfer through fasteners in the holes
and increasing use of nonisotropic material in the connection. The resulting local stress
state in the neighborhood of each hole is very complex, with stress levels and gradients
higher than those found in most regions away from the holes. Despite these complexities,
the high stresses require that an accurate evaluation of the local stresses around each
hole be obtained to achieve an adequate estimate of performance of the joint, as
measured by fatigue and fracture mechanics analyses. As usual, the analyst is in the

unenviable position of needing the best results in the regions of greatest complexity.

One method to determine the stresses, through analytical solutions, would appear to
give those desired results; but this procedure can be discarded for all practical purposes.
The list of available solutions is not adequate, and there is little hope that the list can

ever be expanded to include all possibilities of interest.

The finite element method is a very effective way to treat problems with complex
geometry, material, and loading, but the use of conventional finite elements is not
efficient in applications involving fastener holes. Because of the complexity of

the stress state and the high stress gradients, an excessive number of elements must be
used in the neighborhood of each hole. This increases the cost of even one solution
for a specified geometry and loading, and makes it very expensive to perform the
multiple solutions with varying geometry and loading which are normally required in

design.

What is required is an efficient special purpose finite element which provides a

sufficiently accurate representation of local stresses without the need for many



conventional elements. This has previously been done for isotropic material
(€83, [91, UO]*), and this report presents the extension fo orthotropic material.
Complementary virtual work concepts are used to develop the stiffness and stress
matrices for a square element with a center circular hole. The report presents the
necessary theoretical background for the development and then presents sample
problem results obtained through implementation into the NASTRAN computer

program.

* Numbers in brackets denote reference numbers.
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SECTION 1
THEORETICAL BASIS FOR DERIVATION OF THE STIFFNESS MATRIX

1.1 STATEMENT OF THE PROBLEM

The finite element is considered to be a thin plate in a state of plane stress with
displacements on the external boundary specified so as to insure displacement con-
tinuity with adjacent finite elements (see Figure 1). Conditions on the inner boundary

will be specified in a later section.

The variables of primary interest are the stresses because these quantities are

needed for studies in fatigue and fracture. Therefore, it was decided to seek a solu-
tion to the problem through a complementary work formulation which gives the desired
stresses directly with no need for differentiations of displacements with subsequent loss

of accuracy.

1.2 STATEMENT OF-THE PRINCIPLE OF COMPLEMENTARY VIRTUAL WORK

The complementary virtual work (CVW)' can be expressed as follows:
cvw = A Lorl{e}an - /A lo¥| {u} dA - /Su lo7] {u} ds - ysr lo7] {u}es D)

where t = thickness of hole element, assumed constant
A = area of hole element
S, = that portion of the boundary over which displacements are specified,
consisting of the outer boundary plus portions of the inner boundary
as appropriate
S‘r = that portion of the boundary over which tractions are specified,
consisting of portions of the inner boundary as appropriate

€ € v JT = column of strains in the real state
L X Y XY
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U u JT = column of displacements in the real state

pecified displacements on the S, boundary

>

TJ= or 6T oOT J= row of stresses in the virtual state
SX Yy Xy
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|_6FJ=' .LGFX 6Fy] = row of body forces in the virtual state

‘_6'[] =‘_6'rl"x 6'?yJ= row of surface tractions in the virtual state, acting

on element of boundary with normal n.

The virtual state must satisfy the following admissibility requirements:

a)  stresses and body forces satisfy the equations of equilibrium in the

finite element domain:

aﬁrx aﬁryx
+ + =0
W 3y dSFx
adrxy aﬁry
-t 3 St apy =0 (2
or -6r =0
Xy yx

b)  stresses and surface tractions satisfy the equations

6"1"I =67 n +6F n

n
6T =067 n +6T n
4 Xy X Yy v
where n_s ny = components of unit outer normal at a point on the plate boundary.

The real state must meet the following requirements:

a) the strains and stresses are related by constitutive equations which can be

written in the form

4-(dn o
where {r} = I_Tx 'r'y Tny T = column of stresses in the reclzl state

[C]= array of material coefficients

3



b)  the siresses must satisfy equations of equilibrium in the finite element

domain:
arx T "
+ =L =0
ax dy
arx arT
__Z + =
ox ey 0
- =0
Xy yX

with body forces neglected.

c)  on the boundary S the stresses and the specified tractions must be

related as follows:

Note that all admissible real states can be described as stress states which satisfy

equilibrium in the domain and traction boundary conditions.

The principle of complementary virtual work can be stated as follows. If a particular
real state can be found for which the complementary virtual work vanishes for every
admissible virtual state, then that particular real state will also satisfy compatibility
requirements in the interior and displacement boundary conditions. Therefore, this
particular real state satisfies all the requirements for a solution to the given problem

and is, indeed, the solution.

The expression for complementary virtual work, as given in Equation (1), can be

simplified by considering only those virtual states for which

I_GFJ = |_0J in the domain

and l_GTJ = OJ on the boundary ST' '

4

(%)

(6)



These additional admissibility requirements are not necessary, but they do serve to
reduce the complexity of the solution process. With these simplifications, the comple-

mentary virtual work can be calculated as follows:
CVW =t 6 dA -t 6T|{u¢d 7)
fALTJ{f} /SUL {5t

which is the form to be used in the derivations which follow.

For future use, note from Equation (7) that if real displacements {U} exist for which

A |_6T_| {E}dS =0 for every admissible I_GT_I , then it follows that the associated real
U

strains {e} must be identically zero in the domain.

1.3 USE OF COMPLEMENTARY VIRTUAL WORK IN APPROXIMATIONS-

For problems with no available exact solution, the principle of complementary virtual
work can be used to achieve an approximate solution. For the real state, begin with

a family of admissible stresses in the form

frtx 9} = {roeo i} + [4 6 ) 8] ®
3x1 3x1 3xN NxI

where {Tp} denotes a stress state which satisfies the
equilibrium equations (including body forces
if applicable) and all nonhomogeneous boundary

conditions on ST

{B} denotes a column of N as-yet unknown coefficients

and [A] {B} denotes a family of stress states which satisfy
equilibrium equations with no body forces and

homogeneous boundary conditions on all of S_r. -



Therefore, each column of [A} represents an admissib le stress state; and Equation (8)
represents an admissible stress state for arbitrary values of the N coefficients {B} .
Note that any known features of the real state stresses, such as satisfaction of symmetry

conditions, can be included in the functions which constitute the elements of array

(A, y).

The real strains are now determined by substituting into Equation (4).

=[] {r.t+[c] [A] {e} ©)

To complete the specification of the real state, the displacements on SU are assumed

in the form

{5 vk = e 9] {3} (10
2x 1 2xF Fxl

where {a} denotes the generalized displacements ‘on'S ; there are F degrees of
freedom. Therefore, the ith column of [C] represents boundary displacements
associated with a unit value of the i degree of freedom; and by assumption,

Equation (10) is'a sufficiently accurate representation of the specified {:} on Su'

The virtual state is specified by

{or}=[Atx, )] {a} (11)

3x1 3xN N«xI

If Equation (3) is written in the form

then {ot}= [N] [a] {a}
or {o1}= [} {o} 2



Everything is now known for substitution into Equation (7) for the complementary

virtual work.

cvw = a] {{tA [A]T [c] {r fan}+ [ fA
1, B

Define {8} = A [a]" [e] fr}an

BRGNS

Nx1 Nx3 3x3 3xl1
(] =t [a]7 [e] [ala
Nx N Nx3 3x3 3xN
o] =y [T [t]«

' S
Nx F Y Nx2 2xF

Therefore, CVW = [_aJ{ { By } + [H] {B} - [G] {E}}

Now, within the approximation of Equation (11), every virtual state is described
by a set of values for coefficients {o} . Therefore, if the CVW is to vanish for

every admissible virtual state, it follows that

{4} B =

The values of 8 are determined from

{6} = 7" [c]fa}- [0 {eyg

(13)

(14)

(13)

(16)

(17)

(18)



With {B} known from Equation (18), the solution for the real stress state is found

from substitution into Equation (8).

Note that when the material constant matrix [C] is positive definite, then in the

real state
I:rJ [C] {'r} z 0 for every {'r} .

If the stress state is chosen as {T} = [A] {B} , then it follows that

AT = 0 v

Therefore, the integrand in Equation (14) is positive definite, which means that the
array [H] is positive definite. This guarantees the existence of [H]-] ; so that the

solution in Equation (18) exists.

1.4 OBSERVATIONS ON THE ARRAY G

In Equation (11), it was not necessary to assume that the virtual stress state {GT} has

the same spatial distribution | A (x, y)] as was assumed for the homogeneous real stress
state. Furthermore, it was not necessary to assume that the number of coefficients {o}
equals the number of coefficients {B} in the real state. However, if the CVW is expressed
by the simplified form in Equation (7), then the number of coefficients {c} must equal the
number of coefficients {3} . Also, the virtual state stresses must satisfy homogeneous
equilibrium equations and give zero traction values on the boundary S+; but these are
exactly the admissibility requirements for the homogeneous real stresses, so the virtual

and homogeneous real stresses might as well be assumed to have the same spatial distribution.

The external work, 6 W, , done by the virtual state surface tractions moving through the

real state boundary displacements is given by

oW, = ys LGTJ{U} ds (19)



where there is no contribution from ST because l_ﬁT_l =I_0_|on ST . Substitute Equations (10)
and (12) into Equation (19):

o= |o)[of, [ ]

U

Then substitute Equation (15) to conclude

v, 1o/ [ e

From Equation (20) it follows that the G element in QITCIY[ ] (the element in the
ith row and J th column) represents the boundary work done by the virtual tractions
associated with coefficient a, moving through the real displacements associated with

q . Array [G] will be called the boundary work array.

Because the virtual state stresses satisfy homogeneous equations of equilibrium, it

follows that the virtual boundary tractions evaluated from Equation (3) will be self-
equilibrating. Furthermore, because the virtual stresses satisfy homogeneous traction
boundary conditions on ST ; it follows that the non-zero virtual tractions on Su must

be self-equilibrating. Therefore, the external work tSWe ; as expressed in Equation (20),
should be zero if and only if the real displacements {E} represent a rigid body motion of
the S, boundary; and this must be true for every admissible virtual stress state (for

every chJ ). These requirements provide checks on the formation of the [G] array and
provide guidance in the selection of the arrays [T_l and [C] which are used to derive [G]
through Equation (15).

1.5 REQUIREMENTS ON THE ASSUMED BOUNDARY DISPLACEMENTS

Equation (10) expresses the displacements {3} at any point on the boundary SU in terms
of the specified degrees of freedom {a} . If the external work 6W, is to vanish for a
rigid body motion, then obviously there is a requirement that Equcrion (10) must include
rigid body motion. Let {a} RB denote rigid body generalized displacements of SU.
Then if {a}={a} RB is substituted into Equation (10), the resulting {U}musf represent
rigid body motion everywhere on SU. That is,



(5 o =[] (e e

which places requirements on the elements in the array [C]

1.6 REQUIREMENTS ON:THE NUMBER OF STRESS COEFFICIENTS

Because the work 6W,, as-given in Equation (20), must vanish for every virtual stress

state moving through real state rigid body motions, it follows that as a necessary

<] {3- g

NxF Fx1 Nxl

condition

should be satisfied only by displacements {a} which are derived from true rigid body

RB
motions of the boundary S . That is, Equation (22) should be satisfied by rigid body

{a} and should not be satisfied by any non-rigid body {a} .

Equation (15) shows that the array [G] has N rows and F columns, where N is the
number of stress coefficients and F is the number of SU boundary degrees of freedom
in Equation (10). Let R denote the number of rigid body degrees of freedom which
are consistent with any special features (such as symmetry conditions) included in the
elements of array [C (x, y)] and which cause non-zero displdcémenfs on Su' (Note
that there might be a rigid body degree of freedom which causes zero displacements
on SU. The resulting {E}RB E{O}wi” certainly give 8W, = 0 from Equation (20) but

this provides very little information as a check on the array |G| .)

Now, because there exist only R true rigid body motions, it follows that the most
general nontrivial solution for{a} in Equation (22) must contain R independent
constants. If the R constants are selected to be R components of {a} ; it follows that
it must be possible to solve Equation (22) for the remaining (F-R) components in terms
of the R rigid body components. From this it follows that the rank of [G] , denoted

by rank [G] , must be equal to (F-R).

10



If rank [G] > (F-R), then it would be possible o solve Equation (22) for more than
(F-R) components expressed in terms of less than R independent constants, This
would mean fewer than R rigid body motions, which means that some of the true
rigid body modes have been suppressed. If the structure were to experience the

" suppressed rigid body motion, there would be non-zero 6We and non-zero stresses

from Equation (1 8). This possibility will not occur with self-equilibrating tractions.

If rank [G] < (F-R), then it would be possible to solve Equation (22) for less than (F~R)
components expressed in terms of more than R independent constants. This would
mean more than R rigid body motions, which means that spurious rigid body modes
have been introduced into the system. If the structure experiences a spurious rigid
body motion, there will be zero 6W, and zero stresses even though the imposed dis-

placements are actually not rigid body. This is bad and should be avoided.

The requirement that rank [G] = (F-R) imposes the obvious requirement that NZ (F-R),
for if N < (F-R) then it is impossible fo have rank [G] = (F-R). Note that there is no
théorefical objection to N > (F-R) provided that all N equations in Equation (22)

are satisfied by the rigid body displacements {E}RB (this is guaranteed since the virtual

stress states are self-equilibrcfing).

In order to develop additional requirements on the choice of stress coefficients, consider
the array I_EJ in the partitioned form
al=|3, i7q 23
7] =1 % i e @)
1xF 1x(F-S) 1xS

where FRBJ now denotes any set of generalized displacements on Su selected so that
l_ERBJ = LO l is sufficient to suppress all true rigid body motion. Clearly, there is a
requirement that S z R; but the choice of elements in the I-ERBJ array is not unique.

Consistent with the partitioning of I_EJ , partition array [G:l in the form

[e]=[ & | S (24)
N x F Nx(F-S) NxS

11



hen W, =[] [64] {2, +| ] [Ora] {Trs)

and if the true rigid body motions are suppressed by setting I_ERBJ = LOJ, then the

external work 5We should vanish.

on, (s o5 =

This must be true for every |a] , which requires

[Gl] CR {o} (25)

N x (F=S) (F=S) x 1 Nx1

Because true rigid body motion has been suppressed, Equation (25) should be satisfied
only by the trivial solution {a]}={0} . Therefore, it follows that the rank of array
I:G]] must equal to (F~S), for suppose rank |:G .l:l < (F=9); say rank [G]:l'-'- M. Then
it would be possible to consider a virtual stress state consisting of the proper choice

of M independent siress states, denoted by I_c]J, such that

oW, = | o] [Gl] {0}

TxM Mx(F-S) (F=S)x1

would vanish for abitrary l_cLl and nonirivial {a]} . This indicates existence of a

spurious rigid body motion, which is to be avoided.

In summary, the number of independent stress states in the virtual siress state must
first be sufficient to give N2 (F-R). Then it is necessary fo insure that rank [G] =(F-R).
Finally, it is necessary to insure rcnkl—?il = (F-S), and this must be true for every choice

oqu RB_I in Equation (23).

12



1.7 TREATMENT OF BOUNDARY CONDITIONS

As described earlier, the domain boundary consists of two parts = an Su portion over
which displacements are specified and an ST portion over which tractions are specified.
In a complementary virtual work formulation, the requirements on the ST boundary,
Equation (6), impose requirements on the admissible stress states, Equation (8). If these
requirements can be exactly satisfied, then a true complementary virtual work approxi-

mate solution can be achieved.

However, there may be problems for which it is too difficult to achieve satisfaction of
all the ST constraints. Or it might be desired to generalize the formulation in order

to achieve results which could be adapted to different sets of ST conditions. For what-
ever the reason, in Equation (1), all or part of the ST boundary can be converted to Su
boundary. The effect of this is to increase the number of displacement degrees of
freedom on Su; that is, the magnitude of F in Equation (10) is increased. This modified
problem can then be solved by complementary virtual work. The final stresses for the
modified problem will be functions of the additional degrees of freedom, and these
additional freedoms can finally be selected to impose some measure of satisfaction of

the original requirements on the original ST surface.

13






SECTION 2
DEVELOPMENT OF THE ASSUMED STRESS STATES

2.1 INTRODUCTION

In Section 1 it is shown that a.complementary virtual work solution requires a

stress state which satisfies equations of equilibrium in the dorﬁain and fraction boundary
conditions on the ST portion of the boundary. For the finite element shown in Figure 1,
the exterior boundary is an SU boundary because all displacements are specified to
guarantee adjacent element continuity; therefore, there are no requirements on the

stress state evaluated at the exterior boundary.

The nature of the inner, or hole, boundary will depend upon the particular problem of
interest. The inner boundary will be completely ST for an open hole. If the hole is

to be filled with other finite elements and complete adjacent element continuity is
required, then tHe inner boundary will be compilefely SU in the complementary work solu-
tion for the hole element. If the hole is to be filled with a fastener and if there is load
transfer with separation between fastener and hole boundary, then part of the boundary
might be completely Su and part will be completely ST. Or if the hole is to be filled
with a fastener and if friction between fastener and hole boundary is ignored, then all

or part of the bounddry will be S, with respect to the radial direction (continuity of
radial displacement between hole boundary and fastener) but ST with respect to tangential

direction (zero shear stress on the hole boundary).

The most general hole boundary conditions would be completely Sy° Then any S‘r
conditions could be satisfied by using the procedure discussed in Section 1.7.

However, all intended applications of this finite element will have zero shear stress on

the hole boundary (either open hole or friction free fastener); and for these problems, a

more accurate approximate solution should be obtained by requiring that the assumed stress
states give exactly zero shear on the inner boundary. Therefore, this ST boundary condition

is imposed on the solution which follows.

Because the hole boundary is circular, the Sp boundary condition can be most easily

expressed through the use of polar coordinates. Therefore, in what follows, the domain

14



will be described by polar coordinates with origin at the center of the circular hole

boundary (see Figure 1); and the stress state will be expressed in polar components.

2.2 THE MOST GENERAL PERIODIC STRESS STATE

In polar coordinates, the equations of equilibrium for plane stress and no body forces
are [1,p.66]

3T, 1 3Tg
— P —— — - =
ar r a6 +r(TrTa 0
(26)
1 a're+ 3T 9 . 27 g o
r 36 dr r

These equations are satisfied if the stress components are defined as follows in terms

of a stress function ¢:

3

©

2%
262

=1
T r

1
. T3
r

/)
-

a2

6

Ty (27)

%

8 ,13¢
o or (r ae)

Begin the development of the assumed stress state by recognizing that the stresses
must be periodic in 8 in order to provide traction continuity across interior surfaces

in the domain. Since any periodic function can be expanded in a Fourier series, it

follows that the shear stress, TrB , ¢can be written in the form

-]

Tre(r,3)=f(r)+ Z [qn(r) cosn6+bn(r) sinnﬂ]

n=1
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From this it follows that the siress function, ¢, has the form

o, 8)=[rF@]6 +rc@O) +HO + [A ) cos n 6+8 (@ sin n o]
n=1
d2
Then r =6 (rF) + (periodic terms)
6 L2
dr
and since To must be periodic, it follows that
2
—d—2- (l' F) =0
dr
. . — 1
whlch gives F() = C,t C2 -
1 d2G
Now Tr = -\ +G + C]6 + (periodic terms), from which it can be concluded that
de
d2G(6) <
a +G(6) +C,0=Cya+ > (a_cosnB+b_sinn6)
n=1

From this it can be shown that

G@O)=-C,0+C,+C,cos8+C sin6+la fsinf- -lz-blecose

1 3 4 5 271

- z ] (@ cosn6+b sinn6)
n n

Finally, it can be shown that the most general stress function which provides periodic

stresses can be written as
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@(r,6) = H(r) + D, o + D2_r65in6 + D3r9cos ¢]

@

+ z [An(r) cosnfB + Bn(r) sin n 9] . (28)

n=1

Note that this stress function is valid for any material because the expression has

been derived only from equilibrium considerations.

2.3 RESULTANT FORCES ON THE CIRCULAR BOUNDARY

Based on Equations (27) and (28), the stress components T and T g e

2cosH_D 2sin 6
2 r 3 r

2 2 2
+2I§¢'7ﬁm”%3f7ﬁm4 (29)
n=1

_ 1 dH
TEra P

r

d ,1 . d 1
"[ﬁ (F An) sinn 0- yrs (-r— Bn) cos n 6] (30)

-‘
D
fl
_.U
Nf —
+
N s

r n=1

These siresses, acting on the hole boundary with radius of R, have a resultant force

with components as follows (see Figure 2)

2
Fx= ‘é (Tresine-fr cos e) Rd#8

(3N
2r

Fy=-/0‘ (.,-rs.n o+ ‘rrecos 8) Rd#8
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Figure 2. Tractions on the Hole Boundary
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Substituting Equations (29) and (30) info Equation (31) gives the results

Fx=-21rD 3

97 Fy=2'n'D

‘Note that the results shown in Equation (32) are independent of the magnitude of R.

2.4 SATISFACTION OF TRACTION BOUNDARY CONDITIONS

The traction boundary condition requires that L =0 for every value of 8 at r =R,

From Equation (30) it follows that

D]=0
= d 1 = i 1 = =
at r=R, a-l;(F-An) 0, o FBn) 0, n=1,2,...

The constant D, must be discarded; but the functions An(r) and Bn(r) are as yet

unspecified, subject only to the requirements of Equation (33).

It can be shown that if Equation (33) is satisfied, then the resultant force components

are still given by Equation (32).

2.5 ORTHOTROPIC STRESS-STRAIN RELATIONS IN POLAR COORDINATES

The finite element is constructed of a linearly elastic, orthotropic material with

principal axes of orthotropy in the x, y coordinate directions. If initial stresses and

(32)

-(33)

strains and thermal strains are neglected, the stress=strain law in its most simple form is

€ L —v—xy- 0 T T

X E E X X

X Y
v 1

e \=|- TEE = 0 T \= [Cx ] T

y < & y Y y
y o 0 G‘ r 3

v | x| V% Y.

19
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Note the order of subscripts in the definitions of the Poisson's ratios.

Because the stresses and strains will be specified in polar coordinates, it is useful to
transform the stress=strain relations to polar coordinates. Begin with the transforma-

tions of stress and strain, as follows [1 ' p.67]:

€ € T T
r X X r
= =[7]T
€ [T] €y ' 'ry [T] s (35)
%v0 7xy Xy ‘l‘r 9
c0529 sin26 sinBcosB
where [T] = sin26 c0526 -sin Bcos 6 (36)

-2sinBcos®  2sinBcosB cosze- sin26

r r r
oy =[[e )" Lrep =[calie @)
Yro Teo Teo

The desired material property matrix is [Cre] , which has the following form:

| [Cre] =< [C:e] * Gy [Cfe] *Ca [Cfe] *Cy [Cfe] (38)
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_ 3 3
where C1—§<E—+T§—-2

0
_ cos 260
31 _
[Cre] = 0
=sin 26
cos46
4| _
[Cre] cos 46
-2sin46

If the [Cre] array is written in the form

14
Y Y
14
+2-2L +
-y Y

0
-cos 26

-sin 26

-cos 48
cos 46

2sin 46

Ci2

Coo

Cao

-2sin 46
2sin 40

-4cos46

C
C
C

13

23

33

2]

(39)
0
0 (40)
1
(41)
(42)
(43)



3 4 605 40

= C, =-C,.cos26+C, cos46

then C” = C] +C,.cos26+C
Co2 1 ~C3 4

C = C. -Cy 4cos46
33 2 4
- _ 1 (44)
C2'l = C]2—C]-§-C2-C4cos49
C3] = C]3=-C3sin 26-C425in 46
C32 = C23=-C3 sin 26 +C425in 46

For possible use, Equation (39) can be inverted to give

1T _
R R R
X
L C,-C,+C
E 1 3 74
4 (45)
Doy ]
R T A
b4
_l_ = C.=~-4C
G 2 4
Xy
Finally, note that for isotropic material, C3 = C4 =0.
2.6 COMPATIBILITY CONSIDERATIONS
With an exact solution to any plane stress problem in polar coordinates, there is a
necessary condition that the strains satisfy the compatibility equation
3% 3e d2re,) ¥Fly)
Tt " —arae <0 ()
692 r ar f
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With a complementary virtual work formulation, the strains will be derived from the
assumed stresses by means of Equation (37); and there is no admissibility requirement
that the strains should satisfy Equation (46). Indeed, the approximate satisfaction
of Equation (46) is one of the consequences of the vanishing of the complementary
virtual work. However, a better approximate solution should be obtained if the
assumed stress state is compatible; so there is motivation to attempt to select the
Funcfion; H(r), An(r), Bn(r) in Equation (28) so that the resulting stresses will be
compatible. This was attempted but with no success. Therefore, in what follows,
the stress components are not compatible for orthotropic material; and it is left up to
the principle of complementary virtual work to achieve the "most compatible" stress

state within the assumptions.

The domain of the finite element is doubly connected, and it is known that Equation (46)
is not sufficient to guarantee single valued displacements in a multiply-connected domain.
Based on experience with isotropic material L1, Sec. 43], it is anticipated that the
displacements associated with the constants D2 and D3 in Equation (28) will be multi~
valued. These constants should not be discarded because they account for the non-zero
resultant forces on the hole boundary, as shown in Equation (32). Therefore, additional
terms should be added to the D2 and D:3 coefficients in order to. enforce single-valued

displacements. This will be demonstrated for the D2 coefficient, as follows. Assume

the stress function
o(r,0) = D, 6 sin 8 + Arinr cos 8

Note that the additional term has the proper form to provide periodic stresses, as shown

in Equation (28). Then from Equation (27)

2cosB +Acose

Tr - D2 r r
_ , cosB

1'9 A r
= a 5inB

Tr6 A r
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with the strains derived from Equations (37), (43), and (44). Polar coordinate strain-

displacement relations are {1, p.76]

&

Er or
v, 1 3dv
S

‘9 T r® (47)
=lau+‘_all-l

”re r 88 or r

Following the procedure outlined in [1, Sec. 31], the requirement for existence of

displacement functions u(r,6) and v(r,6) can be written as

Cf(e; Car C4i Dy A)llnr - EA(4C] - 2c3) +D, (4c] - C2)]sin6

4

+g(C], C2, C3, C4; DZ' A) sin 36 +h(C], C2, C3, C4; Do/ A)sin 50

, &FE)

e

+7() +r20 g =0 (48)

where F(6) and G(r) are functions which appear in the equations for displacement

components u and v.

Clearly Equation (48) can never be satisfied unless the function f(6; C3, C4; D2, A) =0;
and it can be shown that this is possible only for an isotropic material with C3 = C4 =0,
This is simply a manifestation of the fact that the stress state derivable from Equation (28) is

not compatible for ambitrary values of the coefficients.

If the Inr term in Equation (48) is disregarded, then the equation can be satisfied by

requiring

dG dG(r)

e - G() = =K (49)
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2
jel;-(e) +F(6) =K + EA(4c] - 2c3) + r>2(4c:1 - C2)]sin 8- g sin 36-hsin58  (50)

Equation (50) will possess a multivalued solution proportional to 6cos8, which would
mean multivalued displacement components, unless the coefficient of sin 8 vanishes.

Therefore, it is necessary to require
)

-C

A==D __g._

2 4C.I - 2C3
4C] —C2

4C] -2C3

Define . C = (51)

Conclude that the stress function ¢(r,6) must include the following terms in order to

eliminate multivalued displacements.
o(r,6) = D2 (rBsin 6 = Crlnr cos 6) + D3(r6cose +C rlnr sin 8) (52)

For isotropic material, C= ]—;—v , which agrees with [1, Sec. 43].

2.7 FURTHER SPECIFICATION OF THE STRESS FUNCTION

Equation (28), as modified by Equation (52) and D, = 0, includes ambitrary functions
H(r), An(r), Bn(r) which are as-yet unspecified. Even though the resulting stresses
cannot be compatible for orthotropic material, it appears reasonable to select these
functions so that the resulting stresses would be compatible for isotropic material.

Then the solution should be very good for the limiting case of isotropic material because
the stresses will satisfy equilibrium and compatibility in the domain and traction
boundary conditions on ST . Furthermore, if the orthotropic material is not too far
removed from isofropic, in some vague and unspecified manner, a relatively few stress

terms may provide a suitable answer.

The isotropic stress function is shown in [1, p.133] which gives the following expressions

for the functions:
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H(r) = aq Inr +by r2 (53)

A =byr ke <

'
1

(54)
3, .1
= C. -
B](r) dir + ¢, <
1 _ "
A(I')=b rn+2+arn+brn+2+arn’ .‘n=2"3’ e
n n n n n
(55)
1 1 -
B (r)=d rn+2+ c M +dr n+2+c r ", n=2,3, ..
n n n n n
However, there is a flaw - possibly a fatal flaw = in the use of Equation (55) for
An and Bn. It will be seen later that in order to obtain a sufficient number of stress
coefficients it might be necessary to include terms up through Ay B4 oF possibly
even more. This would mean that the radial dependence would include terms from r]6
down to r-]2. This extreme range of exponents is likely to lead to a very ill-
conditioned array [H1], which is derived as shown in Equation (14) by integrating over
the domain of the finite element. For this reason, Equations(55) are discarded, and
the functions An(r), Bn(r) are assumed as follows:
2 1 'y
A2(r) =a,r +b, +a, ?—
(56)
'
Bz(r) =c,r + d2 + <, ?
1 ‘l 1 ]
A Seg *by Fe3 g
(57)
_ 3,1 o
Bylt) =cgr *dg ey 3
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i=0 j=1 r
B (r) = z strl + z '§':'_], n=4,5, ..

In Equation (56), the r4 term has been neglected since this term vanishes for the case

of an infinite isotropic plate under uniform stress at infinity (1, p. 91 1. In Equation (57),
the r5 term is neglected because it does not appear in the case of an infinite isotropic
plate with linear variation of stress at infinity {2, p. 470]. Finally, Equation (55) has
been discarded completely for n = 4 and replaced by Equation (58), which expresses
An(r), Bn(r) as polynomials in r. The functions are written in a form to allow for differ-
ing numbers of terms with positive and negative exponents. This flexibility in specifying
functions An(r) and Bn(r) will permit the selection of a sufficient number of stress coef-
ficients without the extreme range of exponents which naturally appears with fully
compatible stresses. Note that the resulting stress state will now be incompatible

even for isotropic material.

This numerical difficulty with compatible stresses is obvious in Equation (55) which,of
course, is valid only for isotropic material. It is suspeci’éd, however, that the same
problem will arise if orthotropic compatible siresses are used for the assumed stress state.
This suggests that a fully compatible solution for orthotropic material might never be

achieved due to appearance of ill=conditioned matrices in the formulation.

2.8 CONSIDERATIONS OF SYMMETRY " -

If two coordinate axes, say x and y, are established in a plane, there are four possible
symmetry conditions which can be established relative to those axes. These conditions
can be defined by describing the following four functions which possess the symmetry

properties:

SS(x,y) = SS(x,~y) = SS(=x, y) = SS5(-x, =y)

SA(XIY) = SA(X,")') ="SA("XIY) = 'SA('XI"Y)
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AS(x,y) ==-AS(x,=y) = AS(-x,y) = =AS(~-x,-y)
AA(x,y) = =AA(x,-y) = =AA(-x,y) = AA(-x,-y)

The function SS(x,y) is symmetric cbout both x and y axes; it will be called a
symmetric=-symmetric (SS) function. Function SA(x,y) is symmetric about the x-axis
and antisymmetric about the y=-axis; it is a symmetric-antisymmetric (SA) function.

Likewise, function AS(x,y) is an AS function; and AA(x,y) is an AA function.

With the four symmeiry conditions established, it can be shown that any function f(x,y)
can be written as the sum of four functions, each of which possesses one of the four

symmetry conditions. This is demonsirated by first writing the identity

Focay) = & Dfcy) + ) + o) +Hoxyon)]
+ 7 [Fey) + flx,my) =Fxpy) =Fex, )]
+ 7 [HGx,y) = Fox,y) +Foxyy) = e my)]

+ 7 [f,y) = Flx,my) = Flox,y) +Fx, =)

Define  SS(x,y) = 5 [flx,y) + Flx,=y) + Hexyy) +ox, )]
SA(X,)') = 'l‘[f(xl)') +f(x,~y) - f(-xIY) = f(-xl-Y)]
AS(XIY) = %EF(XIY) = f(xl")') +f(-xIY) = f(-x,-y)]

AA(x,y) = -}Ef(x,y) - f(x,=y) = f(=x,y) + f(=x,-y)]
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It can be confirmed that these functions do indeed possess the indicated symmetry

properties and, as stated,
f(x,y) = SS(x,y) + SA(x,y) + AS(x,y) + AA(x,y)

What has been described above for functions of x and y is also applicable fo stress
and displacement states. That is, any arbitrary stress and displacement state can be
represented as the sum of SS, SA, AS, and AA states. These four states are defined
in Figure 3. Note that a stress state is symmetric about a line if the stress states at
two symmeirically located points are mirror images of each other; the siress state is
antisymmetric about a line if the stress states at two symmetrically located points are
negative mirror images of each other. Similar definitions apply to displacements.
These physical definitions of symmetry and antisymmetry for siresses and displacements
mean that individual stress and displacement components might actually have different
characters when signs are established according to usual conventions. For example,
P isan AA

function, displacement Uy is an AS function, and displacement U, is an SA function.

in the SS state of Figure 3, the stress T is an SS function while stress T

2.9 FINAL FORM FOR THE STRESS FUNCTION AND STRESS COMPONENTS

The radial coordinate, r, is first normalized or nondimensionalized in terms of the

radius of the circular hole, R, giving

A~
.

p=

Then, if the stress function is written as (o, 8), the stresses will be given by

2
Zr =120, 1 Y

r p o ae2
2
op
2p .2 (1 3
"7 % (p ae>
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and the equilibrium equations are

d 02 1T 3 ,,2 1,2 2
c— - — +d - - =
ap(R 'rr)+pae(R 'rre) p(R T R're) 0
(60)
1 3 ,.2 3 ,.2 2,2 -
Bg(R Te)+$(R Tr9)+3(R 1;,9)—0

The siress component Tg is first calculated from the stress function given by

Equations (28), (52), (53), (54), (55) with D, = 0. The arbitrary constants are

then related as necessary to satisfy the traction boundary requirement that To~ 0

at p=1. The final stress function is then divided into its four components according

to the four possible symmetry conditions of the siress state, with the final result shown in
Equations (62) and (63). The three stress components are derived from Equafion»(59)

and recorded in Equations (64), (66), and (68). It can be confirmed that these stresses
do indeed satisfy the equilibrium equations, Equations (60), and provide T8 at p=1.

In Equations (62), (64), (66), and (68), the SS, SA, AS, AA symmetry conditions

are numbered 1, 2, 3, 4 respectively. The coefficient B, . denotes the ith coefficient
for the jfh symmetry condition. The quantities N1 ,N2,I\;?3,N4 denote the upper
limits on the harmonic expansion for each symmetry condition. Then for each harmonic
above the third, the quantities I1, [2, 13, 14 and J1, J2, J3, J4 denote the upper
limits on the summations of terms with radial coordinate dependence. These quantities

could be functions of harmonic number; but in what follows, they are assumed constant.

For harmonics beyond the third, there is obviously a great deal of arbitrariness in the
number of terms included in the assumed stress state. However, it is possible to number

the coefficients in such a way as to allow for the arbitrariness.

Define  Kln=4+ (%)(n +0),  Kan=4+ (208 +09)

(61)
Kon=4+(E2)2+02) ,  Kén=2+C)M+14)



With the definitions of Equation (61), it can be confirmed that the coefficient subscripts

shown in Equation (62) will be properly sequenced for arbitrary values of N, I, J.

B(p, ) =8, (Ind + 8, (37)

1 2 1,-2 2
+[B3]§(l+p)+B4]g(p +3p)]cos26 SS
> |3 5
+ B. F(g; i) + z B, G(p;) | cos nB
G s i& DiKng £ Y1

. = 1 1,-1
+B]2[p6 sing-C(plnp~ Eps) cos 6]+822 7(p +p3) cos 6

1, -1 1 ,-3
+|:B32 7 (p +p3) + 342 Tz (P +2p3):| cos 38 SA

N2 [ 12
S D Biakan, 2 PO * D Biyonup p G| con

n=5,7Li=l ij=

= 1 . 1,-1 .
+ 813[p9c056+C (plInp - -é-ps)sm 6:,4- B23-2-(p +p3) sin 8

1, -1 1., -3 .
+[B33§(p +93) +B4s 13 (o +293)] sin 36 AS
N3 [I3 J3

+n=§5: . ; Bi+K3n,3 Flo;i) +jZ] Bj+K3n+I3,3G(p;j) sinn8

1 2,1 -2 2. .
+[B]4—2-(1 +p)+zB24(p +3p )]sm26.

N4 [ I4 14 AA
+ _Z Z Biikan, 4 PRI + Z Bysian+ia,4 ClPil)| sinn @ (62)
n=4,61i=1 i=1
where F(p;i) = pi +i-1
(63)

Glpig=p - j+1
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2 _ -2
R Tr(ple) - B'”(p ) +Bz](])

-2 -4
-I:Bs](] +20 ) + B4.|(] +p )]cos 26 SS
N1 11 N
¥ _z Z Brskin, 1 PPt * Z B, ki1, 1 Cp{Pidim)f cos n 6
n=4,6 [ i=1 3=
. A=, - -3
Bjs 20 +C(op )|+ Bzz(p-p cos 6
~ (B 3o+ 50 2) +B,., (p+ p )| cos 38 SA
32 P 42\PT P
N2 12 J2
+ -z Z Bi+K2n,2 Fr(P;l,n) + Z Bj+K2n+12,2 Gr(p;j,n) cosn B
n-5,7 i=1 ji=1
+{B -2p-‘ +(-.‘.-(p_'l -p)|+8B (P‘P—a) sin 6
13 23
B Bo+50 3 +B,(0+ ) sin 36 AS
33 43P TP
N3 13 J3
+ ng‘ , ;Z] Bi+K3n,3 Fr(P;l,n) + j; Bj+K3n+I3,3Gr(p;j'n):, sinn 8

— e G . e S Gt GEE S TED S, ——— G T S D . — T — — S D S S — e - — — — —— —

-2 - .
-[514(1 +2p0 %) +B24('| +p 4)] sin 28

AA
N4 [ 14 J4
+ _z Z B:skcan, 4 Frloitm) + Z B 1kan+14, 4 G Piimlfsinn 8 (64)
n=4,6 | i=1 j=1 1
where Fr(p; i,n)=(- nz)pi-2 - n2(i - 'l)p-2
(65)

G (pidm) = -(3 9 oD 4 2641 072
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Rorg(0,6) = B (6 ) + B, (1)

+[83] (]) + B4~| (] + P-4)] [ole )] 29 SS
N1 1 J1
+ n=z4 ) EZ] Bi+K1n,] Fe(P;i) + jZ] Bj+K1n+U,'l Ge(p;j) cosn b

+{B]2 [E (3p- p_])] + 822(3p + p-S)} cos 6

+ [832 (3p + p-s) + B42 (p+ p-5)] cos 36 SA

N2 12 J2

+ ng , iZ] Bi+K2n,2 Fe(P;i) + jZ] Bj+K2n+12,2 Ge(p;j) cosn 8

+{B]3 [— C (3p- p-])] + B23(3p+ p_%}sin ]
+ [833 (3p+ p_s) + B43(p + p—5)] sin 36 . AS

N3 [ I3 3
e 22 Bitkan,3 Fgloid * j; Btk ant13, 3 ColPid)| sinn

i=1

¥ [BM (1) +B,, (1+ p'4)] sin 26

AA
Ng (14 14
¥ ng . i; Bitkan, 4 FolPi) + j; B jiKantl4, 4 Ge(p’j)] sinnf - (66)

where Fe(p; i)=i( - ])pi-z
(67)

Gylos ) =303 +1)p 0+
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2 _ -2 =41 .
R 'rre(P, e) - [B3] (] =P ) + B4] (] - P 4)] sin 20
SS
N1 Il J1

+ z |§=: Bi+K]n,1 Fre(P;i,n) + jZ] Bj+K'|n+Il,l Gre(p;j,n) sinn @

+{B]2[C—Z (p-p_l)] + 822(p-p-3)} sin 6
+[832 (3p- 3p_3) +B 42 (p-p-s)] sin 36 SA

N2 | I2 J2
+ Z g] Bi+K2n,2 Fre(P;i,n) + z] Bj+K2n+12,2 Gre(p;j,n) sinn@

— . —————— — —— —— —— — — — — — —— —— ———— —————— — ——— —— — —

B [Co-p "]~ B,nl0-p A eos 6
13 23

- -5
-[833 (3p- 30 ) + Byzle -0 )] cos 38 AS

N3 J3

13
T _z Z B4kan, 3 FrglPrim) * 2 B+an+13,3 CrolPisem)| cos n 8
n=5,7 | i=1 ji=1

e — —— . —— — . A ——— — . — — — — — —— — — — — — T — —— — — tn— ——— —

- [BM (1-p73 +B,, (1 - p'4)] cos 28

N4 J4

14
) ng 4 iZ] Bi+kdn, 4 FrolPilem) * JZ] Btkan+14,4 Crgleidim) [cosn 8
' (68)

-2

where  F_(0ii,n) =n(i- D2 =07

(69)
6. o @i =nls+ N[ 52 - 5702
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SECTION 3
SPECIFIED BOUNDARY DISPLACEMENTS

3.1- EXTERIOR BOUNDARY

As mentioned earlier, the exterior boundary is completely Su type, with displacements
specified so as to maintain continuity with the adjacent elements. In the work which
follows, it is assumed that each adjacent element contains only two nodes on the boundary
common with the hole element, with linear displacement between nodes; see Figure 4a.
Therefore, the displacement on the exterior boundary of the hole element will be
specified as linear between nodes. If a nondimensional coordinate § is established

such that £=0 at node i and & =1 at node j, then both displacement components

between i and j will have the form
VE) =v,(1-8) +v,(€) (70

where v, denotes the value of displacement v at node i. These specified displacements
obviously satisfy the rigid body mode requirement of Equation (21) because the most
general rigid body motion of an initially straight segment between nodes will result in

linear displacements.

If the adjacent elements have a more complicated boundary displacement, this
complementary virtual work formulation can very easily be modified. For example,
suppose the adjacent elements contained three nodes per boundary common with the
hole element and suppose the displacement is quadratic along that boundary; see
Figure 4b. Then the displacement components on the hole external boundary between

nodes i,j,k will have the form
_ 1,2 2 1,2
W) =v 3 (& - ) +v, (- ) 4y 367 +0) 71)

If this portion of the boundary receives a rigid body displacement, then it will
follow that

vy = %(vi + vk) . (72)
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Then if Equation (72) is substituted into Equation (71), the displacement at every

point between nodes i and k is given by
WE) =v, 5 (1 = &) +v, 2 (1 +£)
i 2 k2

This linear displacement function shows that Equation (71) contains rigid body motions

and does satisfy Equation (21).

3.2 INTERIOR BOUNDARY

Although the circular hole boundary is ST with respect to shear stress, it is SU with
respect to radial displacement. Therefore, it is necessary to specify the radial dis-
placement, u_s on the boundary. The generalized displacements will be the values
of displacement at discrete points (the nodes) with displacements between nodes

given by specified functions of position on the boundary.
Consider a segment of the boundary between two nodes; see Figure 5.

Let Gi = initial angle for the segment

]

P final angle for the segment

Begin with the assumption
= +
u(6) =u.g. (6) +u.g(6) (73)
subject to the requirements that

6@)=1,  g,6)=0
(74)
gf(ei)=o ’ gf(e{:)=]

which guarantee that Equation (73) does furnish the proper nodal displacements.
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Now consider a rigid body motion of the hole boundary, with components u, v

in the x, y directions. The radial component of this rigid body motion will be

Ur(e) =Ucos §+vsin @ (75)

which means that the nodal values of rigid body displacement are

u,

: U cos Gi +V sin Gi

_ _ (76)
u{_.=u cos 6F+vsin Gf

If these nodal values are substituted into Equation (73) the displacement between nodes

is given by

ur(e) = (u cos Gi +V sin Bi) gi(e) + (U cos 9{_. +V sin Bf) gf(B)

or

ur(e) =U[gi (8) cos Gi + gf(e) cos q_.] +-\-/'l:gi (8) sin Gi + gf(B) sin Gf] (77)

If Equation (73) is to contain rigid body modes, it is necessary that Equation (77) have
the same form as Equation (75) which represents rigid body motion between nodes.

This leads finally to the requirement that

cos 6.'. cos 9{_. 9; 8) cos 6

sin 6i sin GF gf(e) sin 6

which gives the following unique expressions for g; (6) and 9 6):

9;(9) = m ' gf(G) = m (78)

It can be seen that Equations(78) satisfy Equations (74). Therefore, the final form of

the specified radial displacement between nodes is as follows:

42



_ sin (GF-G) sin (G-Bi)
ur(G) —Ui m + Uf mef—_e—ly (79)

This assumption provides proper nodal values and does contain rigid body motions,

which guarantees that Equation (21) is satisfied on the hole boundary.

If the boundary nodes are given the same radial displacement, it would be desirable
for the displacement u to be uniform between nodes. In order to see if Equaﬁon (79)

contains uniform displacement, set U= U= and get

ur(e) =y mﬁy [sin (9{_.- 8) +sin(6- Gi)] (80)

Unfortunately, Equation (80) does not reduce to uniform displacement, which means
that Equation (79) does not contain uniform displacement. However, if (GF- Gi) <1,

it can be shown that Equation (80) gives the approximate result
u 8)=vu

Therefore, Equation (79) will give essentially uniform displacement as the arc

length between nodes becomes sufficiently small.

The following displacement function does include uniform displacement for any arc

length:
6 (8) =5 ef 7 sin (8 - 6) = sin(8-8,) +sin (8, - al)]
+ mfe—f-_Tl) :sin (G-Gi) - sin (6{_.-9) + sin (GF-GE)J @81)

However, Equation (81) does not include rigid body motions.

In conclusion, it is impossible to devise a displacement function which contains both_
rigid body motion and uniform displacement. It is much more useful to include rigid

body motion, so Equation (79) will be used in the following work.
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SECTION 4 -
DEVELOPMENT OF THE ELEMENT STIFFNESS MATRIX

4.1 STRESS STATE DUE TO IMPOSED BOUNDARY DISPLACEMENTS: -

Begin with the expression for complementary virtual work, as given in Equation (7

and repeated below:

cvw=/ Larj{e}dA-r/ |87 {u 3ds
A s

U

In polar coordinates (Figure 1), the differential area element can be expressed as

. . . . r
follows in terms of the nondimensional p=—

R
- =p2
dA =rdrd@ =R p dp df

and the differential boundary length can be written as

ds = Rf(8)d6

where the function f(8) depends upon location on the boundary.

The real strains, {Rze}, are expressed in terms of real stresses, {Rz'r}, through the

stress=strain relations in polar coordinates, as given in Equations (43),(44), and (39):

(R%e}=[C 1 R%r )
rb
Then the CVW can be written as

cvw = L / |R%s7] tc o1 Rr) pdpdd - ¢ / |R%1] ©1(e)0
R%J A S

2 NSC
Assume {R°67) = 2 LA (p, 6)] {ad}

§=1

(82)

(83)

(84)

(85)



NSC

(R®6T} = S trie ) (86)
j=1

2 NSC .

(R°r} = z CA%p, 6)1 {87} (87)
i=r
NSC . .

{3 = 2 (z3(e)1{q7} (88)
i=1

These assumptions are consistent with what was shown earlier in Equations (8), (10),
(11), and (12), with expanded notation to recognize that each stress, surface traction,
and displacement vector can be written as the sum of four symmetry condition vectors.
In Equations (85) through (88), the superscript j denotes symmetry condition number;
and NSC denotes the number.of symmetry conditions to be considered in a particular
problem. In general, NSC will be equal to four; however, if the problem is known

to contain only certain symmetry conditions, then NSC can take on the proper and

limited set of values.

If Equations (85) through (88) are substituted into Equation (84), the result is

NSC NSC | , ' T K K
=Sy B [? fA (A1 [C g10A ]pdpde] {8}
i=1 k=1

T
- [% / ¢ U1 1k de] cN (89)

Now, the domain and boundary are symmetric about both the x and y axes. There-
fore, a boundary integration of the product of symmetric (antisymmetric) tractions and
antisymmetric (symmetric) displacements will vanish. Likewise, a domain integration
of the product of symmetric (antisymmetric) stresses and antisymmetric (symmetric)
strains will vanish. Also, note that because the x, y axes are material axes for

homogeneous and orthotropic material, it follows that symmetric (antisymmetric)
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stresses will result in symmetric (antisymmetric) strains. Therefore, because of the

symmetry properties of domain, boundary, and integrands, it follows that

;T
[ A)] Cc OJEAk]pdpd6=0, if j7k
A r

T
/ wgh ECk]F(e)d9=0, if jk
S .

1AM 1p dod8

T . .
/ (Al Ecrel (AJlpdodo=4 [AJ"_\T |:cre

A ‘ Quadrant

/ ETJJ (ei1f(e)do =4 / (77" £e31 #(6) de

Quadrant

T
Define thi1=[ [Ad1 [c 6] (AJ1pdpde
Quadrant

N / cm (2371 #(6) o
Q

vadrant

After substituting Equations (90) through (93) into Equation (89), the CVW can be

written as

ol N o - et )
<

If CVYW =0 for every '.aj_', conclude that
L IW108% - tel1a) = (03, 5=1,2,3, 4

or
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B1=RMIT el , 5=1,2,3,4
Define  [BQI1=[HIT ' [cl1,  i=1,2, 3,4 (94)
Therefore, [B1=R [BQI] {qJ} , 3=1,2,3,4 (95)

The final expression for the stress state is found by substituting Equation (95) into
Equation (87) and solving for {T} to give

NSC . ..
redf=g S a1l G (56)

=
Equation (96) will give the stress state at any point in the domain due to imposed

boundary nodal displacements. Note that the nodal displacements are expressed in

terms of the four symmetry condition components.

4.2 DEVELOPMENT OF STIFFNESS MATRIX-

In the anticipated applications of the hole finite element, the total or overall
structural problem will be solved through a displacement formulation which can be
most generally based on the principle of virtual work. Therefore, the hole element
solution of Equations (94), (95), and (96), based on complementary virtual work,
must now be placed into a form which is compatible with the formulation for the
remainder of the structure. This is done by developing a stiffness matrix for the
hole element which can then be handled in a routine fashion in the displacement

based finite element programs.

Begin with the expression for the internal virtual work done by an equilibrium real

stress field moving through compatible virtual strains:

oW, = -t A |6¢ (r3da (97)
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For use in a displacement formulation, the real stresses fr} must be expressed in

terms of real nodal displacements; and the virtual strains {6€} must be expressed

in terms of virtual nodal displacements. But this relationship between nodal dis-
placements and stresses is precisely what is given, to the best approximation possible,
by Equations (94), (95), and (96). Therefore, Equation (97) can be rewritten in
terms of displacements by first introducing virtual strain-virtual stress relations in

the form of Equation (34) and then substituting the stress=displacement relations of
Equation (96):

5wi=-f—2/ |_R25'r_l ECre:l{Rz‘r}pdpde
R™JA
NSC NSC . LT )
we=-5H SS R [6q7] (3% / (A% e 1 [aM1aA|BQk1 (F1 (o8)
R == A

After accounting for the symmetry properties of domain and integrand, and after

introducing Equation (92), it follows that

NSC
z |_5q{| [4r (BQJ] CHJ]EBQJ]]{qJ} (99)
i=

Define (kQI1=t8Q'] [HI1(BQ’] (100)
NSC

Finally, ~ 6W, =- z Laq{] [4[KQJ']]{EJ'} (101)
j=

After comparing Equation (101) with the result which would have been obtained
through a virtual work development of 5W ., it is clear that the array 4KQ'T is

th
the stiffness matrix associated with dlsplccemenfs in the § symmetry condition.
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More precisely, Equation (100) defines the complementary virtual work approximation
to one=fourth of the stiffness matrix associated with boundary displacements in the j,rh

symmetry condition.

4.3 THREE TYPES OF HOLE ELEMENTS

The hole finite element will generally be employed as shown in Figure 6; that is, the
total square domain will be included in the finite element model of the structure.
However, if the problem has known symmetries in structure and loading, then it is
possible to achieve significant economies in both formulation and solution by working

with only a portion of the structure.

For systems which are known to possess only one of the four symmetry conditions,

the simplifications begin with Equations (85) through (88) in which the summations
over all symmetry conditions are eliminated; all quantities are expressed immédiotely
in terms of only the one known symmetry state. Further simplification is achieved in
the finite element model of the structure, as shown in Figure 7 for a typical case which
is SS in both structure and loading. It is necessary to consider only one quadrant of
the structure, which means that it is necessary to consider only one quadrant of the

hole finite element when developing the stiffness matrix.

Systems with symmetry or antisymmetry about only one axis can be considered to be
the sum of the appropriate two symmetry conditions, which again simplifies Equations
(85) through (88). Figure 8 shows a case with symmetry about the y-axis, which is
therefore a combination of SS and AS. The model can be simplified to only one half

of the structure, which means that only one~half of the hole finite element is necessary.

Evidently there are three different types of hole elements which could be incorporated
in a finite element model ~ the complete or total element in Figure 6, the half element
in Figure 8, and the quarter element in Figure 7. With appropriate modifications to
the symmetry condition summation, Equation (96) gives the stresses for each type of
element; no adjustments are necessary. However, the stiffness matrix expressions in

Equations (100) and (101) must be modified for the quarter and half elements.
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Figure 6. General Problem Requiring the Total Hole Element

N

Figure 7. Symmetric-Symmetric Problem, Permitting Use of
the Quadrant Hole Element
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Figure 8. Problem with Symmetry About One Axis, Pemitting
Use of the Half Hole Element
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In Equation (98) it was assumed that the domain integration was taken over the

complete hole element. Then

/ ( )dA=4[( )dA
A Quadrant

which accounts for the multiplicative factor of 4 in Equation (99). Obviously, if

the structural problem is to be solved with the half element in Figure 8, then

/ ( )dA=2] ( )dA ;
A Quadrant
and with a quarter element, the physical domain is equal to the quadrant used for

integration.
It is now possible to give a physical interpretation to [KQj] in Equation (100).
Clearly, [KQT is the quadrant element stiffness mairix associated with displace~

ments in the jth symmetry condition.

These results concerning stiffness matrices can be summarized in terms of [KQ']

of Equation (100), as follows:
for a quadrant element with jth symmetry condition,
[KQ'] = [KQ']
oW, = - [sq]| (kQi1{g 3}
for a half element with superposition of two appropriate symmetry conditions,
(KHi = 2[KQj], for two values of j

sw, =- |sq] kHi1(3 33
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for a total element, requiring all symmetry conditions
(kT =40kal, j=1,2,3,4 | (106)

4 - |
6W, = - z LéqJ_IEKTJ]{EJ} . (107)

i
i=1

For possible future use, Equations (103), (105), and (107) can be written as
6W, ==y loa [M[KQJ]] {34 (108)

where the summation is over appropriate values and M = 1, 2, or 4 depending upon

element type.

4.4 TRANSFORMATION OF DISPLACEMENTS

If the hole finite element is to be combined with other elements and a problem solved
with a conventional displacement based program, then it is necessary that the nodal
displacements for adjacent elements must be identical at nodes where continuity is
required. This nodal continuity is most easily achieved if the nodal displacements
for the adjacent elements are expressed in the same coodinate system and have the
same physical meaning. In the following discussion, it is assumed that adjacent
element displacements are in the same coordinate system (either x, y system or radial)
so that it is only necessary to consider the physical meaning of the measures of dis-
placement. The two possible meanings are described as either the symmetry condition

displacements or the general state displacements.

Now, for problems with a single symmeiry condition which are to be solved with the
quadrant element, there is an identify transformation between symmetry condition
displacements and the general state displacements. That is, if the system is, say, SS
in character, then the general displacements will have zero contribution from SA, AS,

and AA; and the general displacement will be identical to the symmetry condition
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displacement. In this case, the quadrant element stiffness matrix is given by
Equation (100); no further modification is necessary, and the hole element quadrant
stiffness can be immediately merged with adjacent element stiffness matrices. Then

the problem can be solved with standard displacement based finite element programs.

However, for the half element and total element, the displacements in Equations (105)
and (107) are symmetry condition displacements; and these are not the same as general
state displacements which represent the superposition of two or four symmetry condition
displacements. Therefore, the symmetry condition displacements will be transformed
to general displacements before attempting to merge stiffness matrices. The details of
the transformations depend upon the number of boundary nodes, but the basic features

will be presented for a simple case of each type of element.

First consider the total element shown in Figure 9. Note that the nodal numbers begin
at the first quadrant comer node and proceed counterclockwise around the element
until all nodes on the outer boundary have been numbered. The next node number is
assigned to the circular boundary node at 8 =0°, and numbering continues counter-
clockwise. Because the external boundary is entirely Sy’ there are two displacement
degrees of freedom at each exterior boundary node. However, there is only the one
radial degree of freedom at each interior node. On the exterior boundary, positive
displacements are in the positive coordinate directions. On the interior boundary,
positive displacements are outward. These sign conventions and conventions for nodal

and displacement numbering are followed for all arrangements of nodes.

Figures 10a, 11a, 12a, and 13a show the nodal displacement patterns associated with
SS, SA, AS, and AA displacement fields, respectively. Note that the independent
nodal displacements are selected to be in the first quadrant, with all other nodal dis-
placements expressed in terms of the independent values. Also note that the quadrant
nodal displacements are numbered beginning at 8 = 0° on the external boundary and
returning to 8 = 0° on the inner hole boundary. This convention is followed for all

arrangements of nodes.
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Figures 10b, 11b, 12b, and 13b give the relationships between the independent
nodal displacements and the general nodal displacements of Figure 9. As a check on
these relationships, it can be confirmed that the summation of Figures 10b, 11b, 12b,
and 13, extended to the other three quadrants, will indeed give Figure 9. For

example, consider the x-direction displacement of the first quadrant corner node.

Then
_ _
(@) 5+ (@) gp * (@) pg T @) pp = 7 Uy U5~ gty ¥

1 1 1 _
7 (Ut ugtugtugg) +2 (U= ustug mup ) + Z(ug Fug-ug=upg) =,

as required. As one final example, consider the y-direction displacement of the exterior
node at 6=180°, Then

(@) og = @) pp = 3 g+ upg = 5 lrugtug ) =ug

as required.

A half-element with symmetry about the y axis is shown in Figure 14. Node numbering
begins at the lower left exterior corner, proceeds around the outer boundary, and retumns
to the inner boundary at #=0°. There are two degrees of freedom at each exterior
node except the nodes on the symmeiry axis, which have only one displacement.

Positive displacements are as shown in Figure 14 and described for the total element.

The general state is a superposition of SS and AS due to assumption of symmetry about
the y-axis; see Figures 15 and 16. Again, the independent displacements are selected
to be in the first quadrant, with the same numbering scheme described earlier. As an

example of the superposition, consider the radial displacement of the inner node at

& = 45°,

1 1, _
(ag) g5 = (@) as = 3 (U0F v19) = vt v19) =¥y

as required.
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It is now clear that for each symmetry condition, the general state nodal displacement,

{u}, and the symmetry condition nodal displacements, {q3}, are related by

{31 =AM (0} (109)

where the transformation array (A depends upon the type of hole element (total or
half) and the details of the nodal arrangement. Recall that for a quadrant element,

(A1 =[11, the identify matrix.

4.5 TRANSFORMATION OF STIFFNESS MATRIX AND STRESS MATRIX

The necessary transformation of the stiffness matrix is established by substituting
Equation (109) into Equation (108) in order to express the internal work in general

state displacements.

ow,= . [o] w7 [MEKQJ]] (A1{V)

:
Define  [Ki1=[AJ1l [KQII[AT] (110)
Then oW, =- |_6 UJ [M z EKj]] {v}

Define  [KI=M . [K]] an

and it is clear that Equation (111) supplies the proper hole element stiffness matrix
associated with general state displacements and this stiffness matrix is suitable for

standard treatment by displacement based programs.

Equation (96) gives the stress state in terms of symmetry condition displacements,

{aj}. This equation can also be transformed to general state displacements as follows:

(r}= 2 D (AT (BQII (AT (5 ) (112)
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A more efficient evaluation of the stiffness matrix is possible by substituting
Equations (94) and (100) into Equation (110):

. T T .-T . -1 .
[K1=+0AM] [c] (W] WoICHY] Ce'1lal]
Define [Gi1 =[GiLA]
. _.T -1
Then, (ki1=t{G41 [(H1] [GH

where it is recognized that array [H1, as defined by Equation (92), is symmetric.

Equation (112) can also be reformulated as follows:

R BT
(r}= 2 > (AW [GMIATI(T)

1

'| ) -
leitall=tHi] (G

Define [sd1=[H3]

Then, [T, 0} =g > (A (o, @151 (T}

4.6 COMMENTS ON PROCEDURE

The essential feature of the development presented in this section is the realization
that symmetry conditions exist for stress, tractions, and displacements and then
exploiting this feature to the fullest. This permitted the derivation of stiffness and
stress matrices for the total hole element with the work integrations limited to just
one quadrant of the element. This is a significant savings of computational effort

compared fo those formulations which integrate over the total element.

When solving problems with the quadrant or half elements shown in Figures 7 and 8,
the internal stresses are guaranteed to be continuous across the symmetry boundaries.
This is true because the solution is in reality based on a total element which has

correct symmetry conditions imposed; and the stresses are defined continuously in
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the total domain. This can be contrasted with an alternative approach which begins
with a true quarter element with no reference to the total domain. [f the comple-
mentary virtual work procedure is used to develop the quarter element stiffness matrix,
“and if four of these quadrants are theh combined properly to model a total element,
there will be traction discontinuities across those boundaries which are interior to the
total element; and these discontinuities could cause troubles when attempting to

evaluate stresses in the interior of the total element.

However, it should be noted that the imposition of additional specified displacements
along interior lines will tend to stiffen the total finite element when compared to an
element with no specified interior displacements. The implications of this with regard

to the use of true quarter or octant elements should be explored numerically.
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SECTION'S -
DESCRIPTION OF THE COMPUTER CODE

5.1 INTRODUCTION

Computer code has been prepared to perform all calculations leading to the stiffness
matrix of Equations(114) and (111) and the stress equations of Equation (116). This
chapter describes certain features of the code without going into details of the

programming.

5.2 ELEMENT GEOMETRY

The number of nodes on both the exterior and interior boundaries of the hole element
can be specified by the program user. Because all integrations are performed in the
first quadrant only, there are the geometric constraints that exterior nodes must be

placed at the four comers and at the four side midpoints, and interior nodes must be

placed at 6 =0°, 90°, 180°, and 270°; see Figure 17.

The boundaries of the quadrant are divided into sides 1, 2, and 3, as shown in
Figure 17. It is assumed that the nodes are equally spaced along each side, so that
the nodal information is input by specifying the number of segments in each side of

the quadrant; this is done through an array I_NSEG_I . For example, in Figure 17,

l_NSEGJ =[2 1 3.

It is assumed that the hole is centered in the square. The ratio of square dimension,
2L, to hole diameter, 2R, can be varied as desired by the user; however, it is

recommended that % = 2, with % =4, if possible.

5.3 NUMBER OF STRESS COEFFICIENTS

In Section 1.6 it is shown that there is a relationship between the number of degrees
of freedom and the number of stress coefficients. What was shown there for a
general state of deformation must also be true for each of the separate symmetry

condition states.
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First, note that the rigid body motions consist of one SA state (displacement in the
x-direction), one AS state (displacement in the y~direction), and one AA state
(rotation about the center of the element). There is no rigid body SS state. These

observations establish the values of R to be used when checking the requirement that
rank [G] = (F-R).

In the ncifafion of Equation (23), lefl_ERB_] denote all of the nodal displacements on
the exterior boundaries; clearly,LaRBJE L0J will suppress all true rigid body motions
for all symmetry conditions. Then LTq']_]will denote the displacements on the hole
boundary. Let NSEG3 denote the number of segments on the hole boundary (side 3).
Then as is shown in Figures 10 through 13, the number of elements inI_E]J (the number
of degrees of freedom on side 3), denoted by (F-S) in Equation (23), is a function of

symmetry condition, as follows:

for SS : (F-S) = NSEG3 + 1
for SA and AS: (F-S) = NSEG3 (112)
For AA : (F-S) = NSEG3-1

In Equations (24) and (25), the array [G]] is the boundary work array associated with
work done by radial stresses moving through radial displacements on the hole boundary;
there will be an array [G ] for each symmetry condition. Because ronk [G ] must
equal to (F-S) for each symmefry condition, it follows that each [G ] must have at
least (F-S)i mdependenf rows. This means there must be at least (F- S)i independent

states of radial stress on the hole boundary.

Now, consider Equation (64), which shows the assumed form for R2Tr' Clearly,

at p =1, the stress states associated with B” and 82] are not independent; this is

also true for B3] and By and for many other sets of coefficients. In general, the radial
stress states which have the same harmonic function of 6 are dependent when evaluated
along any circle. Therefore, since there must be at least (F-S)i independent radial

stresses on the hole boundary, it follows that there must be a minimum of (F-S)i harmonics

in the stress state for each symmetry condition.
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For symmetry conditions SS, SA, and AS, the first fwo harmonics supply four coefficients;
for condition AA, the first harmonic supplies two coefficients. These first harmonics are
never enough because the number of coefficients is not adequate for the number of degrees
of freedom. Therefore, additional hamonics, supplied by the summations in Equation (64),
are always necessary. Let AH denote the minimum number of additional harmonics required;

this is a function of symmetry condition, as follows:

for SS, SA, AS: AH = (F-S) - 2

(118)
for AA : AH =(F-S) - 1
Substitution of Equation (117) into Equation (118) gives
for SS : AH = NSEG3-1 _
(119)

for SA,AS,AA : AH = NSEG3-2

For specified NSEG3, Equation (119) gives the minimum number of additional
hamonics necessary to provide proper rank to the arrays [G; ]. Fewer harmonics
will introduce spurious rigid body modes involving hole boundary displacements with

zero displacement on the external boundaries.

Suppose there are more than (F=S) independent rows in the EG]] array. This is
perfectly all right as far as rigid body considerations are concerned. The rank of
array [G]] will equal (F~S), and Equation (25) will be satisfied only by the trivial
solution {E]} = {0}. However, excess independent rows mean excess harmonics in
the expression for radial stress; and this leads to reduced accuracy in satisfaction of

any radial traction boundary conditions which might exist on the hole boundary.

This can be explained with reference to Section 1.7, entitled "Treatment »f Boundary
Conditions." Although the hole boundary has been treated as Su boundary with
specified nodal radial displacements, actual traction boundary conditions can be
approximately satisfied by proper selection »f the hole nodal displacements.

This means there are (F-S) displacements available to provide proper values for
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radial stress at the hole boundary. If there are more than (F-S) independent stress states
at the boundary, then there are not enough displacements to permit best satisfaction of
the traction conditions. If there are exactly (F-S) independent stress states, then in some
unspecified and probably non-unique manner it is possible to achieve excellent satis-
faction of traction boundary conditions. This observation, while vague in the details,
has been numerically confirmed. In open hole test problems described in a following
section, the radial stresses on f]he hole boundary were decreased by three orders of
magnitude (lOm2 down to 10-5 or better) by removing excess harmonics from the assumed

stress state.

In summﬁry ; if the number of additional harmonics is selected to satisfy Equation (119),
then spurious rigid body modes on the hole boundary will be eliminated and traction
boundary conditions will be as well satisfied as is possible. With the number of additional
harmonics known, the total number of stress coefficients depends upon the summation
limits I and J in Equation (62). It is only necessary to ensure that rank [G 1= (F-R)

for each symmetry condition; this generally requires NSEG3 Z 3.

. 5.4 AREA INTEGRATION

The internal complementary work leads to the area integral shown in Equation (92)

and repeated below:

(R3] =/ IZAj(p,e)]T e e(e)]EAj (0,6)1p dpdb
Quad r

From the structure of Equations (64), (66), and (68), it can be shown that the arrays
[A?(p,8)] can be written as

l
(Ad(p,6)] = 2 pm-(J+3) EmAj (e)] (120)
m=1

where =M+

1,J = summation limits shown in Equation (62).
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In words, the arrays EAj (p,6)lare decomposed into the summation of products of

individual powers of p multiplied by functions of 6.

Substitute Equation (120) into Equation (92) to get

Ut m
1= > Q| AR @11 OV 1A (8) o do a8
m=1 n=1 JQuad

Let P denote the typical integral in Equation (121). Then, it is clear that P has the

p = / (o) g (6) dp d8
Quad

min=2J-5

form

where flp)=p

The integration limits are established with reference to Figure 18. The quadrant is
divided info two octants identified by the exterior boundary side number. In each

octant, the upper limit on p is given by

L/R

Prmax " Tos (]

where L/R = ratio of quadrant dimension to hole radius.

0
Define Flp) = / M £(0) dp
p=1

After substituting Equation (123) into Equation (125) the result is

1 L/R m+n-2J-4
m+n=-2]J-4 [(cos qb) -1] + (min=2J-4)70

Fl@)=

In w{f; . (min=2J-4) =0
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" // octant 1

Figure 18. Notation Used for Volume and
Boundary Integration in the Quadrant
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Now the quadrant integration can be written as the following sum of two octant

integrations:
ay=T ay=T
1=3 2=7 ]
P= 'F@y)g(ay) da, + F@)alz tay)da,
a,=0 as=0
1 2
where ¢] = , inoctant 1

952 = % =0, in octant 2

Alternatively the integral is given by
_ T
L

P F@) (9@ +9(5 - A 1dp

~—

$=0

The area integrals in their original forms are too complicated for exact evaluation,

so numerical integration is necessary. However, it is possible to first reduce the area
integrals to line integrals through performing the radial infegrafion in the closed form
of Equation (126). Although numerical techniques are still necessary to evaluate the
line integrals in Equation (127), the results should be more accurate than what would

be achieved with comparable effort on the original area integrals.

5.5 BOUNDARY INTEGRATION

The external complementary work is calculated from the product of tractions and
displacements on all three sides of the quadrant. The result is given in Equation (93),

repeated below,

. T,
(Gl]= /Qm P [r1tel1 £ (e) do

The function f(B), used to define the differential boundary length as shown in

Equation (83), is determined as follows, with reference to Figure 18.
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Along side 1, the arc length 51 is given by s, =L fan 6. From this, it follows

1
that ds, =R L sec2 8 d6; and by comparison with Equation (83), f(6) = (L/R) sec29.

If e, ax} is inEroduced from Equation (124), the result can be written as follows:
H6) = pr%uax
R
!
Along side 2, 59 = L[]-fcn(% -~ 0)]. Therefore, d52= R-:i' sec2 (~-121 -~ 8)d6. Since

- LR

max (ﬂ’ 9 , it follows once again that f(6) is given by Equation (129).
cos(z -
2

Along side 3, 59 = R6 and ds3 =Rd6.
Therefore, f(8) = 1.

The tractions on sides 1 and 2 are in the x and y directions while the stresses are

assumed in polar coordinates. Therefore, at each point on the exterior boundary,

the stresses are first evaluated and then transformed fo cartesian components by well-

known equations such as given in [1, p.07] R

On side 3, the radial traction is immediately given by the negative of the radial stress

component.

The integrals in Equation (93) are finally evaluated numerically as discussed in the

next section.

5.6 'NUMERICAL INTEGRATION

(129)

In the numerical evaluation of the area integrals, each octant, described by 0°=¢ = 45°,

is divided into a user specified number of integration intervals. That is, each octant is

divided into a specified number of equal increments of the angle varicble. Then the

integral in Equation (127) is evaluated in each interval by Gaussian quadrature with a

user specified number of Gauss points.
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For the boundary integration, each side is first divided info segments by the nodes. Then
each segment is further subdivided into integration intervals, with the number of intervals
possibly different for each side. Finally, the integral is evaluated in each interval by

Gaussian quadrature.,
As mentioned above, the number of Gaussian quadrature points per interval is user

specified. However, the existing computer code limits the choices to 3, 5, 7, or ¢

points. This choice can, of course, be expanded if desired.
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SECTION 6
SAMPLE PROBLEMS

6.1 INTRODUCTION

NASTRAN was chosen as the host program for this element because it is such a widely used,
well-known program with a large element library and many capabilities. The hole element
implemented into NASTRAN is a variable~noded total element and is defined via ADUM7,
CDUM?7, and PDUMY7 input cards. The format of these cards are given in Appendix A and
the default geometry of the element is shown in Figure 19. The user may specify the
number of nodes on each of the three boundaries shown in the figure. The nodes on the
exterior of the element have two cartesian degrees of freedom whereas the nodes on the
hole wall have only a single radial degree of freedom. Tangential degrees of freedom at
the hole wall do not appear in the element formulation because the stiffness matrix was
derived through a complementary virtual work formulation based on assumed stresses which
satisfy the tangential traction-free conditions on the hole boundary (see Section 2.1). The
ratio of element diameter to hole diameter is determined from grid point locations and is
thus a user choice; however, a ratio of four is recommended. The material properties may
be isotropic or orthotropic and are defined by MAT1 and MAT2 cards. Characteristics
which are not defined for this element include mass properties, thermal loading, material

non-linearity, and differential stiffness.
The example problems which follow were solved using the NASTRAN program at Lockheed-

Georgia Company with the orthotropic hole element implemented. They are intended to

demonstrate the performance of the element in a variety of applications.

6.2 ISOTROPIC PLATE WITH UNIAXIAL TENSION

The orthotropic hole element can be used in isotropic applications by simply specifying
isotropic elasf%c coefficients. This is demonstrated by presenting the solution for an infinite
isotropic plate with unit uniaxial tension at infinity (see Figure 20). The finite element
mode! is shown in Figure 21. The plate width is 20 times the hole diameter, which repre-

sents an essentially infinite plate. Poisson's ratio is set at 0,3205.
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Figure 19 . Default Geometry of Hole Element
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Figure 20. Unit Tensile Traction in the Y-Direction
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Figure 21. Finite Element Model
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Table I presents results for the three stress components at four values of radius and four
values of 6. The hole element stiffness and siress matrices were based on array

l_NSEGJ = I_l 1 3_| with radial variation given by powers of p from p_5 to p+] .

The hole boundary is given by r=1. Note the excellent satisfaction of the zero radial
stress boundary condition; the results were typically 10-6 times the magnitude of external
loading. The circumferential stress results are also very good, with an error of only 0.2%
on the maximum tension stress concentration factor and 1.5% on the maximum compression
stress. The zero shear stress condition is of course perfectly satisfied since it was included

in the original stress assumptions.

The stresses away from the hole boundary are also very well represented by the hole

element results.

6.3 ISOTROPIC PLATE WITH HALF COSINE LOADED HOLE

A load transfer problem for which a comparison solution is available (3] is that of an
infinite isotropic plate with Poisson's ratio equal to 0.25, loaded with uniform traction

on one end and a cosine variation of radial tractions on the hole boundary (see Figure 22).
The total load on the end is equal to 2P, and the radial tractions on the loaded hole

boundary are given by

The finite element model is shown in Figure 21; and Table Il presents results in the region
- +
around the hole, based on LNSEG_l = l_l 1 4_] and radial terms from p > to p l.

The value of P is set equal to 1.0.

The stresses at the hole boundary are very well represented by the finite element results.

The radial stresses follow the cosine curve over the loaded region and are of the order of
-2 . - . . >

10" “ on the unloaded portion of the boundary. The variation of circumferential stress

is reasonably accurate, with an error of 3% on the maximum stress concentration.

In the region around the hole, the results from the hole element solution continue to

give a good description of the stress state.
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TABLE |
STRESSES FOR AN ISOTROPIC PLATE SUBJECTED TO UNIAXIAL TENSION

0 * *% * * % * * %
deg T-r Tr Te 76 Tl’e Tre
r=1 0 0 0 3.006 3.000 0 0
30 0 0 2,005 2.000 0 0
60 0 0 -0.006 0 0 0
90 0 0 -1.015 -1.000 0 0
r=2 0 0.279 0.281 1.22] 1.219 0 0
30 0.327 0.328 0.923 0.922 0.572 0.568
60 0.422 0.422 0.325 0.328 0.571 0.568
90 0.467 0.469 0.028 0.031 0 0
r=3 0 0.145 0.148 1.076 1.074 0 0
30 0.295 0.296 0.815 0.815 0.516 0.513
60 0.5%94 0.593 0.296 0.296 0.516 0.513
90 0.739 0.741 0.031 0.037 0 )
r=4 0 0.083 0.088 1.036 1.037 .0 0
30 0.278 0.278 0.784 0.784 0.482 0.482
60 0.659 0. 659 0.284 0.278 0.488 0.482
90 0.851 0.850 0.010 0.025 0 0

* Finite Element Results

** Reference 1
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a) External Loading ' b) Half Cosine Distribution of Traction on the
Hole Boundary

Figure 22, Load Transfer Problem



STRESSES FOR AN ISOTROPIC PLATE WITH LOAD TRANSFER

TABLE 11

* %

*

dfg S T Tg T Tro Tre
r=1 0 -1.271 ~1.273 0.372 0.412 0 0
30 -1.099 -1.103 0.467 0.470 0 0
60 -0.649 ~0.637 0.659 0.612 0 0
90 -0.041 0 0.834 0.810 0 0
120 -0.012 0 0.415 0.373 0 0
150 0.003 0 0.056 0.053 0 0
180 0.003 0 -0.094 -0.065 0 0
r=1.2 0 -0.995 -0,977 0.314 0.348 0 0
30 -0.844 -0.829 0.358 0.381 0.035 0.021
60 -0.445 -0.429 0. 460 0.443 0.046 0.029
90 0.038 0.034 0.477 0.415 | -0.032 -0.031
120 0.055 0.078 0.289 0.274 | -0.097 ~0.081
150 0.023 0.038 0.070 0.088 | -0.064 ~0.051
180 0.006 0.024 | -0.015 -0.011 0 0
r=1.5 0 -0.726 ~0.726 0.232 0.241 0 0
30 -0.604 ~0.609 0.256 0.253 0.042 0.026
60 -0.288 ~0.293 0.295 0.266. 0.046 0.028
90 0.045 0.037 0.266 0.231 -0.047 -0.045
120 0.094 0.086 0.179 0.152 | -0.119 -0.105
150 0.055 0.049 0.062 0.055 | -0.083 -0.070
180 0.035 '0.033 0.010 0.012 |- O 0

* Finite Element Results

** Reference 3




In the finite element model of the structure, the tractions are applied as concentrated
nodal forces. On the hole boundary, these nodal forces are the work equivalent loads
based on the cosine variation of the radial traction between nodes and the assumed

radial displacement of Equation (79). The results are as follows.

Let A = angular increment subtended by arc length between two nodes
on the hole boundary
Fr = radial nodal force at node located by angle ¢,
-_ 4p
Then, at ¢=0°, F = - b
at @==@, Fr=i—PAcosq_5

)

ot @=£90°, F -—(1 A

These results can be partially checked as follows. Consider a hole boundary with N
segments per quadrant. Then the summation of nodal force components in the y

direction is

Z F = A +2 ( A coszA)+ 2(%EA c0522A)+...'i'2\'.:}",£ A cosz(N-l)A]

ZFY = % A1 +2(coszA+ cos2 20 +..F c052 (N=-1)a]

Since A= 2—-1:\1- , it follows that
N-1
2P m
= o + 1 —
ZFY N [1 2 Z] cos i N:l
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It can be shown that
N-1

Z cos2 i

i=1

N-1

_ 2 [, N
Therefore, ZFY N ['I +2 5 )} 2P

as required for equilibrium.

6.4 +45° LAMINATED PLATE

The example problems with isotropic material serve to confimm the basic theoretical
approach and to partially validate the computer solution. There remains only to
demonstrate satisfactory performance in the intended applications with orthotropic

materials.. The first material selected has material properties as follows:

E=E =€, G =1,697528E, v =v =0,735
X 'y Xy yxX o xy

Note that even though Ex = Ey, this material is rather "far" from isotropic, with some
unspecified measure, due to the large value of Poisson's ratio and the fact that E,G, and v
do not satisfy the isotropic relationship. These properties describe the 45° graphite/

epoxy laminate considered in [4].

The first loading is unit tensile tractions in the y-direction, applied as shown in Figure 20
with the finite element model given in Figure 21. The traction boundary conditions at
the hole boundary are satisfied, with radial stress of the order 10_6 times the external
loading. Figure 23 shows the variation of circumferential stress around the hole boundary
for LNSEG_! = Ll 1 3__I and two different sets of powers of p. Also shown is the exact

solution for an infinite plate, given by

3.05786 cos2 6 - |

To = 7 2
2.8809072(cos 0 ~ cos” 6) + 1
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Figure 23. Circumferential Stress at the Open Hole Boundary for a +45°
Laminate with Unit Uniaxial Tensile Traction



which can be deduced from [5, p.175]. The orthotropic hole element results contain
the essential feature that the maximum stress concentration does not occur at the
familiar location of 8 =0°, The worst solution shown has an error in maximum stress

of only 3.8%, and the best error is only 0.7%.

The hole loaded with half-cosine distributed tractions has also been solved; see Figure 22.
The resulting radial stresses on the boundary are essentially identical fo the results achieved
in the case of isotropic material, as should be. The maximum circumferential stress on

the hole boundary is T, = 0.79 at ¢p= 125°, which can be compared with the hole element

]

results for isotropic material of 7, =0.84 at ¢ = 85°. Again, it is seen that the location

C]
of maximum stress has shifted around the circle from the familiar location.

6.5 PLYWOOD

The next material selected has properties as follows (see Section 2.5 for notation):

E =E, E = 2E, G =0.11667E, v =0,036
X Xy Xy

These properties describe a plywood material for which [5] contains many results for an
infinite plate. Note that the plywood properties are quite different from the £45°
lamination properties, both in magnitudes and relationships. This provides further checks

on the ability of the hole element to handle different types of orthotropic material.

The types of loading considered are unit tensile tractions in the y-direction (Figure 20),
unit compressive tractions in the x~direction with constraint in the y-direction (Figure 24a),
and uniform unit intemal pressure on the hole boundary (Figure 24b). For all cases, the
finite element model is shown in Figure 21; and [_NSEG_J =l_1 1 6_] , with powers of

p from p-'5 to p-H .

For the uniaxial tension, there is the usual excellent satisfaction of traction boundary
condition, with T of the order 10-6. Circumferential stresses around the hole boundary

are shown in Figure 25. Also shown are the exact results for an infinite plate, given by
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Figure 24, External Loadings
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4,8557 cos? 6-0.7071

To~ 73 2
~6,9994 cos” @ +7. 4994 cos” 6 +0.5

G

7

which can be deduced from (5, p.175]. The general features of the variation of stress

are demonstrated by the hole element results. There is an 8% error in maximum stress.

The constrained compression results satisfy the hole boundary conditions, with T of
the order 10—5. Circumferential stresses around the boundary are shown in Figure 26.

The exact results for infinite plate are given by

1.1155 - 6.5174 sin28
-13.9989 sin 6 + 12.9989 sin2 @ + 2

1'6=

7

deduced. from [5, p.179]. There is an 18% error in maximum stress.

The internal pressure results provided boundary radial stresses of the magnitude -1.00002,
which is again excellent satisfaction of boundary conditions. Circumferential stresses

around the boundary are shown in Figure 27, compared to infinite plate exact results

given by [5, p.173]

- = 4.8829 - 15,8432 5in 6 + 13,9989 sin" 0
8 2 +12.9989 sin” 6 - 13,9989 sin"

The general shape of the distribution is indicated, but there is a 21% error in the
maximum stress. Also, there is a small region where the stress becomes compression,
which is not to be expected for the internal pressure loading and is not shown by the

exact solution.

6.6 MULTIPLE HOLES

Figure 28 shows a finite element model of a plate containing five holes. For economy

in modeling, it is desirable to develop the hole element stiffness matrix only once and
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with Unit Constrained Compression



€6

3r
exact solution
for infinite 3
plate el
2
Ty
. finite element
solution
] -
0 I N 7/ t .
0 30 \\\‘__’,"’ 60 90
0 - deg.

Figure 27. Circumferential Stress at the Hole Boundary for Plywood
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Figure 28. Finite Element Model for a Plate with
Multiple Holes
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then transform this matrix as necessary to represent all the hole elements. This is possible
in NASTRAN by using the congruency feature, and this feature has been checked by
determining the solution to Figure 28 with tension applied parallel fo the row of holes.

The material is isotropic with Poisson's ratio of 0.3205.

The maximum stress concentration factor is given in {6, p.94] for an intermediate hole in
an infinite row of holes. In order to simulate the infinite row, the displacements at each

loaded end of the model were constrained to be uniform across the width of the plate.

The finite element result for stress concentration is 2.78, based on LNSEG_' = l_] 1 3_,

5

- +
and powers of p from p = to p ]. Reference 6 gives 2.65; there is a 5% difference in

results.

6.7 EFFECT OF VARYING THE HOLE SIZE

All the preceding examples used a hole element with the ratio of square dimension to
hole diameter equal to four, which is the recommended value. However, the computer

code does allow the user to vary this ratio, and this feature of the code was tested.

A problem for which theoretical results are available is that of an infinite strip under
unit uniaxial tensile traction with a hole diameter equal to half the plate width. The
finite element model consists of a hole element which spans the strip width plus sufficient
linear strain quadrilaterals added symmetrically to achieve a model with length to width
ratio of five. The hole element stiffness matrix is based on LNSEG_I = L2 2 4_[ ,
with powers of p from p-s to p+] . The material is isotropic, with Poisson's ratio of
0.25.

The maximum stress occurs on the hole boundary at 6 =0°. Reference 5, page 84,
gives a stress concentration factor of 4,32, The finite element result is 3.95, for an

8% difference; this is an excellent result for such a relatively crude model.
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SECTION 7
IMPLEMENTING THE HOLE ELEMENT INTO NASTRAN

The orthotropic hole element has been implemented into NASTRAN through the dummy
element capability. This capability permits the user to enter his own element sub~
routines for the purpose of generating the stiffness matrix contributions and for the

computation and output of stresses [7, section 6.8.5].

The hole element has been implemented as a DUM7 element. The procedure used to

implement the element is as follows.

e Create a subroutine KDUM7 which computes and outputs to functional
module EMG the element stiffness matrix. Subroutine KDUM7 calls 15
new auxiliary subroutines in performing its task. Table Il gives the
function of each of these subroutines. Subroutine EMGPRO was updated
to increase the allowable number of words in the element summary table.

LINK8 was remapped and the overlay structure was modified.

®  Create two subroutines SDUM71 and SDUM72 to compute and output to
functional module SDR2 the element stresses. Subroutine SDUM72 calls
one new auxiliary subroutine, STRS1S, which evaluates the elements of
the assumed stress state. Subroutine SDR2E was changed to call SDUM72
once for each line of stress output. This was required because this element
produces many lines of stress output for each element in the model. LINK13

was remapped.

e  Subroutine GPTABD was modified to increase the number of words SDR2
passes from phase 1 element stress recovery routines to phase 2 routines.
The following subroutines were changed to increase the allowable number

of data items on the CDUM7 bulk data card:
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TABLE 111

NEW SUBROUTINES WRITTEN FOR NASTRAN

NAME FUNCTION
ORTHOL Computes the orthotropic hole element stiffness matrix
SETRUN Sets up dimension blocks and controls the execution
STRES] Gives stresses for shear free hole boundary
BNDWRK Performs exterior boundary integration around a quadrant
BNDTRC Evaluates tractions on outer boundary
RDSTRS Evaluates radial stress on inner hole boundary
VOLINT Evaluates the volume integrals in a quadrant
INTGND Forms the volume integrand
ELAS Evaluates elastic property matrices
VOLSTI Evaluates stress terms in the volume for shear free hole
INVS Inverts symmetric square array
AMTRX1 Evaluates nodal transformation matrices for total element
EQUIL Checks total element equilibrium
HLCOND Modifies arrays to account for open holes
SQCHK

Evaluates stresses in quadrant of open hole element




IFX4BD I[FPDCO iFS2P IFSSP
IFX78D IFP3B IFS3P IFXDBD
IFP IFSTP IFS4P IFX5BD

LINKT was remapped.

® The following subroutines were modified to account for the increased

size of the element connectivity table, ECT:

GP1 TAA TAIETD
GP2 TAIB TAIH

- LINK2 was remapped.

Listings of all new and modified subroutines are supplied under separate cover.
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APPENDIX A

NASTRAN INPUT CARDS FOR THE ORTHOTROPIC
HOLE ELEMENT



BULK DATA DECK
Input Data Card  ADUM7 Hole Element
Description: Defines attributes for the N-node hole element

" Format and Example:

ADUM7 NG NC NP ND
ADUM7 24 29 11 3

Field: Contents

NG Number of grid points connected by CDUM7 element
(Integer = 64)
NC Number of additional entries on the CDUM7 connection card. All entries which

follow the grid point identification numbers are additional. (Integer = 0)

NP Number of additional entries on the PDUM7 property card. All entries which follow
the MID entry are additional. (Integer = 1)

ND Number of displacement components at each grid point used in generation of
differential stiffness matrix (Always input 3)

Remarks: 1. The value of NC given in the example above is not typical but is consistent
with the CDUM7 and PDUM7 examples. Typically, if additional entries are
present on the CDUM?7 card, they will consist of only the NSEG array (i.e. NC=3).

A-2



Input Data Card -

CDUM7

BULK DATA DECK

Hole Element Connection

Description: Defines an N-node hole element of the structural model

Format and Example:

CDUM7 | EID PID Gl G2 G3 G4 -efc- GN abe
CDUM7 | 101 10 12 15 96 97 11 ABC
tbe NSEG1{ NSEG2| NSEG3 | NINT1 [NINT2 | NINT3| NIPB NIO def
+BC 1 1 4 2 2 2 5 2 DEF
+ef NIPV | LPI LP2 LP3 LP4 LN LN2 LN3 ghi
+EF 5 3 3 3 3 3 3 3 GHI
+hi LN4 ITOTRT | IQDTRT| ICOND |IACHK [ELMNT |IBNDRT | IVOLRT| ki
Hil 3 0 0 0 0 0 0 0 JKL
+Kl IHINVS | IsSC1 ISC2 ISC3 NLC

+KL 0 1 4 1 4

Field Contents

EID Element identification number (Integer > 0)

PID Identification number of a PDUM7 property card (Integer > 0)
Gl....GN Grid point identification numbers of connection points

(lnfeger > 0, G] %1620000# GN)
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BULK DATA DECK

Input Data Card CDUM7 Hole Element Connection (Continued)

Field Contents

NSEGi Number of segments on boundary i (see Figure A-, Integers, Defaults
are NSEG1 =1, NSEG2=1, NSEG3 = 4)

NINTi Number of integration intervals per segment for boundary i
(Integer, Defaults = 2)

NIPB Number of Gaussian integration points per interval for boundary
integration (Integer, Default = 5)

NIO Number of integration intervals f:er volume octant
(Integer, Default = 2)

NIPV Number of Gaussian integration points for volume integral
(Integer, Default = 5)

LPi Number of stress terms with powers of r > - 2.  Input for each symmetry
condition where i = 1 is symmetric-symmetric, i = 2 is symmetric-
antisymmetric, i = 3 is antisymmetric-symmetric, and i = 4 is antisymmetric~
antisymmetric. (Integer = 3, Defaults = 3)

LNi Number of siress terms with powers of r < =2, Input rules are the same as
for LPi. (Integer = 3, Defaults = 3)

ITOTRT If greater than zero, causes a print of the elemental stiffness and stress
matrices. (Integer, Default = 0)

IQDTRT If greater than zero, causes a print of intermediate stiffness and stress
matrices for a quadrant of the element (Integer, Default = Q)

ICOND If greater than zero, causes a static condensation of the element stiffness
and stress matrices through elimination of the degrees of freedom on a
traction free hole wall (Integer, Default = 0)

IACHK If greater than zero, causes a print of the transformation matrix which
relates total and quadrant displacements (Integer, Default = 0)

[ELMNT When equal to 0, produces total element stiffness and stress matrices.

If =1, quadrant element matrices are generated, and if +1, half element
matrices are generated. (The only option currently available is O )

IBNDRT If greater than zero, prints the boundary work matrix (Integer, Default = 0)
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BULK DATA DECK

Input Data Card CDUM7 Hole Element Connection (Concluded)
Field Contents
VOLRT If greater than zero, prints the volume work matrix (Integer, Default = 0)
IHINVS if greater than zero, prints the identity matrix resulting from the check
of the inversion of the volume work matrix (Integer, Default = 0)
ISC1, If IELMNT is +1 or =1, symmetry conditions
I1sC2, must be defined. In the program code, symmetry
ISC3 conditions are set with DO loops such as
NLC DO XX I=1IsCl, IsC2, ISC3
See the description of LPi for definition of symmetry conditions.
The user should chose ISC1, 15C2, ISC3 to implement the conditions
he wishes. NLC is the number of times the DO loop is executed.
This is for dimension purposes. (Integer, Defaults: ISC1 =1, ISC2 =4,
ISC3=1, NLC =4)
Remarks: 1. Element identification numbers must be unique with respect to all

other element identification numbers.

The element must be planar with a square outer boundary and a
circular inner boundary. The nodes on the outer boundary, as well
as the inner boundary, must be equally spaced.

Nodes on the hole wall have only radial degrees of freedom, therefore
tangential restraints are required. This is necessary because in a general
finite element model there are six degrees of freedom associated with each
node and the stiffness matrix will be singular if restraints are not applied to
those degrees of freedom not included in the element formulation. The
tangential restraints are imposed only to eliminate the singularity in the
stiffness matrix. The actual tangential displacements are not zero, and
circumferential strain is developed at the hole boundary.

For reference purposes, the values given for all additional entries on the
example input card are default values. If default values are acceptable
for all additional entries, they may be omitted from the input. If a
variable is given a non-default value, all preceding variables must be
defined; all subsequent variables may be omitted.



Input Data Card PDUM7

BULK DATA DECK

Hole Element Property

Description: Defines the properties of a N-node hole element.
Referenced by the CDUM7 card.

!

Format and Example:

PDUM7| PID MID T DTH THMX NR R1 R2 abe
PDUM7 10 2 . 10 359. 4 1. 1.5 ABC
tbe R3 -etc~ RN PRT1 PRT2 PRT3
+BC 2,0 3.5 0 0 0

Field: Contents

PID .Property identification number (Integer > 0)

MID Material identification number (Integer > 0)

T Thickness (Real)

DTH,THMX, Defines stress output locations. Siresses will be computed and printed

NR,Ri for the NR radii defined by R1,R2,...,RN and at angles beginning at
0° and incremented by DTH, up to a maximum angle of THMX
(See Figure A-2). DTH, THMX, and Ri are real, NR is integer =20.
Defaults: DTH = 10°, THMX = 359.999, NR = 4, Ri equally spaced
from hole wall to element boundary. Note: Ri are normalized to a
unit radius.,

PRTI If greater than zero, causes a print of the total element stress matrices
(Integer)

PRT2 If greater than zero, causes a print of displacements in the element
local coordinate system (Integer)

PRT3 If greater than zero, causes a print of the stress coefficients associated

with elemental nodal displacements (Integer)




Remarks:

All PDUM7 cards must have unique identification numbers.

Stress output for this element (see Figure A-3) may be interpreted
as follows:
Field S1 = The radius, r, at which stresses are computed.

Field 52 - The angle, 8, at which the stresses in fields
S3, S4, and S5 are computed.

Field S3 - 7,
Field S4 - 7,
Field S5 - 7y,

Field S6 - The angle,§ at which the stresses in fields
S7, S8, and S9 are computed

Field §7 - T,
Field S8 - T
Field S% - Tre

Note that each line of output has siress values for two
values of 6.
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Figure A-1.
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Figure A=2. Definition of Stress Output Locations
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APPENDIX B
INTERPRETATION OF OUTPUT

Figure B-1 gives an example of the output which pemmits the user to confirm that the

hole element input was correct. Number of segments per side shows the entries in array
I_NSEGJ , and number of intervals per segment shows the entries in array |[NINT] .
Number of terms with powers of R > -2 (R < =2) gives the values of I1,12, 13, and 14
(J1, J2, J3, and J4) in Equation (63). For each symmetry condition, number of stress
coefficients gives the correct number based on the minimum number of hamonics necessary
to eliminate spurious rigid body motions; these numbers are determined by the program

based on input of NSEG3 and values of I and J in Equation (63).

The material properties are described first bx the values of Ex’ Ey' vxy’ and Gx . The
number of elastic constants, NEC, displays the number of independent constants; NEC=2
denotes an isotropic material. Constants C1, C2, C3, and C4 are the coefficients defined
by Equation (39); and CBAR denotes the C defined in Equation (51).

The element geometry is described by the value of. the hole radius, the L/R value
(see Figure 17), and the plate thickness.

The quantities ISC1, 1SC2, and ISC3 are used by the program to determine the symmetry
conditions involved in the derivation of the hole element stiffness matrix; NLC denotes

the number of load conditions used. In the present form of the program, which incorporates
only the total element, ISC1, ISC2, ISC3, and NLC must have their default values

of 1,4, 1, and 4 respectively.

NBMAX is simply the largest element in the array of stress coefficients. MXLPNI denotes
the largest number of powers of p for all symmetry conditions; this is the maximum IJ1 in

Equation (120). The values NBMAX and MXLPN1 are used for DIMENSION purposes in

the program.

The displacement degrees of freedom are denoted as follows:
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NQDOF = number of degrees of freedom for the quadrant element

NQHDOF = number of degrees of freedom on the hole boundary of
the quadrant

NQEDOF = number of degrees of freedom on the outer boundaries
of the quadrant

NTDOF = number of degrees of freedom for the total element

When executing a NASTRAN solution, there is a certain amount of computer core
available for the orthotropic hole element code. If the available space is sufficient,
the value of JMAX will give the number of memory locations necessary to provide for
all the arrays used in the hole program. If the available space is not sufficient, a
message will appear which gives the minimum number of additional storage locations
which must be made available through the NASTRAN HICORE specification (it is
recommended that this minimum number be increased by af least 2000 to supply a margin

of safety); in this case, program execution is terminated.

The remaining information shown in Figure B-1 consists of the number of Gaussian
integration points per interval for the boundary integration (NIPB), number of integration
intervals per volume octant (NIO), and number of integration points per interval for the

volume integration (NIPV).

Figure B-2 gives a typical final equilibrium check for the stiffness matrix of the total
orthotropic hole element. The values have been nomalized with respect to the diagonal

element in each column of the stiffness matrix.

Figures B-1 and B-2 give the minimum hole element output currently furnished to the user.
However, much other output can be obtained if desired by exercising the WRITE options
discussed in the description of the CDUM7 data card. These options are further described

as follows:



ITOTRT> 0 will print the total stiffness matrix [K] in Equation (111)
and the total stress matrices R(S® 1, with [SJ]given in
Equation (115);

IQDTRT > O will print the quadrant stiffness mairices [KQj] in
Equation (100) and the quadrant stress matrices R(BQ’ 1,
with [8Q3] given in Equation (94);

ICOND >0 will result in transformed stiffness and stress matrices for
quadrant elements with traction free hole boundaries; output
will consist of intermediate steps in the transformation, the
final modified stress and stiffness matrices, and stresses on
the hole boundary due to unit values of the nodal displace-

ments on the outer boundaries of the element.
IACHK >0 will print the arrays (Al Equation (109);
IBNDRT >0 will print the boundary work arrays (3 1in Equation (93);
IVOLRT > 0 will print the volume work arrays [Hj] in Equation (92);

IHINVS > 0 will print the products (H] I ]-] and provide some check

on the accuracy of the inverse of 1.

This completes the description of the output which is associated with the development of
the hole element stiffness and stress matrices. Final output, consisting of stress coefficients
and values of stress components at specified locations, is discussed in the description of

the PDUM7 data card.
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